Science.gov

Sample records for fluid-saturated porous rocks

  1. Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua

    2017-03-01

    Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.

  2. Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua

    2016-12-01

    Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.

  3. (Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)

    SciTech Connect

    Adler, L.

    1992-01-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  4. [Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report

    SciTech Connect

    Adler, L.

    1992-07-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  5. Standing Torsional Waves in Fluid-Saturated Porous Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Solorza, S.; Sahay, P. N.

    2002-12-01

    For dynamic measurement of elastic constants of a porous material saturated with viscous fluid when resonance-bar technique is applied, one also observes attenuation of the wave field. The current practice is to interpret it in terms of solid-viscosity by assuming a viscoelastic rheology for porous material. The likely mechanisms of attenuation in a fluid saturated porous material are: 1) motion of the fluid with respect to the solid frame and 2) viscous loss within the pore fluid. Therefore, it is appropriate to assume a poroelastic rheology and link the observed attenuation value to fluid properties and permeability. In the framework of poroelastic theory, the explicit formula linking attenuation to the properties of solid and fluid constituents and permeability are not worked out yet. In order to established such a link one has to workout solutions of appropriate boundary value problems in such a framework. Here, we have carried out the solution of boundary value problem associated with torsional oscillation of a finite poroelastic circular cylinder, casted in the framework of volume-averaged theory of poroelasticity. Analysing this solution by a perturbative approach we are able to develop explicit expressions for resonance frequency and attenuation for this mode of vibration. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry porous frame due to the effect of the fluid-mass.

  6. Wave propagation in fluid-saturated porous media

    NASA Astrophysics Data System (ADS)

    Ren, Jiaxiang

    The wave propagation in fluid-saturated porous media is studied by solving the Biot equations, the governing equations for the motion of the porous medium. Methods are devised to solve the Biot equations for different problems and medium models. The problem of the reflection and transmission at an interface is solved by using the eigen-analysis of the Biot equations. The displacement-stress vectors in the media on both sides of the interface are represented by corresponding upgoing and downgoing wave vectors which are then linked by the boundary conditions on the interface. The reflection and transmission coefficients are extracted from the proportionalities between the upgoing and downgoing waves. For an incident fast wave or shear wave, the reflection and transmission coefficients for the reflected and transmitted slow waves are very sensitive to frequency and interface permeability (kappasb{I}); while those for the reflected and transmitted fast waves and shear waves are not, except when incident angles are close to and greater than critical angles. For sandstones, the amplitudes of the reflected and transmitted slow waves could be several percent of the amplitude of the incident fast wave or shear wave. Higher interface permeabilities favor the generation of the slow wave. The slow waves generated at an open interface (kappasb{I}->infty) and a sealed interface (kappasb{I}=0) could be one-order different in amplitude. The reflection and transmission at an interface have been extended to the model composed of multi-layers of porous media. An algorithm based on the compact finite-difference method is developed for 2-D seismic modeling. The compact finite-difference method is used to estimate the spatial derivatives in the Biot equations, with a 6sp{th}-order accuracy. It needs fewer grid intervals to represent a mono-wavelength function than the traditional 2sp{nd}-order central-difference method. Therefore, the algorithm based on the compact finite

  7. Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall

    SciTech Connect

    Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.

    1997-12-01

    Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.

  8. Seismic attenuation: Laboratory measurements in fluid saturated rocks

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Madonna, Claudio; Tisato, Nicola; Saenger, Erik; Quintal, Beatriz

    2014-05-01

    Seismic wave attenuation could be used as an indicator of reservoir fluids due to its dependence on rock and fluid properties. Over the past 30 years, many laboratory methodologies to study attenuation in rocks have been employed, such as ultrasonic (MHz), resonant bar (kHz) and forced oscillation methods in the low frequency range (0.01-100Hz) (Tisato & Madonna 2012; Madonna & Tisato 2013). Forced oscillation methods have gained prominence over time as the frequency range of measurements correspond to that of field seismic data acquired for oil/gas exploration. These experiments measure attenuation as the phase shift between the applied stress (sinusoidal) and measured strain. Since the magnitudes of measured phase shifts are quite low (Q-1 ~0.01-0.1) and the amplitudes of strain applied to the rock samples are of the order ~10-6 (i.e., similar orders of magnitude to seismic waves), it is challenging. A comparison of such forced oscillation setups will be presented to provide an overview of the various possibilities of design and implementation for future setups. In general, there is a lack of laboratory data and most of the published data are for sandstones. Currently, attenuation measurements are being carried out on carbonate and sandstone samples. We employ the Seismic Wave Attenuation Module (SWAM, Madonna & Tisato 2013) to measure seismic attenuation in these samples for different saturation degrees (90% and 100% water) and under three different confining pressures (5, 10 and 15MPa). Preliminary results from these investigations will be discussed. REFERENCES Madonna, C. & Tisato, N. 2013: A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, doi: 10.1111/1365-2478.12015. Tisato, N. & Madonna, C. 2012: Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86, 44-53.

  9. Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Azcuaga, Valery Francisco Godinez

    1995-01-01

    This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow

  10. Synchrotron radiation measurement of multiphase fluid saturations in porous media: Experimental technique and error analysis

    NASA Astrophysics Data System (ADS)

    Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.

    1998-06-01

    Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.

  11. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.

    PubMed

    Tsiklauri, David

    2002-09-01

    It is known that a boundary slip velocity starts to play an important role when the length scale over which the fluid velocity changes approaches the slip length, i.e., when the fluid is highly confined, for example, fluid flow through porous rock or blood vessel capillaries. Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established the existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micrometers. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot [J. Acoust. Soc. Am. 28, 179-191 (1956)] is investigated. Namely, the effect of introduction of boundary slip upon the function F(kappa) that measures the deviation from Poiseuille flow friction as a function of frequency parameter kappa is studied. By postulating phenomenological dependence of the slip velocity upon frequency, notable deviations in the domain of intermediate frequencies in the behavior of F(kappa) are introduced with the incorporation of the boundary slip into the model. It is known that F(kappa) crucially enters Biot's equations, which describe dynamics of fluid-saturated porous solid. Thus, consequences of the nonzero boundary slip by calculating the phase velocities and attenuation coefficients of both rotational and dilatational waves with the variation of frequency are investigated. The new model should allow one to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. In fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the

  12. Supercritical Hadley circulation within a layer of fluid saturated porous medium: Bifurcation to traveling wave

    SciTech Connect

    Manole, D.M.; Lage, J.L.; Antohe, B.V.

    1995-12-31

    Hadley circulation induced by horizontal and vertical temperature gradients imposed on a fluid saturated porous medium layer is simulated numerically. The flow is assumed to be longitudinal, that is the secondary flow is composed of cells with axes transverse to the direction of the Hadley circulation. Critical (bifurcation) states predicted theoretically via linear stability analysis are verified by the numerical results giving confidence on the accuracy of the method. Several values of horizontal Rayleigh number, Ra{sub h}, and vertical Rayleigh number, Ra{sub v}, are studied. Results indicate that beyond a threshold horizontal Rayleigh number value the flow and temperature fields evolve from subcritical Hadley circulation to a supercritical time periodic flow. The secondary flow emerges in the form of a traveling wave aligned with the main (Hadley) flow direction. This traveling wave is characterized, at supercritical low vertical Rayleigh numbers, by the continuous drifting of two horizontal layers of flow cells that move in opposite directions. As the vertical Rayleigh number increases, the traveling wave becomes characterized by a unique layer of cells drifting in the direction opposite to the applied horizontal temperature gradient. Numerical animation unravels the main features of the transport process. This simplified model is of fundamental and practical importance, for instance, to the study of geothermal activities, underground transport of pollutants, paper processing, crystal growth, building insulation, and gas reservoirs.

  13. Diffusion of high-frequency energy in fluid-saturated porous media

    NASA Astrophysics Data System (ADS)

    Savin, Eric

    2004-05-01

    The modern mathematical theory of microlocal analysis shows that the energy associated with the high-frequency solutions of hyperbolic partial differential equations (such as the wave or the Navier equations) satisfy Liouville-type transport equations, or radiative transfer equations for randomly heterogeneous media. For long propagation times the latter can be approached by diffusion equations. Some classical results of the structural acoustics literature about the heat conduction analogy and the statistical energy analysis of structural dynamics at higher frequencies are recovered in this process. The purpose of this communication is to focus on such a diffusive regime for isotropic, fluid-saturated porous media. More specifically, we have derived the diffusion parameters (transport mean-free path and diffusion constant) for such media. Our model considers Biot's equations of poroelasticity, where thermal and viscous effects are modelized by dynamic tortuosity and compressibility with singular memory kernels. The macroscopic bulk modulus and density of the dry solid phase are assumed to be homogeneous random processes, while tortuosity and porosity remain constant.

  14. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  15. Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa

    2009-06-01

    SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front

  16. A rocking multianvil: elimination of chemical segregation in fluid-saturated high-pressure experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Max W.; Ulmer, Peter

    2004-04-01

    Fluid saturated high-pressure experiments often result in strongly zoned experimental charges, this hinders experimentation in chemically homogeneous systems which in turn has serious consequences on equilibration, reaction progress, and (apparent) phase stabilities. In order to overcome these problems, a 600-ton press accommodating either a multianvil or end-loaded piston cylinder module has been mounted in such a way that it can be turned by 180°, thus inverting its position in the gravity field. During turning, hydraulic pressure, heating power, and cooling water remain connected allowing fully controlled pressures and temperatures during experiments. A series of experiments at 13 GPa, 950°C, on a serpentine bulk composition in the MgO-SiO 2-H 2O system demonstrates that continuous turning at a rate of 2 turns/min results in a nearly homogeneous charge composed of phase E + enstatite. The same experiment at static conditions resulted in four mineral zones: quench phase E, enstatite, enstatite + phase E, and phase E + phase A. Phase A disappears in experiments at a turning rate ≥1 turn/min. A static 15-min experiment shows that zonation already forms within this short time span. Placing two short capsules within a single static experiment reveals that the fluid migrates to the hot spot in each capsule and is not gravitationally driven toward the top. The zonation pattern follows isotherms within the capsule, and the degree of zonation increases with temperature gradient (measured as 10 °C within a capsule) and run time. Our preferred interpretation is that Soret diffusion causes a density-stratified fluid within the capsule that does not convect in a static experiment and results in temperature dependant chemical zonation. The aggravation of zonation and appearance of additional phases with run time can be explained with a dissolution-reprecipitation process where the cold spot of the capsule is relatively MgO enriched and the hot spot relatively SiO 2 and H

  17. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    PubMed

    Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong

    2013-01-01

    The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  18. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  19. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    NASA Astrophysics Data System (ADS)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  20. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media.

    PubMed

    Seddeek, M A

    2006-01-01

    Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.

  1. Rayleigh-Benard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium

    NASA Astrophysics Data System (ADS)

    Malashetty, M. S.; Basavaraja, D.

    The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed.

  2. Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers

    SciTech Connect

    Pillatsis, G.; Taslim, M.E.; Narusawa, U. )

    1987-08-01

    A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2d{sub m} sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers-Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four dimensional parameters: {cflx d} (= d{sub m}/d, the depth ratio), {delta} (= {radical}K/d{sub m} with K being the permeability of the porous medium) {alpha} (the proportionality constant in the Beavers-Joseph condition), and k/k{sub m} (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.

  3. Turbulent flow over a channel with fluid-saturated porous bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The characteristics of fully developed turbulent flow in a hybrid domain channel, which consists of a clear fluid region and a porous bed, are examined numerically using a model based on the macroscopic Reynolds-averaged Navier–Stokes equations. By adopting the classical continuity interface conditi...

  4. Onset of centrifugal convection in a magnetic-fluid-saturated porous medium

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Yamaguchi, H.

    2005-08-01

    This paper concerns the influence of magnetic field on the onset of centrifugal convection in a magnetic-fluid-filled differentially heated porous layer placed in zero-gravity environment by linear stability theory. The axis of rotation of the layer is placed anywhere within its boundaries, which leads to an alternating direction of the centrifugal body force. The critical centrifugal Rayleigh number, the critical wave number, and the eigenfunctions corresponding to two-dimensional flow pattern at the threshold are calculated using a combination of analytical and numerical methods. Results show significant effects even for low magnetic-field strength when the axis location is located near the cold boundary. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted depending on the axis location and particle magnetization to induce more developed convection currents.

  5. Frequency-Dependent Seismic Waves in Fluid-Saturated Fractured Rock

    NASA Astrophysics Data System (ADS)

    Korneev, V. A.; Goloshubin, G.

    2015-12-01

    Fractures are the natural and essential elements of rock. Fracture systems are the most important features that define rock permeability and strength, as well as their anisotropy properties. Recent advancement in induced fracturing is a core part of the gas/oil shale technology, where fracture monitoring and control became a special topic of interest. Krauklis wave (K-wave) is the result of interaction between a fluid mass and elasticity of fracture walls, and it propagates primarily along the fracture systems in the fluid. At the fracture tips and fracture intersections it partially converts into the body waves. It is quite clear that incorporation of K-waves in a theory of wave propagation in fractured rock is one of the most important problems to solve for understanding of their seismic properties. One of the most fundamental properties of fractured rock is a fractal fracture distribution and it is rarely, if ever, taken into account in existing wave propagation theories. However, this property exists on a widest variety of scales and in particular reveals itself in a form of Gutenberg-Richter Law experimentally proven, starting from laboratory measurements and up to the global seismicity. We computed P and S-wave velocities of the rock containing fluid (and proppant) filled fractures, considering the effect of extremely slow and dispersive wave propagation within individual fractures. This was made possible by introducing the concept of "effective fracture-wave volume," and by evaluating the elastic constants of rock containing a complex, fractal network of fractures. These velocities were used to compute seismic waves reflected normally from a fractured reservoir. We demonstrate that by taking into account the Krauklis wave phenomenon for the fractally distributed fluid-filled fractures, it is possible to explain the observed low-frequency anomalies above the underground natural reservoirs. These anomalies include increase of amplitude and a phase delay of

  6. Analytical and numerical analysis of bifurcations in thermal convection of viscoelastic fluids saturating a porous square box

    NASA Astrophysics Data System (ADS)

    Taleb, A.; BenHamed, H.; Ouarzazi, M. N.; Beji, H.

    2016-05-01

    We report theoretical and numerical results on bifurcations in thermal instability for a viscoelastic fluid saturating a porous square cavity heated from below. The modified Darcy law based on the Oldroyd-B model was used for modeling the momentum equation. In addition to Rayleigh number ℜ, two more dimensionless parameters are introduced, namely, the relaxation time λ1 and the retardation time λ2. Temporal stability analysis showed that the first bifurcation from the conductive state may be either oscillatory for sufficiently elastic fluids or stationary for weakly elastic fluids. The dynamics associated with the nonlinear interaction between the two kinds of instabilities is first analyzed in the framework of a weakly nonlinear theory. For sufficiently elastic fluids, analytical expressions of the nonlinear threshold above which a second hysteretic bifurcation from oscillatory to stationary convective pattern are derived and found to agree with two-dimensional numerical simulations of the full equations. Computations performed with high Rayleigh number indicated that the system exhibits a third transition from steady single-cell convection to oscillatory multi-cellular flows. Moreover, we found that an intermittent oscillation regime may exist with steady state before the emergence of the secondary Hopf bifurcation. For weakly elastic fluids, we determined a second critical value ℜ2 Osc ( λ 1 , λ 2 ) above which a Hopf bifurcation from steady convective pattern to oscillatory convection occurs. The well known limit of ℜ2 Osc ( λ 1 = 0 , λ 2 = 0 ) = 390 for Newtonian fluids is recovered, while the fluid elasticity is found to delay the onset of the Hopf bifurcation. The major new findings were presented in the form of bifurcation diagrams as functions of viscoelastic parameters for ℜ up to 420.

  7. Analysis of matching conditions at the boundary surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Kubik, J.; Cieszko, M.

    2005-12-01

    The compatibility conditions matching macroscopic mechanical fields at the contact surface between a fluid-saturated porous solid and an adjacent bulk fluid are considered. The general form of balance equations at that discontinuity surface are analyzed to obtain the compatibility conditions for the tangent and normal components of the velocity and the stress vector fields. Considerations are based on the procedure similar to that used in the phenomenological thermodynamics for derivation of constitutive relations, where the entropy inequality and the concept of Lagrange multipliers are applied. This procedure made possible to derive the compatibility conditions for the viscous fluid flowing tangentially and perpendicularly to the boundary surface of the porous solid and to formulate the generalized form of the so called slip condition for the fluid velocity field, postulated earlier by Beavers and Joseph, J. Fluid. Mech. 30, 197-207 (1967).

  8. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  9. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    SciTech Connect

    McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

  10. Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium

    NASA Astrophysics Data System (ADS)

    Pažanin, Igor; Siddheshwar, Pradeep G.

    2017-03-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  11. The equivalence of quasistatic flow in fluid-saturated porous media and Biot's slow wave in the limit of zero frequency

    NASA Astrophysics Data System (ADS)

    Chandler, Richard N.; Johnson, David Linton

    1981-05-01

    We have established in a simple and straightforward fashion that the analysis of quasistatic flow in fluid-saturated porous media due to Rice and Cleary is derivable from the low-frequency limit of Biot's slow compressional/diffusive mode. The single material parameter of the problem, the diffusivity, is simply related to the bulk and shear moduli and permeability of the skeletal frame and to the viscous and elastic properties of the constitutive media. Since this common theory treats fluid and solid displacements on an equal footing, it is the most general linearized description of the problem; other treatments are special cases. These latter include the rigid frame approximation used in the petroleum industry and the weak frame approximation used by De Gennes to describe the motion of polymer gels.

  12. Thermal convection of magneto compressible couple-stress fluid saturated in a porous medium with Hall current

    NASA Astrophysics Data System (ADS)

    Mehta, C. B.; Singh, M.; Kumar, S.

    2016-02-01

    An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.

  13. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  14. Conditional stability for thermal convection in a rotating couple-stress fluid saturating a porous media with temperature- and pressure-dependent viscosity using a thermal non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Sunil; Choudhary, Shalu; Mahajan, Amit

    2014-06-01

    A nonlinear stability threshold for convection in a rotating couple-stress fluid saturating a porous medium with temperature- and pressure-dependent viscosity using a thermal non-equilibrium model is found to be exactly the same as the linear instability boundary. This optimal result is important because it shows that linear theory has completely captured the physics of the onset of convection. The effects of couple-stress fluid parameter F, temperature- and pressure-dependent viscosity Γ, interface heat transfer coefficient H, Taylor number TA, Darcy-Brinkman number D˜a, and porosity modified conductivity ratio γ on the onset of convection have been investigated. Asymptotic analysis for both small and large values of interface heat transfer coefficient H is also presented. An excellent agreement is found between the exact solutions and asymptotic solutions.

  15. Conditional stability for thermal convection in a rotating couple-stress fluid saturating a porous medium with temperature and pressure dependent viscosity

    NASA Astrophysics Data System (ADS)

    Sunil; Choudhary, Shalu; Mahajan, Amit

    2013-08-01

    A nonlinear stability threshold for rotation in a couple-stress fluid heated from below saturating a porous medium with temperature and pressure dependent viscosity is exactly the same as the linear instability boundary. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The effects of couple-stress parameter, variable dependent viscosity, medium permeability, Taylor number and Darcy-Brinkman number on the onset of convection are also analysed.

  16. Quantifying solid-fluid interfacial phenomena in porous rocks with proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, Ehud J.; Velasco, Katherine K.; Nur, Amos M.

    1986-04-01

    The three order-of-magnitude variation in the proton nuclear magnetic resonance (NMR) longitudinal relaxation time T1 of water adsorbed on silica surfaces versus that of bulk water makes proton NMR studies of porous materials powerful tools to study the effects of adsorption. Recent theory permits the utilization of this different response to obtain pore space surface-to-volume (S/V) distribution functions by inverting the decay of the z component of magnetization of fully saturated porous rocks; information can likewise be obtained on the fluid distribution at partially saturated conditions. A computer program has been developed to invert the NMR relaxation curves for the S/V distribution function, assuming an isolated pore regime, the ramifications of which are examined. The program has been applied to experimental results from water, porous sandstones, and tight gas sands at various pore fluid saturations and varying electrolyte content. For the fully saturated case, the results show promise in the application of NMR to describing pore space geometries in rock samples with widely varying surface-to-volume ratios. For partially saturated rocks, the results reflect the preferential early draining of the large pores at high water saturations, connectivity percolation phenomena at intermediate saturations, and the dominating role of adsorbed water films at low water saturations. Experiments on rocks saturated with saline solutions disclose the importance of the effects of alteration of the active sites on the rock surfaces as well as the role of electrolytes in modifying the structural properties of bulk solution.

  17. Microplane constitutive model for porous isotropic rocks

    NASA Astrophysics Data System (ADS)

    Baant, Zdenk P.; Zi, Goangseup

    2003-01-01

    The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane-type constitutive model for hardening and softening non-linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear-enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress-strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete - an artificial rock. The model is intended for large explicit finite-element programs.

  18. Dynamic flow localization in porous rocks under combined pressure and shear loading

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya; Podladchikov, Yuri; Simon, Nina

    2015-04-01

    Flow localization occurs in deforming porous fluid saturated rocks. It exhibits itself as veins, pockmarks on the ocean floor or gas chimneys visible on seismic images from several chalk fields of the Central North Sea and from the Utsira formation at Sleipner in the Norwegian North Sea, which is one of the best documented CO2 storage sites. Porosity waves were repeatedly shown to be a viable mechanism of flow self-localization that does not require the pre-existence of a connected fracture network. Porosity waves result from an instability of the Darcy flow that occurs in porous rocks with time-dependent viscous or viscoelastoplastic rheology. Local fluid overpressure generated by fluid injection or chemical reactions aided by buoyancy force drives upward fluid migration. Viscous deformation delays pressure diffusion thus maintaining local overpressure for considerable periods of time. Development of an under-pressured region just below the over-pressured domain leads to separation of the fluid-filled high-porosity blob from the source and the background flow. The instability organizes the flow into separate vertical channels. Pressure distribution, shape and scaling of these channels are highly sensitive to the rheology of the porous rock. In this contribution, based on a micromechanical approach, we consider the complex rheology of brittle, ductile and transitional regimes of deformation of porous rocks in the presence of combined pressure and shear loading. Accurate description of transitional brittle-ductile deformation is a challenging task due to a large number of microscopic processes involved. We use elastoplastic and viscoplastic analytical solutions for the non-hydrostatic deformation of a singular cavity in the representative volume element in order to deduce expected behavior of the porous rock. The model provides micro-mechanisms for various failure modes (localized and homogeneous) and dilatancy onset. In particular, the model predicts that dilatancy

  19. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2005-09-06

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  20. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  1. Fluid-dependent anisotropy and experimental measurements in synthetic porous rocks with controlled fracture parameters

    NASA Astrophysics Data System (ADS)

    Ding, Pinbo; Di, Bangrang; Wei, Jianxin; Li, Xiangyang; Deng, Yinghua

    2014-02-01

    In this study, we analyse the influence of fluid on P- and S-wave anisotropy in a fractured medium. Equivalent medium theories are used to describe the relationship between the fluid properties and the rock physics characteristics in fractured rocks, and P-wave and S-wave velocities and anisotropy are considered to be influenced by fluid saturation. However, these theoretical predictions require experimental measurement results for calibration. A new construction method was used to create synthetic rock samples with controlled fracture parameters. The new construction process provides synthetic rocks that have a more realistic mineral composition, porous structure, cementation and pressure sensitivity than samples used in previous research on fractured media. The synthetic rock samples contain fractures which have a controlled distribution, diameter, thickness and fracture density. In this study, the fracture diameter was about 4 mm, the thickness of fractures was about 0.06 mm, and the fracture density in the two fractured rock samples was about 3.45%. SEM images show well-defined penny-shaped fractures of 4 mm in length and 0.06 mm in width. The rock samples were saturated with air, water and oil, and P- and S-wave velocities were measured in an ultrasonic measurement system. The laboratory measurement results show that the P-wave anisotropy is strongly influenced by saturated fluid, and the P-wave anisotropy parameter, ɛ, has a much larger value in air saturation than in water and oil saturations. The S-wave anisotropy decreases when the samples are saturated with oil, which can be caused by high fluid viscosity. In the direction perpendicular to the fractures (the 0° direction), shear-wave splitting is negligible, and is similar to the blank sample without fractures, as expected. In the direction parallel to the fractures (the 90° direction) shear-wave splitting is significant. The fractured rock samples show significant P- and S-wave anisotropy caused by

  2. A modeling solution for predicting (a) dry rock bulk modulus, rigidity modulus and (b) seismic velocities and reflection coefficients in porous, fluid-filled rocks with applications to laboratory rock samples and well logs

    NASA Astrophysics Data System (ADS)

    Benson, Alvin K.; Wu, Jie

    1999-02-01

    The velocity of sound in porous, fluid-saturated rocks can be predicted using the Biot-Geertsma-Gassmann (BGG) and shear-wave velocity equations. However, two of the needed input parameters, the bulk modulus ( Kb) of the empty, porous rock and the shear modulus ( μ) of the rock are very difficult to obtain in situ. In the past, these values were typically chosen a priori and input into the BGG and shear-wave equations in a forward modeling mode. In addition to Kb and μ, it is also essential to input rock-matrix and fluid parameters that reflect in situ conditions. In this paper, the BGG and shear-wave equations are inverted to generate values for Kb and μ, respectively, by using available velocity and porosity data obtained from well logs and/or cores for water/brine-saturated rocks. These values of Kb and μ, along with reasonable in situ estimates of rock-matrix and fluid parameters generated from the Batzle-Wang [Batzle, M., Wang, Z., 1992. Seismic properties of pore fluids. Geophysics 57, 1396-1408.] formulation, are then used to predict compressional and shear-wave velocities, compressional-shear wave ratios, and reflection coefficients at the interfaces between host rocks and fluid-saturated rocks, either fully or partially saturated with hydrocarbons, as a function of depth and/or porosity. Although generally similar to the approach of Murphy et al. [Murphy, W.F., Reischer, A., Hsu, K., 1993. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics 58, 227-239.], our method of inversion to determine Kb and μ, coupled with our input of in situ estimates of rock-matrix and fluid parameters as a function of depth from the Batzle-Wang formulation, forms a novel solution for predicting in situ velocities. A modeling program has been developed to perform these calculations and plot the velocity and reflection coefficient information as a function of depth, porosity, and water saturation. The resulting relationships between porous

  3. Digital Rock Studies of Tight Porous Media

    SciTech Connect

    Silin, Dmitriy

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  4. [Investigation of ultrasonic wave interaction with porous saturated rocks

    SciTech Connect

    Not Available

    1993-07-01

    During the last year we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. Previously, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. At first, we used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Recently, we developed a special interferometric technique for non-contact detection of ultrasonic vibrations on diffusely reflecting rough surfaces. This method was found to be more suitable for surface wave inspection of porous ceramics and natural rocks than the previously used contact techniques. Beside investigating guided acoustic waves in water-saturated porous materials, we also studied bulk wave propagation in air-saturated specimens. We further developed our experimental technique which is based on the transmission of airborne ultrasonic waves through air-filled porous plates. This method can be readily used to study the frequency-dependent propagation properties of slow compressional waves in different porous materials including natural rocks. By simple technical improvements, we extended the measuring range so that we could continuously cover both low-frequency (diffuse) and high-frequency (propagating) regimes of slow wave propagation.

  5. Seismic stress mobilization of natural colloids in a porous rock

    SciTech Connect

    Roberts, Peter M; Abdel-fattah, Amr I

    2008-01-01

    Stress oscillations at 26 Hz enhanced the release of natural micro-particles (colloids) in a porous rock sample. Micron-scale effects were induced by meter-scale wavelengths. The results are attributed to altering the release rate coefficient for colloids trapped in pores. The rate change did not depend on colloid size and thus is not due to altering colloid-pore-wall interactions. Enhanced colloid detachment from pore walls and flushing from dead-end pores are likely mechanisms. This phenomenon could impact a broad range of physical sciences involving colloid dynamics and porous transport.

  6. Modelling karst aquifer evolution in fractured, porous rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg

    2016-12-01

    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  7. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  8. Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study

    SciTech Connect

    Harmut Spetzler

    2005-11-28

    This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

  9. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  10. Identification and isolation of closed pore in porous rock using digital rock physics approach

    NASA Astrophysics Data System (ADS)

    Latief, Fourier Dzar Eljabbar

    2015-09-01

    The presence of closed pore in porous rock provide various effect with regard to its structural, elastic and flow properties. Physical based approach to measure porosity such as mercury porosimetry injection is unable to locate closed pore inside porous rock even though it is still possible to quantify the closed porosity. Digital data of porous rock in the form of three dimensional image can now be obtained by means of several methods such as micro-CT scan. Using the digital data, closed pore can be identified and isolated using digital rock physics approach. We first construct a synthetic three dimensional porous sample which consist of two simple side-to-side connected pore (cylinder and box shaped) and two spherical isolated pore which has closed porosity of 1.41 %. The digital image analysis which implemented in software CTAn (Bruker Micro-CT) still produce error of 0.04% which is very low. However, analysis using Lattice Boltzmann Method based simulation of fluid flow provide exact match to the closed porosity of the synthetic sample. Nevertheless, there are two disadvantages of this method, i.e., the simulation could take hours compared to the digital image analysis which only took several minutes and the limitation of numerical definition of zero velocity. Thus we apply both methods in order to overcome the drawbacks of each methods to analyze the digital sample of Fontainebleau sandstone. Using CTAn, we obtained the closed porosity of 0.02891845 % and using the LBM based fluid flow simulation of 0.028948346 %. The closed pore can then be isolated to further calculate the surface area. The result also confirmed that pore space of Fontainebleau sandstone is well connected.

  11. Compaction bands in porous rocks: localization analysis using breakage mechanics

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Nguyen, Giang; Einav, Itai

    2010-05-01

    It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less

  12. Intense fracturation induced by mineral growth in porous rocks

    NASA Astrophysics Data System (ADS)

    Renard, F.; Noiriel, C.; Gratier, J.-P.; Doan, M.-L.

    2009-04-01

    When minerals precipitate in the pores of a rock, they may exert a force that depends on the supersaturation of the fluid; this is the so-called force of crystallization. This process happens in a wide range of geological systems, e.g. vein formation in deep crust, frost heave in soils, and salt damage in cultural heritage monuments. Sometimes, the force of crystallization is so large that it leads to a permanent damage and fracturation of the porous medium. Here, we have studied this process experimentally and imaged in 3D how an intense fracture pattern may emerge from purely chemical processes. Core samples of limestone (22% porosity) and sandstones (19% porosity) were left for one month in contact with an aqueous solution saturated with sodium chloride in an autoclave, at 40°C, under a normal stress in the range 0.2-0.3 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a height where evaporation occurred. The samples were left in a rubber jacket with the same height as the capillary fringe, allowing therefore an accurate control of the region of water evaporation and salt precipitation. The uniaxial deformation of the samples was measured using high resolution displacement sensors. After the experiments we have imaged the samples in three dimensions, using laboratory computed X-ray tomography, allowing therefore imaging the intensity and localization of the damage, as well as the regions of salt precipitation. During the initial fluid capillary rise, the deformation measurements indicate a small shortening of the samples (~5 micrometers), and then an increase of the samples' height (50-100 micrometers) during salt precipitation. Two kinds of damage could be observed in tomography. Firstly, small rock fragments were pealed from the sample surface. Secondly, and more interestingly, a radial fracture network developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two

  13. 3D geometry and hydrodynamic modifications in fractured and porous rock samples through chemical alterations.

    NASA Astrophysics Data System (ADS)

    Noiriel, C. N.

    2011-12-01

    Fractured and porous rocks are the principal path for water flow and potential contamination. Modification of fracture topology and transmissivity by reactive fluids is an important and complex geological process. In carbonate rocks, fractures and porous media properties may change quickly and strongly due to natural processes (e.g. karstification, salt intrusion) or anthropogenic practice (e.g. CO2 geological sequestration). Recent application of X-ray micro-tomography to the Earth Sciences, which allows the visualization of 3D objects with a micrometre resolution, has considerably increased experimental capability by giving access to a 4D spatio-temporal vision (3D geometry + time) of the physical-chemical processes within the rocks. New information is now accessible, which provides a better understanding of the processes and allows the numerical models to be better constrained. I will present the application of X-ray micro-tomography to study changes of petrophysical properties (e.g. porosity, permeability, mineral surface area, etc.) of fractured and porous rocks in response to fluid-rock interactions (dissolution and precipitation). Experimental results will be discussed in regard to numerical modelling of flow and transport. Keywords: X-ray micro-tomography, fracture, porous media, dissolution, precipitation, carbon dioxide sequestration, limestone, reactive surface, geochemical modelling,

  14. A Computer Program for Consolidation and Dynamic Response Analysis of Fluid-Saturated Media.

    DTIC Science & Technology

    1983-06-01

    Codes Avail and/or Geotechnical Engineering Report No. 14 Dist I Special The Ohio State University Research Foundation 1314 Kinnear Road, Columbus, Ohio...CONSOLIDATION AND DYNAMIC RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering ...RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA By Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering June 1984 Acce

  15. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  16. Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Quintal, Beatriz; Saenger, Erik H.

    2017-02-01

    Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1-100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6-8 × 10-6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.

  17. Earth science: role of fO2 on fluid saturation in oceanic basalt.

    PubMed

    Scaillet, Bruno; Pichavant, Michel

    2004-07-29

    Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid. Saal et al. report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al. consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.

  18. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  19. Computational rock physics: Transport properties in porous media and applications

    NASA Astrophysics Data System (ADS)

    Keehm, Youngseuk

    Earth sciences is undergoing a gradual but massive shift from descriptions of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled, and take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks: a nonlinear, coupled, and time-dependent problem in complex microgeometry. To understand these complex processes, the knowledge of the underlying pore-scale processes is essential. This work focuses on building transport process simulators in realistic pore microstructures. These pore-scale simulators will be modules of a computational rock physics framework with future acoustic, elastic, electrical and NMR property simulators. This computational environment can significantly complement the physical laboratory, with several distinct advantages: rigorous prediction of physical properties, interrelations among the physical properties, and simulation of dynamic problems with multiple physical responses. This dissertation is initiative for the computational rock physics framework---a quantitative model for coupled, nonlinear, transient and complex behavior of earth systems. A rigorous pore-scale simulation requires three important traits: reliability, efficiency, and the ability to handle complex microgeometry. We implemented single-phase and two-phase flow simulators using the Lattice-Boltzmann algorithm, since it handles very complex pore geometries without idealization of the pore space. The single-phase flow simulator successfully replicates fluid flow in a digital representation of real sandstone, and predicts permeability very accurately. Furthermore, two applications using the single-phase flow simulator are proposed: a permeability estimation technique from thin sections, and diagenesis modeling with fluid flow. These two applications show the potential applicability of this robust

  20. Joint Inversion of Marine Seismic and CSEM Data for Fluid Saturation Prediction

    NASA Astrophysics Data System (ADS)

    Hoversten, G. M.; Gasperikova, E.; Chen, J.; Newman, G.

    2005-12-01

    demanding approaches is underway there is interest in an approach that can be deployed quickly. One method for combining seismic and CSEM data is a relatively straightforward extension of what is currently done using seismic data alone (Bachrach and Dutta, 2004). The use of Bayesian inversion, which couples a rock-physics model with estimates of geophysical parameters, can be extended to include electrical conductivity. In this paper, we demonstrate the use of AVA inversion to estimate acoustic- (Vp), shear-velocity (Vs), and density (ρ) coupled with 3D CSEM (Newman and Boggs, 2004) inversion to estimate electrical conductivity (σ) in a Bayesian inverse for reservoir fluid saturations and φ. This approach is compared to the formal joint inversion described by Hoversten et al. (2004, 2005). The two-stage process has the advantage that it can be done using existing industry software, with only the addition of the electromagnetic inversions to estimate electrical conductivity. The estimated water saturation and porosity compare well to both log data and those derived from a formal joint inversion of marine AVA and electromagnetic data. However, the two-stage estimates of oil and gas saturation do not compare favorably to those obtained using a formal joint inversion of both data sets simultaneously.

  1. Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ruiz, Franklin J.

    This dissertation presents the results of using different inclusion and granular effective medium models and poroelasticity to predict the elastic properties of rocks with complex microstructures. Effective medium models account for the microstructure and texture of rocks, and can be used to predict the type of rock and microstructure from seismic velocities and densities. We introduce the elastic equivalency approach, using the differential effective medium model, to predict the effective elastic moduli of rocks and attenuation. We introduce the porous grain concept and develop rock physics models for rocks with microporosity. We exploit the porous grain concept to describe a variety of arrangements of uncemented and cemented grains with different degrees of hydraulic connectivity in the pore space. We first investigate the accuracy of the differential effective medium and self-consistent estimations of elastic properties of complex rock matrix using composites as analogs. We test whether the differential effective-medium (DEM) and self-consistent (SC) models can accurately estimate the elastic moduli of a complex rock matrix and compare the results with the average of upper and lower Hashin-Shtrikman bounds. We find that when the material microstructure is consistent with DEM, this model is more accurate than both SC and the bound-average method for a variety of inclusion aspect ratios, concentrations, and modulus contrasts. Based on these results, we next pose a question: can a theoretical inclusion model, specifically, the differential effective-medium model (DEM), be used to match experimental velocity data in rocks that are not necessarily made of inclusions (such as elastics)? We first approach this question by using empirical velocity-porosity equations as proxies for data. By finding a DEM inclusion aspect ratio (AR) to match these equations, we find that the required range of AR is remarkably narrow. Moreover, a constant AR of about 0.13 can be used to

  2. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  3. The Melt Transition in Mature, Fluid-Saturated Gouge

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.

    2006-12-01

    Mechanisms that link the evolution of fault strength and temperature during earthquakes have been studied extensively, with accumulating constraints from theoretical, field and laboratory investigations promoting increased confidence in our understanding of the dominant physical interactions. In mature fault zones that have accommodated many large earthquakes and are characterized by gouge layers that greatly exceed the thickness of the ~ mm-scale "principal slip surfaces" in which shear is localized, the thermal pressurization of pore fluids is expected to be particularly important for reducing the fault strength and limiting the extent of shear heating. Nevertheless, for sufficiently large slip distances and reasonable estimates of hydraulic transport properties and other controlling variables, the predicted temperature increases are sometimes able to reach the onset of melting, particularly at mid to lower seismogenic depths (e.g. 10km). Reported field observations of quenched glassy melt products, known as pseudotachylytes, are much more common on young faults, particularly where slip is initiated between coherent rock surfaces, rather than in exhumed mature fault zones, where thermal pressurization is likely to be more important and macroscopic melting appears to be rare. Those pseudotachylyte layers that are recovered from mature fault zones display a range of thicknesses and crystal contents, which indicate that significant shear heating continued long after the onset of melting, with work performed against the viscous resistance of a partially molten slurry. Models that describe the transition to melting in a finite shear zone that is initially saturated with pore fluids are presented with two main conceptual challenges: 1. the energy input for frictional heating is generally assumed to be proportional to the effective stress, which vanishes when macroscopic melt layers are produced and thermodynamic considerations require that the melt pressure balance the

  4. The influence of pore geometry and orientation on the strength and stiffness of porous rock

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick

    2017-03-01

    The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to

  5. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection

    NASA Astrophysics Data System (ADS)

    Németh, Gabriella; Mlinárik, Lilla; Török, Ákos

    2016-10-01

    Natural porous rocks, like limestone and rhyolite tuff are able to reduce heavy metal pollution by adsorbing or precipitating them from heavy metal containing solutions due to the favourable physical and chemical properties of these rocks. In our experiment, two porous rocks, a porous limestone and rhyolite tuff were used. Petrophysical parameters namely apparent density, real density, capillary water absorption, ultrasonic pulse velocity, total porosity and open porosity of the two porous rocks were determined in water-saturated and dried conditions. Powdered rock samples and cylindrical specimens were placed in lead-nitrate and zinc-sulphate solutions (initial concentration: 1000 ppm) and the amount of lead (II) and zinc (II) ions were identified by titration (chelatometry) of the residual solution. According to the experiments, powdered rocks and rock specimens of limestone and rhyolite tuff reduced the lead (II) and zinc (II) ion concentrations in aqueous solution. The results were cross-checked by ICP-MS. Heavy metal removal capacity was relatively high, 92-99% in each case. The treated powdered rocks and rock specimens were also studied by scanning electron microscope (SEM-EDS) and new heavy metal precipitates were identified. According to the tests result, it could be confirmed that these types of lithologies are capable of removing heavy metals and can be used in environmental protection technologies in a form of permeable reactive barrier.

  6. Porous flow of liquid water in Enceladus rock core driven by heterogeneous tidal heating

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Tobie, Gabriel; Behounkova, Marie; Cadek, Ondrej

    2016-10-01

    Surface heat flux estimates in excess of 15 GW (e.g. Howett et al., 2016) raise the question of the origin of Enceladus' heat production. While strong heating by tidal dissipation is probably the only viable source, whether the maximum production occurs in the outer ice shell or, deeper, in the ocean or in the rock core, is however unclear. While the analysis of measurements by the Cassini mission (gravity and topography data, observed libration), seems to favor an extremely thin shell at Enceladus South Pole (a few kms only, cf. Thomas et al., 2016, Cadek et al., 2016), the distribution of heat sources remains a major issue in the light of the evolutionary trend that led to this present-day physical state of the moon.Here, we build up on a recent evaluation of tidal deformation in a porous rock core saturated with liquid water indicating that, owing to its unconsolidated state, plausible core rheologies could lead to significant heat production there (typically 20 GW, Tobie et al., in prep.). We describe porous flow in a 3D spherical model following the work of Travis and Schubert (2015). Compaction of the rock matrix is neglected. Water characteristics (density and viscosity), and the bulk thermal conductivity of the porous core are temperature-dependent and the effect of non-water compounds can be considered. Tidal heating is introduced as a heterogeneous heat source with a pattern inferred from numerical models of the tidal response. Our analysis focuses particularly on the heat flux pattern at the ocean/core interface where water is advected in/out of the porous medium.

  7. Creep of porous rocks and measurements of elastic wave velocities under different hydrous conditions

    NASA Astrophysics Data System (ADS)

    Eslami, J.; Grgic, D.; Hoxha, D.

    2009-04-01

    The long-term mechanical behavior of rocks is of prime importance for many geological hazards (e.g., landslides, rock falls, and volcanoes) as well as for the stability of man-made structures (underground mines, road cuts, and open pits). In some shallow environments, rocks exist in partially saturated conditions which can evolve with time according to variations in the relative humidity hr of the atmosphere (e.g., natural slopes, open cut excavations). In underground mines, rocks are also partially saturated because of artificial ventilation. These variations in liquid saturation may have a large impact on mechanical behavior since they imply variations in capillary pressure and, depending on the porosity and on the shape of the porous network, variations in the effective stresses. Therefore, knowledge of static fatigue under saturated and partially saturated conditions is important for estimating the long-term stability of such rock structures. Many studies have already shown that time-dependent weakening is much more important for a saturated rock than for a dry one and that the time to failure may decrease by several orders of magnitude for saturated rocks as compared to dry rocks. In addition, the weakening effect of water is more significant in long-term experiments than in short-term ones (instantaneous loading). A physical explanation for these results may be the enhancement of subcritical crack growth by stress corrosion at crack tips which is often considered to be the main cause of time-dependent behavior of rocks. The failure of brittle rocks during compression tests is preceded by the formation, growth, and coalescence of microcracks. Elastic wave velocities are reduced due to the presence of open microcraks and fractures and may be used to monitor the progressive damage of rocks. The specific experimental setup available in our lab allows the simultaneous measurement of five velocities (with different polarizations and directions) and two directions

  8. A visco-poroelastic damage model for modelling compaction and brittle failure of porous rocks

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Hydraulic stimulation of geothermal wells is often used to increase heat extraction from deep geothermal reservoirs. Initiation and propagation of fractures due to pore pressure build-up increase the effective permeability of the porous medium. Understanding the processes controlling the initiation of fractures, the evolution of their geometries and the hydro-mechanical impact on transport properties of the porous medium is therefore of great interest for geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes occurring during deformation of a porous rock. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To validate and illustrate the model, simulations of the deformation behaviour of cylindrical porous Bentheimer sandstone samples under different confining pressures are compared to experiments. The first experiment under low confining pressure leads to shear failure, the second for high confining pressure leads to cataclastic compaction and the third one with intermediate confining pressure correspond to a transitional regime between the two firsts. Finally, we will demonstrate that this approach can also be used at the field

  9. Fluid Transport in Porous Rocks. I. EPI Studies and a Stochastic Model of Flow

    NASA Astrophysics Data System (ADS)

    Mansfield, P.; Issa, B.

    The velocity of water flowing through a Bentheimer sandstone core has been measured by NMR-imaging techniques. The localized pixel values of velocity indicate a random distribution centered around the mean value corresponding to Darcy's law. When the same flow state is repeated, the velocity map changes but the general characteristics of the velocity distribution remain unchanged. The random nature of the irreproducibility of the flow maps has led us to propose a stochastic theory of flow in porous rocks. The theory leads to a Gaussian velocity distribution which approximates well to the data. Also predicted is a linear relationship between flow variance and mean fluid flow through the rock, the Mansfield-Issa equation, originally proposed as an empirical relationship.

  10. Experimental Measurements Of Seismic Wave Speeds And Attenuation In CO2 Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Njiekak, G.; Yam, H.; Kofman, R. S.; Chowdhury, M.; Schmitt, D. R.

    2011-12-01

    Due to the sensitivity of seismic waves to pore fluid contents, time lapse seismology is regarded as a promising monitoring method for geological CO2 sequestration projects and is employed in all industrial scale projects (Sleipner, Weyburn, In Salah). Therefore, understanding the effect of CO2 as a pore fluid on the overall rock seismic response is critical, and it is particularly interesting as CO2 can be in gas, liquid, or supercritical phases even at the relatively modest pore pressures and temperatures in the uppermost kilometer of the earth's crust. To address this issue, ultrasonic P- and S-wave pulse transmission experiments were carried out on fully CO2 saturated samples of a synthetic porous ceramic, Berea and Fontainebleau sandstones, and carbonates under a variety of temperatures and pressures representative of conditions expected in volcanic edifices and geological sequestration projects. The synthetic sample was chosen because of its lack of microcracks, which can complicate the acoustic behavior of real rocks. Although this sample is extremely porous (58%) and is not reflective of real reservoir rocks, its large porosity allows the overall rock behavior to be more susceptible to the changes in the physical properties of the pore fluid; this could provide an extreme end member understanding on the rock physics involved with CO2 as the pore fluid. Laboratory results show waveform variations (velocity, amplitude, attenuation) in response to CO2's varying phase state. For the ceramic rod, CO2 phase changes (gas to liquid and gas to supercritical fluid) are marked by a drop in velocities of 4-5% likely due to the increased density of the liquid or the supercritical fluid relative to the gas. Wave attenuation increases with pore pressure and with frequency. The measured elastic wave velocities showed good agreement with Biot's model in this highly porous sample. The real sandstones, in contrast, display more complicated behaviour at the point of the phase

  11. A damage mechanics approach for quantifying stress changes due to brittle failure of porous rocks

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Natural fault zones or man-made injection or production of fluid impact the regional stress distribution in Earth's crust and can be responsible for localized stress discontinuities. Understanding the processes controlling fracturing of the porous rocks and mechanical behaviour of fault zones is therefore of interest for several applications including geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes controlling the deformation of porous rocks during and after brittle failure. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To illustrate the model, simulation of a compaction experiment of a sandstone leading to shear failure will be presented which allows to quantify the stress drop accompanying the failure. Finally, we will demonstrate that this approach can also be used at the field scale to simulate hydraulic fracturing and assess the resulting changes in the stress field.

  12. 3-D Numerical Simulation of Hydrostatic Tests of Porous Rocks Using Adapted Constitutive Model

    NASA Astrophysics Data System (ADS)

    Chemenda, A. I.; Daniel, M.

    2014-12-01

    The high complexity and poor knowledge of the constitutive properties of porous rocks are principal obstacles for the modeling of their deformation. Normally, the constitutive lows are to be derived from the experimental data (nominal strains and stresses). They are known, however, to be sensitive to the mechanical instabilities within the rock specimen and the boundary (notably friction) conditions at its ends. To elucidate the impact of these conditions on the measured mechanical response we use 3-D finite-difference simulations of experimental tests. Modeling of hydrostatic tests was chosen because it does not typically involve deformation instabilities. The ends of the cylindrical 'rock sample' are in contact with the 'steel' elastic platens through the frictional interfaces. The whole system is subjected to a normal stress Pc applied to the external model surface. A new constitutive model of porous rocks with the cap-type yield function is used. This function is quadratic in the mean stress σm and depends on the inelastic strain γp in a way to generate strain softening at small σm and strain-hardening at high σm. The corresponding material parameters are defined from the experimental data and have clear interpretation in terms of the geometry of the yield surface. The constitutive model with this yield function and the Drucker-Prager plastic potential has been implemented in 3-D dynamic explicit code Flac3D. The results of an extensive set of numerical simulations at different model parameters will be presented. They show, in particular, that the shape of the 'numerical' hydrostats is very similar to that obtained from the experimental tests and that it is practically insensitive to the interface friction. On the other hand, the stress and strain fields within the specimen dramatically depend on this parameter. The inelastic deformation at the specimen's ends starts well before reaching the grain crushing pressure P* and evolves heterogeneously with Pc

  13. Field and numerical determinations of pneumatic flow parameters of unsaturated fractured porous rocks on various scales

    NASA Astrophysics Data System (ADS)

    Guillon, S.; Vu, M. T.; Pili, E.; Adler, P. M.

    2013-05-01

    Air permeability is measured in the fractured crystalline rocks of the Roselend Natural Laboratory (France). Single-hole pneumatic injection tests as well as differential barometric pressure monitoring are conducted on scales ranging from 1 to 50 m, in both shallow and deep boreholes, as well as in an isolated 60 m3 chamber at 55 m depth. The field experiments are interpreted using numerical simulations in equivalent homogeneous porous media with their real 3-D geometry in order to estimate pneumatic parameters. For pneumatic injection tests, steady-state data first allow to estimate air permeability. Then, pressure recovery after a pneumatic injection test allows to estimate the air-filled porosity. Comparison between the various studied cases clarifies the influence of the boundary conditions on the accuracy of the often used 1-D estimate of air permeability. It also shows that permeabilities correlate slightly with fracture density. In the chamber, a 1 order-of-magnitude difference is found between the air permeabilities obtained from pneumatic injection tests and from differential barometric pressure monitoring. This discrepancy is interpreted as a scale effect resulting from the approximation of the heterogeneous fractured rock by a homogeneous numerical model. The difference between the rock volumes investigated by pneumatic injection tests and by differential barometric pressure monitoring may also play a role. No clear dependence of air permeability on saturation has been found so far.

  14. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : A new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John

    2010-05-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our

  15. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : a new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.

    2009-12-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to

  16. Selection of Bacteria with Favorable Transport Properties Through Porous Rock for the Application of Microbial-Enhanced Oil Recovery

    PubMed Central

    Jang, Long-Kuan; Chang, Philip W.; Findley, John E.; Yen, Teh Fu

    1983-01-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species—Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum—potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate (∼106/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414

  17. Quasistatic Shock Waves: A Mechanism for Nonuniform Compaction in Porous Rock

    SciTech Connect

    OLSSON,WILLIAM A.

    2000-09-08

    Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.

  18. Modeling of Viscoelastic Properties of Porous Rocks Saturated with Viscous Fluid at Seismic Frequencies at the Core Scale

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Wang, Z.; Wang, F.; Wang, R.

    2015-12-01

    Currently the moduli and velocities of rocks at seismic frequencies are usually measured by the strain-stress method in lab. However, such measurements require well-designed equipment and skilled technicians, which greatly hinders the experimental investigation on the elastic and visco-elastic properties of rocks at seismic frequencies. We attempt to model the dynamic moduli of porous rocks saturated with viscous fluid at seismic frequencies on core scale using the strain-stress method, aiming to provide a complement to real core measurements in lab. First, we build 2D geometrical models containing the pore structure information of porous rocks based on the digital images (such as thin section, SEM, CT, etc.) of real rocks. Then we assume the rock frames are linearly elastic, and use the standard Maxwell spring-dash pot model to describe the visco-elastic properties of pore fluids. Boundary conditions are set according to the strain-stress method; and the displacement field is calculated using the finite element method (FEM). We numerically test the effects of fluid viscosity, frequency, and pore structure on the visco-elastic properties based on the calculation results. In our modeling, the viscosity of the pore fluid ranges from 103mPas to 109mPas; and the frequency varies from 5Hz to 500Hz. The preliminary results indicate that the saturated rock behaves stiffer and shows larger phase lag between stress and strain when the viscosity of the pore fluid and (or) the frequency increase.

  19. Numerical simulation of salt cementation in the porous rocks adjacent to salt diapirs

    NASA Astrophysics Data System (ADS)

    Allstadt, Raphael; Li, Shiyuan; Marquart, Gabriele; Reuning, Lars; Niederau, Jan

    2015-04-01

    Porosity and permeability are among the most important petrophysical properties of reservoirs rocks in oil systems. Observations during exploration indicate that in the vicinity of salt domes the porosity of reservoir rocks is often reduced by halite cementation. In this study we present results of simulating the process of salt precipitation near salt diapirs by using a schematic model of a Zechstein diapir in the North Sea basin. The numerical simulation is based on solving the transport equations for heat, porous flow and dispersive and reactive chemical species. Chemical reaction and equilibrium is based on the PHREEQC computer code. In our model over-pressured brine is entering from below and is deflected towards the diapir due to an intermediate layer of low permeability. The high thermal conductivity of salt yields a lateral temperature gradient starting from the diapir. Due to this effect the simulated temperature profile shows lower temperatures close to the salt dome than in comparable depths further away. Caused by the temperature-controlled solubility of NaCl in the brine and supplied ions by the diapir, halite first precipitates near the salt diapir by cementing the pore spaces and thus reducing the porosity. Salt-precipitation in the simulation starts after 840 000 years and reduces the porosity from 10 % to 5.5 % after 19 Mill. years. The permanent influx of brine causes growth of the cementation area and the related reduction of porosity in the reservoir.

  20. Fluid Transport in Porous Rocks. II. Hydrodynamic Model of Flow and Intervoxel Coupling

    NASA Astrophysics Data System (ADS)

    Mansfield, P.; Issa, B.

    In a preceding paper [P. Mansfield and B. Issa, J. Magn. Reson. A122, 137-148 (1996)], a stochastic model of fluid flow in porous rocks based upon the experimental observation of water flow through a Bentheimer sandstone core was proposed. The flow maps were measured by NMR-imaging techniques. The stochastic theory led to a Gaussian velocity distribution with a mean value in accord with Darcy's law. Also predicted was a linear relationship between flow variance and mean fluid flow through rock, the Mansfield-Issa equation, originally proposed as an empirical relationship. In the present work a flow coupling mechanism between voxels is proposed. Examination of the flow coupling between isolated voxel pairs leads to a complementary explanation of the Gaussian velocity distribution, and also gives further details of the Mansfield-Issa equation. These details lead to a new expression for the connectivity, < C>, between voxels with an experimental value of < C> = 5.64 × 10 -9for Bentheimer sandstone.

  1. Pore scale heterogeneity in the mineral distribution and surface area of porous rocks

    NASA Astrophysics Data System (ADS)

    Lai, Peter; Moulton, Kevin; Krevor, Samuel

    2014-05-01

    There are long-standing challenges in characterizing reactive transport in porous media at scales larger than individual pores. This hampers the prediction of the field-scale impact of geochemical processes on fluid flow [1]. This is a source of uncertainty for carbon dioxide injection, which results in a reactive fluid-rock system, particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2,3]. The objective of this study was to quantify heterogeneity in reactive surface and observe the extent of its non-normal character. In this study we describe our work in using micron-scale x-ray imaging and other spectroscopic techniques for the purpose of describing the statistical distribution of reactive surface area within a porous medium, and identifying specific mineral phases and their distribution in 3-dimensions. Using in-house image processing techniques and auxilary charactersation with thin section, electron microscope and spectroscopic techniques we quantified the surface area of each mineral phase in the x-ray CT images. This quantification was validated against nitrogen BET surface area and backscattered electron imaging measurements of the CT-imaged samples. Distributions in reactive surface area for each mineral phase were constructed by calculating surface areas in thousands of randomly selected subvolume images of the total sample, each normalized to the pore volume in that image. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be

  2. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  3. Natural thermal convection in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50porous medium is in good agreement with an unfractured porous medium of the same bulk permeability.

  4. Pure water injection into porous rock with superheated steam and salt in a solid state

    NASA Astrophysics Data System (ADS)

    Montegrossi, G.; Tsypkin, G.; Calore, C.

    2012-04-01

    Most of geothermal fields require injection of fluid into the hot rock to maintain pressure and productivity. The presence of solid salt in porous space may cause an unexpected change in the characteristics of the reservoir and produced fluids, and dramatically affect the profitability of the project. We consider an injection problem of pure water into high temperature geothermal reservoir, saturated with superheated vapour and solid salt. Pure water moves away from injection point and dissolves solid salt. When salty water reaches the low-pressure hot domain, water evaporation occurs and, consequently, salt precipitates. We develop a simplified analytical model of the process and derive the similarity solutions for a 1-D semi-infinite reservoir. These solutions are multi-valued and describe the reduction in permeability and porosity due to salt precipitation at the leading boiling front. If the parameters of the system exceed critical values, then similarity solution ceases to exist. We identify this mathematical behaviour with reservoir sealing in the physical system. The TOUGH2-EWASG code has been used to verify this hypothesis and investigate the precipitate formation for an idealized bounded 1-D geothermal system of a length of 500 m with water injection at one extreme and fluid extraction at the other one. Both boundaries are kept at constant pressure and temperature. The result for the semi-infinite numerical model show that the monotonic grow of the solid salt saturation to reach asymptotic similarity solution generally occurs over a very large length starting from the injection point. Reservoir sealing occurs if solid salt at the initial state occupies a considerable part of the porous space. Numerical experiments for the bounded 500 m system demonstrate that a small amount of salt is enough to get reservoir sealing. Generally, salt tend to accumulate near the production well, and salt plug forms at the elements adjacent to the extraction point. This type

  5. Prediction of fault-related damage zones in porous granular rock using strain energy density criteria

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.; Schultz, R. A.

    2004-12-01

    bands. Further, deformation band intensity for both nucleation and propagation tendencies is predicted and observed to increase toward the fault. These model predictions are consistent with independent observations of fault-related deformation band damage zone architecture from other paradigmatic outcrops in southern Utah and Nevada. By implication, specific locations within a damage zone that have the greatest reductions in fluid conductivity due to deformation band growth can be identified. We show that the tendency for fault growth and interaction within porous granular rock can be systematically predicted based on an understanding of in-situ stress state, fault and/or fold geometry, and rock strength and deformability at the time of deformation. This method is not limited to the prediction of deformation bands, but can also be used to predict the distribution of other types of fractures in other rock types, given that the appropriate critical strain energy density values are determined through laboratory testing for each fracture and rock type.

  6. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks

    SciTech Connect

    Andrade, José E; Rudnicki, John W

    2012-12-14

    In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.

  7. Pore Scale Heterogeneity in the Mineral Distribution, Surface Area and Adsorption in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Lai, P. E. P.; Krevor, S. C.

    2014-12-01

    The impact of heterogeneity in chemical transport and reaction is not understood in continuum (Darcy/Fickian) models of reactive transport. This is manifested in well-known problems such as scale dependent dispersion and discrepancies in reaction rate observations made at laboratory and field scales [1]. Additionally, this is a source of uncertainty for carbon dioxide injection, which produces a reactive fluid-rock system particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2, 3]. We use x-ray micro tomography to describe the non-normal 3-dimensional distribution of reactive surface area within a porous medium according to distinct mineral groups. Using in-house image processing techniques, thin sections, nitrogen BET surface area, backscattered electron imaging and energy dispersive spectroscopy, we compare the surface area of each mineral phase to those obtained from x-ray CT imagery. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. We combine the mineral specific surface area characterisation to dynamic tomography, imaging the flow of water and solutes, to observe flow dependent and mineral specific adsorption. The observations may contribute to the incorporation of experimentally based statistical descriptions of pore scale heterogeneity in reactive transport into upscaled models, moving it closer to predictive capabilities for field scale

  8. Full waveform inversion of seismic waves reflected in a stratified porous medium

    NASA Astrophysics Data System (ADS)

    De Barros, Louis; Dietrich, Michel; Valette, Bernard

    2010-09-01

    In reservoir geophysics applications, seismic imaging techniques are expected to provide as much information as possible on fluid-filled reservoir rocks. Since seismograms are, to some degree, sensitive to the mechanical parameters and fluid properties of porous media, inversion methods can be devised to directly estimate these quantities from the waveforms obtained in seismic reflection experiments. An inversion algorithm that uses a generalized least-squares, quasi-Newton approach is described to determine the porosity, permeability, interstitial fluid properties and mechanical parameters of porous media. The proposed algorithm proceeds by iteratively minimizing a misfit function between observed data and synthetic wavefields computed with the Biot theory. Simple models consisting of plane-layered, fluid-saturated and poro-elastic media are considered to demonstrate the concept and evaluate the performance of such a full waveform inversion scheme. Numerical experiments show that, when applied to synthetic data, the inversion procedure can accurately reconstruct the vertical distribution of a single model parameter, if all other parameters are perfectly known. However, the coupling between some of the model parameters does not permit the reconstruction of several model parameters at the same time. To get around this problem, we consider composite parameters defined from the original model properties and from a priori information, such as the fluid saturation rate or the lithology, to reduce the number of unknowns. Another possibility is to apply this inversion algorithm to time-lapse surveys carried out for fluid substitution problems, such as CO2 injection, since in this case only a few parameters may vary as a function of time. We define a two-step differential inversion approach which allows us to reconstruct the fluid saturation rate in reservoir layers, even though the medium properties are poorly known.

  9. Hydromechanical Imaging of Fractured-Porous Rocks Properties and Coupled Processes

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Wang, J. S.

    2009-12-01

    The High-Pulse Poroelasticity Protocol (HPPP) project is dedicated to geophysical monitoring of CO2 injection in reservoirs (http://hppp.unice.fr/), focusing currently on hydromechanical testing in carbonate rock. The HPPP probe uses fiber-optic sensors for dynamic fluid pressure/mechanical deformation measurements in boreholes, with reflection of light at specific wavelength from fiber Bragg gratings mounted between inflatable packers. The probe requires no downhole electrical supply, thus the operation is passive, with response time << 0.5 ms and probe sizes from ~12 to ~25 mm. The sensor is immune to EM interference, and can stand harsh environments. The probe laboratory and in situ calibration and the development of receiving array of sensors around HPPP are established prior to borehole installation. The field measurements include the detection of coupled seismic - poroelastic waves (Fast Biot Waves) in saturated and unsaturated zones. Within the injection chamber, seismic pressure waves of 1 to 10 Hz and static hydraulic diffusion are measured to quantify the coupling to the reservoir. Oscillations with period of several ms are induced by the onset of fluid pulses and quickly reach quasi-static state with high pressure maintained for seconds. The accuracies of fiber optical displacement sensor is 10-7 m and pressure sensor 103 Pa. In the rock medium, 3D MEM accelerometers with frequency range of 0 - 1 kHz can be mounted with distances of deci-meters to meters from the HPPP probe. Undrained responses with strong differences in amplitude and shape between velocity components are detected right after the rise of fluid pressure. After the pressure pulse, seismicity related to pulse pressure diffusion is detected. Accelerometers are also deployed in the Coaraze site (in southeastern France) with both fault related fractures and bedding planes well characterized. Water tables can be raised or lowered in the fracture/porous block by closing and opening a spring

  10. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  11. Linking the pressure dependency of elastic and electrical properties of porous rocks by a dual porosity model

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng; Gurevich, Boris; Pervukhina, Marina; Clennell, Michael Ben; Zhang, Junfang

    2016-04-01

    Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.

  12. Experimental and Theoretical Studies of Wave Propagation in Granular, Rock and Porous Media

    DTIC Science & Technology

    1989-08-31

    microscopic point of view by going into the details of the , eometric nature of the porous structure . The details of this study are given in Paper G in...determines the rate of consolidation with depth . It should be pointed out that this exponential form does not contain any periodic structure ; hence, it...point of view by going into the details of the geometric nature of the porous structure . The geometry of the pores was changed by varying the size of the

  13. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  14. A coupled thermo-poro-mechanical finite element analysis of fractured porous rocks using a cohesive interface element

    NASA Astrophysics Data System (ADS)

    Wang, W.; Regueiro, R. A.

    2014-12-01

    The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short

  15. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  16. The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks.

    PubMed

    Latief, F D E; Fauzi, U; Irayani, Z; Dougherty, G

    2017-04-01

    The study of digital rock physics has seen significant advances due to the development of X-ray micro computed tomography scanning devices. One of the advantages of using such a device is that the pore structure of rock can be mapped down to the micrometre level in three dimensions. However, in providing such high-resolution images (low voxel size), the resulting file sizes are necessarily large (of the order of gigabytes). Lower image resolution (high voxel size) produces smaller file sizes (of the order of hundreds of megabytes), but risks losing significant details. This study describes the effect of the image resolution obtained by means of hardware-based and software-based approach. Four samples of porous rock were scanned using a SkyScan 1173 High Energy Micro-CT. We found that acquisition using increased pixel binning of the camera (hardware-based resizing) significantly affects the calculated physical properties of the samples. By contrast, voxel resizing by means of a software-based approach during the reconstruction process yielded less effect on the porosity and specific surface area of the samples. However, the decreasing resolution of the image obtained by both the hardware-based and the software-based approaches affects the permeability significantly. We conclude that simulating fluid flow through the pore space using the Lattice Boltzmann method to calculate the permeability has a significant dependency on the image resolution.

  17. A Circuit Model for the Measurement of the Streaming Potential in a Rock Sample

    NASA Astrophysics Data System (ADS)

    Yin, C.; Wang, J.; Qiu, A.; Liu, X.; Hu, H.

    2012-04-01

    Streaming potential is usually defined under the assumption that the rock sample under consideration is not connected electrically to any external circuit. In this study we investigate experimentally the effect of the external circuit on the measurement of the streaming potential. Cations usually dominate anions in the diffuse layer in the pore canals in a fluid-saturated porous sandstone sample. When a pressure difference is applied to the sample, fluid flows in the pores and causing a convective current due to the cation-dominate motion. With the separation of opposite ions at the two ends, a streaming potential occurs, and results in a conductive current. Those two current will be opposite and equal in value so that the streaming potential does not change. But in any experimental measurement of the streaming potential, the rock sample is not isolated in the circuit. An external circuit is necessary for the measurement of the potential difference at the ends of the sample. This external circuit will divert the flow of charges. This study investigates the effect of the external circuit on the convective current and conductive current in the pores by experiments, and gives an equivalent circuit model for the two currents. We connect an external resistance Rext to the ends of the fluid-saturated rock sample, and measure the potential difference at the ends of the sample . The impedance of the fluid-saturated rock sample Zrock is definite under a given salinity and can be separately measured. The circuit is governed by the following equations, Urock = ZrockIcond, (1) Urock = RextIext, (2) Iconv + Icond +Iext = 0, (3) where Iconv is the convective current, Icond is the conductive current, Iext is the external current and Urock is the potential difference at the ends of the rock sample. From the above three equations, we get - Urock(Zrock + Rext) Iconv = ---Z--R----- . rock ext (4) We repeated the measurement under different external resistance Rext. The computed

  18. From hydrofracture to gaseofracture in porous rocks: influence of the nature of the injection fluid on the process

    NASA Astrophysics Data System (ADS)

    Johnsen, O.; Chevalier, C.; Toussaint, R.; Lindner, A.; Niebling, M.; Schmittbuhl, J.; Maloy, K. J.; Clement, E.; Flekkoy, E. G.

    2009-04-01

    We present experimental systems where we inject a fluid at high pressure in a poorly cohesive porous material saturated with the same fluid. This fluid is either a highly compressible gas (air), or an almost incompressible and viscous fluid (oil), in an otherwise identical porous matrix. We compare both situations. These porous materials are designed as analogs to real rocks in terms of processes, but their cohesion and geometry are tuned so that the hydrofracture process can be followed optically in the lab, in addition to the ability to follow the imposed pressure and fluxes. Namely, we work with lowly cohesive granular materials, confined in thin elongated Hele-Shaw cell, and follow it with high speed cameras. The fluid is injected on the side of the material, and the injection overpressure is maintained constant after the start. At sufficiently high overpressures, the mobilization of grains is observed, and the formation of hydrofracture fingering patterns is followed and analyzed quantitatively. The two situations where air is injected and where oil is injected are compared together. Many striking similarities are observed between both situations about the shape selections and dynamics, when time is rescaled according to the viscosity of the interstitial fluid. Some differences survive in the speed of the traveling hydrofracture, and their physical origin is discussed. In practice, this problem is relevant for important aspects in the formation and sustenance of increased permeability macroporous networks as demonstrated in nature and industry in many situations. E.g., in active hydrofracture in boreholes, piping/internal erosion in soils and dams, sand production in oil or water wells, and wormholes in oil sands. It is also important to understand the formation of macroporous channels, and the behavior of confined gouges when overpressured fluids are mobilized in seismic sources. Indeed, the formation of preferential paths in this situation can severely

  19. Prediction of crack density in porous-cracked rocks from elastic wave velocities

    NASA Astrophysics Data System (ADS)

    Byun, Ji-Hwan; Lee, Jong-Sub; Park, Keunbo; Yoon, Hyung-Koo

    2015-04-01

    The stability of structures that are built over rock is affected by cracks in the rock that result from weathering, thawing and freezing processes. This study investigates a new method for determining rock crack densities using elastic wave velocities. The Biot-Gassmann model, which consists of several elastic moduli and Poisson's ratio, was used to determine a theoretical equation to predict the crack density of rocks. Ten representative specimens were extracted from ten boreholes to highlight the spatial variability. Each specimen was characterized using X-Ray Diffraction (XRD) analysis. The specimens were carved into cylinders measuring 50 mm in diameter and 30 mm in height using an abrasion process. A laboratory test was performed to obtain the elastic wave velocity using transducers that can transmit and receive compressional and shear waves. The measured compressional wave and shear wave velocities were approximately 2955 m/s-5209 m/s and 1652 m/s-2845 m/s, respectively. From the measured elastic wave velocities, the analyzed crack density and crack porosity were approximately 0.051-0.185 and 0.03%-0.14%, respectively. The calculated values were compared with the results of previous studies, and they exhibit similar values and trends. The sensitivity of the suggested theoretical equation was analyzed using the error norm technique. The results show that the compressional wave velocity and the shear modulus of a particle are the most influential factors in this equation. The study demonstrates that rock crack density can be estimated using the elastic wave velocities, which may be useful for investigating the stability of structures that are built over rock.

  20. Semiarid watershed response to low-tech porous rock check dams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rock check dams are used throughout the world as a technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US; however, their impact on watershed response and channel morphology is not well quantified. In...

  1. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  2. Growth of compaction bands: A new deformation mode for porous rock

    SciTech Connect

    OLSSON,WILLIAM A.; HOLCOMB,DAVID J.

    2000-03-14

    Compaction bands are thin, tabular zones of grain breakage and reduced porosity that are found in sandstones. These structures may form due to tectonic stresses or as a result of local stresses induced during production of fluids from wells, resulting in barriers to fluid (oil, gas, water) movement in sandstone reservoirs. To gain insight into the formation of compaction bands the authors have produced them in the laboratory. Acoustic emission locations were used to define and track the thickness of compaction bands throughout the stress history during axisymmetric compression experiments. Narrow zones of intense acoustic emission, demarcating the boundaries between the uncompacted and compacted regions were found to develop. Unexpectedly, these boundaries moved at velocities related to the fractional porosity reduction across the boundary and to the imposed specimen compression stress. This appears to be a previously unrecognized, fundamental mode of deformation of a porous, granular material subjected to compressive loading with significant implications for the production of hydrocarbons.

  3. The seismic properties of sintered glass-bead media: effects of thermal cracking and fluid saturation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jackson, I.; David, E.; Schmitt, D. R.

    2013-12-01

    The stiffness of rocks is significantly affected by the presence of cracks as well as pore fluids, the latter potentially increasing the effective stiffness of cracks. Reversible pore-fluid flow within the crack network, occurring during seismic wave propagation, may result in strongly frequency dependent seismic properties. Theoretical models for fluid flow induced seismic wave dispersion have been proposed but have so far not been subject to thorough experimental testing. Soda-lime-silica glass beads, of ~300 μm diameter were sintered near the glass transition temperature to produce a synthetic analogue for sedimentary rock with low porosity (~2%) and a simpler microstructure. Widely distributed cracks with uniformly low aspect ratio (~0.0007) and crack porosity ~0.2% were introduced by quenching heated cylindrical samples into liquid water at room temperature. Combined use of low-frequency (mHz-Hz) forced oscillation techniques at the Australian National University with ultrasonic pulse transmission methods (MHz) at the University of Alberta, is allowing a broadband measurement of seismic velocities and attenuation on a thermally cracked glass-bead sample. A recent upgrade of the data acquisition system on the apparatus for forced oscillation measurements is providing improved precision in determining shear and Young's moduli, measured at seismic frequencies, reveal a strong systematic variation with effective pressure (Peff=Pc-Pf) and some relaxation at longer oscillation periods tentatively attributed to fluid flow. Under water-saturated conditions, at low frequencies, both shear and Young's moduli are noticeably higher than under dry or argon-saturated conditions, possibly attributed to spatial restricted flow of water during forced-oscillation tests. Ongoing measurement of ultrasonic velocities should thus provide the 'intermediate' to 'high' frequency bounds on elastic moduli.

  4. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, G.W.; Nimmo, J.R.; Dragila, M.I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low-angled isolated fractures compared to high-angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  5. Geothermal Fluid Interaction with Mafic Rocks in Porous Media - AN Experimental and Reactive Transport Modeling Study

    NASA Astrophysics Data System (ADS)

    Stefansson, A.

    2013-12-01

    Reaction and reactive transport modeling is becoming an increasingly popular method to study fluid-rock interaction and fluid transport on small to large scales. In this study, fluid-rock experiments were carried out and the observations compared with the results of reaction and reactive transport models. The systems studied included fluid-rock interaction of olivine on one hand and basaltic glass on the other hand with dilute aqueous solutions containing CO2 at acid to neutral pH and temperatures from ambient to 250 °C. The experiments were conducted using batch type experiments in closed reactors and 1-D plug experiments in flow-through reactors and the solution chemistry, the reaction progress, secondary mineralization and porosity changes analyzed as a function of time. The reaction and 1-D reactive transport simulations were conducted with the aid of the PHREEQC program. For the simulations the thermodynamic database for mineral reactions was largely updated and the kinetics of mineral dissolution as well as mineral nucleation and crystal growth was incorporated. According to the experimental results and the reactive transport simulations, olivine and basaltic glass progressively dissolves forming secondary minerals and solutes that are partially transported out of them column (system). The exact reaction path was found to depend on solution composition and pH and reaction progress (time). The mass movement of the system at a particular steady state as well as porosity changes may be divided into three stages. Stage I is characterized by initial olivine or basaltic glass leaching, stage II is characterized by progressive mineral formation and decrease in porosity and stage III is characterized by remobilization of the previously formed secondary minerals and eventual increase in porosity. The reaction and reactive transport modeling was found to simulate reasonable the reaction path as a function of reaction time. However, exact mass movement and time

  6. Combined Geoelectrical and Georadar Measurement for State Characterization of porous Rock

    NASA Astrophysics Data System (ADS)

    Boerner, F. D.

    2006-05-01

    The state parameters volumetric pore water content and pore water composition influence geomechanical stability of near surface unconsolidated rock or soil. Changes of those characteristics can result in the instability of the rock and therefore in on set of a failure process. The geophysical monitoring of state parameters in space and time allows the assessment of compaction or soil water suction/pressure. The objective of the thereafter presented investigation was the quantitative determination of water saturation and water salinity using multimethod geophysical measurement. The application of only one geophysical method can give rise to gross uncertainties in the estimation of salinity or water saturation. The combination of a low frequency conductivity measurement (2 Hz) and a high frequency electromagnetic measurement (1 GHz) provides two petrophysical parameters: electrical conductivity and dielectric permittivity. Both parameters are strongly water saturation dependent and somewhat dependent on water salinity. A system of two nonlinear model-equations was used to determine salinity and saturation. An unique solution is possible in case of constant pore space structure. The experiments have been carried out on a rectangular designed sand box model and a hydraulically isolated sandstone block. Each of that has a size of 2m x 1m x 0.3 m. Three types of medium scale hydraulic experiments were monitored by multimethod geophysical measurements: - Water imbibition and drainage, - Displacement of water by density driven flow, - Displacement of water by forced convection 4-point electric conductivity measurement and radar transmission measurement have been carried out along several vertical profiles. The data were used to test the area of validity of the petrophysical model. The block model were divided into several descrete rock volumes. Water saturation and salinity were calculated for each single discrete rock volume. Independently water balance and hence the mean

  7. Extracting Pore and Fracture Parameters of Porous Rocks Using a Method Based on Digital Image Analysis

    NASA Astrophysics Data System (ADS)

    Song, Z.; Song, Y.

    2015-12-01

    The characterization of pore and fracture is an important part of regional hydrological survey. Traditional methods (e.g. mercury intrusion, porosimetry, and pressure pulse) can effectively determine the parameters of pore and fracture for high-permeability rocks. However, these methods tend to fail for low-permeability rocks, especially quartz sandstone and granite. Thus, this work presented a novel method to determine the parameters of pore and fracture by analyzing the digital image of the casting thin sections under a microscope. Firstly, the size of representative elementary image was obtained by calculating pore parameters of different scales of samples. Then the method based on representative elementary image analyzed the casting thin sections of sandstone with low permeability, low anisotropy, and high water-binding capacity, and determined the parameters such as porosity, round-hole rate, roundness. Besides, this method analyzed the casting thin sections of low-permeability granite from Beishan, Gansu, China to determine more parameters such as fracture rate, length-width ratio of fracture, direction angle, and roundness. Finally, these parameters determined by the method were compared with those by transient pressure pulse method. The comparison demonstrated that the presented method can determine more high-accuracy parameters than transient pressure pulse method. Key words: digital image analysis, casting thin sections, pore, fracture, parameters analysis

  8. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    SciTech Connect

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  9. Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. W.; David, E. C.

    2011-12-01

    During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always

  10. Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock

    SciTech Connect

    Pruess, K.

    1985-03-01

    We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

  11. Rupture cascades in a discrete element model of a porous sedimentary rock.

    PubMed

    Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G

    2014-02-14

    We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.

  12. Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G.

    2014-02-01

    We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.

  13. Thermohydrologic Modeling: Coupling Navier-Stokes Models of Gas, Moisture, and Heat Flow in Underground Engineered Systems with Porous-Media Models in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Nitao, J. J.; Buscheck, T. A.; Sun, Y.; Lee, K. H.

    2004-12-01

    Combined free and porous flows occur in a wide range of natural and engineered systems such as coupled transport processes driven by underground-engineered systems. One potential application for modeling these coupled flow processes is related to the emplacement of heat-generating radioactive waste package in tunnels lying above the water table. This example involves the flow of gas and moisture in large open tunnel and gas- and liquid-phase flow in the surrounding fractured, porous rocks. This study aims to develop a method of coupling the Navier-Stokes equations and the Darcy's law to achieve a more rigorous representation of all major flow and transport processes in underground tunnels and surrounding fractured host-rocks. While the thermohydrologic (TH) processes in host-rocks are treated based on porous-medium Darcy-flow approximations, the Navier-Stokes modeling is applied to describe in-tunnel flow behaviors (natural convection, realistic gas/moisture movement, turbulent flow conditions, etc.). The governing equations are numerically solved by a finite-element scheme in the NUFT code. Some numerical simulation results shown in this presentation provide environmental conditions that engineered systems would experience, which, therefore, may be useful for engineered system design analysis and performance assessment. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  14. Rock Physics Characterization of Porous Media Containing Hydrates Formed Out of Solution: Tetrathydrofuran VS. Dissolved Methane

    NASA Astrophysics Data System (ADS)

    Schicks, J. M.; Rydzy, M. B.; Spangenberg, E.; Batzle, M. L.

    2012-12-01

    Methane hydrate formation in sediments from the dissolved gas phase is a tedious and time-consuming task, due to the relatively low solubility of methane in water. A number of studies on physical properties of hydrated sediments have been conducted on sediments containing tetrahydrofuran (THF) hydrates instead. The use of THF as a hydrate former is convenient as it forms hydrate at atmospheric pressure and relatively high temperatures of about 277 K. It is completely miscible in water, thus forms hydrate out solution and promises homogeneous synthesis of THF hydrate in sediment. The applicability of THF as a proxy for methane hydrate formed out of solution, however, has often been questioned. To better understand whether THF hydrates represent a legitimate proxy for methane hydrates formed out of solution, ultrasonic velocity and resistivity measurements were performed on hydrated Ottawa Sand F110 sand and glass bead samples in conjunction with imaging techniques, such as micro X-ray computed tomography (MXCT), and scanning electron microscopy (SEM). Thereby the tests were conducted on samples containing hydrates formed both, from methane dissolved in water and with the use of THF. The results show, that in terms of ultrasonic velocities, THF and methane hydrates exhibit the same trend. As the hydrate crystallized in the pore space, no increase in velocity was observed until a critical hydrate saturation of 35-50 percent was exceeded. On the other hand, the bulk electrical resistivity increased with increasing gas hydrate saturation. Comparison with current rock physics models suggested that the gas hydrate formed out of solution in both cases exhibits pore-filling/ load-bearing behavior, i.e. it suggests that the hydrate is formed away from the grains. This was supported through the imaging. This series of measurements provided the first direct comparison of THF and methane hydrates formed out of solution in terms of how their distribution and location in the pore

  15. Effect of convective transport in porous media on the conditions of organic matter maturation and generation of hydrocarbons in trap rocks complexes

    NASA Astrophysics Data System (ADS)

    Yurie Khachay, Professor; Mindubaev, Mansur

    2016-04-01

    One of the main problems of the study of the intrusion thermal effects on the maturation of the organic matter is to estimate the volume, intensity, thermal effects of the intrusion and its redistribution in porous media by convection. A numerical algorithm for solving the problem of the developed convection in two-dimensional and three-dimensional models of the porous medium depending on the incline angle is developed. It is defined that the convective stability in the medium decreases with increasing incline angle. It was found that depending on the incline angle the structure of convection from many cells for a flat horizontal layer changes and it transfers to more elongated structures along the layer. It is shown that depending on the incline angles, invading sill and imbedding volume of the porous medium it can be realized either stationary or non-stationary convection that provides a principal different thermal conditions of hydrocarbons maturation in the motherboard porous medium. We give numerical examples of the influence of the incline angle on the flow structure inside the porous inclusion. By the stationary convection the volume of the boundary layers between the convective sells increases. That can lead to increasing of the part of motherboard rocks that are outer the temperature conditions of oil catalysis and as a consequence to the overestimation of the deposits.

  16. Determining the concentration and distribution of arsenic deposits in rock matrices and porous media by X-ray difference microtomography

    NASA Astrophysics Data System (ADS)

    Peng, D.; Alsina, M.; Chen, C.; Keane, D.; Packman, A. I.; Gaillard, J.; Aubeneau, A. F.; Pasten, P. A.; Pizarro, G.

    2009-12-01

    Synchrotron-based high resolution X-ray microtomography was used to characterize arsenic (As) deposits within porous media. The distribution of arsenic was determined using difference tomography, where the X-rays used to image the sample were selected to be just above and below the As absorption edge at 11,853 eV. The difference tomograms have background noise from other minerals contained in the sample, local variation of X-ray beam intensity, and electronic noise associated with the data acquisition process. Image processing filters, such as windowing or adaptive filters derived from the Fast Fourier Transform (FFT) method, were employed to reduce background noise in the tomograms and enhance information on the arsenic deposits. These errors are generally larger in difference tomography than in conventional X-ray microtomography because this method requires operating at very specific X-ray energies (i.e., an edge of the element of interest), and this constraint makes it very difficult to obtain optimal contrast for tomographic reconstruction. In particular, the signal-to-noise ratio is often low in difference tomograms of geological samples having high background X-ray absorption. The relationship between As concentration and difference image intensity was evaluated using well defined As samples prepared in the laboratory, along with As-rich sinter deposits from El Tatio hydrothermal field and fluvial sediments from the Loa River downstream of El Tatio. This relationship is non-linear because of interactions between the different sources of error in the construction of the difference tomograms. As a result, the difference tomography method is relatively insensitive to bulk As concentrations, and instead primarily provides information on the distribution of regions of the sample that have high As concentrations, such as As-rich particles, precipitates, or evaporite deposits. Tomographic 3D reconstructions of the porous media and of the aggregate structure thus

  17. Limit state for gas pressurized homogenous and inhomogenous media and rock. [Mechanical effects of high gas pressure applied to a porous, but only slightly permeable surface of a rock

    SciTech Connect

    Protosenya, A.G.; Chernikov, A.K.; Shirkes, O.A.; Stavrogin, A.N.

    1982-11-01

    The limiting strength state of gas-pressurized rock is examined in this paper. In experiments, pores of rock specimens were filled with gas. Tests of the influence of pore pressure on the magitude of the limiting strength of coal were made. The structure of a gas-pressurized porous medium is defined. The strain process is seen to exert influence on the magnitude of the porosity of the limiting state of the rock. The limiting state for plastic fracture is derived. The system of equations for the theory of the limiting strength state under plastic deformation follows. The Coulomb plasticity condition is introduced. The system of equations in inhomogenous media is also studied. Finally, a few simple solutions--stress distribution around circular holes, the elastic plastic problem--are given, to be used as component parts of more complex solutions.

  18. A Transverse Dynamic Deflection Model for Thin Plate Made of Saturated Porous Materials

    NASA Astrophysics Data System (ADS)

    Feng-xi, Zhou; Xiao-lin, Cao

    2016-10-01

    In this article, a transverse dynamic deflection model is established for thin plate made of saturated porous materials. Based on the Biot's model for fluid-saturated porous media, using the Love-Kirchhoff hypothesis, the governing equations of transverse vibrations of fluid-saturated poroelastic plates are derived in detail, which take the inertial, fluid viscous, mechanical couplings, compressibility of solid, and fluid into account. The free vibration and forced vibration response of a simply supported poroelastic rectangular plate is obtained by Fourier series expansion method. Through numerical examples, the effect of porosity and permeability on the dynamic response, including the natural frequency, amplitude response, and the resonance areas is assessed.

  19. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    SciTech Connect

    Spetzler, Hartmut

    2006-05-01

    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible

  20. Comparative sound velocity measurements between porous rock and fully-dense material under crustal condition: The cases of Darley Dale sandstone and copper block

    NASA Astrophysics Data System (ADS)

    Kung, J.; Chien, Y. V.; Wu, W.; Dong, J.; Chang, Y.; Tsai, C.; Yang, M.; Wang, K.

    2012-12-01

    Previous studies showed that the voids and their geometry in the sedimentary rocks have great influence on the compressibility of rock, which reflects on its elastic velocities. Some models were developed to discuss the relations among velocity, porosity and void geometry. Therefore, the information of porosity, and void geometry and its distribution in rock is essential for understanding how the elastic properties of porous rocks affected by their poregeometry. In this study, we revisited a well-studied porous rock, Darley Dale sandstone, which has been studied by different groups with different purposes. Most of them are the deformation experiments. Different from previous studies, we measured the sound velocity of Darley dale sandstone under hydrostatic conditions. Also, we employed different techniques to investigate the pore geometry and porosity of Darley Dale sandstone to gain the insight of velocity changing behavior under the crustal conditions. Here, we measured a fully-dense copper block for a comparison. We performed X-ray CT scanning (XCT) to image the pore space of sandstone to construct the 3-D image of pore geometry, distribution and the pore size. The CT image data are allowed us to estimate the porosity of sandstone, too. One the other hand, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa). A set of specimens were cored from Darley Dale sandstone block. P and S wave velocities of specimens were measured at ambient conditions. We also performed high pressure velocity measurements on a selected rock specimen and a copper block up to 150 MPa under dry condition. Porosity of a set of rock specimens measured by imbibitions method was spanned from 6% to 15%, largely distributed within a range of 8%-11%. Compared the porosity obtained from three different techniques, imbibitions method, helium porosimeter and XCT, values from those measurements are in good agreement

  1. Effects of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: Case Study of Yuan-An Ridge Site in Southwestern Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2016-04-01

    Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate

  2. Imaging techniques applied to the study of fluids in porous media. Scaling up in Class 1 reservoir type rock

    SciTech Connect

    Tomutsa, L.; Brinkmeyer, A.; Doughty, D.

    1993-04-01

    A synergistic rock characterization methodology has been developed. It derives reservoir engineering parameters from X-ray tomography (CT) scanning, computer assisted petrographic image analysis, minipermeameter measurements, and nuclear magnetic resonance imaging (NMRI). This rock characterization methodology is used to investigate the effect of small-scale rock heterogeneity on oil distribution and recovery. It is also used to investigate the applicability of imaging technologies to the development of scaleup procedures from core plug to whole core, by comparing the results of detailed simulations with the images ofthe fluid distributions observed by CT scanning. By using the rock and fluid detailed data generated by imaging technology describe, one can verify directly, in the laboratory, various scaling up techniques. Asan example, realizations of rock properties statistically and spatially compatible with the observed values are generated by one of the various stochastic methods available (fuming bands) and are used as simulator input. The simulation results were compared with both the simulation results using the true rock properties and the fluid distributions observed by CT. Conclusions regarding the effect of the various permeability models on waterflood oil recovery were formulated.

  3. A feasible research of rock porosity and water saturation impact on audio-magnetotelluric propagation in porous media

    NASA Astrophysics Data System (ADS)

    Tian, Z.; Liu, J.

    2015-12-01

    Abstract: Although various factors have impact on the resistivity of subsurface rock formation, in depth range of general electrical prospecting, the conductive actions of rocks are basically realized relying on the aqueous solutions filled in the pores. Therefore, quantitatively studying the impact of the water level on rock resistivity is important to analyze and classify strata, investigate the underground structures. In this research, we proposed a feasible research on building electric property rock formation models with different porosity and water saturation based on theories of two-phase media. The propagation of audio-magnetotelluric (AMT) waves is simulated by using finite-difference (FD) scheme, and theoretic resistivity distribution is calculated on account of the response of AMT. According to a sequence of synthetic examples, through comparing and analyzing the simulated results with various porosity and water saturation respectively, we discuss the impact on layers resistivity while porosity and water saturation of rock stratum are changing. The results shows the extent that the mentioned factors can have impact on the propagation of AMT waves. Key words: audio-magnetotelluric modeling, two-phase media, porosity, water saturation, finite-difference

  4. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  5. Geophysical and transport properties of reservoir rocks. Final report for task 4: Measurements and analysis of seismic properties

    SciTech Connect

    Cook, N.G.W.

    1993-05-01

    The principal objective of research on the seismic properties of reservoir rocks is to develop a basic understanding of the effects of rock microstructure and its contained pore fluids on seismic velocities and attenuation. Ultimately, this knowledge would be used to extract reservoir properties information such as the porosity, permeability, clay content, fluid saturation, and fluid type from borehole, cross-borehole, and surface seismic measurements to improve the planning and control of oil and gas recovery. This thesis presents laboratory ultrasonic measurements for three granular materials and attempts to relate the microstructural properties and the properties of the pore fluids to P- and S-wave velocities and attenuation. These experimental results show that artificial porous materials with sintered grains and a sandstone with partially cemented grains exhibit complexities in P- and S-wave attenuation that cannot be adequately explained by existing micromechanical theories. It is likely that some of the complexity observed in the seismic attenuation is controlled by details of the rock microstructure, such as the grain contact area and grain shape, and by the arrangement of the grain packing. To examine these effects, a numerical method was developed for analyzing wave propagation in a grain packing. The method is based on a dynamic boundary integral equation and incorporates generalized stiffness boundary conditions between individual grains to account for viscous losses and grain contact scattering.

  6. Amplitude of Biot's slow wave scattered by a spherical inclusion in a fluid-saturated poroelastic medium

    NASA Astrophysics Data System (ADS)

    Ciz, Radim; Gurevich, Boris

    2005-03-01

    Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant and less compliant areas. This paper investigates the interaction between a plane elastic wave in a poroelastic medium with a spherical inhomogeneity of another porous material. The behaviour of both the inclusion and the background medium is described by the low-frequency variant of Biot's equations of poroelasticity with the standard boundary conditions at the inclusion surface, and for the inclusion size much smaller than the wavelength of the fast compressional wave. The scattering problem is formulated as a series expansion of displacements expressed in the spherical harmonics. The resulting scattered wavefield consists of the scattered normal compressional and shear waves and Biot's slow wave, which attenuates rapidly with distance from the inclusion and represents the main difference from the elastic case. This study concentrates on the attenuation effects caused by the mode conversion into Biot's slow wave. The solution obtained for Biot's slow wave is well described by the two terms of order n= 0 and n= 2 of the scattering series. The scattering amplitude for the term of order n= 0 is given by a simple expression. The full expression for the term of order n= 2 is very complicated, but can be simplified assuming that the amplitude of the scattered fast (normal) compressional and shear waves are well approximated by the solution of the equivalent elastic problem. This assumption yields a simple approximation for the amplitude of the scattered slow wave, which is accurate for a wide range of material properties and is sufficient for the analysis of the scattering amplitude as a function of frequency. In the low-frequency limit the scattering amplitude of the slow wave scales with ω3/2, and reduces to the asymptotic long-wavelength solution of Berryman (1985), which is valid for

  7. Models of fluid saturated zones according magnetotellurics and seismics data on Tien-Shan crust and mantle along transect MANAS

    NASA Astrophysics Data System (ADS)

    Bataleva, E.; Rybin, A.; Batalev, V.; Matyukov, V.

    2009-04-01

    Recognized as one of the highest, youngest, and most active orogenic systems on the Earth the Tien Shan is situated internal to the Eurasian continent. New deep seismic data acquired from 2004 to 2007 constitute an -400 km lithospheric transect located from the northwestern Tarim Basin in China to the northern Tien Shan in Kyrgyzstan. This seismic profile consists of 40 seismic stations "Quanterra" containing STS-2 (Streckeisen, Switzerland) and CMG - 3T (Güralp Systems Ltd) broadband seismic receivers. Registration of the seismic data in each station was conducted with sampling frequency of 40 Hz. Time service based on GPS clock was applied on each station. Average distance between the seismic stations along the profile is 10-15 km. Observations were held on 30 stations in Kyrgyzstan and on 10 of them in China. As a result of seismic investigations wave speeds cross-section was calculated. A 450 km long north-south magnetotelluric profile spanning the Tien Shan from Kazakhstan to western China reveals lateral variations in the resistivity of the Earth crust and mantle lithosphere to depths of 140 km. MT profile consisting of 19 long period MT soundings (20-20,000 s periods) were combined with 30 broadband stations (0.1-1600 s periods). Broadband measurements (0.001-100 s periods) were also acquired at the 14 long period sites in Kazakhstan and Kyrgyzstan. [Bielinski, et al 2003] Conductivity changes of up to one order of magnitude are a result from variations in temperature or composition, or both. Previous magneto telluric (MT) studies [Trapeznikov et al., 1997] partly show that some low velocity layers also have low resistivity, lending support to the fluid hypothesis. Studies of wave speeds reveal sections of the crust that have pronounced low velocity zones in the thicker portions of the crust which are attributed to crustal metasomatism [Ghose et al., 1998] or fluid filled fractures in pervasively deformed rocks [Vinnik et al., 2002]. Comparing an obtained

  8. Characterization of the process of the strain localization in some porous rocks in plane strain condition using a new true triaxial apparatus

    NASA Astrophysics Data System (ADS)

    Besuelle, P.

    2012-04-01

    Failure by strain localization is commonly observed in geomaterials. Generaly, experimental characterization of the localization in a porous sandstone are performed with classical axisymmetric triaxial compression tests. The effect of the confining pressure is observed on several aspects: onset of localization, pattern of localization, porosity evolution inside bands, grain scale mechanisms of deformation. Complex patterns of localization can be observed at high confining pressure in the transition between the brittle and ductile regime, showing several deformation bands in the specimens ([1]). However the history (time evolution) of the localization is not accessible because the observations are post-mortem. Strain field measurement and evolution in time of the strain field are particularly useful to study the strain localization (initiation of the deformation bands) and the post-localization regime. Such tools have been developed for soils (e.g., sand specimens in plane strain condition [2] or in triaxial conditions using X-ray tomography [3]). Similar developments for rocks are still difficult, especially because the pertinent confining pressure to reproduce in situ stresses are higher than for soils. We present here first results obtained in a new true triaxial apparatus that allows observation of the rock specimen under loading and especially the complex development of deformation bands and faults. As for [4] and [5], the three principal stresses are different, however the intermediate stress is controlled in order to impose a plane strain condition (zero strain in this direction). Observation of a specimen under load is possible as one surface of the prismatic specimen, which is orthogonal to the plane strain direction, is in contact with a hard transparent window. The deformation of this surface is representative of the deformation in the whole specimen, up to and beyond strain localization. Therefore the evolution of the strain field in the sample can be

  9. Experimental study of seismic attenuation in partially saturated porous media

    NASA Astrophysics Data System (ADS)

    Barrière, Julien; Bordes, Clarisse; Sénéchal, Pascale

    2010-05-01

    Nowadays, it is well admitted that hydrogeological properties of the porous media (porosity, fluid saturation and permeability) can influence seismic properties. In geophysics, the major theory which links hydrogeological and seismic parameters is poroelasticity proposed by Biot (1956). The Biot relaxation process is due to the relative displacement of fluid in comparison to the solid which causes a significant attenuation of seismic waves, notably in unconsolidated medium. In partially saturated medium, pore fluids are considered as a perfect mixture and so called 'effective fluid'. However, in more consolidated rocks, the Biot theory is not sufficient to explain the attenuation level as measured from field seismic and sonic log data. In the last decade, some authors provide new theories to understand the attenuation caused by the interaction of the different fluids. Most experiments are done in the ultrasonic frequency range, where sources of attenuation (like scattering or local fluid flow) are different as in the low frequency range where the wavelength is greater than heterogeneities size. In this way, we propose a forward-looking experiment with the use of a vertical impulsionnal seismic source which have a strong amplitude spectrum ranging from 100Hz to 8kHz. We study three different unconsolidated porous media at atmospheric pressure: fine-grained sand, coarsed-grained sand and coarse gravel. Water content is measured with a calibrated capacitance probe and temperature effects are corrected. Seismic wave propagation is recorded by piezoelectric accelerometers designed for frequencies below 10kHz. The water injection is done by imbibition. We propose to analyse the attenuation in the [100Hz-1.5kHz] frequency range for the studied media with various water saturation levels. The attenuation varies according to the porous medium and the water content and appears more significant at dry condition and at high saturation level. The weak cohesion at dry condition

  10. Non-linear behaviour of electrical parameters in porous, water-saturated rocks: a model to predict pore size distribution

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser

    2015-08-01

    In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.

  11. Numerical investigation of the hydro-mechanical contribution to seismic attenuation in damaged rocks

    NASA Astrophysics Data System (ADS)

    Pollmann, Nele; Jänicke, Ralf; Renner, Jörg; Steeb, Holger

    2016-04-01

    The investigation of hydro-mechanical processes, in particular the modeling of seismic waves in fractured porous media, is essential for the physical interpretation of data obtained from seismic exploration. Here, we specifically investigate attenuation processes in fluid-saturated porous rock containing fracture networks to identify effective hydro-mechanical properties by numerical simulation. The main purpose of this work is the characterization of the overall hydro-mechanical properties by computational homogenization. We determine an effective Skempton coefficient by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Fracture networks are stochastically generated to mimic geological in-situ situations. The fractures are approximated as ellipses with aspect ratios up to 1/100, i.e. they constitute thin and long hydraulic conduits with high permeabilities. Simulations are designed on the material scale with and without conservation of fluid mass in the control volume. Using computational homogenization approaches, we define an effective Skempton coefficient. A range of fracture networks with different characteristic properties is studied for different varieties of fractures. On the material scale we find strongly heterogeneous pressure propagation in the fracture network and the surrounding rock, respectively. The pressure diffusion is much faster in the fracture network than in the matrix, rendering the macroscopic hydro-mechanical behavior strongly time dependent. The effective Skempton coefficient converges to an ensemble-specific instantaneous value and to 1 for long-time studies. The ultimate objective of our study is to evaluate whether constraints on the structure of fracture networks can be deduced from observations of attenuation and its frequency dependence.

  12. Excess Olivine and Positive FeO-MgO Trend in Bulk-rock Abyssal Peridotites as a Consequence of Porous Melt Migration Beneath Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2003-12-01

    Abyssal peridotites (AP) are mantle melting residues for mid-ocean ridge basalts (MORB) [1-4]. Recent studies [5-8] have confirmed the complementary relationship between MORB and AP, but also revealed the hidden complexities in these peridotites such as olivine addition [5-7] and melt refertilization [7,9,10]. These same studies [5,6] have immediately excited serious debates on AP petrogenesis [11-15]. These debates are stimulating and healthy towards an improved understanding of ocean ridge magmatic processes. However, a straightforward interpretation [5,6] has been widely misunderstood because of the influence of [13]. A clarification is necessary. Niu, Langmuir and Kinzler [5] showed that a positive FeO-MgO trend exists in bulk-rock AP samples reconstructed using mineral modes and compositions [3,4]. Such a positive trend is inconsistent with AP being simple melting residues, but consistent with AP being melting residues plus excess olivine [5,6]. Using their site averages of reconstructed bulk-rock AP data, Baker and Beckett [13] countered that the positive FeO-MgO correlation by Niu et al. [5] is an artifact and there is no evidence for significant olivine accumulation in AP. The clarification here includes the following valid statements: (1) the site averages by [13] simply cannot be derived from their own unaveraged data; (2) the unaveraged data by [13], as expected, do show a positive FeO-MgO trend as shown by [5,6]; (3) the positive FeO-MgO trend is not an artifact as this trend is also clear in the unaveraged data of [13]; (4) excess olivine is already evident in the original modal data [3,4]; and (5) olivine addition is observed petrographically [7]. Therefore, the positive FeO-MgO trend defined by bulk-rock AP samples is characteristic of AP. Addition of olivine in AP is a consequence of cooling of ascending melts migrating through advanced residues in the "cold" thermal boundary layer beneath ocean ridges [5,6]. This is consistent with bulk-rock trace

  13. Study of acoustic radiation during air stream filtration through a porous medium

    NASA Astrophysics Data System (ADS)

    Zaslavskii, Yu. M.; Zaslavskii, V. Yu.

    2012-11-01

    The paper presents results of laboratory experiments on studying the characteristics of acoustic emission generated by a flow of compressed air, which is filtered by porous pumice samples with and without partial fluid saturation. The construction features of the laboratory setup and details of the experiments are described. Porous samples with dry and partially fluid-filled pores are used. The visual patterns of the acoustic emission spectrum, which occurs under stationary filtration of the compressed air, are presented, and its amplitude-frequency distribution characteristic for different sample porosities and different degrees of their fluid saturation is shown. It is demonstrated that the relaxation times of the emission noise level differ. This is revealed during the sharp elimination of the drop in pressure from such samples, i.e., in the nonstationary filtration mode.

  14. The response of fluid-saturated reservoirs to lunisolar tides: Part 1. Background parameters of tidal components in ground displacements and groundwater level

    NASA Astrophysics Data System (ADS)

    Besedina, A. N.; Vinogradov, E. A.; Gorbunova, E. M.; Kabychenko, N. V.; Svintsov, I. S.; Pigulevskiy, P. I.; Svistun, V. K.; Shcherbina, S. V.

    2015-01-01

    The first part of this work is dedicated to the response of different-age structures to lunisolar tides, which can be considered as a sounding signal for monitoring the state of fluid-saturated reservoirs. The complex approach to processing the data obtained at the testing sites of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Institute of Geophysics of the National Academy of Sciences of Ukraine, and KIEV station of the IRIS seismic network is applied for recognizing the tides against the hydrogeological, barometric, and seismic series. The comparative analysis of the experimental and theoretical values of the diurnal and semidiurnal tidal components in the time series of ground displacements is carried out. The tidal variations in the groundwater level are compared with the tidal components revealed in the ground displacement of the different-age structure of the Moscow Basin and Ukrainian Shield, which are parts of the East European artesian region. The differences in the tidal responses of the groundwater level and ground displacement probably suggest that the state of the massif is affected by certain additional factors associated, e.g., with the passage of earthquake-induced seismic waves and the changes in the hydrogeodynamic environment.

  15. Homogenization of two fluid flow in porous media

    PubMed Central

    Daly, K. R.; Roose, T.

    2015-01-01

    The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties. PMID:27547073

  16. When is the strain in the meter the same as that in the rock?

    NASA Astrophysics Data System (ADS)

    Segall, P.; Jónsson, S.; Ágústsson, K.

    2003-12-01

    Borehole strainmeters are a valuable tool for monitoring crustal deformation and an important component of the Plate Boundary Observatory (PBO). One type, the dilatometer, measures the volumetric strain; three component strainmeters measure the dilatation and two in-plane shear strains. Borehole strainmeters are emplaced in porous fluid saturated rock. Pore-fluid flow induces strain, however there is no fluid exchange with the strainmeter. Thus, the dilatation measured by the strainmeter is the same as that in the rock only when the rock remains undrained. Assuming that the rock is homogeneous and isotropic, the instrumental dilatation Δ inst is given by Δ inst = C1 (Δ ∞ - C2 p∞ ), where Δ ∞ and p∞ are strain and pore pressure far from the borehole, and C1 and C2 depend on poroelastic rock properties; C1 = [{1-(1+ α )ν u}]/[{1-(1+ α )ν }], C2 = [{3(1+α )(ν u - ν )}]/[{2μ B(1+ν u)}], and ν , ν u are the drained and undrained Poisson's ratios, μ is shear modulus, B is Skempton's coefficient, and α measures the vertical strain sensitivity of the instrument. This predicts that increases in pore-pressure, due for example to rainfall, cause a contractional strain. A large rainfall event in south Iceland raised water levels by 1-2 meters (10 - 20 kPa). Assuming ν u = 0.33, ν = 0.25, B = 0.7, μ = 1010 Pa we predict contractions of order 180 nanostrain, in reasonable agreement with 4 of the 5 dilatometers in the area. Postseismic strain in the rock is expected to increase as the induced pore pressure gradients relax. However, a dilatometer ˜ 3 \\ km from a Mw 6.5 earthquake in the South Iceland Seismic Zone shows a postseismic strain change opposite in sign to the coseismic response. { Rice and Cleary, Rev. Geophys.,} [1976] give the solution for two-dimensional edge dislocation in a poroelastic medium. From their results and the theory described above, we predict that the dilatation recorded by a strainmeter will be time invariant! This despite

  17. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  18. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Caspari, Eva; Müller, Tobias M.; Milani, Marco; Barbosa, Nicolás. D.; Holliger, Klaus

    2016-09-01

    The presence of stiffness contrasts at scales larger than the typical pore sizes but smaller than the predominant seismic wavelengths can produce seismic attenuation and velocity dispersion in fluid-saturated porous rocks. This energy dissipation mechanism is caused by wave-induced fluid pressure diffusion among the different components of the probed geological formations. In many cases, heterogeneities have elongated shapes and preferential orientations, which implies that the overall response of the medium is anisotropic. In this work, we propose a numerical upscaling procedure that permits to quantify seismic attenuation and phase velocity considering fluid pressure diffusion effects as well as generic anisotropy at the sample's scale. The methodology is based on a set of three relaxation tests performed on a 2-D synthetic rock sample representative of the medium of interest. It provides a complex-valued frequency-dependent equivalent stiffness matrix through a least squares procedure. We also derive an approach for computing various poroelastic fields associated with the considered sample in response to the propagation of a seismic wave with arbitrary incidence angle. Using this approach, we provide an energy-based estimation of seismic attenuation. A comprehensive numerical analysis indicates that the methodology is suitable for handling complex media and different levels of overall anisotropy. Comparisons with the energy-based estimations demonstrate that the dynamic-equivalent viscoelastic medium assumption made by the numerical upscaling procedure is reasonable even in the presence of high levels of overall anisotropy. This work also highlights the usefulness of poroelastic fields for the physical interpretation of seismic wave phenomena in strongly heterogeneous and complex media.

  19. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

    PubMed Central

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  20. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  1. Magnetohydrodynamic stability of natural convection in a vertical porous slab

    NASA Astrophysics Data System (ADS)

    Shankar, B. M.; Kumar, Jai; Shivakumara, I. S.

    2017-01-01

    The stability of the conduction regime of natural convection in an electrically conducting fluid saturated porous vertical slab is investigated in the presence of a uniform external transverse magnetic field. The flow in the porous medium is described by modified Brinkman-extended Darcy equation with fluid viscosity different from effective viscosity. The boundaries of the vertical porous slab are assumed to be rigid-isothermal and electrically non-conducting. The resulting stability equations are solved numerically using Galerkin method. The critical Grashof number Gc, the critical wave number αc and the critical wave speed cc are computed for a wide range of porous parameter σp, the ratio of effective viscosity to the fluid viscosity Λ, the Prandtl number Pr and the Hartmann number M. Based on these parameters, the stability characteristics of the system are discussed in detail. The presence of advective inertia is to instill instability on the flow in a porous medium and found that the magnetic field, porous parameter and ratio of viscosities have a stabilizing effect on both stationary and oscillatory wave instabilities. Besides, the value of Pr at which transition occurs from stationary to oscillatory mode of instability decreases with increasing M ,σp and Λ .

  2. Numerical solutions for steady thermal convection from a concentrated source in a porous medium

    SciTech Connect

    Hickox, C.E.; Watts, H.A.

    1980-06-01

    Solutions for the steady, axisymmetric velocity and temperature fields associated with a point source of thermal energy in a fluid-saturated porous medium are obtained numerically through use of similarity transformations. The two cases considered are those of a point source located on the lower, insulated boundary of a semi-infinite region and a point source embedded in an infinite region. Numerical results are presented from which complete descriptions of the velocity and temperature fields can be constructed for Rayleigh numbers ranging from 10/sup -3/ to 10/sup 2/.

  3. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the

  4. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    USGS Publications Warehouse

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  5. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, You-Sheng; Zhong, Yi-Jun; Huang, Guo-Xiang

    2004-07-01

    Based on the lattice Boltzmann method and general theory of fluids flowing in porous media, a numerical model is presented for the diffusion-reaction-transport (DRT) processes in porous media. As a test, we simulate a DRT process in a two-dimensional horizontal heterogeneous porous medium. The influence of gravitation in this case can be neglected, and the DRT process can be described by a strongly heterogeneous diagnostic test strip or a thin confined piece of soil with stochastically distributing property in horizontal directions. The results obtained for the relations between reduced fluid saturation S, concentration c1, and concentration c2 are shown by using the visualization computing technique. The computational efficiency and stability of the model are satisfactory.

  6. Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.

    2016-09-01

    The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.

  7. Shear wave splitting of the 2009 L'Aquila seismic sequence: fluid saturated microcracks and crustal fractures in the Abruzzi region (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Baccheschi, P.; Pastori, M.; Margheriti, L.; Piccinini, D.

    2016-03-01

    The Abruzzi region is located in the Central Apennines Neogene fold-and-thrust belt and has one of the highest seismogenic potential in Italy, with high and diffuse crustal seismicity related to NE-SW oriented extension. In this study, we investigate the detailed spatial variation in shear wave splitting providing high-resolution anisotropic structure beneath the L'Aquila region. To accomplish this, we performed a systematic analysis of crustal anisotropic parameters: fast polarization direction (ϕ) and delay time (δt). We benefit from the dense coverage of seismic stations operating in the area and from a catalogue of several accurate earthquake locations of the 2009 L'Aquila seismic sequence, related to the Mw 6.1 2009 L'Aquila main shock, to describe in detail the geometry of the anisotropic volume around the active faults that ruptured. The spatial variations both in ϕ and δt suggest a complex anisotropic structure beneath the region caused by a combination of both structural- and stress-induced mechanisms. The average ϕ is NNW-SSE oriented (N141°), showing clear similarity both with the local fault strike and the SHmax. In the central part of the study area fast axes are oriented NW-SE, while moving towards the northeastern and northwestern sectors the fast directions clearly diverge from the general trend of NW-SE and rotate accordingly to the local fault strikes. The above-mentioned fault-parallel ϕ distribution suggests that the observed anisotropy is mostly controlled by the local fault-related structure. Toward the southeast fast directions become orthogonal both to strike of the local mapped faults and to the SHmax. Here, ϕ are predominantly oriented NE-SW; we interpret this orientation as due to the presence of a highly fractured and overpressurized rock volume which should be responsible of the 90° flips in ϕ and the increase in δt. Another possible mechanism for NE-SW orientation of ϕ in the southeastern sector could be ascribed to the

  8. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    PubMed

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  9. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium

    PubMed Central

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  10. Nonlinear Behavior Of Saturated Porous Media Under External Impact

    NASA Astrophysics Data System (ADS)

    Perepechko, Y.

    2005-12-01

    This paper deals with nonlinear behavior of liquid saturated porous media in gravity filed under external impact. The continuum is assumed to be a two-velocity medium; it consists of a deformable porous matrix (with Maxwell's reology) and a Newtonian liquid that saturates this matrix. The energy dissipation in this model takes place due the interface friction between the solid matrix and saturating liquid, and also through relaxation of inelastic shear stress in the porous matrix. The elaborated nonisothermal mathematical model for this kind of medium is a thermodynamically consistent and closed model. Godunov's explicit difference scheme was used for computer simulation; the method implies numerical simulation for discontinuity decay in flux calculations. As an illustrative example, we consider the formation of dissipation structures in a plain layer of that medium after pulse or periodic impact on the background of liquid filtration through the porous matrix. At the process beginning, one can observe elastic behavior of the porous matrix. Deformation spreading through the saturated porous matrix occurs almost without distortions and produces a channel-shaped zone of stretching with a high porosity. Later on, dissipation processes and reology properties of porous medium causes the diffusion of this channel. We also observe a correlation between the liquid distribution (porosity for the solid matrix) and dilatancy fields; this allows us to restore the dilatancy field from the measured fluid saturation of the medium. This work was supported by the RFBR (Grant No. 04-05-64107), the Presidium of SB RAS (Grant 106), the President's Grants (NSh-2118.2003.5, NSh-1573.2003.5).

  11. Groundwater flow dynamics of weathered hard-rock aquifers under climate-change conditions: an illustrative example of numerical modeling through the equivalent porous media approach in the north-western Pyrenees (France)

    NASA Astrophysics Data System (ADS)

    Jaunat, J.; Dupuy, A.; Huneau, F.; Celle-Jeanton, H.; Le Coustumer, P.

    2016-09-01

    A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5 · 10-8 ≤ K ≤ 5 · 10-7 m s-1), the transition layer (7 · 10-8 ≤ K ≤ 1 · 10-5 m s-1, the highest values being along major discontinuities), two fissured layers (3.5 · 10-8 ≤ K ≤ 5 · 10-4 m s-1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity ( K = 1 10 -9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about -360 m3 y-1 for recharge decreasing at about -5.6 mm y-1 (0.8 % of annual recharge).

  12. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  13. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  14. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  15. Dynamic transverse shear modulus for a heterogeneous fluid-filled porous solid containing cylindrical inclusions

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda

    2016-09-01

    An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the

  16. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    SciTech Connect

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  17. Capillary heterogeneity in sandstones rocks during CO2/water core-flooding experiments

    NASA Astrophysics Data System (ADS)

    Pini, R.; Krevor, S. C. M.; Krause, M. H.; Benson, S. M.

    2012-04-01

    . Additionally, during a core-flooding experiment, X-ray Computed Tomography (CT) scanning allows for precise imaging of fluid saturations at a resolution of about 1mm3. It is shown that a distribution of capillary pressure curves can be associated to the observed distribution of CO2 saturation within the core, allowing for the quantification of capillary heterogeneity at the sub-core scale. This set of data is further exploited to investigate scaling laws that are based on the concept of similar media and that are used to describe the spatial variation of rock hydraulic properties. In particular, a set of scaling factors is obtained that relates the capillary pressure curve in each voxel to a representative mean, thus simplifying considerably the statistical description of capillary heterogeneity. Additionally, this proves the suitability of scaling laws such as the Leverett J Function to be applied at the sub-core scale, thus allowing the derivation of sub-core scale permeability distributions by combination with independent measurement of the corresponding porosity distribution.

  18. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  19. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  20. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  1. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  2. Measurement and Estimation of Organic-Liquid/Water Interfacial Areas for Several Natural Porous Media

    SciTech Connect

    Brusseau, M.L.; Narter, M.; Schnaar, G.; Marble, J.

    2009-06-01

    The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (A{sub f}) and maximum specific interfacial area (A{sub m}) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications.

  3. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  4. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  5. Pore Scale Simulations of Rock Deformation, Fracture, and Fluid Flow in Three Dimensions

    SciTech Connect

    Wang, Herbert F.

    2005-04-01

    The pore-scale examination of rock deformation and fluid flow consisted of three separate tasks. (1) New laboratory measurements were made of poroelastic properties of Berea sandstone and a new method was developed to measure both the poroelastic constants and the hydraulic conductivity on the same sample of rock in a single test. (2) The second task was to develop constitutive theories of elastic and poroelastic properties of dual-porosity rocks and rocks with cracks. The new constitutive relations explain wave-velocity dispersion in fluid-saturated rock and the stiffening of shear modulus when dry rock is saturated. (3) The third task involved pore-scale percolation modeling of two-phase fluid flow in granular media. The model properly simulates fractal geometries of nonwetting clusters and saturations for flow in unstable gradients. The percolation model was coupled with a water-vapor diffusion model to produce saturation maps in a rock core during evaporative drying. The realistic patchy saturation was used in a heuristic model for predicting elastic properties of partially-saturated rock, which mimicked laboratory results.

  6. An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Azeem, Tahir; Chun, Wang Yan; MonaLisa; Khalid, Perveiz; Xue Qing, Liu; Ehsan, Muhammad Irfan; Jawad Munawar, Muhammad; Wei, Xie

    2017-03-01

    The sand intervals of the Lower Goru Formation of the Cretaceous age, widely distributed in the Middle and Lower Indus Basin of Pakistan, are proven reservoirs. However, in the Sawan gas field of the Middle Indus Basin, these sandstone intervals are very deep and extremely heterogeneous in character, which makes it difficult to discriminate lithologies and fluid saturation. Based on petrophysical analysis and rock physics modeling, an integrated approach is adopted to discriminate between lithologies and fluid saturation in the above-mentioned sand intervals. The seismic velocities are modeled using the Xu–White clay–sand mixing rock physics model. The calibrated rock physics model shows good consistency between measured and modeled velocities. The correlation between measured and modeled P and S wave velocities is 92.76% and 84.99%, respectively. This calibrated model has been successfully used to estimate other elastic parameters, even in those wells where both shear and sonic logs were missing. These estimated elastic parameters were cross-plotted to discriminate between the lithology and fluid content in the target zone. Cross plots clearly separate the shale, shaly sand, and gas-bearing sand clusters, which was not possible through conventional petrophysical analysis. These data clusters have been exported to the corresponding well for the purpose of interpolation between wells and to analyze the lateral and vertical variations in lithology and fluid content in the reservoir zone.

  7. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  8. Rock Pore Structure as Main Reason of Rock Deterioration

    NASA Astrophysics Data System (ADS)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  9. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS

    SciTech Connect

    Y.S. Wu; W. Zhang; L. Pan; J. Hinds; G. Bodvarsson

    2000-10-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow.

  10. Micromechanics of Seismic Wave Propagation in Granular Rocks

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt Toshimi

    1992-09-01

    This thesis investigates the details of seismic wave propagation in granular rocks by examining the micromechanical processes which take place at the grain level. Grain contacts are identified as the primary sites of attenuation in dry and fluid-saturated rocks. In many sedimentary rocks such as sandstones and limestones, the process of diagenesis leaves the grains only partially cemented together. When viewed at the micron scale, grain contacts are non-welded interfaces similar in nature to large scale joints and faults. Using a lumped properties approximation, the macroscopic properties of partially cemented grain contacts are modeled using a displacement-discontinuity boundary condition. This model is used to estimate the magnitude and the frequency dependence of the grain contact scattering attenuation for an idealized grain packing geometry. Ultrasonic P- and S-wave group velocity and attenuation measurements on sintered glass beads, alundum, and Berea sandstones were performed to determine the effects of stress, frequency, and pore fluid properties in granular materials with sintered and partially sintered grain contacts. P - and S-wave attenuation displayed the same overall trends for tests with n-decane, water, silicone oil, and glycerol. The magnitudes of the attenuation coefficients were, in general, higher for S-waves. The experimental measurements reveal that viscosity-dependent attenuation dominates in material with sintered grain contacts. Viscosity-dependent attenuation is also observed in Berea sandstone but only at hydrostatic stresses in excess of 15 MPa where the grain contacts are highly stiffened. Fluid surface chemistry-related attenuation was observed in Berea sandstone loaded uniaxially. These measurements suggest that attenuation in fluid-saturated rocks with partially cemented grain contacts is dependent on both the fluid properties and the state of stress at the grain contacts. A numerical method for simulating seismic wave propagation in

  11. Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown

    NASA Astrophysics Data System (ADS)

    De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2017-02-01

    In the present study, we use direct numerical simulations to examine the role of non-isotropic permeability on solutal convection in a fluid-saturated porous medium. The dense solute injected from the top boundary is driven downwards by gravity and follows a complex time-dependent dynamics. The process of solute dissolution, which is initially controlled by diffusion, becomes dominated by convection as soon as fingers appear, grow, and interact. The dense solute finally reaches the bottom boundary where, due to the prescribed impermeable boundary, it starts filling the domain so to enter the shutdown stage. We present the entire transient dynamics for large Rayleigh-Darcy numbers, Ra, and non-isotropic permeability. We also try to provide suitable and reliable models to parametrize it. With the conceptual setup presented here, we aim at mimicking the process of liquid CO2 sequestration into geological reservoirs.

  12. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  13. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  14. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  15. Freeze fracturing of elastic porous media: a mathematical model

    PubMed Central

    Vlahou, I.; Worster, M. G.

    2015-01-01

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective ‘frozen’ permeability. PMID:25792954

  16. Method and apparatus for determining two-phase flow in rock fracture

    DOEpatents

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  17. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Non-Fickian mass transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Fomin, Sergei A.; Chugunov, Vladimir A.; Hashida, Toshiyuki

    2011-02-01

    The paper provides an introduction to fundamental concepts of mathematical modeling of mass transport in fractured porous heterogeneous rocks. Keeping aside many important factors that can affect mass transport in subsurface, our main concern is the multi-scale character of the rock formation, which is constituted by porous domains dissected by the network of fractures. Taking into account the well-documented fact that porous rocks can be considered as a fractal medium and assuming that sizes of pores vary significantly (i.e. have different characteristic scales), the fractional-order differential equations that model the anomalous diffusive mass transport in such type of domains are derived and justified analytically. Analytical solutions of some particular problems of anomalous diffusion in the fractal media of various geometries are obtained. Extending this approach to more complex situation when diffusion is accompanied by advection, solute transport in a fractured porous medium is modeled by the advection-dispersion equation with fractional time derivative. In the case of confined fractured porous aquifer, accounting for anomalous non-Fickian diffusion in the surrounding rock mass, the adopted approach leads to introduction of an additional fractional time derivative in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties can be readily modeled and analyzed.

  19. Instability of fluid flow over saturated porous medium

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry

    2013-04-01

    We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold

  20. 'Wopmay' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by NASA's Mars Exploration Rover Opportunity shows an unusual, lumpy rock informally named 'Wopmay' on the lower slopes of 'Endurance Crater.' The rock was named after the Canadian bush pilot Wilfrid Reid 'Wop' May. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe the lumps in Wopmay may be related to cracking and alteration processes, possibly caused by exposure to water. The area between intersecting sets of cracks eroded in a way that created the lumpy appearance. Rover team members plan to drive Opportunity over to Wopmay for a closer look in coming sols. This image was taken by the rover's panoramic camera on sol 248 (Oct. 4, 2004), using its 750-, 530- and 480-nanometer filters.

  1. Evidence of Ancient Blisters in Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the panoramic camera on the Mars Exploration Rover Spirit shows scoriaceous rocks (rocks containing holes or cavities) on the ground, as well as a transition from rocky terrain (foreground) to smoother terrain (background). Spirit is heading toward the smoother terrain on its way to the 'Columbia Hills.' The holes in some of the rocks may have resulted from 'blisters' formed by water vapor as it escaped lava. This indicates that the rocks were chilled atop an ancient lava flow. Porous rocks such as these, now appearing in abundance, have not been seen since early in the mission. Scientists believe they may have been covered by crater ejecta. This image was taken on sol 110 (April 24, 2004) at a region dubbed 'site 35.'

  2. Oscillation-induced displacement patterns in a two-dimensional porous medium: A lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Knudsen, Henning Arendt; Flekkøy, Eirik G.; Måløy, Knut Jørgen

    2010-08-01

    We present a numerical study of the statistical behavior of a two-phase flow in a two-dimensional porous medium subjected to an oscillatory acceleration transverse to the overall direction of flow. A viscous nonwetting fluid is injected into a porous medium filled with a more viscous wetting fluid. During the whole process sinusoidal oscillations of constant amplitude and frequency accelerates the porous medium sideways, perpendicular to the overall direction of flow. The invasion process displays a transient behavior where the saturation of the defending fluid decreases, before it enters a state of irreducible wetting fluid saturation, where there is no net transport of defending fluid toward the outlet of the system. In this state the distribution of sizes of the remaining clusters are observed to obey a power law with an exponential cutoff. The cutoff cluster size is found to be determined by the flow and oscillatory stimulation parameters. This cutoff size is also shown to be directly related to the extracted amount of defending fluid. Specifically, the results show that the oscillatory acceleration of the system leads to potentially a large increase in extracted wetting fluid.

  3. Streaming potential in porous media: 1. Theory of the zeta potential

    NASA Astrophysics Data System (ADS)

    Revil, A.; Pezard, P. A.; Glover, P. W. J.

    1999-09-01

    Electrokinetic phenomena are responsible for several electrical properties of fluid-saturated porous materials. Geophysical applications of these phenomena could include the use of streaming potentials for mapping subsurface fluid flow, the study of hydrothermal activity of geothermal areas, and in the context of earthquake prediction and volcanic activity forecasting, for example. The key parameter of electrokinetic phenomena is the ξ potential, which represents roughly the electrical potential at the mineral/water interface. We consider silica-dominated porous materials filled with a binary symmetric 1:1 electrolyte such as NaCl. When in contact with this electrolyte, the silica/water interface gets an excess of charge through chemical reactions. Starting with these chemical reactions, we derive analytical equations for the ξ potential and the specific surface conductance. These equations can be used to predict the variations of these parameters with the pore fluid salinity, temperature, and pH (within a /pH range of 6-8). The input parameters to these equations fall into two categories: (1) mineral/fluid interaction geochemistry (including mineral surface site density and surface equilibrium constants of mineral/fluid reactions), and (2) pore fluid /pH, salinity, and temperature. The ξ potential is shown to increase with increasing temperature and pH and to decrease with increasing salinity. The proposed model is in agreement with available experimental data. The application of this model to electric potentials generated in porous media by fluid flow is explored in the companion paper.

  4. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has…

  5. Is biodegradable waste a porous environment? A review.

    PubMed

    Agostini, Francesco; Sundberg, Cecilia; Navia, Rodrigo

    2012-10-01

    This article presents a review of the porous physical characteristics, phenomena and simulation models so far investigated and applied in the management of biodegradable wastes (BW), summarising the main properties of porous media and the dynamics of fluids within its voids. The aim is to highlight how the description of biodegradable wastes as porous media and the use of porous media models can facilitate the development of new sustainable and affordable technologies for BW recycling. However, it is pointed out how the lack of physical experimental data and of tailored modelling tools has so far hampered the use of this approach. Therefore, it is suggested that a simpler way to design and implement modelling tools simulating BW treatment technologies is by modifying available models designed originally for other porous media, such as soil and rock.

  6. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  7. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  8. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  9. Porous Shape Memory Polymers.

    PubMed

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C; Wilson, Thomas S; Maitland, Duncan J

    2013-02-04

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use.

  10. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  11. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  12. Delineation of wellhead protection areas in fractured rocks

    SciTech Connect

    Bradbu, K.R.; Muldoon, M.A.; Zaporozec, A.; Levy, J.

    1991-06-01

    In 1989, the Wisconsin Geological and Natural History Survey prepared the report under an agreement with the Environmental Protection Agency to evaluate methods for wellhead protection area (WHPA) delineation in unconfined fractured-rock aquifers. Two fractured-rock settings were selected for the study: Precambrian crystalline rocks in central Wisconsin and Silurian dolomite in northeastern Wisconsin. The methods tested ranged from simple approaches to complex computer models. Four WHPA delineation approaches are suggested for unconfined fractured-rock aquifers that do not behave as porous media.

  13. Determining Pore Pressures Along a Slip Surface Within a Saturated Elastic-Plastic Porous Medium

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Rice, J. R.; Dunham, E. M.

    2008-12-01

    Here we consider shear rupture along a slip surface in a fluid-saturated elastic-plastic porous medium, like in landslide and earthquake modeling, and assume that there are different poro-elasto-plastic response properties on the two sides of the slip surface. This different response may be because the fault bordering materials are dissimilar, or just because one side is actively yielding and the other is not, or is yielding but in a different mode. In effect, we are representing a core about a slip surface that divides two similar or contrasting materials. This representation is especially relevant in earthquake rupture dynamics. Studies of mature fault zones have noted a trend of fractured host rock extending 10--100m from the fault, with an ultracataclastic core ~100mm about or to one side of the principal slip surface (e.g., Chester and Chester, Tectonophys, 1998; Chester et al., Columbia Univ Pr, 2004). Furthermore, there is likely to exist a material contrast that may come from accumulating km of slip and a bias in accumulated damage. The local pore pressure at the slip surface influences the rupture dynamics because, through the effective stress concept, it controls the local shear strength along the fault, a feature neglected as a simplification in our preliminary poro-elasto-plastic modeling of dynamic rupture (Viesca et al., JGR, 2008). To determine pore pressures at the slip surface under locally elastic-plastic response, we must consider pore pressure discontinuities about that surface that arise in an undrained treatment of off-fault material and their amelioration within resulting thin diffusive boundary layers, such that pore pressure and fluid mass flux in the normal direction are continuous at the slip surface. Our approach builds on previous work considering the effect of contrasts in poroelastic properties on rupture propagation (Rudnicki and Rice, JGR, 2006; Dunham and Rice, JGR, 2008). Here we find expressions for the undrained pore pressure

  14. Evidence for correlation of ultrasonic attenuation and fluid permeability in very low porosity water-saturated rocks

    SciTech Connect

    Berryman, J.G.; Bonner, B.P.; Chin, R.C.Y.

    1983-07-01

    The measured amplitude A of ultrasonic pulses in intact and fractured samples of water-saturated gabbro and granite is observed to decrease as the permeability kappa increases according to the proportionality Aproportionalkappa/sup -1/2/. This relation is predicted by Biot's theory of elastic waves in fluid-saturated porous media and, therefore, suggests that Biot's attenuation mechanism may play a significant role in low porosity materials at ultrasonic frequencies. The evidence is not conclusive. The limited data set studied here is also consistent with correlations of the form Aproportionalkappa/sup -Epsilon/ where 0.2

  15. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. A new understanding of fluid-rock deformation

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Cracks in the pavement show that rock is weak to shear stress. Consequently we have a conundrum. How does in situ rock accumulate the enormous shear-stress energy necessary for release by a large magnitude earthquake without fracturing in smaller earthquakes? For example: observations of changes in seismic shear-wave splitting (SWS) were observed in Iceland before the 2004 Mw9.2 Sumatra-Andaman Earthquake (SAE) at a distance of ~10,500km (the width of the Eurasian Plate) from Indonesia. Observations of SWS monitor microcrack geometry, and the changes in SWS in Iceland indicated that stress-changes before the Sumatra earthquake modified microcrack geometry the width of Eurasia from Indonesia. What is the mechanism for such widespread accumulation of necessarily weak stress? We show that stress is stored in in situ rock by the stress-controlled geometry of the fluid-saturated stress-aligned microcrack. Microcrack aspect-ratios are aligned by fluid flow or dispersion along pressure-gradients between neighbouring microcracks at different orientations to the stress-field by a mechanism known as Anisotropic Poro-Elasticity or APE. Since the minimum stress is typically horizontal, the microcracks are typically vertically-oriented parallel to the maximum horizontal stress as is confirmed by observations of SWS. Such azimuthally varying shear-wave splitting (SWS) is observed in situ rocks in the upper crust, lower crust, and uppermost ~400km of the mantle. (The 'microcracks' in the mantle are intergranular films of hydrolysed melt.) SWS shows that the microcracks are so closely spaced that they verge on fracturing/earthquakes. Phenomena verging on failure are critical-systems with 'butterfly wings' sensitivity. Critical-systems are very common and it must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena is a critical-system. Monitoring SWS above small earthquakes allows stress-accumulation before earthquakes to be recognised and the time

  17. Thermal inertia and reversing buoyancy in flow in porous media

    NASA Astrophysics Data System (ADS)

    Menand, Thierry; Raw, Alan; Woods, Andrew W.

    2003-03-01

    The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.

  18. Displacement propagators of brine flowing within different types of sedimentary rock.

    PubMed

    Verganelakis, Dimitris A; Crawshaw, John; Johns, Michael L; Mantle, Michael D; Scheven, Ulrich; Sederman, Andrew J; Gladden, Lynn F

    2005-02-01

    This paper explores the correlation between different microstructural characteristics of porous sedimentary rocks and the flow properties of a Newtonian infiltrating fluid. Preliminary results of displacement propagator measurements of brine solution flowing through two types of sedimentary rock cores are reported. The two types of rocks, Bentheimer and Portland, are characterized by different porosities, pore-size distributions and permeabilities. Propagators have been measured for brine flow rates of 1 and 5 ml/min. Significant differences are seen between the propagators recorded for the two rocks, and these are related to the spatial distribution of porosity within these porous media.

  19. Percolation and Physical Properties of Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2015-12-01

    Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.

  20. Rock mechanics. Second edition

    SciTech Connect

    Jumikis, A.R.

    1983-01-01

    Rock Mechanics, 2nd Edition deals with rock as an engineering construction material-a material with which, upon which, and within which civil engineers build structures. It thus pertains to hydraulic structures engineering; to highway, railway, canal, foundation, and tunnel engineering; and to all kinds of rock earthworks and to substructures in rock. Major changes in this new edition include: rock classification, rock types and description, rock testing equipment, rock properties, stability effects of discontinuity and gouge, grouting, gunite and shotcrete, and Lugeon's water test. This new edition also covers rock bolting and prestressing, pressure-grouted soil anchors, and rock slope stabilization.

  1. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  2. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    SciTech Connect

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-02-07

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.

  3. Radiation effect on natural convection over a vertical cylinder embedded in porous media

    SciTech Connect

    Yih, K.A.

    1999-02-01

    Study of buoyancy-induced convection flow and heat transfer in a fluid-saturated porous medium has recently attracted considerable interest because of a number of important energy-related engineering and geophysical applications such as thermal insulation of buildings, geothermal engineering, enhanced recovery of petroleum resources, filtration processes, ground water pollution and sensible heat storage beds. In this paper numerical solutions are presented for the effect of radiation on natural convection about an isothermal vertical cylinder embedded in a saturated porous medium. These partial differential equations are transformed into the nonsimilar boundary layer equations which are solved by an implicit finite-difference method (Keller box method). Numerical results for the dimensionless temperature profiles and the local Nusselt number are presented for the transverse curvature parameter {xi}, conduction-radiation parameter R{sub d} and surface temperature excess ratio H. In general, the local Nusselt number increases as the transverse curvature parameter {xi} increases. Furthermore, decreasing the conduction-radiation parameter R{sub d} and increasing surface temperature excess ratio H augments the local heat transfer rate.

  4. Poroelastic measurement schemes resulting in complete data sets for granular and other anisotropic porous media

    SciTech Connect

    Berryman, J.G.

    2009-11-20

    Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.

  5. Porous organic molecules

    NASA Astrophysics Data System (ADS)

    Holst, James R.; Trewin, Abbie; Cooper, Andrew I.

    2010-11-01

    Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.

  6. Analytical models for C-14 transport in a partially saturated, fractured, porous media

    SciTech Connect

    Light, W.B.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.-L.

    1989-02-01

    Interaction between fractures and rock matrix is considered in developing a criterion for treating fractured rock as a porous medium for the purpose of transport calculations. The value of a modified Peclet number determines the suitability of the equivalent porous medium approach. Using a porous medium mode, underground concentrations of {sup 14}CO{sub 2} are predicted for the proposed nuclear waste repository at Yucca Mountain, Nevada. Maximum concentrations near the ground surface are comparable to the USNRC limit for unrestricted areas; travel times are predicted to be hundreds to thousands of years for the assumed parameter values. 8 refs., 7 figs.

  7. Bacteria transport through porous material: Final technical report

    SciTech Connect

    Yen, T.F.

    1989-02-13

    The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in surface charge characterization of reservoir rock as a composite oxide system was also accomplished. In the last section of this report a mathematical model to simulate the simultaneous diffusion and growth of bacteria cells in a nutrient-enriched porous media is proposed.

  8. Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks

    NASA Astrophysics Data System (ADS)

    Pini, R.; Krevor, S. C.; Benson, S. M.

    2011-12-01

    sandstones rock cores with different lithology and grain sorting. Experiments are carried out at 25 and 50C and at 9 MPa pore pressure, while keeping the confining pressure on the core at 12 MPa. The effect of temperature on the capillary pressure is consistent with observed changes in fluid properties, such as the interfacial tension. Moreover, data are compared to MICP results, thus allowing to gain additional insights with respect to the wetting and interfacial properties of the CO2/water system. During a core-flooding experiment, X-ray Computed Tomography (CT) scanning allows for precise imaging of fluid saturations at a resolution of about 1mm3. It is shown that a distribution of capillary pressure curves can be associated to the observed distribution of CO2 saturation within the core, allowing for the quantification of heterogeneity at the sub-core scale.

  9. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-06

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas.

  10. High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth

    USGS Publications Warehouse

    Halley, Robert B.; Schmoker, James W.

    1983-01-01

    Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.

  11. Thermal conductivity of carbonate rocks

    USGS Publications Warehouse

    Thomas, J.; Frost, R.R.; Harvey, R.D.

    1973-01-01

    The thermal conductivities of several well-defined carbonate rocks were determined near 40??C. Values range from 1.2 W m-1 C-1 for a highly porous chalk to 5.1 W m-1 C-1 for a dolomite. The thermal conductivity of magnesite (5.0) is at the high end of the range, and that for Iceland Spar Calcite (3.2) is near the middle. The values for limestones decrease linearly with increasing porosity. Dolomites of comparable porosity have greater thermal conductivities than limestones. Water-sorbed samples have expected greater thermal conductivities than air-saturated (dry) samples of the same rock. An anomalously large increase in the thermal conductivity of a water-sorbed clayey dolomite over that of the same sample when dry is attributed to the clay fraction, which swells during water inhibition, causing more solid-to-solid contacts within the dolomite framework. Measurements were made with a Colora Thermoconductometer. Chemical and mineralogical analyses were made and tabulated. Porosity of the rocks was determined by mercury porosimetry and also from density measurements. The Iceland Spar Calcite and magnesite were included for reference. ?? 1973.

  12. X-ray scattering by porous silicon modulated structures

    SciTech Connect

    Lomov, A. A.; Punegov, V. I.; Karavanskii, V. A.; Vasil'ev, A. L.

    2012-03-15

    A multilayered porous structure formed as a result of the anodization of a Si(111)(Sb) substrate in an HF:C{sub 2}H{sub 5}OH (1: 2) solution with a periodically alternating current has been investigated by high-resolution X-ray diffraction. It is established that, despite 50% porosity, a thickness of 30 {mu}m, and significant strain (4 Multiplication-Sign 10{sup -3)}, the porous silicon structure consists mainly of coherent crystallites. A model of coherent scattering from a multilayered periodic porous structure is proposed within the dynamic theory of diffraction. It is shown that the presence of gradient strains of 5 Multiplication-Sign 10{sup -4} or higher leads to phase loss upon scattering from porous superlattices and the suppression of characteristic satellites in rocking curves.

  13. Mass transfer controlled by fracturing in micritic carbonate rocks

    NASA Astrophysics Data System (ADS)

    Richard, James; Coulon, Michel; Gaviglio, Patrick

    2002-05-01

    The fractured Coniacian chalk from the Omey area (Paris Basin, France) displays strong evidence of modifications controlled by brittle deformation. Fracturing is associated with important changes in pore space (decrease in total porosity and pore interconnection, change in distribution of pore access diameters and capillary characteristics), nannofacies (gradual evolution from a point-contact fabric to a welded, interlocked or coalescent fabric) and chemical composition (Sr concentration decrease). These modifications result from fluid-rock interaction that control significant mass transfer (percentage of secondary calcite >50%). Sr is a remarkable indicator of these mass transfers. Sr analyses allowed us to prove that the deformed zone (26.7 m) is wider than the fractured zone (11.3 m). They also indicate that the footwall block is less affected than the hanging wall block. A physicochemical model of the deformation mechanism is proposed. It shows that a cyclic process of fracturing controls the temporal evolution of the fluid saturation and fluid pressure and, consequently, the mass transfer.

  14. S-wave velocity self-adaptive prediction based on a variable dry rock frame equivalent model

    NASA Astrophysics Data System (ADS)

    Feng-Ying, Yang; Xing-Yao, Yin; Bo, Liu

    2014-08-01

    Seismic velocities are important reservoir parameters in seismic exploration. The Gassmann theory has been widely used to predict velocities of fluid-saturated isotropic reservoirs at low frequency. According to Gassmann theory, dry rock frame moduli are essential input parameters for estimating reservoir velocities. A variable dry rock frame equivalent model called VDEM based on the differential effective medium (DEM) theory is constructed in this paper to obtain the dry rock frame moduli. We decouple the DEM equations by introducing variable parameters, then simplify these decoupled equations to get the equivalent dry rock fame model. The predicted dry rock frame moduli by the VDEM are in good agreement with the laboratory data. The VDEM is also utilized to predict S-wave velocity combined with Gassmann theory. A self-adaptive inversion method is applied to fit the variable parameters with the constraint of P-wave velocity from well logging data. The S-wave velocity is estimated from these inversed parameters. A comparison between the self-adaptive method and the Xu-White model on S-wave velocity estimation is made. The results corroborate that the self-adaptive method is flexible and effective for S-wave velocity prediction.

  15. Hierarchical Porous Structures

    SciTech Connect

    Grote, Christopher John

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  16. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  17. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  18. Lunar Rocks

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  19. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  20. Uncertainty quantification for porous media flows

    SciTech Connect

    Christie, Mike . E-mail: mike.christie@pet.hw.ac.uk; Demyanov, Vasily; Erbas, Demet

    2006-09-01

    Uncertainty quantification is an increasingly important aspect of many areas of computational science, where the challenge is to make reliable predictions about the performance of complex physical systems in the absence of complete or reliable data. Predicting flows of oil and water through oil reservoirs is an example of a complex system where accuracy in prediction is needed primarily for financial reasons. Simulation of fluid flow in oil reservoirs is usually carried out using large commercially written finite difference simulators solving conservation equations describing the multi-phase flow through the porous reservoir rocks. This paper examines a Bayesian Framework for uncertainty quantification in porous media flows that uses a stochastic sampling algorithm to generate models that match observed data. Machine learning algorithms are used to speed up the identification of regions in parameter space where good matches to observed data can be found.

  1. A Rock Physics Based Seismic Interpretation for a Deltaic Shaly Sand Reservoir from Surface Seismic and Wireline Log Data

    NASA Astrophysics Data System (ADS)

    Morshed, S. M.; Ullah, A. S.; Jahan, I.; Rahman, M. M.

    2013-12-01

    We present an integrated quantitative seismic interpretation method based on conventional wireline log data and 2D surface seismic data for a deltaic shaly sand reservoir where frequent shaling out of the sand-shale laminated sequence resulted in dry holes in some previous drilling cases. Nineteen 2D post-stack seismic sections tied with seven well controls from the Rashidpur gas field of Bangladesh were used in this study. The study comprises petrophysical analysis from the conventional geophysical well logs (i.e. gamma ray, density, neutron and resistivity logs) to quantitative seismic interpretation using sonic log and 2D seismic data. The petrophysical analysis contributed sand/shale ratio, porosity and fluid saturation at a well location. A major portion of the work was focused on a rock physics analysis for linking interpreted petrophysical data with sonic observations. A set of seismic velocity profiles were established using varied P-wave velocities obtained from Hashin-Strikman-Walpole data fitting method for varying reservoir parameters such as porosity, clay content, pore fluid and fluid saturation. We found that each of the reservoir parameters has a strong control on elastic properties (i.e. seismic velocities) of the rock, for example a 10 percent increase in porosity causes an 8% drop of P-wave velocity. Seismic amplitudes on 19 seismic sections were picked aided by the synthetic seismograms generated from the established velocity profiles. The resulting isopach, sand/shale ratio, porosity and fluid saturation map shows improved scenarios of reservoir structure and stratigraphy as well as better reservoir characterization. P-wave velocities (Vp) are plotted as a function of porosities. The observed sonic data are color coded by clay content values. The Hashin-Strikman-Walpole upper and lower bounding lines are plotted for a two phase composite of matrix and fluid (brine).The matrix phase contains 60,70, 80 and 90 percents of quartz with clay mixture

  2. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    PubMed

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  3. Characterization of rock for constraining reservoir scale tomography at the Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.; Bonner, B.P.

    1994-01-20

    A suite of laboratory measurements are being conducted on Geysers graywacke recovered from a drilled depth of 2599 meters in NEGU-17. The tests are being conducted to characterize the effect of pressure and fluid saturation on the seismic properties of the graywacke matrix. The measurements indicate that the graywacke is an unusual rock in many respects. Both compressional and shear velocities exhibit relatively little change with pressure. Water saturation causes a slight increase in the compressional velocity, quantitatively consistent with predictions from the Biot-Gassmann equations. Shear velocity decreases with water saturation by an amount greater than that predicted by the Biot-Gassmann equations. This decrease is attributed to chemomechanical weakening caused by the presence of water. Measurements of Q, from torsion experiments on room dry samples at seismic frequencies indicate unusually high Q, (~500). Water saturation decreases the shear modulus by 12 percent, again indicative of chemomechanical weakening. Q, is lower for the water saturated condition, but still relatively high for rock at low stress. Results of ultrasonic pulse propagation experiments on partially saturated samples are typical of low porosity rocks, being characterized by a monotonic decrease in compressional and shear velocity with decrease in saturation. An increase in shear velocity and low frequency shear modulus after vacuum drying indicates the presence of chemo-mechanical weakening resulting from the presence of small amounts of water.

  4. Barometric pumping of a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Varloteaux, Clément; Mourzenko, Valeri; François Thovert, Jean; Guillon, Sophie; Pili, Eric

    2014-05-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous and fractured media. This mechanism, known as barometric (or atmospheric) pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in many environmental and engineering fields, such as transport of trace gases from soil to atmosphere, environmental remediation of contaminated sites, radon in buildings and last but not least detection of nuclear explosions or leakage from carbon sequestration sites. The physical situation has been addressed in the following way. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a porous medium with a given permeability. The fluid is slightly compressible and is assumed to obey Darcy's law in the fractures and the porous medium with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges between them. The fractures and the porous medium located in between them are meshed by triangles and tetrahedra. The equations are discretized by the finite volume method. In order to improve numerical precision, a Flux Limiting Scheme is applied to the transport equations ; moreover, special care is devoted to the description of the solute transfer between the fractures and the porous medium. The resulting equations are solved by conjugate gradient algorithms. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The fractures are hexagons with a radius of 5m; their density is larger than 2.4 10-3 m-3; the aperture is of the order of 0.5 mm. The pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week. The solute concentration is supposed to be equal to 1 at the bottom of the site. Systematic results will be presented. First, the precision of the calculations is assessed

  5. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  6. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  7. X-ray microtomography application in pore space reservoir rock.

    PubMed

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies.

  8. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  9. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-03-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, i.e. lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro and macro-cracks.

  10. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  11. Accelerated Weathering of Rocks.

    DTIC Science & Technology

    1977-08-01

    Dry tests en polished specimens with alternating heating and co- oling actions; ii) Wet tests in destilled water, with alternating...Rock-type Dry tests KxlO2 Wet tests KxlO2 Sound rock SR 3.64 8.31 Medium altered rock MAR 4.96 31.58 Very altered rock VAR 8.89 116.20 TABLE X...Sound rock SR Medium altered rock Very altered rock" KAR VAR ’ Reflectivity R (%) dry test wet test dry test wet test dry test wet

  12. Solidus of carbonated fertile peridotite under fluid-saturated conditions

    SciTech Connect

    Falloon, T.J.; Green, D.H. )

    1990-03-01

    The solidus for a fertile peridotite composition (Hawaiian pyrolite) in the presence of a CO{sub 2}-H{sub 2}O fluid phase has been determined from 10 to 35 kbar. The intersection of the decarbonation reaction (olivine + diopside + CO{sub 2} {l reversible} orthopyroxene + dolomite) with the pyrolite solidus defines the point Q{prime}, located at 22 kbar and 940 C. At pressures less than Q{prime}, the solidus passes through a temperature maximum at kbar, 1060 C. The solidus is coincident with amphibole breakdown at pressures less than 16 kbar. At pressures above Q{prime}, the solidus is defined by the dissolution of crystalline carbonate into a sodic, dolomitic carbonatite melt. The solidus is at a temperature of 925 C at {approximately} 28 kbar. The solidus temperature above the point Q{prime} is similar to the solidus determined for Hawaiian pyrolite-H{sub 2}O-CO{sub 2} for small contents of H{sub 2}O (<0.3 wt%) and CO{sub 2} (<5 wt%), thus indicating that the primary sodic dolomitic carbonatite melt at both solidi has a very low and limited H{sub 2}O solubility. The new data clarify the roles of carbonatite melt, carbonated silicate melt, and H{sub 2}O-rich fluid in mantle conditions that are relatively oxidized (f{sub O{sub 2}} {approximately} MW to FMQ). In particular, a carbonatite melt + garnet lherzolite region is intersected by continental shield geothermal gradients, but such geotherms only intersect regions with carbonated silicate melt if perturbed to higher temperatures (kinked geotherm).

  13. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOEpatents

    Berryman, James G.

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  14. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  15. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  16. Three-phase flow in porous media: A review of experimental studies on relative permeability

    NASA Astrophysics Data System (ADS)

    Alizadeh, A. H.; Piri, M.

    2014-09-01

    We present a detailed, synthesized review of experimental studies on three-phase relative permeability published since 1980. We provide comprehensive, yet highly focused, analysis of critical aspects of the field and their evolution over the last three decades. In particular, we review the effects of saturation history, wettability, spreading, and layer drainage on the measured flow properties. We also list all the processes, rock types, fluid systems, and measurement techniques in order to provide a clear map for future studies. Behavior of the measured three-phase relative permeabilities with respect to fluid saturations, saturation histories, wettability of rock samples, spreading characteristics, interfacial tensions, and other pertinent properties are carefully discussed. Studies that use a diverse set of experimental techniques and data analysis to deduce relative permeability are included. The experimental techniques that should be utilized to reduce uncertainty are also explored. We interpret the measured properties and outcomes of different studies and compare them to substantiate distinct trends at various saturation ranges and provide ideas for new studies. This is intended to distill a clear image of where the field stands and to allow composition of possible paths for future investigations. The areas of critical relevance that have not been investigated or require further studies are highlighted.

  17. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  18. Pore-scale petrophysical models for the simulation and combined interpretation of nuclear magnetic resonance and wide-band electromagnetic measurements of saturated rocks

    NASA Astrophysics Data System (ADS)

    Toumelin, Emmanuel

    The interpretation of well logs in terms of hydraulic permeability, irreducible and free fluid saturations, hydrocarbon grades, and wettability is currently approached with oversimplified models of electrical resistivity and nuclear magnetic resonance (NMR). Inconsistent interpretations arise in the presence of clay, complex rock morphologies, and mixed wettabilities. Wide-band electromagnetic (WBEM) measurements in the kHz-GHz range are sensitive to all these petrophysical attributes but cannot be interpreted in an independent fashion. New interpretation methods are necessary that can effectively combine the resolving capabilities of NMR and WBEM measurements performed under complex petrophysical conditions. This dissertation develops numerical models to simulate NMR and WBEM measurements in saturated rocks using explicit pore-scale spatial distributions of grains and saturating fluids. The purpose of such models is three-fold: (1) to describe the fundamental properties of NMR and electromagnetic measurements using pore-scale physics; (2) to benchmark the accuracy and reliability of standard macroscopic models used for the interpretation of NMR and WBEM measurements; and (3) to show the complementary nature of NMR and WBEM measurements for the petrophysical evaluation of complex petrophysical conditions. Two geometrical models are developed to simulate electrical conductivity, NMR, and WBEM measurements in saturated rocks. The first model consists of continuous 3-dimensional dense packs of grains. Immiscible fluids are distributed in the ensuing pore-space with adherence to capillary and saturation history. Random walkers diffusing throughout these pore geometries accurately reproduce DC conductivity and NMR magnetization decay as functions of porosity, rock morphology, saturation history, fluid types, wettability, rock surface relaxation, and NMR pulse sequences. The second model is constructed with 2-dimensional digital pore maps, where pixels are assigned

  19. A dynamic pressure view cell for acoustic stimulation of fluids—Micro-bubble generation and fluid movement in porous media

    NASA Astrophysics Data System (ADS)

    Stewart, Robert A.; Shaw, J. M.

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  20. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    PubMed

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  1. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity

    NASA Astrophysics Data System (ADS)

    Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.

    2017-03-01

    The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.

  2. Anisotropy of permeability in faulted porous sandstones

    NASA Astrophysics Data System (ADS)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.

    2014-06-01

    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  3. Dynamics of clogging in drying porous media

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Mahadevan, L.

    2014-11-01

    Drying in porous media pervades a range of phenomena from brine evaporation arrested in porous bricks, causing efflorescence, i.e. salt aggregation on the surface where vapor leaves the medium, to clogging of reservoir rocks via salt precipitation when carbon dioxide is injected for geological storage. During the process of drying, the permeability and porosity of the medium may change due to the solute accumulation as a function of the particle concentration, in turn affecting the evaporation rate and the dynamics of the fluid flow imposed by it. To examine the dynamics of these coupled quantities, we develop a multiphase model of the particulate flow of a saline suspension in a porous medium, induced by evaporation. We further provide dimensional arguments as to how the salt concentration and the resulting change in permeability determine the transition between efflorescence and salt precipitation in the bulk. This research was supported by the Air Force Office of Scientific Research (AFOSR) under Award FA9550-09-1-0669-DOD35CAP and the Kavli Institute for Bionano Science and Technology at Harvard University.

  4. Geotechnical Descriptions of Rock and Rock Masses.

    DTIC Science & Technology

    1985-04-01

    user of the field log can relate to the general class of rock being described. For example, the rock name " syenite " might be qualified by adding "the...FELDSPAR PRE-S---- Coarne Texture Granite Syenite Qts ononite Honzonite Cabbro Peridotite (Platonic or to Qtx Diorite to Diorite Pyroxenite intrusive

  5. Method of porous diamond deposition on porous silicon

    NASA Astrophysics Data System (ADS)

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.

    2001-12-01

    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  6. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  7. Tracking interface and common curve dynamics for two-fluid flow in porous media

    SciTech Connect

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measures of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.

  8. Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture

    NASA Astrophysics Data System (ADS)

    Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan

    2015-09-01

    This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an

  9. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  10. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  11. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  12. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  13. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  14. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  15. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  16. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  17. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  18. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  19. Barometric Pumping of a Fractured Porous Medium

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mourzenko, V.; Thovert, J. F.; Pili, E.; Guillon, S.

    2014-12-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous fractured media. This mechanism, known as barometric pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in fields, such as transport of trace gases from soil to atmosphere, remediation of contaminated sites, radon in buildings, leakage from carbon sequestration sites and detection of nuclear explosions. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a permeable matrix. The slightly compressible fluid obeys Darcy's law in these two media with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges. The fractures and the porous medium are meshed by triangles and tetrahedra, respectively. The equations are discretized by the finite volume method. A Flux Limiting Scheme diminishes numerical dispersion ; the solute transfer between the fractures and the porous medium is precisely evaluated. The resulting equations are solved by conjugate gradient algorithms. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The fractures are hexagons with a radius of 5m; their density is larger than 2.4 10-3 m-3; the aperture is about 0.5 mm. The pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week. The solute concentration is equal to 1 at the bottom. Systematic results will be presented. First, the precision of the calculations is assessed. Second, the pressure and solute concentration fields are displayed and discussed. Third, the influence of the major parameters (fracture density, aperture, porosity, diffusion coefficient,…) is illustrated and discussed. These results are discussed in terms of the amplification of solute transfer to the ground surface by the pressure fluctuations.

  20. Porous block nanofiber composite filters

    SciTech Connect

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  1. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  2. Predicting the permeability of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, E.M.

    1995-01-01

    Permeability is linked to other properties of porous media such as capillary pressure and relative permeability. In order to understand the relationships, one has to understand how all those properties are conditioned by the connectivity and geometrical properties of the pore space. In this study, we look at a natural porous material which is defined as a two-phase material in which the interconnected pore space constitutes one phase and the solid matrix the other. Laboratory samples are tested using fluid flow experiments to determine the relationship of macroscopic properties such as permeability to rock microstructure. Kozeny-Carman and other equations are developed to further quantify these relationships.

  3. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  4. Analysis of porous silicon

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.

    1985-06-01

    Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.

  5. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  6. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  7. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  8. Experimental and Theoretical Investigation of Multiphase Flow in Fractured Porous media, SUPRI TR-116, Topical Report

    SciTech Connect

    Akin, Serhat; Castanier, Louis M.; German, Edgar Rene Rangel

    1999-08-09

    The fluid transfer parameters between rock matrix and fracture are not well known. Consequently, simulation of fractured reservoirs uses, in general, very crude and unproven hypotheses such as zero capillary pressure in the fracture and/or relative permeability linear with saturation. In order to improve the understanding of flow in fractured media, an experimental study was conducted and numerical simulations of the experiments were made. A laboratory flow apparatus was built to obtain data on water- air imbibition and oil-water drainage displacements in horizontal single-fractured block systems. For this purpose, two configurations have been used: a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. During the experiments, porosity and saturation measurements along the cores have been made utilizing an X-ray Computerized Tomography (CT) scanner. Saturation images were reconstructed in 3-D to observe matrix-fracture interactions. Differences in fluid saturations and relative permeabilities caused by changes in fracture width have also been analyzed.

  9. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  10. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  11. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  12. Fluids in porous media: a morphometric approach

    NASA Astrophysics Data System (ADS)

    Mecke, Klaus; Arns, C. H.

    2005-03-01

    Predicting the relationship between the morphology of porous media and their physical properties, e.g, the conductivity, elasticity and permeability, is a long-standing problem and important to a range of applications from geophysics to materials science. Here, a set of four morphological measures, so-called Minkowski functionals, is defined which allows one to quantitatively characterize the shape of spatial structures, to optimally reconstruct porous media, and to accurately predict material properties. The method is based on integral geometry and Kac's theorem which relates the spectrum of the Laplace operator to the four Minkowski functionals. Analytic expressions for mean values of Minkowski functionals in Boolean models allow the definition of an effective shape of a grain in a system made up of a distribution of arbitrarily shaped constituents. Reconstructing the microstructure using this effective grain shape leads to an excellent match to the percolation thresholds and to the mechanical and transport properties across all phase fractions. Additionally, the use of the effective shape in effective medium formulations leads to good explicit predictions of bulk moduli. The method is verified for several model systems and sedimentary rock samples, demonstrating that a single tomographic image is sufficient to estimate the morphology and physical properties such as permeabilities and elastic moduli for a range of porosities. Also the thermodynamic behaviour of fluids in porous media, i.e., the shape dependence of the grand canonical potential and of surface energies of a fluid bounded by an arbitrarily shaped convex pore, can be calculated in the thermodynamic limit fully from the knowledge of the Minkowski functionals, i.e., of only four morphometric measures. This remarkable result is based on Hadwiger's theorem on the completeness of the additive Minkowski functionals and the assumption that a thermodynamic potential is an 'additive' functional which can be

  13. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  14. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  15. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  16. Capillary Condensation in a Fractal Porous Medium

    SciTech Connect

    Broseta, Daniel; Barre, Loic; Vizika, Olga; Shahidzadeh, Noushine; Guilbaud, Jean-Pierre; Lyonnard, Sandrine

    2001-06-04

    Small-angle x-ray and neutron scattering are used to characterize the surface roughness and porosity of a natural rock which are described over three decades in length scales and over nine decades in scattered intensities by a surface fractal dimension D=2.68{+-}0.03 . When this porous medium is exposed to a vapor of a contrast-matched water, neutron scattering reveals that surface roughness disappears at small scales, where a Porod behavior typical of smooth interfaces is observed instead. Water-sorption measurements confirm that such interface smoothing is due predominantly to the water condensing in the most strongly curved asperities rather than covering the surface with a wetting film of uniform thickness.

  17. Core-flood experiment for transport of reactive fluids in rocks.

    PubMed

    Ott, H; de Kloe, K; van Bakel, M; Vos, F; van Pelt, A; Legerstee, P; Bauer, A; Eide, K; van der Linden, A; Berg, S; Makurat, A

    2012-08-01

    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO(2) and/or H(2)S in geological formations. Potential applications are geological sequestration of CO(2) in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  18. Flow and Fracture in Deformable Porous Media: a Magmatic Perspective

    NASA Astrophysics Data System (ADS)

    Petford, N.

    2012-12-01

    This contribution reviews some recent advances in the flow and fracture of deformable porous media with implications for melt extraction in the lower crust and upper mantle. A long standing issue concerning extraction of partial melt from hot, high pressure regions (that is, most of the earth's solid interior) is the apparent contradiction that fracturing can occur in highly compliant material. I argue that much of the source of conflict surrounding the idea of 'fracture' in ductile/plastic rock is due to lack of clarity of terminology combined with conceptual notions equating fracture as defined in brittle rock through the theory of linear elasticity (a process well understood), with deformation and failure in weakly consolidated rock. So, while the former is based fundamentally on stress singularities and strain energy processes at a propagating fracture tip, continuum models of fracture in granular media struggle to define precisely the discontinuous nature of the physics involved. Thus, for fracture in porous media (and here an equivalence is made with igneous porous media, that is, a silicate melt phase plus skeletal, granular matrix), verbs like parting, dilation and seepage in response to fluid (melt) pressurised translation of a weakly bonded matrix become the equivalent of cracks/veins/fractures in traditional (Griffiths) fracture mechanics. At its simplest, the process of fracturing in both classes of material can be defined by the difference in lengthscale and geometry of dissipated energy around the opening fracture. Treated in this way, controversies about the ability of weak/ductile rock to 'fracture' become instead productive discussions on the relative roles of fluid pressure, flow rates and rheology in promoting localised deformation.

  19. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  20. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  1. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  2. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  3. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  4. 2008 Gordon Research Conference on Rock Deformation

    SciTech Connect

    Hirth, James G.; Gray, Nancy Ryan

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the

  5. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  6. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  7. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  8. Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain

    SciTech Connect

    Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.

    2014-07-15

    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.

  9. Miscible gravitational instability of initially stable horizontal interface in a porous medium: Non-monotonic density profiles

    NASA Astrophysics Data System (ADS)

    Kim, Min Chan

    2014-11-01

    To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.

  10. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  11. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  12. Photoactive porous silicon nanopowder.

    PubMed

    Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J

    2013-04-24

    Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

  13. Tortuosity of porous particles.

    PubMed

    Barrande, M; Bouchet, R; Denoyel, R

    2007-12-01

    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  14. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  15. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  16. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  17. Experimental Study of Shale Rock Self-Heating

    NASA Astrophysics Data System (ADS)

    Restuccia, Francesco; Ptak, Nicolas; Rein, Guillermo

    2016-04-01

    Self-heating phenomena due to spontaneous exothermic reactions in oxidative environments are common for many porous materials, even at low temperatures. Combustion of shale outcrop formations has been reported in recent years, with self-heating a potential initiating cause. This work studies experimentally and for the first time the self-heating behavior of shale rock, a porous sedimentary rock. Using field samples collected from shale outcrop at Kimmeridge Bay (UK) and the Frank-Kamenetskii theory of criticality, we determine effective kinetic parameters and thermal properties for different shale particle size distributions and upscale the results to field formations of different thicknesses. We show that for fine particle sizes, with diameter below 2mm, spontaneous ignition is possible for rock formations of thickness between 25m and 5.4m at ambient temperatures between 16°C and 44°C. For the same temperature range, the required thickness is between 375km and 15km for coarse particles of diameter below 17mm. This shows that shale rock is reactive, with reactivity highly dependent on particle diameter, and self-ignition is possible for small particles in outcrops or formations accidentally exposed to oxygen.

  18. Characterizing and modelling 'ghost-rock' weathered limestones

    NASA Astrophysics Data System (ADS)

    Dubois, Caroline; Goderniaux, Pascal; Deceuster, John; Poulain, Angélique; Kaufmann, Olivier

    2016-04-01

    'Ghost-rock' karst aquifer has recently been highlighted. In this particular type of aquifer, the karst is not expressed as open conduits but consists in zones where the limestone is weathered. The in-situ weathering of limestone leaves a soft porous material called 'alterite'. The hydro-mechanical properties of this material differs significantly from those of the host rock: the weathering enhances the storage capacity and the conductivity of the rock. This type of weathered karst aquifer has never been studied from a hydrogeological point of view. In this study, we present the hydraulic characterization of such weathered zones. We also present a modelling approach derived from the common Equivalent Porous Medium (EPM) approach, but including the spatial distribution of hydrogeological properties through the weathered features, from the hard rock to the alterite, according to a weathering index. Unlike the Discrete Fracture Network (DFN) approaches, which enable to take into account a limited number of fractures, this new approach allows creating models including thousands of weathered features. As the properties of the alterite have to be considered at a centimeter scale, it is necessary to upscale these properties to carry out simulations over large areas. Therefore, an upscaling method was developed, taking into account the anisotropy of the weathered features. Synthetic models are built, upscaled and different hydrogeological simulations are run to validate the method. This methodology is finally tested on a real case study: the modelling of the dewatering drainage flow of an exploited quarry in a weathered karst aquifer in Belgium.

  19. Pore geometry as a control on rock strength

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  20. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  1. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-09-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.

  2. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  3. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  4. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  5. Zapping Rocks on Mars

    ScienceCinema

    Wiens, Roger

    2016-07-12

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  6. Zapping Rocks on Mars

    SciTech Connect

    Wiens, Roger

    2016-05-16

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  7. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  8. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  9. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    distribution, bulk properties), (2) Acquiring and analyzing acoustic and environmental data collected during field tests in areas of known rock...resulted in good agreement between models and data. Figure 7 Scattering strength results from glacially plucked surface. The shape of the curves is...fact provide very similar fits to the SAS input data. Further analysis has shown that these estimate are only separated because their confidence

  10. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2014-09-30

    display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND...outcrops are intended to address many of the open questions which exist for scattering from these types of surfaces and include increasing our basic...understanding of: 1) geoacoustic characteristics of rock relevant to scattering, 2) scattering strength versus grazing angle, and 3

  11. The evolution of pore connectivity in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Colombier, Mathieu; Wadsworth, Fabian B.; Gurioli, Lucia; Scheu, Bettina; Kueppers, Ulrich; Di Muro, Andrea; Dingwell, Donald B.

    2017-03-01

    Pore connectivity is a measure of the fraction of pore space (vesicles, voids or cracks) in a material that is interconnected on the system length scale. Pore connectivity is fundamentally related to permeability, which has been shown to control magma outgassing and the explosive potential of magma during ascent in the shallowest part of the crust. Here, we compile a database of connectivity and porosity from published sources and supplement this with additional measurements, using natural volcanic rocks produced in a broad range of eruptive styles and with a range of bulk composition. The database comprises 2715 pairs of connectivity C and porosity ϕ values for rocks from 35 volcanoes as well as 116 products of experimental work. For 535 volcanic rock samples, the permeability k was also measured. Data from experimental studies constrain the general features of the relationship between C and ϕ associated with both vesiculation and densification processes, which can then be used to interpret natural data. To a first order, we show that a suite of rocks originating from effusive eruptive behaviour can be distinguished from rocks originating from explosive eruptive behaviour using C and ϕ. We observe that on this basis, a particularly clear distinction can be made between scoria formed in fire-fountains and that formed in Strombolian activity. With increasing ϕ, the onset of connectivity occurs at the percolation threshold ϕc which in turn can be hugely variable. We demonstrate that C is an excellent metric for constraining ϕc in suites of porous rocks formed in a common process and discuss the range of ϕc values recorded in volcanic rocks. The percolation threshold is key to understanding the onset of permeability, outgassing and compaction in shallow magmas. We show that this threshold is dramatically different in rocks formed during densification processes than in rocks formed in vesiculating processes and propose that this value is the biggest factor in

  12. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  13. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  14. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  15. Writing Rock Music Reviews.

    ERIC Educational Resources Information Center

    Brown, Donal

    1980-01-01

    Suggests ways student reviewers of rock music groups can write better reviews. Among the suggestions made are that reviewers occasionally discuss the audience or what makes a particular group unique, support general comment with detail, and avoid ecstatic adjectives. (TJ)

  16. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  17. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  18. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  19. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  20. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  1. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  2. Analytic studies of colloid transport in fractured porous media

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1989-11-01

    We analyze the interactive migration of radioactive colloids and solute in fractured rock. Two possible interactions between radionuclides as colloids and as solute are considered: solute sorption on nonradioactive colloids to form pseudocolloids, and dissolution of radioactive colloids. Previous studies have discussed the formation and transport of colloids in porous media, including removal of colloids by filtration and sedimentation. Colloids can migrate faster than solute because of weaker sorption on stationary solids and because of hydrochromatography of colloid particles in flow channels. However, the migration of colloids and pseudocolloids can be retarded by the interaction of colloids with solute, and the migration of solute in local equilibrium with colloids can be more rapid than if colloids were not present. Here we present a new quantative analysis to predict the interactive migration of colloids and solute in porous and fractured media. 4 figs.

  3. Dynamic patterns of compaction in brittle porous media

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdes, Julio R.; Einav, Itai

    2015-10-01

    Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks, foams, cereal packs and snow. We have recently found moving compaction bands in cereal packs; similar bands have been detected in snow. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.

  4. Fractal Geometry of Rocks

    SciTech Connect

    Radlinski, A.P.; Radlinska, E.Z.; Agamalian, M.; Wignall, G.D.; Lindner, P.; Randl, O.G.

    1999-04-01

    The analysis of small- and ultra-small-angle neutron scattering data for sedimentary rocks shows that the pore-rock fabric interface is a surface fractal (D{sub s}=2.82) over 3 orders of magnitude of the length scale and 10 orders of magnitude in intensity. The fractal dimension and scatterer size obtained from scanning electron microscopy image processing are consistent with neutron scattering data. {copyright} {ital 1999} {ital The American Physical Society}

  5. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  6. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  7. Predicting the transport properties of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, Erika M.

    1995-01-01

    Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

  8. The influence of rock material models on seismic discrimination of underground nuclear explosions

    SciTech Connect

    Glenn, L.A.

    1995-06-01

    We found that the spectral characteristics of the seismic signal from underground explosions were mainly determined by the rock material strength and the gas porosity. Both the unloading characteristics and the amplitude of the ``elastic toe`` are important parameters in the porous model.

  9. Rock and soil mechanics

    SciTech Connect

    Derski, W.; Izbicki, R.; Kisiel, I.; Mroz, Z.

    1988-01-01

    Although theoretical in character, this book provides a useful source of information for those dealing with practical problems relating to rock and soil mechanics - a discipline which, in the view of the authors, attempts to apply the theory of continuum to the mechanical investigation of rock and soil media. The book is in two separate parts. The first part, embodying the first three chapters, is devoted to a description of the media of interest. Chapter 1 introduces the main argument and discusses the essence of the discipline and its links with other branches of science which are concerned, on the one hand, with technical mechanics and, on the other, with the properties, origins, and formation of rock and soil strata under natural field conditions. Chapter 2 describes mechanical models of bodies useful for the purpose of the discourse and defines the concept of the limit shear resistance of soils and rocks. Chapter 3 gives the actual properties of soils and rocks determined from experiments in laboratories and in situ. Several tests used in geotechnical engineering are described and interconnections between the physical state of rocks and soils and their rheological parameters are considered.

  10. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  11. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  12. Modeling of Multi-Scale Channeling Phenomena in Porous Flow

    NASA Astrophysics Data System (ADS)

    Räss, Ludovic; Omlin, Samuel; Yarushina, Viktoriya; Simon, Nina; Podladchikov, Yuri

    2015-04-01

    Predictive modeling of fluid percolation through tight porous rocks is critical to evaluate environmental risks associated with waste storage and reservoir operations. To understand the evolution of two-phase mixtures of fluid and solid it is insufficient to only combine single-phase fluid flow methods and solid mechanics. A proper coupling of these two different multi-scales physical processes is required to describe the complex evolution of permeability and porosity in space and in time. We conduct numerical modeling experiments in geometrically simple but physically complex systems of stressed rocks containing self-focusing porous flow. Our model is physically and thermodynamically consistent and describes the formation and evolution of fluid pathways. The model consists of a system of coupled equations describing poro-elasto-viscous deformation and flow. Nonlinearity of the solid rheology is also taken into account. We have developed a numerical application based on an iterative finite difference scheme that runs on mutli-GPUs cluster in parallel. In order to validate these models, we consider the largest CO2 sequestration project in operation at the Sleipner field in the Norwegian North Sea. Attempts to match the observations at Sleipner using conventional reservoir simulations fail to capture first order observations, such as the seemingly effortless vertical flow of CO2 through low permeability shale layers and the formation of focused flow channels or chimneys. Conducted high-resolution three-dimensional numerical simulations predict the formation of dynamically evolving high porosity and permeability pathways as a natural outcome of porous flow nonlinearly coupled with rock deformation, which may trigger leakage through low permeability barriers.

  13. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.

    2015-05-01

    Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.

  14. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  15. Bacteria transport through porous media. Annual report, December 31, 1984

    SciTech Connect

    Yen, T.F.

    1986-09-01

    The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.

  16. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  17. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  18. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  19. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  20. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  1. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  2. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  3. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  4. Rock Deformation Meeting

    NASA Astrophysics Data System (ADS)

    Green, Harry

    The Third Rock Deformation Colloquium was held December 4, 1989, at the AGU Fall Meeting in San Francisco. Steve Kirby of the U.S. Geological Survey, Menlo Park, Calif., reported on actions taken by the rock deformation steering committee. Brian Wernicke of Harvard University, Cambridge, Mass., talked on the structural geology of the Great Basin.The steering committee voted for “Committee on Deformation of Earth Materials” as the name for the AGU technical committee on rock deformation, Kirby said. Considerable discussion has occurred in the steering committee over our relationship to the AGU Mineral Physics Committee. Indeed, Kirby will become chairman of that committee in 1990, underlining the overlap of the two groups. It was agreed that we will pursue closer association with Mineral Physics.

  5. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  6. EPR study of porous silicon

    NASA Astrophysics Data System (ADS)

    Jishi, Fu; Jinchang, Mao; En, Wu; Yongqiang, Jia; Borui, Zhang; Lizhu, Zhang; Guogang, Qin; Yuhua, Zhang; Genshuan, Wui

    1994-12-01

    An anisotropic EPR signal was observed in porous Si. According to its symmetry and g value, the EPR signal can be attributed to silicon dangling bonds located on the surface of a porous Si skeleton. The evolution of the EPR signal at room temperature in air was measured. The annealing temperature dependence of the EPR and the PL of porous Si in oxygen and the effects of gamma irradiation on the EPR and the PL spectra of porous Si were studied. The changes of the EPR signal and the PL intensity induced in atmosphere by ethyl alcohol and acetone were discovered. The dangling bond is only one of the factors which affect the PL.

  7. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  8. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  9. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    SciTech Connect

    Kang, Qinjin; Wang, Moran; Mukherjee, Partha P; Lichtner, Peter C

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  10. Macroscopic properties of fractured porous media

    NASA Astrophysics Data System (ADS)

    Thovert, J.; Mourzenko, V. V.; Adler, P. M.

    2007-12-01

    The determination of the local fields in fractured porous media is a challenging problem, because of the multiple scales that are involved and of the possible nonlinearity of the governing equations. The purpose of this paper is to provide an overall view of the numerical technique which has been used to solve numerous problems. It is based on a three-dimensional discrete description of the fracture network and of the embedding matrix. Any fracture network geometry, any type of boundary condition, and any distribution of the fracture and matrix properties can be addressed, without simplifying approximations. The first step is to mesh the fracture network as it is by triangles of a controlled size. This meshing by an advancing front technique is done successively for each fracture and the intersections between fractures are taken into account. Then, the space in between the fractures is meshed by tetrahedra by the advancing front technique again. The faces of the tetrahedra which are in contact with fractures, coincide with the corresponding triangles in these fractures. The performances of these meshing codes will be illustrated by a few examples. The second step consists in discretizing the conservation equations by the finite volume technique. Specific properties are given to each fracture such as a surface permeability or a joint rigidity. This general technique has been applied to the basic and most important properties of fracture networks and of fractured porous media (1). These properties are single and two phase flows, wether they are accompagnied or not by dispersion of a solute and mechanical properties possibly coupled with flow. These applications will be briefly illustrated by some examples, including when possible comparison with real data. Ref: (1) P.M. Adler, V.V. Mourzenko, J.-F. Thovert, I. Bogdanov, in Dynamics of fluids and transport in fractured rock, ed. B. Faybishenko, Geophysical Monograph Series, 162, 33, 2005.

  11. Porous light-emitting compositions

    SciTech Connect

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  12. Porous carbon EOS: numerical analysis

    NASA Astrophysics Data System (ADS)

    Aliverdiev, A.; Batani, D.; Dezulian, R.; Vinci, T.

    2010-10-01

    In this paper, we address the problem of direct simulation of laser-driven shock experiments aiming at determining the equation of state (EOS) of carbon using the "relative" impedance mismatch method. In particular, using tabulated carbon EOS (SESAME library, material number 7830), we have found some difficulties in reducing the initial density of the material in simulations with porous carbon. We have therefore calculated a new EOS for porous carbon with a reduced bulk modulus.

  13. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  14. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  15. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  16. Opportunity Rocks Again!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera highlights a portion of the puzzling rock outcropping that scientists eagerly wait to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. Data from the panoramic camera's near-infrared, blue and green filters were combined to create this approximate true color image.

  17. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  19. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  20. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  1. 3D Printing and Digital Rock Physics for the Geosciences

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  2. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  3. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  4. Anomalous Transport in Carbonate Rock - Predictions and Quantitative Measures

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.

    2014-12-01

    Solute transport in rock subsurface is important in a number of applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock contain most of the world's oil reserves and potentially hold a storage capacity for carbon dioxide. Pore structure in carbonate rock introduces an additional complexity in the form of bimodal pore size distributions, which leads to complex anomalous transport behavior and poses a significant challenge for accurate predictions. We present a new modeling concept that simulates flow and transport on micro-CT images containing the information on inter- and intra-grain pore space of carbonate rock. Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk. Firstly, the model is validated against the experimental NMR measurements in the dual porosity beadpack. Furthermore, the model predictions are made for a number of carbonate rock images which are then classified in terms of heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions (PDFs) measures of non-Fickian transport on the micro-CT images.

  5. How fluids eat their way through rocks: Reactive-transport processes in low-permeability rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Pluemper, O.

    2013-12-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localizes deformation enabling tectonic responses to plate motion. Fluid-rock interactions also play a key role in geothermal energy, hydrocarbon production, CO2 sequestration and nuclear waste disposal industries. In all of these examples it is the ability of a rock to transmit fluid, its permeability, that dictates geological processes and the industrial use of geological formations. For nuclear waste storage an impermeable wall rock is vital. For anthropogenic CO2 sequestration, however, impermeable rocks are detrimental. In natural systems some environments (sediments) are open to fluids, but the majority (e.g., oceanic lithosphere) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Although the forces that move tectonic plates can produce these fluid pathways, there is ample evidence that chemical reactions can ';eat' their way through rocks. Nevertheless, the mechanisms operating at the reaction-interface scale that control the extent and speed of fluid-rock interactions have not been fully uncovered. Here I present natural and experimental examples of how chemical reactions can produce fluid pathways and discuss their physico-chemical mechanisms and how we may adopt the fundamentals for industrial applications. One wide-spread example is the albitization of granitic rocks which often leads to ore deposit formation ';downstream' from the fluid-rock interaction. Fluid flow and element mobilization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-reprecipitation process. Primary, non-porous grains are

  6. Bounce Rock Close-Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution panoramic camera blue filter image of the rock dubbed 'Bounce' was obtained up close, just before the rover placed its instruments on the rock for detailed study. The rock has a number of shiny surfaces and textures on it, some of which are unlike those seen in the Eagle Crater rock outcrop. Also, the rock was apparently moved or shaken when it was hit with the airbags, as can be seen by the gap and cracks in the soil around the rock. This image from sol 65 of the rover's journey was acquired using the panoramic camera's 430 nanometer filter.

  7. What does a tensiometer measure in fractured rock?

    SciTech Connect

    Finsterle, S.; Faybishenko, B.

    1998-02-01

    Tensiometers are routinely used in both the laboratory and the field for measuring the capillary pressure in unsaturated porous media. The authors conducted a laboratory experiment on a fractured basalt core. They also examined the performance of a tensiometer in fractured porous media by means of numerical simulation, in which the tensiometer itself and its interaction with the formation were explicitly modeled. They conclude that the gauge pressure is primarily affected by the fracture rock component fracture or matrix that conducts water into or out of the ceramic cup of the tensiometer. Fracture flow is accurately monitored during imbibition events, whereas during drainage, the matrix capillary pressure is registered, leading to a strong hysteretic behavior in the pressure measurements.

  8. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  9. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  10. ROUGH ROCK DEMONSTRATION SCHOOL.

    ERIC Educational Resources Information Center

    FORBES, JACK

    THE ROUGH ROCK DEMONSTRATION SCHOOL IS LOCATED IN NORTHEASTERN ARIZONA, WHERE THE NAVAJO LANGUAGE IS UNIVERSALLY SPOKEN BY THE NAVAJO PEOPLE. IT IS LOCATED ON A NAVAJO RESERVATION AND WAS DESIGNED AS A BIA EXPERIMENTAL SCHOOL TO SERVE 200 ELEMENTARY PUPILS, MOST OF WHOM ARE IN THE BOARDING SCHOOL SITUATION. AN OBJECTIVE OF THE SCHOOL IS TO GAIN…

  11. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  12. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  13. 'Scarecrow' Climbs Rocks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scarecrow, a mobility-testing model for NASA's Mars Science Laboratory, easily traverses large rocks in the Mars Yard testing area at NASA's Jet Propulsion Laboratory.

    The Mars Science Laboratory rover is in development for launch in 2009. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for the NASA Science Mission Directorate, Washington.

  14. A POROUS, LAYERED HELIOPAUSE

    SciTech Connect

    Swisdak, M.; Drake, J. F.; Opher, M. E-mail: drake@umd.edu

    2013-09-01

    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  15. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  16. Mineral replacement front propagation in deformed rocks

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Kelka, Ulrich

    2015-04-01

    Fluid migrations are a major agent of contaminant transport leading to mineral replacement in rocks, impacting their properties as porosity, permeability, and rheology. Understanding the physical and chemical mechanisms that govern mineralogical replacement during and after deformation is required to better understand complex interplays between fluid and rocks that are involved in faulting, seismic cycle, and resource distribution in the upper crust. Dolomitization process related to hydrothermal fluid flow is one of the most studied and debated replacement processes in earth sciences. Dolomitization of limestone is of economic importance as well, as it stands as unconventional oil reservoirs and is systematically observed in Mississippian-Valley Type ore deposit. Despite recent breakthrough about dolomitization processes at large-scale, the small-scale propagation of the reaction front remains unclear. It is poorly documented in the occurrence of stylolites and fractures in the medium while pressure-solution and fracture network development are the most efficient deformation accomodation mechanism in limestone from early compaction to layer-parallel shortening. Thus, the impact of such network on geometry of replaced bodies and on replacement front propagation deserves specific attention. This contribution illustrates the role of fracture and stylolites on the propagation of a reaction front. In a 2 dimensional numerical model we simulate the dolomitization front propagation in a heterogeneous porous medium. The propagation of the reaction front is governed by the competition between advection and diffusion processes, and takes into account reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. We add stylolites and fractures that can act as barriers or drains to fluid flow according to their orientation and mineralogical content, which can or cannot react with the contaminant. The patterns produced from

  17. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  18. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  19. Rocks of the Columbia Hills

    NASA Astrophysics Data System (ADS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth E.; Hurowitz, Joel; Kusack, Alastair; McSween, Harry Y.; Ming, Douglas W.; Morris, Richard V.; Ruff, Steven W.; Wang, Alian; Yen, Albert

    2006-02-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  20. Effective Gradients in Porous Media Due to Susceptibility Differences

    PubMed

    Hürlimann

    1998-04-01

    In porous media, magnetic susceptibility differences between the solid phase and the fluid filling the pore space lead to field inhomogeneities inside the pore space. In many cases, diffusion of the spins in the fluid phase through these internal inhomogeneities controls the transverse decay rate of the NMR signal. In disordered porous media such as sedimentary rocks, a detailed evaluation of this process is in practice not possible because the field inhomogeneities depend not only on the susceptibility difference but also on the details of the pore geometry. In this report, the major features of diffusion in internal gradients are analyzed with the concept of effective gradients. Effective gradients are related to the field inhomogeneities over the dephasing length, the typical length over which the spins diffuse before they dephase. For the CPMG sequence, the dependence of relaxation rate on echo spacing can be described to first order by a distribution of effective gradients. It is argued that for a given susceptibility difference, there is a maximum value for these effective gradients, gmax, that depends on only the diffusion coefficient, the Larmor frequency, and the susceptibility difference. This analysis is applied to the case of water-saturated sedimentary rocks. From a set of NMR measurements and a compilation of a large number of susceptibility measurements, we conclude that the effective gradients in carbonates are typically smaller than gradients of current NMR well logging tools, whereas in many sandstones, internal gradients can be comparable to or larger than tool gradients. Copyright 1998 Academic Press.

  1. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  2. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  3. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    PubMed

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.

  4. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  5. Small-Scale Modeling of Fluid Displacement Patterns in Layered Porous Media

    NASA Astrophysics Data System (ADS)

    Karpyn, Z. T.; Ayala, L. F.

    2007-05-01

    Naturally occurring porous media are inherently heterogeneous. The depositional characteristics that give rise to permeable formations, and the complex diagenetic processes taking place afterwards, create important heterogeneous features such as bedding planes, fractures, and faults. Rock heterogeneities can have strong impact on fluid displacement patterns because they define preferential flow paths in underground permeable formations. The efficiency of processes of pollution and contaminant removal from soil and groundwater, as well as hydrocarbon recovery, is greatly controlled by our ability to understand and represent fluid transport in heterogeneous permeable media. The present study focuses on a numerical analysis of two-phase flow in fractured rocks exhibiting contrasting rock properties in the form of bedding planes. Simulation scenarios were conducted to monitor contaminant displacement during water imbibition in a synthetic permeable medium model with multiple layers and a single fracture. A commercially available reservoir simulator was used to construct the synthetic three-dimensional model. Previous laboratory observations aid in the construction of the model and interpretation of results. Rock and fluid properties assigned to the synthetic model were estimated from those reported in the literature for a similar rock-fluid system. The presence of bedding planes in the rock's structure was found to have a strong impact on the advancing water front. Temporal saturation maps and fluid displacement patterns are presented in this work for various rates of injection and rock-property contrasts. Even though fracture capillary pressures are often regarded as negligible in the modeling of fractured porous media, our findings suggest that fractures can still provide passages under strong capillary action, which are able to drive wetting fluids into the rock matrix. Such behavior can be captured through proper description of fracture capillary pressures.

  6. Changes in rock salt permeability due to nearby excavation

    SciTech Connect

    Stormont, J C; Howard, C L

    1991-07-01

    Changes in brine and gas permeability of rock salt as a result of nearby excavation (mine-by) have been measured from the underground workings of the WIPP facility. Prior to the mine-by, the formation responds as a porous medium with a very low brine permeability, a significant pore (brine) pressure and no measurable gas permeability. The mine-by excavation creates a dilated, partially saturated zone in the immediate vicinity of the excavation with an increased permeability to brine and a measurable permeability to gas. The changes in hydrologic properties are discussed in the context of pore structure changes.

  7. In-situ measurement of permeability of a porous interface using the ultrasonic slow wave

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    2011-12-01

    Porous materials are an important class of materials. They occur in natural substances such as oil or water bearing rocks, marine sediment, biological tissues (e.g. bones), granular materials and man made materials such as separation membranes, thermal insulators, ceramics and fuel cells. Porous materials have been used in many areas of applied science and engineering. Understanding of porous media plays an important role in areas such as experimental acoustics, geo-mechanics, geophysics, biophysics, material science. Among the number of parameters describing porous materials, the permeability is often the reason the porous structure is of interest. Permeability is a measurement of the ability of a porous material to transmit fluid. At an interface, permeability describes the flow of fluid into or out of a porous media Ultrasound has been widely used for flaw detection and material characterization. Studies show that there are three waves that exist in porous materials: the longitudinal and shear wave that exist in other solid materials and the slow longitudinal wave that only exists in porous materials. This slow longitudinal wave can only be generated and propagated above a critical frequency. Measuring the critical frequency provides information about the intrinsic permeability of a porous interface. This thesis presents a new technique developed for an in-situ permeability measurement using measurement of slow wave. In this work, an exact solution for the critical wave number for the slow wave has been developed and showed suitable for measuring the permeability of porous materials. A computer model of the reflection coefficient at the interface of fluid/porous media has been developed for the acoustic measurement. Ultrasonic experiments confirmed the sensitivity of this technique to changes in permeability and fluid viscosity. A flow cell test has been performed to show one potential industrial application of this technique by showing open pore and closed pore

  8. Astronaut Charles Duke stands at rock adjacent to 'House Rock'

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, stands at a rock adjacent (south) to the huge 'House Rock' (barely out of view at right edge). Note shadow at extreme right center where the two moon-exploring crewmen of the mission sampled what they referred to as the 'eastwest split of House Rock' or the open space between this rock and 'House Rock'. Duke has a sample bag in his hand, and a lunar surface rake leans against the large boulder.

  9. Lattice Boltzmann simulation of chemical dissolution in porous media.

    PubMed

    Kang, Qinjun; Zhang, Dongxiao; Chen, Shiyi; He, Xiaoyi

    2002-03-01

    In this paper, we develop a lattice Boltzmann model for simulating the transport and reaction of fluids in porous media. To simulate such a system, we account for the interaction of forced convection, molecular diffusion, and surface reaction. The problem is complicated by the evolution of the porous media geometry due to chemical reactions, which may significantly and continuously modify the hydrologic properties of the media. The particular application that motivates the present study is acid stimulation, a common technique used to increase production from petroleum reservoirs. This technique involves the injection of acid (e.g., hydrochloric acid, HCl, acetic acid, HAc) into the formation to dissolve minerals comprising the rock. As acid is injected, highly conductive channels or "wormholes" may be formed. The dissolution of carbonate rocks in 0.5M HCl and 0.5M HAc is simulated with the lattice Boltzmann model developed in this study. The dependence of dissolution process and the geometry of the final wormhole pattern on the acid type and the injection rate is studied. The results agree qualitatively with the experimental and theoretical analyses of others and substantiate the previous finding that there exists an optimal injection rate at which the wormhole is formed as well as the number of pore volumes of the injected fluid to break through is minimized. This study also confirms the experimentally observed phenomenon that the optimal injection rate decreases and the corresponding minimized number of pore volumes to break through increases as the acid is changed from HCl to HAc. Simulations suggest that the proposed lattice Boltzmann model may serve as an alternative reliable quantitative approach to study chemical dissolution in porous media.

  10. Electrokinetic coupling in unsaturated porous media

    SciTech Connect

    Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S.

    2007-02-27

    We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical conductivity, capillary pressure, thestreaming potential coupling coefficient at various level of saturation,and the permeability at saturation of the rock samples. We found verygood agreement between these experimental data and the modelpredictions.

  11. Fluid flow and coupled poroelastic response in low-permeability rocks

    NASA Astrophysics Data System (ADS)

    Hasanov, A.; Prasad, M.

    2015-12-01

    Hydraulic transport properties of reservoir rocks are traditionally defined as rock properties, responsiblefor the passage of fluids through the porous rock sample, as well as their storage. These properties arealso called permeability and storage capacity. The evaluation of both is an important part of any reservoircharacterization workflow. A vivid example of the importance of the transport properties is the bloomingbusiness of unconventional oil and gas production. Tight formations with ultra-low permeabilities and storagecapacities, which have never been perceived as reservoir rocks, today are actively exploited for oil and gas.This tremendous achievement in petroleum science and technology was only possible due to hydraulic frac-turing, which is essentially a process of enhancing permeability and storage capacity by creating a swarmof microcracks in the rock. The knowledge of hydraulic and poroelastic properties is also essential for proper simulations of diffusive pore fluidflow in petroleum reservoirs, as well as aquifers. This work is devoted to an integrated study of low-permeability rocks' hydraulic and poroe-lastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressuremethod is traditionally used to measure hydraulic transport properties. We modified the method and builtan experimental setup, capable of measuring all aforementioned rock properties simultaneously. The mea-surements were carried out for four sub-millidarcy rock samples at a range of oscillationfrequencies and effective stresses. An apparent frequency dependence of permeability was observed. Measured frequency dispersion of drained poroelastic propertiesindicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demon-strated the best fit to the experimental dispersion data. We established that hydraulically-measured storage capacitiesare in good agreement with elastically-derived ones. We also introduce a

  12. Unboxing Space Rocks

    ScienceCinema

    Bruck Syal, Megan

    2016-07-12

    The box was inconspicuous, but Lawrence Livermore National Laboratory (LLNL) postdoctoral researcher Megan Bruck Syal immediately knew its contents: two meteorites around the size of walnuts. They formed about 4.6 billion years ago and survived a history of violent collisions in the asteroid belt before being bumped into a near-Earth-object orbit by gravitational interactions with the planets. After finally raining down on Earth, these rocks were scavenged in Antarctica by researchers, sorted and classified at NASA Johnson Space Center, then mailed first-class to Bruck Syal. Now that these space rocks are in Bruck Syal’s hands, they are mere months away from fulfilling their destiny. They are to be vaporized by a high-powered laser, and the data they yield on asteroid deflection could one day save the planet.

  13. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    15 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of layered, sedimentary rock in eastern Gale Crater. North-central Gale Crater is the site of a mound that is more than several kilometers thick and largely composed of sedimentary rocks that record a complex history of deposition and erosion. At one time, Gale Crater might have been completely filled and buried beneath the martian surface.

    Location near: 4.9oS, 221.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  15. Schiaparelli's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 October 2004 Schiaparelli Basin is a large, 470 kilometer (292 miles) impact crater located east of Sinus Meridiani. The basin might once have been the site of a large lake--that is, if the sedimentary rocks exposed on its northwestern floor were deposited in water. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meter per pixel (5 ft per pixel) view of some of the light-toned, finely-bedded sedimentary rocks in northwestern Schiaparelli. The image is located near 1.0oS, 346.0oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  16. Sedimentary Rock Outcrops

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded layered rock outcrops in a crater north of Meridiani Planum near 2.7oN, 359.1oW. The dozens and dozens of sedimentary rock layers of repeated thickness and similar physical properties at this location suggest that they may have been deposited in a lacustrine (lake) setting. The crater in which these layers occur may once have been completely filled and buried, as is the case for many craters in the Sinus Meridiani region. This image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  17. Sedimentary Rock Near Coprates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-420, 13 July 2003

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle camera images, one from 2001, the other from 2003, shows light-toned, layered, sedimentary rock outcrops exposed on the floor of a trough that parallels Coprates Chasma in the Valles Marineris system. Layered rocks form the pages from which the history of a place can be read. It may be many years before the story is read, but or now at least we know where one of the books of martian history is found. This picture is located near 15.2oS, 60.1oW. Sunlight illuminates the scene from the left.

  18. Unboxing Space Rocks

    SciTech Connect

    Bruck Syal, Megan

    2016-05-09

    The box was inconspicuous, but Lawrence Livermore National Laboratory (LLNL) postdoctoral researcher Megan Bruck Syal immediately knew its contents: two meteorites around the size of walnuts. They formed about 4.6 billion years ago and survived a history of violent collisions in the asteroid belt before being bumped into a near-Earth-object orbit by gravitational interactions with the planets. After finally raining down on Earth, these rocks were scavenged in Antarctica by researchers, sorted and classified at NASA Johnson Space Center, then mailed first-class to Bruck Syal. Now that these space rocks are in Bruck Syal’s hands, they are mere months away from fulfilling their destiny. They are to be vaporized by a high-powered laser, and the data they yield on asteroid deflection could one day save the planet.

  19. Terby Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Terby Crater, located near 27.7oS, 285.4oW. The layered sediments in Terby are several kilometers thick, attesting to a long history of deposition in this ancient basin. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  20. Iani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rocks exposed by erosion in the Iani Chaos region of Mars.

    Location near: 4.2oS, 18.7oW Image width: 1 km (0.6 mi) Illumination from: upper left Season: Southern Winter

  1. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, sedimentary rock outcrops in southwestern Melas Chasma, one of the troughs of the vast Valles Marineris system. Sunlight illuminates this scene from the upper left; it is located near 9.8oS, 76.0oW, and covers an area about 3 km (1.9 mi) wide.

  2. DYNAMIC PROPERTIES OF ROCKS.

    DTIC Science & Technology

    common crustal rocks: polycrystalline and single crystal quartz (40-450 kbar), anorthosite (to 620 kbar), microcline (to 580 kbar) olivine (to 780 kbar...shock-induced transitions to high pressure polymorphic forms occur. Release adiabats of polycrystalline quartz and anorthosite descending from various... anorthosite descending from shock states above 120 kbar are quite steep, indicating irreversible transformation to denser materials believed to be high

  3. Eroded Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-372, 26 May 2003

    This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded, layered sedimentary rock exposures in an unnamed western Arabia Terra crater at 8oN, 7oW. The dark material is windblown sand; much of the erosion of these layers may have also been caused by wind. Sunlight illuminates the scene from the left.

  4. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  5. On the Role of Osmosis for Non-Linear Shock Waves f Pressure and Solute in Porous Media

    NASA Astrophysics Data System (ADS)

    Kanivesky, Roman; Salusti, Ettore; Caserta, Arrigo

    2013-04-01

    A novel non-Osanger model focusing on non-linear mechanic and chemo-poroelastic coupling of fluids and solute in porous rocks is developed based on the modern wave theory. Analyzing in 1-D a system of two adjacent rocks with different conditions we obtain two coupled non-linear equations for fluid pressure and solute (salt or pollutants) concentration, evolving under the action of strong stress from one "source" rock towards the other rock. Their solutions allow to identify quick non-linear solitary (Burgers) waves of coupled fluid pressure and solute density, that are different from diffusive or perturbative solutions found in other analyses. The strong transient waves for low permeability porous media, such as clay and shale, are analyzed in detail. For medium and high-permeability porous media (sandstones) this model is also tentatively applied. Indeed in recent works of Alexander (1990) and Hart(2009) is supported the presence of small osmotic phenomena in other rocks where osmosis was previously ignored. An attempt to apply our model to soils in Calabria (Italy), such as clastic marine and fluvial deposits as well as discontinuous remnants of Miocene and Pliocene carbonate and terrigeneous deposits, is also discussed.

  6. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  7. Nonlinear behavior of saturated porous crust under the influence of internal fluid source

    NASA Astrophysics Data System (ADS)

    Suetnova, Elena; Cherniavski, Vladimir

    2010-05-01

    We consider the effective stress evolution inside high porosity fault zone as a result of local dehydration due to heating. The rock is assumed to be a two-velocity medium; it consists of a deformable porous matrix (with Maxwell's rheology) and a Newtonian liquid that saturates this matrix. Nonlinear behavior of liquid saturated porous media in gravity filed under the influence of internal fluid source is modeled. The elaborated non-isothermal mathematical model is a thermodynamically consistent and closed model. The original scheme was used for computer simulation; the method implies numerical simulation for effective stress, deformation and flux time- space evolution. Deformation spreading through the saturated porous matrix occurs with pressure distortions. Calculations show that the peculiarity of effective stress evolution is dependent not only upon the volume of supplementary fluids, but upon the viscosity and elastic modules of matrix.

  8. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  9. Salty Martian Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which produces a spectrum, or fingerprint, of chemicals in martian rocks and soil. The instrument contains a radioisotope, curium-244, that bombards a designated area with alpha particles and X-rays, causing a cascade of reflective fluorescent X-rays. The energies of these fluorescent X-rays are unique to each atom in the periodic table, allowing scientists to determine a target's chemical composition.

    Both 'Tarmac' and 'McKittrick' are located within the small crater where Opportunity landed. The full spectra are expressed as X-ray intensity (logarithmic scale) versus energy. When comparing two spectra, the relative intensities at a given energy are proportional to the elemental concentrations, however these proportionality factors can be complex. To be precise, scientists extensively calibrate the instrument using well-analyzed geochemical standards.

    Both the alpha particle X-ray spectrometer and the rock abrasion tool are located on the rover's instrument deployment device, or arm.

  10. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  11. Rock fracture by ice segregation: linking laboratory modelling and rock slope erosion

    NASA Astrophysics Data System (ADS)

    Murton, J.

    2009-04-01

    It has been unclear until recently if ice can fracture intact bedrock subject to natural freezing regimes, or whether it simply enlarges existing fractures or does both. This question is important, because if ice segregation in bedrock permafrost is widespread, then there may be considerable potential for significantly increased rock slope instability as ice-cemented discontinuities warm and active layers thicken. Laboratory modelling has now begun to elucidate the process of ice segregation in bedrock. Laboratory experiments indicate that moist, porous rock behaves remarkably like moist, frost-susceptible soil, with both substrates experiencing ice enrichment and fracture / fissuring of near-surface permafrost. It appears that significant concentrations of segregated ice are most likely in the transition zone between the active layer and the permafrost, as a result of downward migration of water in summer and upward advance of freezing at the beginning of the winter. Laboratory modelling indicates that given adequate water supply, ice segregation produces a zone of ice-bonded fractured bedrock immediately below the permafrost table. In general, the importance of ice segregation relative to in situ volume expansion increases with decreasing thermal gradients and increasing duration of freezing. Recent theoretical developments suggest that the maximum possible disjointing pressure is governed by the temperature depression below the bulk-melting point, even in the absence of large temperature gradients, and therefore slow ice segregation in bedrock may be possible at greater depths where the frozen permeability of rock limits the actual amount of heave produced. Thus, over long timescales, ice segregation may be highly significant in frozen steep bedrock slopes where the presence of ice-rich fractured bedrock may be critically important in releasing rock falls and rock slides during climate-induced warming and permafrost degradation. With recent climate warming

  12. Experimental and Theoretical Response of Multiphase Porous Media to Dynamic Loads

    DTIC Science & Technology

    1988-09-01

    observed that the grains of the carbonate soils and rocks from Enewetak Atoll contained a high degree of microporosity within the grains themselves...series of uniaxial strain load-unload consolidation t:ests was run on porous limestone and soils from Enewetak Atoll . The test specimens were sub- jected...Limestone .............. .. 141 Appendix A MPOAP: Multiphase Dynamic Analysis Program - User’s Manual . 189 B Steady State Flow Data Through Enewetak Beach

  13. Luminescence decay of porous silicon

    NASA Astrophysics Data System (ADS)

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.

    1993-04-01

    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  14. Metal recovery from porous materials

    DOEpatents

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  15. Transport in porous and fractured media of the Creede Formation

    SciTech Connect

    Conca, J.L.

    1995-12-31

    Direct measurement was made of the hydraulic conductivity of Creede Formation rocks using a new experimental method. The UFA{trademark} method employs open-flow centrifugation. Centrifugation, like gravity, has the effect on a material of a whole-body force exerting equal force at all points within the sample. The equivalent gravitational force exerted throughout the sample can be chosen to be from one to four orders of magnitude higher than earth gravity (from 10 to 10,000 g). The result is an increase in rate of fluid flow equally at all points throughout the sample so that hydraulic steady state is obtained in most geologic materials in hours, even under highly unsaturated conditions. This extraordinarily short time allows direct measurement of transport parameters, such as hydraulic conductivity, diffusion coefficient, and retardation factors, in any porous media over the complete range of field moisture contents. Hydraulic conductivities in the Creede Formation rocks ranged from 10{sup {minus}12} cm/s to 10{sup {minus}7} cm/s (10{sup {minus}9} Darcy to 10{sup {minus}4} Darcy) and showed no correlation with any other physical or mineralogical properties including porosity. The high degree of alteration to clay minerals appears to obscure any porosity/permeability relationship of the kind that occurs in many reservoir rocks. However, down-hole neutron porosities correlated well with laboratory-determined porosities. The objective of this investigation is to determine the hydrologic transport parameters of Creede Formation rocks for use in transport model development and for image analysis of transport pathways to produce a porosity/permeability evolution curve in support of geochemical and isotopic water/rock interaction models.

  16. Process of preparing tritiated porous silicon

    DOEpatents

    Tam, S.W.

    1997-02-18

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  17. Pore-Scale Study of the Impact of Fracture and Wettability on Two-Phase Flow Properties of Rock

    SciTech Connect

    Silin, D.; Ajo-Franklin, J.; Helland, J. O.; Jettestuen, E.; Hatzignatiou, D. G.

    2012-08-01

    Fractures and wettability are among other factors that can strongly affect the twophase flow properties of porous media. Maximal-inscribed spheres (MIS) and finite-difference flow simulations on computer-generated structures mimicking micro-CT images of fractured rock suggest the character of the capillary pressure and relative permeability curves modification by natural or induced fracture and wettability alteration.

  18. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  19. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  20. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  1. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  2. Petrology of Impact-Melt Rocks at the Chicxulub Multiring Basin, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Schuraytz, Benjamin C.; Sharpton, Virgil L.; Marin, Luis E.

    1994-01-01

    Compositions and textures of melt rocks from the upper part of the Chicxulub structure are typical of melt rocks at other large terrestrial impact structures. Apart from variably elevated iridium concentrations (less than 1.5 to 13.5 +/- 0.9 ppb) indicating nonuniform dissemination of a meteoritic component, bulk rock and phenocryst compositions imply that these melt rocks were derived exclusively from continental crust and platform-sediment target lithologies. Modest differences in bulk chemistry among samples from wells located approximately 40 km apart suggest minor variations in relative contributions of these target lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and plagioclase also support minor primary differences in chemistry between the melts. Evidence for pervasive hydrothermal alteration of the porous mesostasis includes albite, K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile element-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host important ore deposits.

  3. Hayward Fault rocks: porosity, density, and strength measurements

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2001-01-01

    Porosity, density and strength measurements were conducted on rock samples collected from the Hayward Fault region in Northern California as part of the Hayward Fault Working Group’s efforts to create a working model of the Hayward Fault. The rocks included in this study were both fine and coarse grained gabbros, altered keratophyre, basalt, sandstone, and serpentinite from various rock formations adjacent to the Hayward Fault. Densities ranged from a low of 2.25 gm/cc (altered keratophyre) to 3.05 gm/cc (fine gabbro), with an average of 2.6 gm/cc, typical of many other rocks. Porosities were generally around 1% or less, with the exception of the sandstone (7.6%) and altered keratophyre (13.5%). Failure and frictional sliding tests were conducted on intact rock cylinders at room temperature under effective pressure conditions of up to 192 MPa, simulating depths of burial to 12 km. Axial shortening of the samples progressed at a rate of 0.1 µm/sec (fine samples) or 0.2 µm/sec (porous samples) for 6 mm of displacement. Velocity stepping tests were then conducted for an additional 2 mm of displacement, for a total of 8 mm. Both peak strength (usually failure strength) and frictional strength, determined at 8 mm of displacement, increased systematically with effective pressure. Coefficients of friction, based on the observed fracture angles, ranged from 0.6 to 0.85, consistent with Byerlee’s Law. Possible secondary influences on the strength of the Hayward rock samples may be surface weathering, or a larger number of pre-existing fractures due to the proximity to the Hayward Fault. All samples showed velocity strengthening, so that the average a-b values were all strongly positive. There was no systematic relation between a-b values and effective pressure. Velocity strengthening behavior is associated with stable sliding (creep), as observed in the shallow portions of the Hayward Fault.

  4. Reaction profiles in porous electrodes

    NASA Astrophysics Data System (ADS)

    Katan, T.; Carlen, P. J.

    1985-05-01

    An experimental program was conducted to ascertain causes of alkaline zinc electrode shape change and to determine the development of reaction profiles within the pores of porous zinc electrodes. Various analog electrochemical cells were operated to isolate and evaluate the individual processes occurring during charge and discharge. It was found that both edge effects and osmosis can be responsible for the shape change phenomenon.

  5. Neural Tissue as Porous Media

    SciTech Connect

    Basser, Peter J.

    2008-12-05

    The fields of MR in Porous Media and Neuroradiology have largely developed separately during the past two decades with little appreciation of the problems, challenges and methodologies of the other. However, this trend is clearly changing and possibilities for significant cross-fertilization and synergies are now being realized.

  6. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  7. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. Evolution of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Veizer, J.; MacKenzie, F. T.

    2003-12-01

    For almost a century, it has been recognized that the present-day thickness and areal extent of Phanerozoic sedimentary strata increase progressively with decreasing geologic age. This pattern has been interpreted either as reflecting an increase in the rate of sedimentation toward the present (Barrell, 1917; Schuchert, 1931; Ronov, 1976) or as resulting from better preservation of the younger part of the geologic record ( Gilluly, 1949; Gregor, 1968; Garrels and Mackenzie, 1971a; Veizer and Jansen, 1979, 1985).Study of the rocks themselves led to similarly opposing conclusions. The observed secular (=age) variations in relative proportions of lithological types and in chemistry of sedimentary rocks (Daly, 1909; Vinogradov et al., 1952; Nanz, 1953; Engel, 1963; Strakhov, 1964, 1969; Ronov, 1964, 1982) were mostly given an evolutionary interpretation. An opposing, uniformitarian, approach was proposed by Garrels and Mackenzie (1971a). For most isotopes, the consensus favors deviations from the present-day steady state as the likely cause of secular trends.This chapter attempts to show that recycling and evolution are not opposing, but complementary, concepts. It will concentrate on the lithological and chemical attributes of sediments, but not deal with the evolution of sedimentary mineral deposits (Veizer et al., 1989) and of life ( Sepkoski, 1989), both well amenable to the outlined conceptual treatment. The chapter relies heavily on Veizer (1988a) for the sections dealing with general recycling concepts, on Veizer (2003) for the discussion of isotopic evolution of seawater, and on Morse and Mackenzie (1990) and Mackenzie and Morse (1992) for discussion of carbonate rock recycling and environmental attributes.

  9. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  10. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 August 2004 Light-toned, layered, sedimentary rock outcrops are common within the vast martian Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a recent example from southern Melas Chasma at 1.5 m/pixel (5 ft/pixel) resolution. The image is located near 11.3oS, 73.9oW, and covers an area about 1.8 km (1.1 mi) across. Sunlight illuminates the scene from the upper left.

  11. Sedimentary Rocks in Melas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows a butte and several other landforms eroded into light-toned, layered, sedimentary rock in southern Melas Chasma. Melas is part of the vast Valles Marineris trough system.

    Location near: 11.8oS, 74.6oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  12. Sedimentary Rocks in Ganges

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows portions of two massifs composed of light-toned, sedimentary rock in Ganges Chasma, part of the Valles Marineris trough system. On the steeper slopes in this vista, dry talus shed from the outcrop has formed a series of dark fans. Surrounded by dark, windblown sand, these landforms are located near 8.6oS, 46.8oW. The image covers an area approximately 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  13. Sedimentary Rock in Candor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 February 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dozens of light- and a few dark-toned sedimentary rock layers exposed by faulting and erosion in western Candor Chasma, part of the vast Valles Marineris trough system.

    Location near: 6.5oS, 77.0oW Image width: 3.0 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  14. From stones to rocks

    NASA Astrophysics Data System (ADS)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  15. Porous medium convection at large Rayleigh number: Studies of coherent structure, transport, and reduced dynamics

    NASA Astrophysics Data System (ADS)

    Wen, Baole

    Buoyancy-driven convection in fluid-saturated porous media is a key environmental and technological process, with applications ranging from carbon dioxide storage in terrestrial aquifers to the design of compact heat exchangers. Porous medium convection is also a paradigm for forced-dissipative infinite-dimensional dynamical systems, exhibiting spatiotemporally chaotic dynamics if not "true" turbulence. The objective of this dissertation research is to quantitatively characterize the dynamics and heat transport in two-dimensional horizontal and inclined porous medium convection between isothermal plane parallel boundaries at asymptotically large values of the Rayleigh number Ra by investigating the emergent, quasi-coherent flow. This investigation employs a complement of direct numerical simulations (DNS), secondary stability and dynamical systems theory, and variational analysis. The DNS confirm the remarkable tendency for the interior flow to self-organize into closely-spaced columnar plumes at sufficiently large Ra (up to Ra ≃ 105), with more complex spatiotemporal features being confined to boundary layers near the heated and cooled walls. The relatively simple form of the interior flow motivates investigation of unstable steady and time-periodic convective states at large Ra as a function of the domain aspect ratio L. To gain insight into the development of spatiotemporally chaotic convection, the (secondary) stability of these fully nonlinear states to small-amplitude disturbances is investigated using a spatial Floquet analysis. The results indicate that there exist two distinct modes of instability at large Ra: a bulk instability mode and a wall instability mode. The former usually is excited by long-wavelength disturbances and is generally much weaker than the latter. DNS, strategically initialized to investigate the fully nonlinear evolution of the most dangerous secondary instability modes, suggest that the (long time) mean inter-plume spacing in

  16. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  17. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  18. Flat vs. Normal subduction, Central Chile: insights from regional seismic tomography and rock type modeling

    NASA Astrophysics Data System (ADS)

    Marot, Marianne; Monfret, Tony; Gerbault, Muriel; Nolet, Guust; Ranalli, Giorgio; Pardo, Mario

    2013-04-01

    inactive volcanic arc crust carries an ongoing thermal signature of past magmatism with high fluid content. The downdip extent of the interface zone has seismic properties indicative of fluid saturation. The aftershock region of the Punitaqui slab earthquake (z=70 km, Mw 7.1) as well as the mantle wedge corner above the flat slab are two areas of anomalous seismic properties (particularly pronounced directly above the Punitaqui earthquake), which are unexplained by normal rock compositions or temperature variations. In addition, we observe a double seismic zone (DSZ) along the JFR track and the occurrence of a reactivated fault plane at intermediate-depth following a mainshock event.

  19. Angstrom-to-millimeter characterization of sedimentary rock microstructure.

    PubMed

    Radlinski, A P; Ioannidis, M A; Hinde, A L; Hainbuchner, M; Baron, M; Rauch, H; Kline, S R

    2004-06-15

    Backscatter SEM imaging and small-angle neutron scattering (SANS) data are combined within a statistical framework to quantify the microstructure of a porous solid in terms of a continuous pore-size distribution spanning over five orders of magnitude of length scale, from 10 A to 500 microm. The method is demonstrated on a sample of natural sandstone and the results are tested against mercury porosimetry (MP) and nuclear magnetic resonance (NMR) relaxation data. The rock microstructure is fractal (D=2.47) in the pore-size range 10 A-50 microm and Euclidean for larger length scales. The pore-size distribution is consistent with that determined by MP. The NMR data show a bimodal distribution of proton T(2) relaxation times, which is interpreted quantitatively using a model of relaxation in fractal pores. Pore-length scales derived from the NMR data are consistent with the geometrical parameters derived from both the SEM/SANS and MP data. The combined SANS/BSEM method furnishes new microstructural information that should facilitate the study of capillary phenomena in hydrocarbon reservoir rocks and other porous solids exhibiting broad pore-size distributions.

  20. 4D reservoir characterization using well log data for feasible CO2-enhanced oil recovery at Ankleshwar, Cambay Basin - A rock physics diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Ganguli, Shib Sankar; Vedanti, Nimisha; Dimri, V. P.

    2016-12-01

    In recent years, rock physics modeling has become an integral part of reservoir characterization as it provides the fundamental relationship between geophysical measurements and reservoir rock properties. These models are also used to quantify the effect of fluid saturation and stress on reservoir rocks by tracking the changes in elastic properties during production. Additionally, various rock physics models can be applied to obtain the information of rock properties away from existing drilled wells, which can play a crucial role in the feasibility assessment of CO2-enhanced oil recovery (EOR) operation at field. Thus, the objective of this study is to develop a rock-physics model of the Ankleshwar reservoir to predict the reservoir response under CO2-EOR. The Ankleshwar oil field is a mature field situated in Cambay Basin (Western India) that witnessed massive peripheral water flooding for around 40 years. Since the field was under water flooding for a long term, reasonable changes in reservoir elastic properties might have occurred. To identify potential reservoir zone with significant bypassed (or residual) oil saturation, we applied the diagnostic rock physics models to two available wells from the Ankleshwar oil field. The results clearly indicate transitions from clean sands to shaly sands at the base, and from sandy shale to pure shale at the top of the reservoir pay zone, suggesting a different seismic response at the top when compared to the base of the reservoir in both the wells. We also found that clay content and sorting affects the elastic properties of these sands, indicating different depositional scenario for the oil sands encountered in the Ankleshwar formation. Nevertheless, the rock physics template (RPT) analysis of the well data provides valuable information about the residual oil zone, a potential target for CO2-EOR. Further, a 4D reservoir characterization study has been conducted to assess the seismic detectability of CO2-EOR, and we

  1. Evaporation from Near-Drift Fractured Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Manepally, C.; Fedors, R. W.; Or, D.; Das, K.

    2007-12-01

    The amount of water entering emplacement drifts from a fractured unsaturated rock is an important variable for performance evaluation of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. Water entering the drifts as liquid or gas may enhance waste package corrosion rates and transport released radionuclides. Liquid water in form of droplets may emerge from fractures, or flow along the drift wall and potentially evaporate and condense at other locations. Driven by pressure and temperature gradients, vapor may be transported along fractures, or liquid water may evaporate directly from the matrix. Within the drift, heat-driven convection may redistribute the moisture leading to condensation at other locations. The geometry of the evaporation front around the drift is not fully understood and this, in turn, influences processes related to reflux, rewetting as the thermal pulse dissipates. Existing models focus on processes in the porous media (e.g., two-phase dual-permeability models for matrix and fractures), or on processes in the drift (e.g., gas-phase computational fluid dynamics models). This study focuses on the boundary between these two domains, and the corresponding models, where evaporation at the solid rock/drift air interface appears to play an important role. Studies have shown that evaporation from porous media is a complex process sensitive to factors such as (i) hydrological properties of the porous media, (ii) pressure gradients in the porous media, (iii) texture of the interface or boundary, (iv) local vapor and temperature gradients, and (v) convective flow rate and boundary layer transfer. Experimental observations based on passive monitoring at Yucca Mountain have shown that the formation surrounding the drift is able to provide and transport large amounts of water vapor over a relatively short period. This study will examine the basic processes that govern evaporation in the unsaturated rock surrounding drifts for

  2. Porous silicon carbide (SIC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  3. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  4. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  5. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John

    1999-01-01

    We study our Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are now on top of a mountain may once have been at the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of Earth in space. One spin of Earth on its axis is a day, and one trip around the Sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  6. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John

    1993-01-01

    We study out Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are not on top of a mountain may once have been on the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of the Earth in space. One spin of Earth on its axis is a day, and one trip around the sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  7. Rocks as poroelastic composites

    SciTech Connect

    Berryman, J G

    1998-04-30

    In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at infinity is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby' work (in computing the elliptic integrals needed to evaluate the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity - and also thermoelasticity - with only trivial modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented.

  8. A smart rock

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  9. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-08-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  10. Overview - Hard Rock Penetration

    SciTech Connect

    Dunn, James C.

    1992-03-24

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  11. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-01-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  12. Compressibilities of lunar crystalline rock, microbreccia, and fines to 40 kilobars.

    PubMed

    Stephens, D R; Lilley, E M

    1970-01-30

    The compressibilities of three lunar samples were studied at room temperature from 0 to 40 kilobars. The samples were a fine-grained vesicular crystalline rock (type A), a microbreccia (type C), and fines (type D). All samples were porous. The microbreccia and fines were quite compressible at all pressures; the compressibility of the crystalline rock was somewhat less, being 8.4 megabar(-1) at 1 atmosphere and 1.5 megabar(-1) at 35 kilobars. Some porosity appeared to remain in the samples at all pressures. Thus the pressure-volume data derived from these samples may be representative of porous surface and near-surface material in the vicinity of the Apollo 11 landing site but may not be representative of lunar material at depth.

  13. Modern hardware architectures accelerate porous media flow computations

    NASA Astrophysics Data System (ADS)

    Kulczewski, Michal; Kurowski, Krzysztof; Kierzynka, Michal; Dohnalik, Marek; Kaczmarczyk, Jan; Borujeni, Ali Takbiri

    2012-05-01

    Investigation of rock properties, porosity and permeability particularly, which determines transport media characteristic, is crucial to reservoir engineering. Nowadays, micro-tomography (micro-CT) methods allow to obtain vast of petro-physical properties. The micro-CT method facilitates visualization of pores structures and acquisition of total porosity factor, determined by sticking together 2D slices of scanned rock and applying proper absorption cut-off point. Proper segmentation of pores representation in 3D is important to solve the permeability of porous media. This factor is recently determined by the means of Computational Fluid Dynamics (CFD), a popular method to analyze problems related to fluid flows, taking advantage of numerical methods and constantly growing computing powers. The recent advent of novel multi-, many-core and graphics processing unit (GPU) hardware architectures allows scientists to benefit even more from parallel processing and built-in new features. The high level of parallel scalability offers both, the time-to-solution decrease and greater accuracy - top factors in reservoir engineering. This paper aims to present research results related to fluid flow simulations, particularly solving the total porosity and permeability of porous media, taking advantage of modern hardware architectures. In our approach total porosity is calculated by the means of general-purpose computing on multiple GPUs. This application sticks together 2D slices of scanned rock and by the means of a marching tetrahedra algorithm, creates a 3D representation of pores and calculates the total porosity. Experimental results are compared with data obtained via other popular methods, including Nuclear Magnetic Resonance (NMR), helium porosity and nitrogen permeability tests. Then CFD simulations are performed on a large-scale high performance hardware architecture to solve the flow and permeability of porous media. In our experiments we used Lattice Boltzmann

  14. Building The Bell Rock Lighthouse

    ERIC Educational Resources Information Center

    Shallcross, David C.

    2005-01-01

    Ever since the first mariners sailed off the east coast of Scotland the Bell Rock has claimed many vessels and countless lives. Also known as the Inch Cape Rocks they lie 18 km off the coast at Arbroath. Located near the mouth of the Firth of Forth and its important shipping ports these dangerous rocks cover an area some 440 m long and 90 m wide.…

  15. Mars Rock Formation Poses Mystery

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This sharp, close-up image taken by the microscopic imager on the Mars Exploration Rover Opportunity's instrument deployment device, or 'arm,' shows a rock target dubbed 'Robert E,' located on the rock outcrop at Meridiani Planum, Mars. Scientists are studying this area for clues about the rock outcrop's composition. This image measures 3 centimeters (1.2 inches) across and was taken on the 15th day of Opportunity's journey (Feb. 8, 2004).

  16. [Hearing disorders and rock music].

    PubMed

    Lindhardt, Bjarne Orskov

    2008-12-15

    Only few studies have investigated the frequency of hearing disorders in rock musicians. Performing rock music is apparently associated with a hearing loss in a fraction of musicians. Tinnitus and hyperacusis are more common among rock musicians than among the background population. It seems as if some sort of resistance against further hearing loss is developed over time. The use of ear protection devices have not been studied systematically but appears to be associated with diminished hearing loss.

  17. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  18. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  19. Asphalts and asphaltenes: Macromolecular structure, precipitation properties, and flow in porous media

    NASA Astrophysics Data System (ADS)

    Rassamdana, Hossein

    Depending on rock and fluid properties, more than 50% of reservoir oil in place is normally produced by enhanced oil recovery (EOR) methods. Among the EOR techniques, miscible flooding is one of the most efficient and widely-used methods. However, this method can suffer from the formation and precipitation of asphalt aggregates. In addition, asphalt deposition is also a major hindrance to heavy oil production, and even primary recovery operations. Asphalt deposition can alter the reservoir rock properties, fluid saturation distribution, fluid flow properties, and eventually the ultimate oil recovery. The shortage of studies on the macromolecular structure and growth mechanisms of asphalt particles is the main reason for the unsuccessful modeling of their precipitation properties. The equivocal behavior of asphalt under some specific conditions could be the other reason. In this research we look at the problem of asphalt formation, flow, and precipitation from three different angles. We analyze extensive small-angle X-ray and neutron scattering data, precipitation data, and molecular weight distribution measurements, and show that they all suggest conclusively that asphalts and asphaltenes are fractal aggregates, and their growth mechanisms are diffusion-limited particle (DLP) and diffusion-limited cluster-cluster (DLCC) aggregation processes. These results lead us to development of a scaling equation of state for predicting asphalt precipitation properties, such as its onset and amount of precipitation. Another result of our study is an analytical equation for modeling the molecular weight distribution of asphalt and asphaltene aggregates. In addition, asphalt phase behavior in miscible and immiscible injections is studied. The effect of the governing thermodynamic factors, such as the pressure, temperature, and composition of the oil and precipitation agents, on the asphalt aggregation and disaggregation processes are investigated. Finally, a model is developed to

  20. Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR

    NASA Astrophysics Data System (ADS)

    Wang, R.; Mair, R. W.; Rosen, M. S.; Cory, D. G.; Walsworth, R. L.

    2004-08-01

    We report simultaneous measurements of the permeability and effective porosity of oil-reservoir rock cores using one-dimensional NMR imaging of the penetrating flow of laser-polarized xenon gas. The permeability result agrees well with industry standard techniques, whereas effective porosity is not easily determined by other methods. This NMR technique may have applications to the characterization of fluid flow in a wide variety of porous and granular media.

  1. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  2. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  3. Meridiani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-545, 15 November 2003

    Northern Sinus Meridiani is a region of vast exposures of layered, sedimentary rock. Buried within these layers are many filled impact craters. Erosion has re-exposed several formerly-buried craters in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Arrows 1 and 2 indicate craters that are still emerging from beneath layered material; arrow 3 indicates a crater that has been fully re-exposed. This image is located near 5.1oN, 2.7oW. The area shown is about 3 km (1.9 mi) wide and illuminated from the left/upper left.

  4. Rover, airbags, & surrounding rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken by the Imager for Mars Pathfinder (IMP) before sunset on July 4 (Sol 1), the spacecraft's first day on Mars. The airbags have been partially retracted, and portions the petal holding the undeployed rover Sojourner can be seen at lower left. The rock in the center of the image may be a future target for chemical analysis. The soil in the foreground has been disturbed by the movement of the airbags as they retracted.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  5. Rocks of low permeability

    NASA Astrophysics Data System (ADS)

    The 17th International Congress of the IAH (International Association of Hydrogeologists) will meet in Tucson, Ariz., January 7-10, 1985. The deadline for abstracts is March 1, 1984, and final papers are due October 15, 1984.The topic of the congress will be “Hydrogeology of Rocks of Low Permeability,” and speakers will include W. Back, J. F. Bredehoeft, G. de Marsily, J. E. Gale, P. Fritz, L. W. Gelhar, G. E. Grisak, C. W. Kreitler, M. R. Llamas, T. N. Narasimhan, I. Neretnieks, and E. P. Weeks. The congress will conclude with a panel discussion moderated by S. P. Neuman. Panelists include S. N. Davis, G. de Marsily, R. A. Freeze, P. A. Witherspoon, and I. Neretnieks.

  6. Rocks That Remember (Invited)

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.

    2009-12-01

    Parts of the continental crust preserve a magnetic memory that is billions of years old. Why do some rocks remember where they were born and others forget? Through time, continents travel over the world, but the memory preserved in some minerals remembers where they originated from, with a positioning system that can be envied even by modern technology. These magnetic mineral memory systems survived harsh environments, persevering in a magnetic field which changed in intensity and alternated in direction thousands of times, while also traveling the globe and possibly being subjected to enhanced temperatures. During all this, some crustal rocks retained most "magnetic sectors" in their "hard disk", and today create remanent magnetic anomalies reflecting the time and position of their initial remanent magnetization. Magnetic anomalies in planetary crusts are deviations from a global internal magnetic field. Measured over many length scales and at elevations ranging from near surface to satellites, crustal anomalies reflect the magnetic minerals, which respond to the changing planetary magnetic field. Anomalies are influenced by the geometry of the geological bodies, and by the magnetic and mineralogical properties of the constitutive rocks. Previously, magnetism of the continental crust has been completely described in terms of bulk ferrimagnetism of crustal minerals, and much of it due to induced magnetization. Even though remanent magnetization of the crust proved crucial for dating the ocean floor, and also is important for mineral exploration, the contribution of remanence to continental magnetic anomalies has been largely underestimated. In the course of studying remanent anomalies and the minerals responsible for them, a new interface-based remanence type, "lamellar magnetism", was discovered in rather common, slowly cooled, igneous and metamorphic rocks containing finely exsolved (10 microns to 1 nm) members of the rhombohedral hematite-ilmenite series

  7. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  8. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  9. Engineered porous metals for implants

    NASA Astrophysics Data System (ADS)

    Vamsi Krishna, B.; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Interest is significant in patient-specific implants with the possibility of guided tissue regeneration, particularly for load-bearing implants. For such implants to succeed, novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in the implants are necessary. This article is focused on porous load-bearing implants with tailored micro-as well as macrostructures using laser-engineered net shaping (LENS™), a solid freeform fabrication or rapid prototyping technique that can be used to manufacture patient-specific implants. This review provides an insight into LENS, some properties of porous metals, and the potential applications of this process to fabricate unitized structures which can eliminate longstanding challenges in load-bearing implants to increase their in-vivo lifetime, such as in a total hip prosthesis.

  10. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  11. Deformation and fluid flow during fault zone development in granitic rocks

    SciTech Connect

    Pollard, D.D.; Buergmann, R.; Christiansen, P.P. . Geology Dept.); Martel, S.J. )

    1992-01-01

    Fault zone development in crystalline rock of the Lake Edison granodiorite, Sierra Nevada, California, is characterized by five stages with distinct physical mechanisms, each identified by outcrop mapping, and understood through mechanical analysis. Because fluid flow through the developing fault system can influence the rock properties and loading, and because rock fracturing can influence the fluid pathways, the phenomena of deformation and fluid flow are closely coupled. Both the faulting mechanisms and the evolution of permeability in crystalline rocks are demonstrably different from fault zones in porous sedimentary rocks. The paper describes the five stages of fault development. Deformation of the adjacent granodiorite at each stage of growth for a particular fault zone depended on the distribution of slip. This distribution is a function of the remote stress state, the constitutive rock properties, the geometry of the fault surfaces, and their frictional properties. Simple forward models, using elasticity theory, illustrate how the displacement distributions can vary with remote loading, friction, and geometry. Inverse methods provide the analytical tools to deduce these variables from outcrop data, but their implementation awaits a credible model that couples the fluid flow and rock deformation.

  12. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs.

    PubMed

    Lima, Gláucia; Parker, Beth; Meyer, Jessica

    2012-06-05

    Microbiological characterizations of contaminant biodegradation in fractured sedimentary rock have primarily focused on the biomass suspended in groundwater samples and disregarded the biomass attached to fractures and in matrix pores. In fractured sedimentary rock, diffusion causes nearly all contaminant mass to reside in porous, low-permeability matrix. Microorganisms capable of contaminant degradation can grow in the matrix pores if the pores and pore throats are sufficiently large. In this study, the presence of dechlorinating microorganisms in rock matrices was investigated at a site where a fractured, flat-lying, sandstone-dolostone sequence has been contaminated with a mixture of chlorinated and aromatic hydrocarbons for over 40 years. The profile of organic contaminants as well as the distribution and characterization of the microbial community spatial variability was obtained through depth-discrete, high-frequency sampling along a 98-m continuous rock core. Dechlorinating microorganisms, such as Dehalococcoides and Dehalobacter, were detected in the rock matrices away from fracture surfaces, indicating that biodegradation within the rock matrix blocks should be considered as an important component of the system when evaluating the potential for natural attenuation or remediation at similar sedimentary rock sites.

  13. Diffusion in porous crystalline materials.

    PubMed

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  14. Heterogeneous porous media in hydrology

    NASA Astrophysics Data System (ADS)

    Ababou, Rachid

    In natural geologic formations, flow and transport-related processes are perturbed by multidimensional and anisotropic material heterogeneities of diverse sizes, shapes, and origins (bedding, layering, inclusions, fractures, grains, for example). Heterogeneity tends to disperse and mix transported quantities and may initiate new transfer mechanisms not seen in ideally homogeneous porous media. Effective properties such as conductivity and dispersivity may not be simple averages of locally measured quantities.The special session, “Effective Constitutive Laws for Heterogeneous Porous Media,” convened at AGU's 1992 Fall Meeting in San Francisco, addressed these issue. Over forty-five contributions, both oral and poster, covering a broad range of physical phenomena were presented. The common theme was the macroscale characterization and modeling of flow and flow-related processes in geologic media that are heterogeneous at various scales (from grain size or fracture aperture, up to regional scales). The processes analyzed in the session included coupled hydro-mechanical processes; Darcy-type flow in the saturated, unsaturated, or two-phase regimes; tracer transport, dilution, and dispersion. These processes were studied for either continuous (porous) or discontinuous (fractured) media.

  15. Bakhtin's Dialogics and Rock Lyrics.

    ERIC Educational Resources Information Center

    Knight, Jeff Parker

    Rock music is ideological both implicitly (in its intrinsic valuing of change, and resistance to authority, for instance), and explicitly (in political records from activist artists such as John Lennon and U2). The texts of the rock genre offer rhetorical experiences. A dialogic conception may help scholars to account for and describe the…

  16. The Rock Climbing Teaching Guide.

    ERIC Educational Resources Information Center

    Kudlas, John

    The product of 10 years of rock climbing instruction, this guide provides material from which an instructor can teach basic climbing concepts and safety skills as well as conduct a safe, enjoyable rock climbing class in a high school setting. It is designed for an instructor with limited experience in climbing; however, the need for teacher…

  17. Rocking Ratchets at High Frequencies

    NASA Astrophysics Data System (ADS)

    Reimann, Peter

    A pedagogical introduction to basic physical and mathematical concepts of stochastic modeling is given for the specific example of a rocking ratchet system. Perturbative methods are illustrated by deriving the leading order behavior of the particle current for asymptotically fast rocking forces.

  18. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  19. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  20. Further Reflections on Little Rock

    ERIC Educational Resources Information Center

    Allen, Danielle S.

    2007-01-01

    The famous photo of Hazel Bryan jeering at Elizabeth Eckford as a mob helped drive Elizabeth from Central High School in Little Rock, Arkansas, on September 4, 1957, compels meditation on the nature of democratic politics. This scene is commemorative of the Little Rock events where school segregation was rampant. The author believes that the photo…

  1. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  2. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect

    James G. Hirth

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the

  3. Biopolymer system for permeability modification in porous media

    SciTech Connect

    Stepp, A.K.; Bryant, R.S.; Llave, F.M.

    1995-12-31

    New technologies are needed to reduce the current high rate of well abandonment. Improved sweep efficiency, reservoir conformance, and permeability modification can have a significant impact on oil recovery processes. Microorganisms can be used to selectively plug high-permeability zones to improve sweep efficiency and impart conformance control. Studies of a promising microbial system for polymer production were conducted to evaluate reservoir conditions in which this system would be effective. Factors which can affect microbial growth and polymer production include salinity, pH, temperature, divalent ions, presence of residual oil, and rock matrix. Flask tests and coreflooding experiments were conducted to optimize and evaluate the effectiveness of this system. Nuclear magnetic resonance imaging (NMRI) was used to visualize microbial polymer production in porous media. Changes in fluid distribution within the pore system of the core were detected.

  4. Dynamics of water evaporation from saline porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-04-01

    Understanding of the dynamics of salt transport and precipitation in porous media during evaporation is of crucial concern in various environmental and hydrological applications such as soil salinization, rock weathering, terrestrial ecosystem functioning, microbiological activities and biodiversity in vadose zone. Vegetation, plant growth and soil organisms can be severely limited in salt-affected land. This process is influenced by the complex interaction among atmospheric conditions, transport properties of porous media and properties of the evaporating solution (1-5). We investigated effects of mixed wettability conditions on salt precipitation during evaporation from saline porous media. To do so, we conducted a series of evaporation experiments with sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. The dynamics of salt precipitation at the surface of sand columns (mounted on digital balances to record the evaporation curves) as well as the displacement of the receding drying front (the interface between wet and partially wet zone) were recorded using an automatic imaging system at well-defined time intervals. The experiments were conducted with sand packs containing 0, 25, 40, 50, 65, and 80% fraction of hydrophobic grains. All experiments were conducted in an environmental chamber in which the relative humidity and ambient temperature were kept constant at 30% and 30 C, respectively. Our results show that partial wettability conditions had minor impacts on the evaporative mass losses from saline sand packs due to the presence of salt. This is significantly different than what is normally observed during evaporation from mixed wettability porous media saturated with pure water (6). In our experiments, increasing the fraction of hydrophobic grains did not result in any notable reduction of the evaporative mass losses from saline porous media. Our results show that the presence of hydrophobic grains on the surface

  5. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  6. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  7. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    PubMed Central

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  8. Widespread evidences of hoarfrost formation at a rock glacier in the Seckauer Tauern, Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, A.; Winkler, G.; Pauritsch, M.

    2012-04-01

    The mechanism of deep reversible air circulation (the so called "chimney effect" or "wind tube") is known to be a process of ground overcooling in the lower and deeper parts of porous sediments and related landforms such as scree slopes or intact and relict rock glaciers. Warm air outflow emerging from relatively small voids within these mostly coarse-grained sediment bodies is sometimes noticeable. However, easier to identify are associated phenomena such as snowmelt windows, snow cover depressions and hoarfrost formations. Generally, these indications for warm air outflow are found at the upper part of scree slopes or the rooting zone of rock glaciers. Here we present widespread field evidences of hoarfrost from the pseudo-relict Schöneben Rock Glacier in the Seckauer Tauern Range, Austria located at E14°40'26'' and N47°22'31''. Herewith, a pseudo-relict rock glacier is defined as an intermediate rock glacier type between a relict and a climatic-inactive rock glacier, hence a relict rock glacier with locally isolated patches of permafrost. The rock glacier covers an area of about 0.11km2, ranges from ca. 1720 to 1905 m a.s.l., and consists predominantly of coarse-grained gneissic sediments with blocks up to a size of several cubic metres at the surface. In particular the lower part and some ridges in the central and upper part are covered by dwarf pines (pinus mugo) mirroring the flow structure of the previously active rock glacier. Isolated permafrost occurs presumably at the rooting zone of the rock glacier as indicated by evidences from a neighbouring rock glacier in a comparable setting. Field observations in November 2011 showed widespread occurrences of hoarfrost crystals growing around the funnel edge indicating the sublimation of vapour from warm funnels. Such hoarfrost sites were found at more than 50 single locations distributed over the entire rock glacier from the tongue to the rooting zone generally. The occurrence of hoarfrost can get classified

  9. Parametric study of barometric pumping of a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean Francois; Pili, Eric; Guillon, Sophie

    2015-04-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous fractured media. This mechanism, known as barometric pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in fields, such as transport of trace gases from soil to atmosphere, remediation of contaminated sites, radon in buildings, leakage from carbon sequestration sites and detection of nuclear explosions. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a permeable matrix. The slightly compressible fluid obeys Darcy's law in these two media with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges. The numerical methodology is briefly described. The fractures and the porous medium are meshed by triangles and tetrahedra, respectively. The equations are discretized by the finite volume method and a Flux Limiting Scheme diminishes numerical dispersion. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The standard case consist of hexagonal fractures with a radius of 5m, of aperture 0.5 mm and of density larger than 2.4 10-3 m-3; the pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week; the solute concentration is equal to 1 at the bottom. Systematic results will be presented. First, the precision of the calculations is assessed. Second, the pressure and solute concentration fields are displayed and discussed. Within the time limit, the influence of the major parameters (fracture density, aperture, porosity, diffusion coefficient, pressure fluctuations including real recordings, …) is illustrated and discussed relatively to the standard case. Emphasis is put on some paradoxical results which are obtained. These results are discussed in terms of the amplification of solute

  10. Heteroatom-doped highly porous carbon from human urine

    PubMed Central

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-01-01

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time “proof of concept” of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared “Urine Carbon” (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework. PMID:24909133

  11. Thermal conductivity modeling in variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Daigle, H.

    2015-12-01

    Modeling effective thermal conductivity under variably saturated conditions is essential to study heat transfer in natural sediments, soils, and rocks. The effective thermal conductivity in completely dry and fully saturated porous media is an integrated quantity representing the complex behavior of two conducting phases, i.e., pore fluid (either air or water) and solid matrix. Under partially saturated conditions, however, the effective thermal conductivity becomes even more complicated since three phases (air, water, and solid matrix) conduct heat simultaneously. In this study, we invoke an upscaling treatment called percolation-based effective-medium approximation to model the effective thermal conductivity in fully and partially saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as air, solid matrix, and saturating fluid thermal conductivities, a percolation exponent t, and a percolation threshold. Comparing our theory with 216 porosity-dependent thermal conductivity measurements and 25 saturation-dependent thermal conductivity datasets indicate excellent match between theory and experiments. Our results show that the effective thermal conductivity under fully and partially saturated conditions follows nonuniversal behavior. This means the value of t changes from medium to medium and depends not only on topological and geometrical properties of the medium but also characteristics of the saturating fluid.

  12. Heteroatom-doped highly porous carbon from human urine

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-01

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time ``proof of concept'' of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared ``Urine Carbon'' (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  13. A Monte Carlo paradigm for capillarity in porous media

    SciTech Connect

    Lu, Ning; Zeidman, Benjamin D.; Lusk, Mark T.; Willson, Clinton S.; Wu, David T.

    2011-08-09

    Wet porous media are ubiquitous in nature as soils, rocks, plants, and bones, and in engineering settings such as oil production, ground stability, filtration and composites. Their physical and chemical behavior is governed by the distribution of liquid and interfaces between phases. Characterization of the interfacial distribution is mostly based on macroscopic experiments, aided by empirical formulae. We present an alternative computational paradigm utilizing a Monte Carlo algorithm to simulate interfaces in complex realistic pore geometries. The method agrees with analytical solutions available only for idealized pore geometries, and is in quantitative agreement with Micro X-ray Computed Tomography (microXCT), capillary pressure, and interfacial area measurements for natural soils. We demonstrate that this methodology predicts macroscopic properties such as the capillary pressure and air-liquid interface area versus liquid saturation based only on the pore size information from microXCT images and interfacial interaction energies. The generality of this method should allow simulation of capillarity in many porous materials.

  14. A pore network model for adsorption in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1995-01-26

    Using a pore network model to represent porous media we investigate adsorption-desorption processes over the entire range of the relative pressure, highlighting in particular capillary condensation. The model incorporates recent advances from density functional theory for adsorption-desorption in narrow pores (of order as low as 1 nm), which improve upon the traditional multi-layer adsorption and Kelvin's equation for phase change and provide for the dependence of the critical pore size on temperature. The limited accessibility of the pore network gives rise to hysteresis in the adsorption-desorption cycle. This is due to the blocking of larger pores, where adsorbed liquid is allowed to but cannot desorb, by smaller pores containing liquid that may not desorb. By allowing for the existence of supercritical liquid in pores in the nm range, it is found that the hysteresis area increases with an increase in temperature, in agreement with experiments of water adsorption-desorption in rock samples from The Geysers. It is also found that the hysteresis increases if the porous medium is represented as a fractured (dual porosity) system. The paper finds applications to general adsorption-desorption problems but it is illustrated here for geothermal applications in The Geysers.

  15. Heteroatom-doped highly porous carbon from human urine.

    PubMed

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-09

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time "proof of concept" of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared "Urine Carbon" (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  16. Piezoelectric and piezooptic effects in porous silicon

    NASA Astrophysics Data System (ADS)

    Vinikman-Pinhasi, Shirly; Ribak, Erez N.

    2006-03-01

    Although silicon is a simple cubic crystal, it can be induced to have a piezoelectric response, by making pores in it and thus spoiling its symmetry. By etching a silicon wafer into porous material, we found that it responds to voltage applied to it, as well as to light. A porous shallow layer on the surface of the wafer induced bimorph bending roughly proportional to the voltage squared. Illuminating the porous patch caused a similar bending.

  17. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.; Begue, F.; Pamukcu, A. S.; Gravley, D. M.

    2013-12-01

    Constraining the pressure of crystallization of magmas is an important but elusive task. We propose here a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the shift of the quartz-feldspar saturation surface towards higher silica with decreasing pressure. The critical realization is that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition of interest. Thus, this method consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using Monte Carlo simulations, which reveal errors of ~20-45 MPa for the quartz+2 feldspars constraint and of ~25-100 MPa for the quartz+1 feldspar constraint; actual errors are likely closer to the lower bounds of these ranges. We demonstrate that the effect of fluid-saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations (>3 wt. %). And, we show that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O-CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data has been compiled from the literature. We apply the rhyolite-MELTS barometer to three systems we are currently studying in detail: (1) For the Bishop Tuff (CA, USA), we find that quartz-hosted glass inclusion compositions yield indistinguishable crystallization pressures for early-erupted and late-erupted pumice, consistent with the Bishop Tuff having

  18. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  19. Effects Of Fracture Density And Anisotropy On Delineation Of Wellhead-Projection Areas In Fractured-Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Bradbury, K. R.; Muldoon, M. A.

    1994-03-01

    Most wellhead protection studies in fractured-rock aquifers rely on the assumption that the aquifer approximates a porous medium at the scale of the wellhead protection area. Significant errors can result if the assumption is incorrectly applied. Some authors have developed theoretical and subjective criteria for determining when the porous-media approximation is appropriate. Most of these criteria, however, require detailed field work to test the validity of the porous-media approximation. Experiments have been carried out with Roucleau's two-dimensional discrete fracture flow model coupled with a particle-tracking code to determine when the porous-media approximation is appropriate for delineating the capture zone of a well drilled in fractured rock. Specifically, the effects of anisotropy and fracture density on the capture-zone determination have been examined. It has been found that, even in densely fractured aquifers, the zone of contribution determined by the fracture-flow model is significantly larger than the capture zone determined by porous-media-based models.

  20. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    SciTech Connect

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.