Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks.
Garra, Roberto
2011-09-01
We study a fractional time derivative generalization of a previous Natale-Salusti model about nonlinear temperature and pressure waves, propagating in fluid-saturated porous rocks. Their analytic solutions, i.e., solitary shock waves characterized by a sharp front, are here generalized, introducing a formalism that allows memory mechanisms. In realistic wave propagation in porous media we must take into account spatial or temporal variability of permeability, diffusivity, and other coefficients due to the system "history." Such a rock fracturing or fine particulate migration could affect the rock and its pores. We therefore take into account these phenomena by introducing a fractional time derivative to simulate a memory-conserving formalism. We also discuss this generalized model in relation to the theory of dynamic permeability and tortuosity in fluid-saturated porous media. In such a realistic model we obtain exact solutions of Burgers' equation with time fractional derivatives in the inviscid case.
Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks
NASA Astrophysics Data System (ADS)
Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua
2016-12-01
Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.
Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks
NASA Astrophysics Data System (ADS)
Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua
2017-03-01
Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.
Do seismic waves and fluid flow sense the same permeability in fluid-saturated porous rocks?
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Monachesi, L. B.; Guarracino, L.; Müller, T. M.; Holliger, K.
2012-04-01
Wave-induced flow due to the the presence of mesoscopic heterogeneities, that is, heterogeneities that are larger than the pore size but smaller than the prevailing seismic wavelengths, represents an important seismic attenuation mechanism in fluid-saturated porous rocks. In this context, it is known that in the presence of strong permeability fluctuations, there is a discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow. While this subject has been analyzed for the case of random 1D media, the corresponding 2D and 3D cases remain unexplored, mainly due to the fact that, as opposed to the 1D case, there is no simple expression for the effective flow permeability. In this work we seek to address this problem through the numerical analysis of 2D rock samples having strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by homogeneous fields, with permeability values given by the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that the attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.
(Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)
Adler, L.
1992-01-01
During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.
[Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report
Adler, L.
1992-07-01
During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.
Standing Torsional Waves in Fluid-Saturated Porous Circular Cylinder
NASA Astrophysics Data System (ADS)
Solorza, S.; Sahay, P. N.
2002-12-01
For dynamic measurement of elastic constants of a porous material saturated with viscous fluid when resonance-bar technique is applied, one also observes attenuation of the wave field. The current practice is to interpret it in terms of solid-viscosity by assuming a viscoelastic rheology for porous material. The likely mechanisms of attenuation in a fluid saturated porous material are: 1) motion of the fluid with respect to the solid frame and 2) viscous loss within the pore fluid. Therefore, it is appropriate to assume a poroelastic rheology and link the observed attenuation value to fluid properties and permeability. In the framework of poroelastic theory, the explicit formula linking attenuation to the properties of solid and fluid constituents and permeability are not worked out yet. In order to established such a link one has to workout solutions of appropriate boundary value problems in such a framework. Here, we have carried out the solution of boundary value problem associated with torsional oscillation of a finite poroelastic circular cylinder, casted in the framework of volume-averaged theory of poroelasticity. Analysing this solution by a perturbative approach we are able to develop explicit expressions for resonance frequency and attenuation for this mode of vibration. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry porous frame due to the effect of the fluid-mass.
Wave propagation in fluid-saturated porous media
NASA Astrophysics Data System (ADS)
Ren, Jiaxiang
The wave propagation in fluid-saturated porous media is studied by solving the Biot equations, the governing equations for the motion of the porous medium. Methods are devised to solve the Biot equations for different problems and medium models. The problem of the reflection and transmission at an interface is solved by using the eigen-analysis of the Biot equations. The displacement-stress vectors in the media on both sides of the interface are represented by corresponding upgoing and downgoing wave vectors which are then linked by the boundary conditions on the interface. The reflection and transmission coefficients are extracted from the proportionalities between the upgoing and downgoing waves. For an incident fast wave or shear wave, the reflection and transmission coefficients for the reflected and transmitted slow waves are very sensitive to frequency and interface permeability (kappasb{I}); while those for the reflected and transmitted fast waves and shear waves are not, except when incident angles are close to and greater than critical angles. For sandstones, the amplitudes of the reflected and transmitted slow waves could be several percent of the amplitude of the incident fast wave or shear wave. Higher interface permeabilities favor the generation of the slow wave. The slow waves generated at an open interface (kappasb{I}->infty) and a sealed interface (kappasb{I}=0) could be one-order different in amplitude. The reflection and transmission at an interface have been extended to the model composed of multi-layers of porous media. An algorithm based on the compact finite-difference method is developed for 2-D seismic modeling. The compact finite-difference method is used to estimate the spatial derivatives in the Biot equations, with a 6sp{th}-order accuracy. It needs fewer grid intervals to represent a mono-wavelength function than the traditional 2sp{nd}-order central-difference method. Therefore, the algorithm based on the compact finite
The use of agarose gels for quantitative determination of fluid saturations in porous media.
Chang, C T; Mandava, S; Watson, A T; Sarkar, S; Edwards, C M
1993-01-01
The use of agarose gel reference standards for quantifying petrophysical properties in porous media is described. The specific interest is to determine the values of fluid saturations and porosity in oil bearing rocks; the MRI methodology for estimating these properties is discussed. It is shown that the relaxation times of the gel reference standard and the relaxation times of the fluid contained in the porous media affect the estimation process. The determination of porosity and fluid saturations can be greatly simplified if the relaxation times of the reference standard and the relaxation times of the fluid are closely matched. Gel concentration of paramagnetic impurities in the form of copper ions is used to control the longitudinal relaxation properties. The relaxation properties of agarose gels, as a function of agarose and paramagnetic impurity concentrations, have been measured at 2.0 T. The data are well fitted by a simple polynomial in agarose concentration and paramagnetic impurity concentration. Finally, a one-dimensional imaging example of use of agarose gels as reference phantoms is discussed.
Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall
Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.
1997-12-01
Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.
Seismic attenuation: Laboratory measurements in fluid saturated rocks
NASA Astrophysics Data System (ADS)
Subramaniyan, Shankar; Madonna, Claudio; Tisato, Nicola; Saenger, Erik; Quintal, Beatriz
2014-05-01
Seismic wave attenuation could be used as an indicator of reservoir fluids due to its dependence on rock and fluid properties. Over the past 30 years, many laboratory methodologies to study attenuation in rocks have been employed, such as ultrasonic (MHz), resonant bar (kHz) and forced oscillation methods in the low frequency range (0.01-100Hz) (Tisato & Madonna 2012; Madonna & Tisato 2013). Forced oscillation methods have gained prominence over time as the frequency range of measurements correspond to that of field seismic data acquired for oil/gas exploration. These experiments measure attenuation as the phase shift between the applied stress (sinusoidal) and measured strain. Since the magnitudes of measured phase shifts are quite low (Q-1 ~0.01-0.1) and the amplitudes of strain applied to the rock samples are of the order ~10-6 (i.e., similar orders of magnitude to seismic waves), it is challenging. A comparison of such forced oscillation setups will be presented to provide an overview of the various possibilities of design and implementation for future setups. In general, there is a lack of laboratory data and most of the published data are for sandstones. Currently, attenuation measurements are being carried out on carbonate and sandstone samples. We employ the Seismic Wave Attenuation Module (SWAM, Madonna & Tisato 2013) to measure seismic attenuation in these samples for different saturation degrees (90% and 100% water) and under three different confining pressures (5, 10 and 15MPa). Preliminary results from these investigations will be discussed. REFERENCES Madonna, C. & Tisato, N. 2013: A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, doi: 10.1111/1365-2478.12015. Tisato, N. & Madonna, C. 2012: Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86, 44-53.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow
NASA Astrophysics Data System (ADS)
Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.
1998-06-01
Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.
NASA Astrophysics Data System (ADS)
Na, S.; Sun, W.; Yoon, H.; Choo, J.
2016-12-01
Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tsiklauri, David
2002-09-01
It is known that a boundary slip velocity starts to play an important role when the length scale over which the fluid velocity changes approaches the slip length, i.e., when the fluid is highly confined, for example, fluid flow through porous rock or blood vessel capillaries. Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established the existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micrometers. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot [J. Acoust. Soc. Am. 28, 179-191 (1956)] is investigated. Namely, the effect of introduction of boundary slip upon the function F(kappa) that measures the deviation from Poiseuille flow friction as a function of frequency parameter kappa is studied. By postulating phenomenological dependence of the slip velocity upon frequency, notable deviations in the domain of intermediate frequencies in the behavior of F(kappa) are introduced with the incorporation of the boundary slip into the model. It is known that F(kappa) crucially enters Biot's equations, which describe dynamics of fluid-saturated porous solid. Thus, consequences of the nonzero boundary slip by calculating the phase velocities and attenuation coefficients of both rotational and dilatational waves with the variation of frequency are investigated. The new model should allow one to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. In fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the
Tao, Chao; Jiang, Jack J; Czerwonka, Lukasz
2010-05-01
The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small-amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph.D., dissertation, 1991, University of Iowa). (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Manole, D.M.; Lage, J.L.; Antohe, B.V.
1995-12-31
Hadley circulation induced by horizontal and vertical temperature gradients imposed on a fluid saturated porous medium layer is simulated numerically. The flow is assumed to be longitudinal, that is the secondary flow is composed of cells with axes transverse to the direction of the Hadley circulation. Critical (bifurcation) states predicted theoretically via linear stability analysis are verified by the numerical results giving confidence on the accuracy of the method. Several values of horizontal Rayleigh number, Ra{sub h}, and vertical Rayleigh number, Ra{sub v}, are studied. Results indicate that beyond a threshold horizontal Rayleigh number value the flow and temperature fields evolve from subcritical Hadley circulation to a supercritical time periodic flow. The secondary flow emerges in the form of a traveling wave aligned with the main (Hadley) flow direction. This traveling wave is characterized, at supercritical low vertical Rayleigh numbers, by the continuous drifting of two horizontal layers of flow cells that move in opposite directions. As the vertical Rayleigh number increases, the traveling wave becomes characterized by a unique layer of cells drifting in the direction opposite to the applied horizontal temperature gradient. Numerical animation unravels the main features of the transport process. This simplified model is of fundamental and practical importance, for instance, to the study of geothermal activities, underground transport of pollutants, paper processing, crystal growth, building insulation, and gas reservoirs.
Diffusion of high-frequency energy in fluid-saturated porous media
NASA Astrophysics Data System (ADS)
Savin, Eric
2004-05-01
The modern mathematical theory of microlocal analysis shows that the energy associated with the high-frequency solutions of hyperbolic partial differential equations (such as the wave or the Navier equations) satisfy Liouville-type transport equations, or radiative transfer equations for randomly heterogeneous media. For long propagation times the latter can be approached by diffusion equations. Some classical results of the structural acoustics literature about the heat conduction analogy and the statistical energy analysis of structural dynamics at higher frequencies are recovered in this process. The purpose of this communication is to focus on such a diffusive regime for isotropic, fluid-saturated porous media. More specifically, we have derived the diffusion parameters (transport mean-free path and diffusion constant) for such media. Our model considers Biot's equations of poroelasticity, where thermal and viscous effects are modelized by dynamic tortuosity and compressibility with singular memory kernels. The macroscopic bulk modulus and density of the dry solid phase are assumed to be homogeneous random processes, while tortuosity and porosity remain constant.
Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )
1988-11-01
A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa
2009-06-01
SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front
Modeling of wave processes in blocky media with porous and fluid-saturated interlayers
NASA Astrophysics Data System (ADS)
Sadovskii, Vladimir M.; Sadovskaya, Oxana V.; Lukyanov, Alexander A.
2017-09-01
The wave processes in blocky media are analyzed by applying different mathematical models, wherein the elastic blocks interact with each other via pliant interlayers with the complex mechanical properties. Four versions of constitutive equations are considered. In the first version, an elastic interaction between the blocks is simulated within the framework of linear elasticity theory, and the model of elastic-plastic interlayers is constructed to take into account the appearance of irreversible deformation of interlayers at short time intervals. In the second one, the effects of viscoelastic shear in the interblock interlayers are taken into the consideration using the Poynting-Thomson rheological scheme. In the third option, the model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. In the fourth case, the model of a fluid-saturated material with open pores is examined based on Biot's equations. The collapse of pores is modeled by the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact, which is used to describe the behavior of materials with the different resistance to tension and compression. It was shown that the thermodynamically consistent model is provided, which means that the energy balance equation is fulfilled for an entire blocky structure, where the kinetic and potential energy of the system is the sum of the kinetic and potential energies of the blocks and interlayers. Under numerical implementation of the interlayers models, the dissipationless finite difference Ivanov's method was used. The splitting method by spatial variables in the combination with the Godunov gap decay scheme was applied in the blocks. As a result, robust and stable computational algorithms are built and
NASA Astrophysics Data System (ADS)
Schmidt, Max W.; Ulmer, Peter
2004-04-01
Fluid saturated high-pressure experiments often result in strongly zoned experimental charges, this hinders experimentation in chemically homogeneous systems which in turn has serious consequences on equilibration, reaction progress, and (apparent) phase stabilities. In order to overcome these problems, a 600-ton press accommodating either a multianvil or end-loaded piston cylinder module has been mounted in such a way that it can be turned by 180°, thus inverting its position in the gravity field. During turning, hydraulic pressure, heating power, and cooling water remain connected allowing fully controlled pressures and temperatures during experiments. A series of experiments at 13 GPa, 950°C, on a serpentine bulk composition in the MgO-SiO 2-H 2O system demonstrates that continuous turning at a rate of 2 turns/min results in a nearly homogeneous charge composed of phase E + enstatite. The same experiment at static conditions resulted in four mineral zones: quench phase E, enstatite, enstatite + phase E, and phase E + phase A. Phase A disappears in experiments at a turning rate ≥1 turn/min. A static 15-min experiment shows that zonation already forms within this short time span. Placing two short capsules within a single static experiment reveals that the fluid migrates to the hot spot in each capsule and is not gravitationally driven toward the top. The zonation pattern follows isotherms within the capsule, and the degree of zonation increases with temperature gradient (measured as 10 °C within a capsule) and run time. Our preferred interpretation is that Soret diffusion causes a density-stratified fluid within the capsule that does not convect in a static experiment and results in temperature dependant chemical zonation. The aggravation of zonation and appearance of additional phases with run time can be explained with a dissolution-reprecipitation process where the cold spot of the capsule is relatively MgO enriched and the hot spot relatively SiO 2 and H
Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong
2013-01-01
The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Seddeek, M A
2006-01-01
Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.
NASA Astrophysics Data System (ADS)
Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.
2016-12-01
In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
NASA Astrophysics Data System (ADS)
Malashetty, M. S.; Basavaraja, D.
The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed.
Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers
Pillatsis, G.; Taslim, M.E.; Narusawa, U. )
1987-08-01
A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2d{sub m} sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers-Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four dimensional parameters: {cflx d} (= d{sub m}/d, the depth ratio), {delta} (= {radical}K/d{sub m} with K being the permeability of the porous medium) {alpha} (the proportionality constant in the Beavers-Joseph condition), and k/k{sub m} (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
Turbulent flow over a channel with fluid-saturated porous bed
USDA-ARS?s Scientific Manuscript database
The characteristics of fully developed turbulent flow in a hybrid domain channel, which consists of a clear fluid region and a porous bed, are examined numerically using a model based on the macroscopic Reynolds-averaged Navier–Stokes equations. By adopting the classical continuity interface conditi...
Onset of centrifugal convection in a magnetic-fluid-saturated porous medium
NASA Astrophysics Data System (ADS)
Saravanan, S.; Yamaguchi, H.
2005-08-01
This paper concerns the influence of magnetic field on the onset of centrifugal convection in a magnetic-fluid-filled differentially heated porous layer placed in zero-gravity environment by linear stability theory. The axis of rotation of the layer is placed anywhere within its boundaries, which leads to an alternating direction of the centrifugal body force. The critical centrifugal Rayleigh number, the critical wave number, and the eigenfunctions corresponding to two-dimensional flow pattern at the threshold are calculated using a combination of analytical and numerical methods. Results show significant effects even for low magnetic-field strength when the axis location is located near the cold boundary. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted depending on the axis location and particle magnetization to induce more developed convection currents.
Liquifaction of fluid saturated rocks due to explosion-induced stress waves
Dey, T.N.; Brown, J.A.
1990-01-01
Shock-induced liquefaction of a water-saturated rock may occur during the passage of a large amplitude stress wave, such as that due to an explosive. We studied this phenomena numerically with the aid of a material model which incorporates effective stress principles, and experimentally with a gas gun. Our numerical model is capable of calculating material response for both small and large deformation and any initial saturation. Phase transitions of the solid phase and the water phase are also allowed. Fitting the model to dry gas gun experiments allowed reasonable predictions of nearly saturated experiments. Liquefaction, the loss of shear strength when pore pressure exceeds the mean stress, appears to occur during the unloading portion of these experiments. The pore crushing which occurs, even under fully saturated conditions, leads to greater attenuation of a stress wave, as well as liquefaction of the rock and a lengthening of the wave duration, as the wave passes. 12 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Taleb, A.; BenHamed, H.; Ouarzazi, M. N.; Beji, H.
2016-05-01
We report theoretical and numerical results on bifurcations in thermal instability for a viscoelastic fluid saturating a porous square cavity heated from below. The modified Darcy law based on the Oldroyd-B model was used for modeling the momentum equation. In addition to Rayleigh number ℜ, two more dimensionless parameters are introduced, namely, the relaxation time λ1 and the retardation time λ2. Temporal stability analysis showed that the first bifurcation from the conductive state may be either oscillatory for sufficiently elastic fluids or stationary for weakly elastic fluids. The dynamics associated with the nonlinear interaction between the two kinds of instabilities is first analyzed in the framework of a weakly nonlinear theory. For sufficiently elastic fluids, analytical expressions of the nonlinear threshold above which a second hysteretic bifurcation from oscillatory to stationary convective pattern are derived and found to agree with two-dimensional numerical simulations of the full equations. Computations performed with high Rayleigh number indicated that the system exhibits a third transition from steady single-cell convection to oscillatory multi-cellular flows. Moreover, we found that an intermittent oscillation regime may exist with steady state before the emergence of the secondary Hopf bifurcation. For weakly elastic fluids, we determined a second critical value ℜ2 Osc ( λ 1 , λ 2 ) above which a Hopf bifurcation from steady convective pattern to oscillatory convection occurs. The well known limit of ℜ2 Osc ( λ 1 = 0 , λ 2 = 0 ) = 390 for Newtonian fluids is recovered, while the fluid elasticity is found to delay the onset of the Hopf bifurcation. The major new findings were presented in the form of bifurcation diagrams as functions of viscoelastic parameters for ℜ up to 420.
NASA Astrophysics Data System (ADS)
Kubik, J.; Cieszko, M.
2005-12-01
The compatibility conditions matching macroscopic mechanical fields at the contact surface between a fluid-saturated porous solid and an adjacent bulk fluid are considered. The general form of balance equations at that discontinuity surface are analyzed to obtain the compatibility conditions for the tangent and normal components of the velocity and the stress vector fields. Considerations are based on the procedure similar to that used in the phenomenological thermodynamics for derivation of constitutive relations, where the entropy inequality and the concept of Lagrange multipliers are applied. This procedure made possible to derive the compatibility conditions for the viscous fluid flowing tangentially and perpendicularly to the boundary surface of the porous solid and to formulate the generalized form of the so called slip condition for the fluid velocity field, postulated earlier by Beavers and Joseph, J. Fluid. Mech. 30, 197-207 (1967).
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
McClure, James E.; Berrill, Mark A.; Gray, William G.; ...
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
NASA Astrophysics Data System (ADS)
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
McClure, James E; Berrill, Mark A; Gray, William G; Miller, Cass T
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
NASA Astrophysics Data System (ADS)
Pažanin, Igor; Siddheshwar, Pradeep G.
2017-03-01
In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.
NASA Astrophysics Data System (ADS)
Chandler, Richard N.; Johnson, David Linton
1981-05-01
We have established in a simple and straightforward fashion that the analysis of quasistatic flow in fluid-saturated porous media due to Rice and Cleary is derivable from the low-frequency limit of Biot's slow compressional/diffusive mode. The single material parameter of the problem, the diffusivity, is simply related to the bulk and shear moduli and permeability of the skeletal frame and to the viscous and elastic properties of the constitutive media. Since this common theory treats fluid and solid displacements on an equal footing, it is the most general linearized description of the problem; other treatments are special cases. These latter include the rigid frame approximation used in the petroleum industry and the weak frame approximation used by De Gennes to describe the motion of polymer gels.
NASA Astrophysics Data System (ADS)
Mehta, C. B.; Singh, M.; Kumar, S.
2016-02-01
An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.
Carcione, J.M.; Quiroga-Goode, G.
1996-01-01
An analytical transient solution is obtained for propagation of compressional waves in a homogeneous porous dissipative medium. The solution, based on a generalization of Biot`s poroelastic equations, holds for the low- and high-frequency ranges, and includes viscoelastic phenomena of a very general nature, besides the Biot relaxation mechanism. The viscodynamic operator is used to model the dynamic behavior associated with the relative motion of the fluid in the pores at all frequency ranges. Viscoelasticity is introduced through the standard linear solid which allows the modeling of a general relaxation spectrum. The solution is used to study the influence of the material properties, such as bulk moduli, porosity, viscosity, permeability and intrinsic attenuation, on the kinematic and dynamic characteristics of the two compressional waves supported by the medium. The authors also obtain snapshots of the static mode arising from the diffusive behavior of the slow wave at low frequencies.
Biogenic Cracks in Porous Rock
NASA Astrophysics Data System (ADS)
Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.
2014-12-01
Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.
NASA Astrophysics Data System (ADS)
Sunil; Choudhary, Shalu; Mahajan, Amit
2014-06-01
A nonlinear stability threshold for convection in a rotating couple-stress fluid saturating a porous medium with temperature- and pressure-dependent viscosity using a thermal non-equilibrium model is found to be exactly the same as the linear instability boundary. This optimal result is important because it shows that linear theory has completely captured the physics of the onset of convection. The effects of couple-stress fluid parameter F, temperature- and pressure-dependent viscosity Γ, interface heat transfer coefficient H, Taylor number TA, Darcy-Brinkman number D˜a, and porosity modified conductivity ratio γ on the onset of convection have been investigated. Asymptotic analysis for both small and large values of interface heat transfer coefficient H is also presented. An excellent agreement is found between the exact solutions and asymptotic solutions.
The Time-Dependency of Deformation in Porous Carbonate Rocks
NASA Astrophysics Data System (ADS)
Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.
2016-12-01
Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.
NASA Astrophysics Data System (ADS)
Sunil; Choudhary, Shalu; Mahajan, Amit
2013-08-01
A nonlinear stability threshold for rotation in a couple-stress fluid heated from below saturating a porous medium with temperature and pressure dependent viscosity is exactly the same as the linear instability boundary. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The effects of couple-stress parameter, variable dependent viscosity, medium permeability, Taylor number and Darcy-Brinkman number on the onset of convection are also analysed.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Tsai, J. P.; Chang, L. C.
2014-12-01
The flow of three immiscible fluids - water, NAPL, air - in porous media is important in many subsurface processes. To model the three-fluid flow, the relation of relative permeability-saturation-capillary pressure (k-S-P) of three fluids is of central importance. In this experimental study, we directly measure the k-S-P of the water (wetting phase) when three fluids are coexist in a micromodel during the water drainage and imbibition. The results show that the sequence of the non-wetting fluids (air and NAPL) entering into the micromodel affects the fluid distributions as well as the relative permeability of water. During the drainage process, the relative permeability of water dropped drastically when the pathway of water from inlet to outlet of the micromodel was visually blocked by the non-wetting fluids. At this stage, the relative permeability of water was low but not down to zero. The water was still able to move via corner flows or thin-film flows. During the imbibition process, the water displaced two non-wetting liquids via both "snap-off" and "piston-type" motions. The relative permeability of water jumped when the water pathway was formed again. In addition, we found that the well-known scaling format proposed by Parker et al. [1] might fail when the interfaces between the most non-wetting (air) and the most wetting (water) fluids occurs in the three-fluids system. References[1] J. C. Parker, R. J. Lenhard, and T. Kuppusamy, Water Resources Research, 23, 4, 618-624 (1987)
Quantifying solid-fluid interfacial phenomena in porous rocks with proton nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Schmidt, Ehud J.; Velasco, Katherine K.; Nur, Amos M.
1986-04-01
The three order-of-magnitude variation in the proton nuclear magnetic resonance (NMR) longitudinal relaxation time T1 of water adsorbed on silica surfaces versus that of bulk water makes proton NMR studies of porous materials powerful tools to study the effects of adsorption. Recent theory permits the utilization of this different response to obtain pore space surface-to-volume (S/V) distribution functions by inverting the decay of the z component of magnetization of fully saturated porous rocks; information can likewise be obtained on the fluid distribution at partially saturated conditions. A computer program has been developed to invert the NMR relaxation curves for the S/V distribution function, assuming an isolated pore regime, the ramifications of which are examined. The program has been applied to experimental results from water, porous sandstones, and tight gas sands at various pore fluid saturations and varying electrolyte content. For the fully saturated case, the results show promise in the application of NMR to describing pore space geometries in rock samples with widely varying surface-to-volume ratios. For partially saturated rocks, the results reflect the preferential early draining of the large pores at high water saturations, connectivity percolation phenomena at intermediate saturations, and the dominating role of adsorbed water films at low water saturations. Experiments on rocks saturated with saline solutions disclose the importance of the effects of alteration of the active sites on the rock surfaces as well as the role of electrolytes in modifying the structural properties of bulk solution.
Conditions for compaction bands in porous rock
NASA Astrophysics Data System (ADS)
Issen, K. A.; Rudnicki, J. W.
2000-09-01
Reexamination of the results of Rudnicki and Rice for shear localization reveals that solutions for compaction bands are possible in a range of parameters typical of porous rock. Compaction bands are narrow planar zones of localized compressive deformation perpendicular to the maximum compressive stress, which have been observed in high-porosity rocks in the laboratory and field. Solutions for compaction bands, as an alternative to homogenous deformation, are possible when the inelastic volume deformation is compactive and is associated with stress states on a yield surface "cap." The cap implies that the shear stress required for further inelastic deformation decreases with increasing compressive mean stress. While the expressions for the critical hardening modulus for compaction and shear bands differ, in both cases, deviations from normality promote band formation. Inelastic compaction deformation associated with mean stress (suggested by Aydin and Johnson) promotes localization by decreasing the magnitude of the critical hardening modulus. Axisymmetric compression is the most favorable deviatoric stress state for formation of compaction bands. Predictions for compaction bands suggest that they could form on the "shelf" typically observed in axisymmetric compression stress strain curves of porous rock at high confining stress. Either shear or compaction bands may occur depending on the stress path and confining stress. If the increase in local density and decrease in grain size associated with compaction band formation result in strengthening rather than weakening of the band material, formation of a compaction band may not preclude later formation of a shear band.
Not Available
1994-06-01
Calculations showed that capillary forces can easily produce closed- pore boundary conditions at interface between nonwetting fluid (air) and a porous solid saturated by a wetting fluid (water). The direct excitation technique was used to measure surface wave velocity and attenuation on both wet and dry rocks. The strong correlation between the observed surface wave velocity change caused by water saturation and the formation permeability can be used for ultrasonic assessment of the dynamic permeability. The experimental system was improved further by introducing laser interferometric detection, which was adapted to surface wave inspection of fluid-saturated permeable materials. In a separate effort, the surface stiffness of different water-saturated porous solids was studied by a novel acoustical method. Areas for further study are described.
Theoretical and numerical aspects of fluid-saturated elasto-plastic soils
Ehlers, W.
1995-12-31
The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution, theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.
Microplane constitutive model for porous isotropic rocks
NASA Astrophysics Data System (ADS)
Baant, Zdenk P.; Zi, Goangseup
2003-01-01
The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane-type constitutive model for hardening and softening non-linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear-enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress-strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete - an artificial rock. The model is intended for large explicit finite-element programs.
Dynamic flow localization in porous rocks under combined pressure and shear loading
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya; Podladchikov, Yuri; Simon, Nina
2015-04-01
Flow localization occurs in deforming porous fluid saturated rocks. It exhibits itself as veins, pockmarks on the ocean floor or gas chimneys visible on seismic images from several chalk fields of the Central North Sea and from the Utsira formation at Sleipner in the Norwegian North Sea, which is one of the best documented CO2 storage sites. Porosity waves were repeatedly shown to be a viable mechanism of flow self-localization that does not require the pre-existence of a connected fracture network. Porosity waves result from an instability of the Darcy flow that occurs in porous rocks with time-dependent viscous or viscoelastoplastic rheology. Local fluid overpressure generated by fluid injection or chemical reactions aided by buoyancy force drives upward fluid migration. Viscous deformation delays pressure diffusion thus maintaining local overpressure for considerable periods of time. Development of an under-pressured region just below the over-pressured domain leads to separation of the fluid-filled high-porosity blob from the source and the background flow. The instability organizes the flow into separate vertical channels. Pressure distribution, shape and scaling of these channels are highly sensitive to the rheology of the porous rock. In this contribution, based on a micromechanical approach, we consider the complex rheology of brittle, ductile and transitional regimes of deformation of porous rocks in the presence of combined pressure and shear loading. Accurate description of transitional brittle-ductile deformation is a challenging task due to a large number of microscopic processes involved. We use elastoplastic and viscoplastic analytical solutions for the non-hydrostatic deformation of a singular cavity in the representative volume element in order to deduce expected behavior of the porous rock. The model provides micro-mechanisms for various failure modes (localized and homogeneous) and dilatancy onset. In particular, the model predicts that dilatancy
Goloshubin, Gennady M.; Korneev, Valeri A.
2005-09-06
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
Goloshubin, Gennady M.; Korneev, Valeri A.
2006-11-14
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
NASA Astrophysics Data System (ADS)
Ding, Pinbo; Di, Bangrang; Wei, Jianxin; Li, Xiangyang; Deng, Yinghua
2014-02-01
In this study, we analyse the influence of fluid on P- and S-wave anisotropy in a fractured medium. Equivalent medium theories are used to describe the relationship between the fluid properties and the rock physics characteristics in fractured rocks, and P-wave and S-wave velocities and anisotropy are considered to be influenced by fluid saturation. However, these theoretical predictions require experimental measurement results for calibration. A new construction method was used to create synthetic rock samples with controlled fracture parameters. The new construction process provides synthetic rocks that have a more realistic mineral composition, porous structure, cementation and pressure sensitivity than samples used in previous research on fractured media. The synthetic rock samples contain fractures which have a controlled distribution, diameter, thickness and fracture density. In this study, the fracture diameter was about 4 mm, the thickness of fractures was about 0.06 mm, and the fracture density in the two fractured rock samples was about 3.45%. SEM images show well-defined penny-shaped fractures of 4 mm in length and 0.06 mm in width. The rock samples were saturated with air, water and oil, and P- and S-wave velocities were measured in an ultrasonic measurement system. The laboratory measurement results show that the P-wave anisotropy is strongly influenced by saturated fluid, and the P-wave anisotropy parameter, ɛ, has a much larger value in air saturation than in water and oil saturations. The S-wave anisotropy decreases when the samples are saturated with oil, which can be caused by high fluid viscosity. In the direction perpendicular to the fractures (the 0° direction), shear-wave splitting is negligible, and is similar to the blank sample without fractures, as expected. In the direction parallel to the fractures (the 90° direction) shear-wave splitting is significant. The fractured rock samples show significant P- and S-wave anisotropy caused by
NASA Astrophysics Data System (ADS)
Benson, Alvin K.; Wu, Jie
1999-02-01
The velocity of sound in porous, fluid-saturated rocks can be predicted using the Biot-Geertsma-Gassmann (BGG) and shear-wave velocity equations. However, two of the needed input parameters, the bulk modulus ( Kb) of the empty, porous rock and the shear modulus ( μ) of the rock are very difficult to obtain in situ. In the past, these values were typically chosen a priori and input into the BGG and shear-wave equations in a forward modeling mode. In addition to Kb and μ, it is also essential to input rock-matrix and fluid parameters that reflect in situ conditions. In this paper, the BGG and shear-wave equations are inverted to generate values for Kb and μ, respectively, by using available velocity and porosity data obtained from well logs and/or cores for water/brine-saturated rocks. These values of Kb and μ, along with reasonable in situ estimates of rock-matrix and fluid parameters generated from the Batzle-Wang [Batzle, M., Wang, Z., 1992. Seismic properties of pore fluids. Geophysics 57, 1396-1408.] formulation, are then used to predict compressional and shear-wave velocities, compressional-shear wave ratios, and reflection coefficients at the interfaces between host rocks and fluid-saturated rocks, either fully or partially saturated with hydrocarbons, as a function of depth and/or porosity. Although generally similar to the approach of Murphy et al. [Murphy, W.F., Reischer, A., Hsu, K., 1993. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics 58, 227-239.], our method of inversion to determine Kb and μ, coupled with our input of in situ estimates of rock-matrix and fluid parameters as a function of depth from the Batzle-Wang formulation, forms a novel solution for predicting in situ velocities. A modeling program has been developed to perform these calculations and plot the velocity and reflection coefficient information as a function of depth, porosity, and water saturation. The resulting relationships between porous
Digital Rock Studies of Tight Porous Media
Silin, Dmitriy
2012-08-07
This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.
Mass transfer and transport of radionuclides in fractured porous rock
Ahn, Joonhong
1988-04-01
Analytical studies are made to predict space-time dependent concentrations of radionuclides transported through water-saturated fractured porous rock. A basic model, which is expected to generate conservative results when used in long-term safety assessment of geologic repositories for radioactive waste, is established. Applicability and limitations of the model are investigated. 67 refs., 54 figs., 3 tabs.
[Investigation of ultrasonic wave interaction with porous saturated rocks
Not Available
1993-07-01
During the last year we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. Previously, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. At first, we used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Recently, we developed a special interferometric technique for non-contact detection of ultrasonic vibrations on diffusely reflecting rough surfaces. This method was found to be more suitable for surface wave inspection of porous ceramics and natural rocks than the previously used contact techniques. Beside investigating guided acoustic waves in water-saturated porous materials, we also studied bulk wave propagation in air-saturated specimens. We further developed our experimental technique which is based on the transmission of airborne ultrasonic waves through air-filled porous plates. This method can be readily used to study the frequency-dependent propagation properties of slow compressional waves in different porous materials including natural rocks. By simple technical improvements, we extended the measuring range so that we could continuously cover both low-frequency (diffuse) and high-frequency (propagating) regimes of slow wave propagation.
Seismic stress mobilization of natural colloids in a porous rock
Roberts, Peter M; Abdel-fattah, Amr I
2008-01-01
Stress oscillations at 26 Hz enhanced the release of natural micro-particles (colloids) in a porous rock sample. Micron-scale effects were induced by meter-scale wavelengths. The results are attributed to altering the release rate coefficient for colloids trapped in pores. The rate change did not depend on colloid size and thus is not due to altering colloid-pore-wall interactions. Enhanced colloid detachment from pore walls and flushing from dead-end pores are likely mechanisms. This phenomenon could impact a broad range of physical sciences involving colloid dynamics and porous transport.
Fracture and Faulting Induced Permeability Change in Porous Sedimentary Rocks
NASA Astrophysics Data System (ADS)
Zhu, W.-L.
2012-04-01
Flow of interstitial fluids exerts important control over seismogenic, sedimentary, and metamorphic processes. Since the seminal work of Hubbert and Rubey [1959] on the motion of thrust sheet, elevated pore fluid pressure has been used to reconcile the heat flow paradox during seismogenic faulting, and more recently, as a possible mechanism for slow slip events observed at subduction zones. Many working hypotheses for generating and maintaining high pore fluid pressure have been proposed. However, one important ingredient still missing in these models is quantitative knowledge of permeability as a dynamics physical property that varies significantly in different tectonic settings. In this study, we conducted systematic laboratory characterization of how permeability and its anisotropy evolve as porous sandstones and limestones undergo the transition from brittle faulting to cataclastic flow. Our data show that highly porous silicate rocks experience permeability reduction during dilatant brittle fracture whereas their low porosity counterparts exhibit permeability enhancement. With increasing confinement, brittle fracture is inhibited and the porous rocks exhibit shear enhanced compaction, resulting in significant porosity reduction accompanied by strain hardening and drastic loss of permeability. Hertzian fracture and pore collapse are the primary micomechanisms responsible for the brittle faulting or pervasive fracturing in porous silicate rocks. In contrast, the stress-induced permeability evolution in porous limestones is markedly different. Because crystal plasticity as well as solution transfer can be activated at relatively low temperatures in calcite compared to quartz, the inelastic behavior and failure mode of carbonate rocks are not only a function of pressure, but also sensitive to temperature. Laboratory measurements show that the presence of water enhances compaction and considerably lower the yield strength of carbonate rocks. The yield cap is
Modelling karst aquifer evolution in fractured, porous rocks
NASA Astrophysics Data System (ADS)
Kaufmann, Georg
2016-12-01
The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.
NASA Astrophysics Data System (ADS)
Ulven, Ole Ivar; Sun, WaiChing
2016-04-01
Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I
Harmut Spetzler
2005-11-28
This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.
Identification and isolation of closed pore in porous rock using digital rock physics approach
NASA Astrophysics Data System (ADS)
Latief, Fourier Dzar Eljabbar
2015-09-01
The presence of closed pore in porous rock provide various effect with regard to its structural, elastic and flow properties. Physical based approach to measure porosity such as mercury porosimetry injection is unable to locate closed pore inside porous rock even though it is still possible to quantify the closed porosity. Digital data of porous rock in the form of three dimensional image can now be obtained by means of several methods such as micro-CT scan. Using the digital data, closed pore can be identified and isolated using digital rock physics approach. We first construct a synthetic three dimensional porous sample which consist of two simple side-to-side connected pore (cylinder and box shaped) and two spherical isolated pore which has closed porosity of 1.41 %. The digital image analysis which implemented in software CTAn (Bruker Micro-CT) still produce error of 0.04% which is very low. However, analysis using Lattice Boltzmann Method based simulation of fluid flow provide exact match to the closed porosity of the synthetic sample. Nevertheless, there are two disadvantages of this method, i.e., the simulation could take hours compared to the digital image analysis which only took several minutes and the limitation of numerical definition of zero velocity. Thus we apply both methods in order to overcome the drawbacks of each methods to analyze the digital sample of Fontainebleau sandstone. Using CTAn, we obtained the closed porosity of 0.02891845 % and using the LBM based fluid flow simulation of 0.028948346 %. The closed pore can then be isolated to further calculate the surface area. The result also confirmed that pore space of Fontainebleau sandstone is well connected.
Digital material laboratory: Considerations on high-porous volcanic rock
NASA Astrophysics Data System (ADS)
Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger
2017-04-01
Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.
Method of determining interwell oil field fluid saturation distribution
Donaldson, Erle C.; Sutterfield, F. Dexter
1981-01-01
A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.
Compaction bands in porous rocks: localization analysis using breakage mechanics
NASA Astrophysics Data System (ADS)
Das, Arghya; Nguyen, Giang; Einav, Itai
2010-05-01
It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less
Pride, Steven R.; Berryman, James G.; Commer, Michael; ...
2016-08-30
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less
Pride, Steven R.; Berryman, James G.; Commer, Michael; Nakagawa, Seiji; Newman, Gregory A.; Vasco, Donald W.
2016-08-30
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack apertures and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.
Variational Principles for Dynamics of Linear Elastic Fluid-Saturated Soils.
1985-07-01
Include S cuty Clawfication, Variational Principl s 61102F 2307 C1 for Dynamics of Linear Elastic Fluid-Saturated Soils I _ II 12. PERSONALAUTHOR(S) Ranbir...RD-At75 92 VARIATIONAL PRINCIPLES FOR DYNAMICS OF LINEAR ELASTIC t/l FLUID-SATURATED SOI (U) OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS R S SANDHU...Sa* distribution unlimited. VARIATIONAL PRINCIPLES FOR DYNAMICS OF LINEAR ELASTIC FLUID-SATURATED SOILS 7 . Ranbir S. Sandhu and S. J. Hong L
Intense fracturation induced by mineral growth in porous rocks
NASA Astrophysics Data System (ADS)
Renard, F.; Noiriel, C.; Gratier, J.-P.; Doan, M.-L.
2009-04-01
When minerals precipitate in the pores of a rock, they may exert a force that depends on the supersaturation of the fluid; this is the so-called force of crystallization. This process happens in a wide range of geological systems, e.g. vein formation in deep crust, frost heave in soils, and salt damage in cultural heritage monuments. Sometimes, the force of crystallization is so large that it leads to a permanent damage and fracturation of the porous medium. Here, we have studied this process experimentally and imaged in 3D how an intense fracture pattern may emerge from purely chemical processes. Core samples of limestone (22% porosity) and sandstones (19% porosity) were left for one month in contact with an aqueous solution saturated with sodium chloride in an autoclave, at 40°C, under a normal stress in the range 0.2-0.3 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a height where evaporation occurred. The samples were left in a rubber jacket with the same height as the capillary fringe, allowing therefore an accurate control of the region of water evaporation and salt precipitation. The uniaxial deformation of the samples was measured using high resolution displacement sensors. After the experiments we have imaged the samples in three dimensions, using laboratory computed X-ray tomography, allowing therefore imaging the intensity and localization of the damage, as well as the regions of salt precipitation. During the initial fluid capillary rise, the deformation measurements indicate a small shortening of the samples (~5 micrometers), and then an increase of the samples' height (50-100 micrometers) during salt precipitation. Two kinds of damage could be observed in tomography. Firstly, small rock fragments were pealed from the sample surface. Secondly, and more interestingly, a radial fracture network developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two
NASA Astrophysics Data System (ADS)
Noiriel, C. N.
2011-12-01
Fractured and porous rocks are the principal path for water flow and potential contamination. Modification of fracture topology and transmissivity by reactive fluids is an important and complex geological process. In carbonate rocks, fractures and porous media properties may change quickly and strongly due to natural processes (e.g. karstification, salt intrusion) or anthropogenic practice (e.g. CO2 geological sequestration). Recent application of X-ray micro-tomography to the Earth Sciences, which allows the visualization of 3D objects with a micrometre resolution, has considerably increased experimental capability by giving access to a 4D spatio-temporal vision (3D geometry + time) of the physical-chemical processes within the rocks. New information is now accessible, which provides a better understanding of the processes and allows the numerical models to be better constrained. I will present the application of X-ray micro-tomography to study changes of petrophysical properties (e.g. porosity, permeability, mineral surface area, etc.) of fractured and porous rocks in response to fluid-rock interactions (dissolution and precipitation). Experimental results will be discussed in regard to numerical modelling of flow and transport. Keywords: X-ray micro-tomography, fracture, porous media, dissolution, precipitation, carbon dioxide sequestration, limestone, reactive surface, geochemical modelling,
NASA Astrophysics Data System (ADS)
Sadovskii, Vladimir; Sadovskaya, Oxana
2017-04-01
A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the
Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom
2002-06-10
This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected
A Computer Program for Consolidation and Dynamic Response Analysis of Fluid-Saturated Media.
1983-06-01
Codes Avail and/or Geotechnical Engineering Report No. 14 Dist I Special The Ohio State University Research Foundation 1314 Kinnear Road, Columbus, Ohio...CONSOLIDATION AND DYNAMIC RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering ...RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA By Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering June 1984 Acce
Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick
2017-04-01
The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an
XFEM modeling of hydraulic fracture in porous rocks with natural fractures
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo
2017-08-01
Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.
Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction
NASA Astrophysics Data System (ADS)
Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.
2001-12-01
Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.
Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J
2005-08-01
When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.
Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry
NASA Astrophysics Data System (ADS)
Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.
2016-04-01
The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.
An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in
Computational rock physics: Transport properties in porous media and applications
NASA Astrophysics Data System (ADS)
Keehm, Youngseuk
Earth sciences is undergoing a gradual but massive shift from descriptions of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled, and take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks: a nonlinear, coupled, and time-dependent problem in complex microgeometry. To understand these complex processes, the knowledge of the underlying pore-scale processes is essential. This work focuses on building transport process simulators in realistic pore microstructures. These pore-scale simulators will be modules of a computational rock physics framework with future acoustic, elastic, electrical and NMR property simulators. This computational environment can significantly complement the physical laboratory, with several distinct advantages: rigorous prediction of physical properties, interrelations among the physical properties, and simulation of dynamic problems with multiple physical responses. This dissertation is initiative for the computational rock physics framework---a quantitative model for coupled, nonlinear, transient and complex behavior of earth systems. A rigorous pore-scale simulation requires three important traits: reliability, efficiency, and the ability to handle complex microgeometry. We implemented single-phase and two-phase flow simulators using the Lattice-Boltzmann algorithm, since it handles very complex pore geometries without idealization of the pore space. The single-phase flow simulator successfully replicates fluid flow in a digital representation of real sandstone, and predicts permeability very accurately. Furthermore, two applications using the single-phase flow simulator are proposed: a permeability estimation technique from thin sections, and diagenesis modeling with fluid flow. These two applications show the potential applicability of this robust
Structural controls on anomalous transport in fractured porous rock
NASA Astrophysics Data System (ADS)
Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian
2016-07-01
Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.
An Elastic Stress-Strain Relationship for Porous Rock Under Anisotropic Stress Conditions
NASA Astrophysics Data System (ADS)
Zhao, Yu; Liu, Hui-Hai
2012-05-01
A stress-strain relationship within porous rock under anisotropic stress conditions is required for modeling coupled hydromechanical processes associated with a number of practical applications. In this study, a three-dimensional stress-strain relationship is proposed for porous rock under elastic and anisotropic stress conditions. This relationship is a macroscopic-scale approximation that uses a natural-strain-based Hooke's law to describe deformation within a fraction of pores and an engineering-strain-based Hooke's law to describe deformation within the other part. This new relationship is evaluated using data from a number of uniaxial and triaxial tests published in the literature. Based on this new stress-strain relationship, we also develop constitutive relationships among stress, strain, and related stress-dependent hydraulic/mechanical properties (such as compressibility, shear modulus, and porosity). These relationships are demonstrated to be consistent with experimental observations.
Forced oscillation measurements of seismic attenuation in fluid saturated sandstone
NASA Astrophysics Data System (ADS)
Subramaniyan, Shankar; Quintal, Beatriz; Saenger, Erik H.
2017-02-01
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1-100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6-8 × 10-6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.
NASA Astrophysics Data System (ADS)
Ruiz, Franklin J.
This dissertation presents the results of using different inclusion and granular effective medium models and poroelasticity to predict the elastic properties of rocks with complex microstructures. Effective medium models account for the microstructure and texture of rocks, and can be used to predict the type of rock and microstructure from seismic velocities and densities. We introduce the elastic equivalency approach, using the differential effective medium model, to predict the effective elastic moduli of rocks and attenuation. We introduce the porous grain concept and develop rock physics models for rocks with microporosity. We exploit the porous grain concept to describe a variety of arrangements of uncemented and cemented grains with different degrees of hydraulic connectivity in the pore space. We first investigate the accuracy of the differential effective medium and self-consistent estimations of elastic properties of complex rock matrix using composites as analogs. We test whether the differential effective-medium (DEM) and self-consistent (SC) models can accurately estimate the elastic moduli of a complex rock matrix and compare the results with the average of upper and lower Hashin-Shtrikman bounds. We find that when the material microstructure is consistent with DEM, this model is more accurate than both SC and the bound-average method for a variety of inclusion aspect ratios, concentrations, and modulus contrasts. Based on these results, we next pose a question: can a theoretical inclusion model, specifically, the differential effective-medium model (DEM), be used to match experimental velocity data in rocks that are not necessarily made of inclusions (such as elastics)? We first approach this question by using empirical velocity-porosity equations as proxies for data. By finding a DEM inclusion aspect ratio (AR) to match these equations, we find that the required range of AR is remarkably narrow. Moreover, a constant AR of about 0.13 can be used to
Unified pipe network method for simulation of water flow in fractured porous rock
NASA Astrophysics Data System (ADS)
Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua
2017-04-01
Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.
NASA Astrophysics Data System (ADS)
Li, Yang; David, Emmanuel; Nakagawa, Seiji; Kneafsey, Timothy; Schmitt, Douglas; Jackson, Ian
2017-04-01
In order to better understand the frequency dependence or dispersion of seismic-wave speeds and associated strain-energy dissipation in cracked and fluid-saturated crustal rocks, we have conducted a broadband laboratory study of synthetic glass media. The glass materials were prepared either from dense soda-lime-silica glass rod or by sintering glass beads of similar chemical composition. Along with sub-equant pores contributing either 2 or 5% porosity for the sintered-bead specimens, quantifiable densities of cracks, generally of very low aspect ratio, were introduced by controlled thermal cracking. Permeability was measured under selected conditions of confining and pore pressure either by transient decay with argon pore fluid or with the steady-flow method and water pore fluid. The water permeability of the cracked glass-rod specimen decreased strongly with increasing differential pressure Pd to 10-18 m2 near 10 MPa. Further increase of differential pressure towards 100 MPa resulted in modest reductions of permeability to specimen-specific values in the range (0.5 - 2) × 10-19 m2. The characteristic frequencies for the draining of cylindrical specimens of such low permeability are estimated to be < 10 mHz, so that undrained conditions can be expected even at the 10-300 mHz frequencies of the forced-oscillation tests. The same or similarly prepared glass specimens were mechanically tested with sub-Hz forced-oscillation methods, a kHz-frequency resonant bar technique, and MHz-frequency ultrasonic wave propagation, before and after thermal cracking. The cracked specimens were successively measured under dry, argon- (or nitrogen-) saturated and water-saturated conditions. The shear and Young's moduli measured on the cracked materials typically increase strongly with increasing differential pressure below a threshold of 30 MPa beyond which the pressure sensitivity becomes substantially milder. This behaviour is quantitatively interpreted in terms of pressure
On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock
Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.
2008-02-25
Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.
The influence of pore geometry and orientation on the strength and stiffness of porous rock
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick
2017-03-01
The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to
Earth science: role of fO2 on fluid saturation in oceanic basalt.
Scaillet, Bruno; Pichavant, Michel
2004-07-29
Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid. Saal et al. report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al. consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.
NASA Astrophysics Data System (ADS)
Németh, Gabriella; Mlinárik, Lilla; Török, Ákos
2016-10-01
Natural porous rocks, like limestone and rhyolite tuff are able to reduce heavy metal pollution by adsorbing or precipitating them from heavy metal containing solutions due to the favourable physical and chemical properties of these rocks. In our experiment, two porous rocks, a porous limestone and rhyolite tuff were used. Petrophysical parameters namely apparent density, real density, capillary water absorption, ultrasonic pulse velocity, total porosity and open porosity of the two porous rocks were determined in water-saturated and dried conditions. Powdered rock samples and cylindrical specimens were placed in lead-nitrate and zinc-sulphate solutions (initial concentration: 1000 ppm) and the amount of lead (II) and zinc (II) ions were identified by titration (chelatometry) of the residual solution. According to the experiments, powdered rocks and rock specimens of limestone and rhyolite tuff reduced the lead (II) and zinc (II) ion concentrations in aqueous solution. The results were cross-checked by ICP-MS. Heavy metal removal capacity was relatively high, 92-99% in each case. The treated powdered rocks and rock specimens were also studied by scanning electron microscope (SEM-EDS) and new heavy metal precipitates were identified. According to the tests result, it could be confirmed that these types of lithologies are capable of removing heavy metals and can be used in environmental protection technologies in a form of permeable reactive barrier.
Joint Inversion of Marine Seismic and CSEM Data for Fluid Saturation Prediction
NASA Astrophysics Data System (ADS)
Hoversten, G. M.; Gasperikova, E.; Chen, J.; Newman, G.
2005-12-01
demanding approaches is underway there is interest in an approach that can be deployed quickly. One method for combining seismic and CSEM data is a relatively straightforward extension of what is currently done using seismic data alone (Bachrach and Dutta, 2004). The use of Bayesian inversion, which couples a rock-physics model with estimates of geophysical parameters, can be extended to include electrical conductivity. In this paper, we demonstrate the use of AVA inversion to estimate acoustic- (Vp), shear-velocity (Vs), and density (ρ) coupled with 3D CSEM (Newman and Boggs, 2004) inversion to estimate electrical conductivity (σ) in a Bayesian inverse for reservoir fluid saturations and φ. This approach is compared to the formal joint inversion described by Hoversten et al. (2004, 2005). The two-stage process has the advantage that it can be done using existing industry software, with only the addition of the electromagnetic inversions to estimate electrical conductivity. The estimated water saturation and porosity compare well to both log data and those derived from a formal joint inversion of marine AVA and electromagnetic data. However, the two-stage estimates of oil and gas saturation do not compare favorably to those obtained using a formal joint inversion of both data sets simultaneously.
Porous flow of liquid water in Enceladus rock core driven by heterogeneous tidal heating
NASA Astrophysics Data System (ADS)
Choblet, Gael; Tobie, Gabriel; Behounkova, Marie; Cadek, Ondrej
2016-10-01
Surface heat flux estimates in excess of 15 GW (e.g. Howett et al., 2016) raise the question of the origin of Enceladus' heat production. While strong heating by tidal dissipation is probably the only viable source, whether the maximum production occurs in the outer ice shell or, deeper, in the ocean or in the rock core, is however unclear. While the analysis of measurements by the Cassini mission (gravity and topography data, observed libration), seems to favor an extremely thin shell at Enceladus South Pole (a few kms only, cf. Thomas et al., 2016, Cadek et al., 2016), the distribution of heat sources remains a major issue in the light of the evolutionary trend that led to this present-day physical state of the moon.Here, we build up on a recent evaluation of tidal deformation in a porous rock core saturated with liquid water indicating that, owing to its unconsolidated state, plausible core rheologies could lead to significant heat production there (typically 20 GW, Tobie et al., in prep.). We describe porous flow in a 3D spherical model following the work of Travis and Schubert (2015). Compaction of the rock matrix is neglected. Water characteristics (density and viscosity), and the bulk thermal conductivity of the porous core are temperature-dependent and the effect of non-water compounds can be considered. Tidal heating is introduced as a heterogeneous heat source with a pattern inferred from numerical models of the tidal response. Our analysis focuses particularly on the heat flux pattern at the ocean/core interface where water is advected in/out of the porous medium.
The Melt Transition in Mature, Fluid-Saturated Gouge
NASA Astrophysics Data System (ADS)
Rempel, A. W.
2006-12-01
Mechanisms that link the evolution of fault strength and temperature during earthquakes have been studied extensively, with accumulating constraints from theoretical, field and laboratory investigations promoting increased confidence in our understanding of the dominant physical interactions. In mature fault zones that have accommodated many large earthquakes and are characterized by gouge layers that greatly exceed the thickness of the ~ mm-scale "principal slip surfaces" in which shear is localized, the thermal pressurization of pore fluids is expected to be particularly important for reducing the fault strength and limiting the extent of shear heating. Nevertheless, for sufficiently large slip distances and reasonable estimates of hydraulic transport properties and other controlling variables, the predicted temperature increases are sometimes able to reach the onset of melting, particularly at mid to lower seismogenic depths (e.g. 10km). Reported field observations of quenched glassy melt products, known as pseudotachylytes, are much more common on young faults, particularly where slip is initiated between coherent rock surfaces, rather than in exhumed mature fault zones, where thermal pressurization is likely to be more important and macroscopic melting appears to be rare. Those pseudotachylyte layers that are recovered from mature fault zones display a range of thicknesses and crystal contents, which indicate that significant shear heating continued long after the onset of melting, with work performed against the viscous resistance of a partially molten slurry. Models that describe the transition to melting in a finite shear zone that is initially saturated with pore fluids are presented with two main conceptual challenges: 1. the energy input for frictional heating is generally assumed to be proportional to the effective stress, which vanishes when macroscopic melt layers are produced and thermodynamic considerations require that the melt pressure balance the
Creep of porous rocks and measurements of elastic wave velocities under different hydrous conditions
NASA Astrophysics Data System (ADS)
Eslami, J.; Grgic, D.; Hoxha, D.
2009-04-01
The long-term mechanical behavior of rocks is of prime importance for many geological hazards (e.g., landslides, rock falls, and volcanoes) as well as for the stability of man-made structures (underground mines, road cuts, and open pits). In some shallow environments, rocks exist in partially saturated conditions which can evolve with time according to variations in the relative humidity hr of the atmosphere (e.g., natural slopes, open cut excavations). In underground mines, rocks are also partially saturated because of artificial ventilation. These variations in liquid saturation may have a large impact on mechanical behavior since they imply variations in capillary pressure and, depending on the porosity and on the shape of the porous network, variations in the effective stresses. Therefore, knowledge of static fatigue under saturated and partially saturated conditions is important for estimating the long-term stability of such rock structures. Many studies have already shown that time-dependent weakening is much more important for a saturated rock than for a dry one and that the time to failure may decrease by several orders of magnitude for saturated rocks as compared to dry rocks. In addition, the weakening effect of water is more significant in long-term experiments than in short-term ones (instantaneous loading). A physical explanation for these results may be the enhancement of subcritical crack growth by stress corrosion at crack tips which is often considered to be the main cause of time-dependent behavior of rocks. The failure of brittle rocks during compression tests is preceded by the formation, growth, and coalescence of microcracks. Elastic wave velocities are reduced due to the presence of open microcraks and fractures and may be used to monitor the progressive damage of rocks. The specific experimental setup available in our lab allows the simultaneous measurement of five velocities (with different polarizations and directions) and two directions
NASA Astrophysics Data System (ADS)
Pimienta, Lucas; Fortin, Jérôme; Guéguen, Yves
2017-04-01
Over the last decades, a large understanding has been gained on the elastic properties of rocks. Rocks are, however, porous materials, which properties depend on both response of the bulk material and of the pores. Because in that case both the applied external pressure and the fluid pressure play a role, different poroelasticity coefficients exist. While theoretical relations exist, measuring precisely those different coefficients remains an experimental challenge. Accounting for the different experimental complexities, a new methodology is designed that allows attaining accurately a large set of compressibility and poroelasticity coefficients in porous and permeable rocks. This new method relies on the use of forced confining or pore fluid pressure oscillations. In total, seven independent coefficients have been measured using three different boundary conditions. Because the usual theories predict only four independent coefficients, this overdetermined set of data can be checked against existing thermodynamic relations. Measurements have been performed on a Bentheim sandstone under, water- and glycerine-saturated conditions for different values of confining and pore fluid pressure. Consistently with the poroelasticity theory, the effect of the fluid bulk modulus is observed under undrained conditions but not under drained ones. Using thermodynamic relations, (i) the unjacketed, quartz, and skeleton (Zimmerman's relation) bulk moduli fit, (ii) the drained and undrained properties fit, and (iii) it is directly inferred from the measurements that the pore skeleton compressibility Cϕ is expected to be constant with pressure and to be exceedingly near the bulk skeleton Cs and mineral Cm compressibility coefficients.
Numerical model of halite precipitation in porous sedimentary rocks adjacent to salt diapirs
NASA Astrophysics Data System (ADS)
Li, Shiyuan; Wang, Yan; Zhao, Pengyun
2017-10-01
Salt diapirs are commonly seen in the North Sea. Below the Zechstein Group exist possibly overpressured salt-anhydrite formations. One explanation as to the salt precipitation in areas with salt diapirs is that salt cementation is thermally driven and occurs strongly in places adjacent to salt diapirs. This paper assumes that the sealing effect of the cap rock above the salt formations is compromised and overpressured fluids, carrying dissolved minerals such as anhydrite (CaSO4) and salt mineral components (NaCl of halite), flow into the porous sedimentary layers above the salt formations. Additionally, a salt-diapir-like structure is assumed to be at one side of the model. The numerical flow and heat transport simulator SHEMAT-Suite was developed and applied to calculating the concentrations of species, and dissolution and precipitation amounts. Results show that the overpressured salt-anhydrite formations have higher pressure heads and the species elements sodium and chlorite are transported into porous sediment rocks through water influx (saturated brine). Halite can precipitate as brine with sodium and chlorite ions flows to the cooler environment. Salt cementation of reservoir rocks leads to decreasing porosity and permeability near salt domes, and cementation of reservoir formations decreases with growing distance to the salt diapir. The proposed approach in this paper can also be used to evaluate precipitation relevant to scaling problems in geothermal engineering.
Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report
Ikwuakor, K.C.
1994-03-01
The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.
NASA Astrophysics Data System (ADS)
Druhan, Jennifer; Lawrence, Corey; Oster, Jessica; Rempe, Daniella; Dietrich, William
2017-04-01
Shallow soils from a wide range of ecosystems demonstrate a clear and consistent relationship between effective fluid saturation and the rate at which organic carbon is converted to CO2. While the underlying mechanisms contributing to this dependence are diverse, a consistent pattern of maximum CO2 production at intermediate soil moisture supports a generalized functional relationship, which may be incorporated into a quantitative reactive transport framework. A key result of this model development is a prediction of the extent to which the inorganic carbon content of water in biologically active soils varies as a function of hydrologic parameters (i.e. moisture content and residence time), and in turn influences weathering reactions. Deeper in the CZ, the consistency of this relationship and the influence of hydrologically - regulated CO2 production on the rates of water - rock interaction are largely unknown. Here, we use a novel reactive transport model incorporating this functional relationship to consider how variations in the reactive potential of water entering the vadose zone influences subsurface weathering rates. We leverage two examples of variably saturated natural systems to consider (1) CO2 production and associated weathering potential regulated by seasonal hydrologic shifts and (2) the preservation of soil carbon signatures in the deep CZ over millennial timescales. First, at the Eel River CZ Observatory in Northern California, USA, a novel Vadose Zone Monitoring System (VMS) installed in a 14 - 20 m thick unsaturated section offers an unprecedented view into the physical, chemical and biological behavior of the depth profile separating soils from groundwater. Based on soil moisture, gas and fluid phase samples, we demonstrate a predictive relationship between seasonal hydrologic variations and the location and magnitude of geochemical weathering rates. Second, an environmental monitoring project in the Blue Springs Cave, Sparta, TN, USA, provides
Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.
Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal
2012-05-15
Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point. Copyright © 2012 Elsevier B.V. All rights reserved.
Fluid Transport in Porous Rocks. I. EPI Studies and a Stochastic Model of Flow
NASA Astrophysics Data System (ADS)
Mansfield, P.; Issa, B.
The velocity of water flowing through a Bentheimer sandstone core has been measured by NMR-imaging techniques. The localized pixel values of velocity indicate a random distribution centered around the mean value corresponding to Darcy's law. When the same flow state is repeated, the velocity map changes but the general characteristics of the velocity distribution remain unchanged. The random nature of the irreproducibility of the flow maps has led us to propose a stochastic theory of flow in porous rocks. The theory leads to a Gaussian velocity distribution which approximates well to the data. Also predicted is a linear relationship between flow variance and mean fluid flow through the rock, the Mansfield-Issa equation, originally proposed as an empirical relationship.
Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures
NASA Astrophysics Data System (ADS)
Amalokwu, Kelvin; Best, Angus I.; Sothcott, Jeremy; Chapman, Mark; Minshull, Tim; Li, Xiang-Yang
2014-05-01
Elastic wave attenuation anisotropy in porous rocks with aligned fractures is of interest to seismic remote sensing of the Earth's structure and to hydrocarbon reservoir characterization in particular. We investigated the effect of partial water saturation on attenuation in fractured rocks in the laboratory by conducting ultrasonic pulse-echo measurements on synthetic, silica-cemented, sandstones with aligned penny-shaped voids (fracture density of 0.0298 ± 0.0077), chosen to simulate the effect of natural fractures in the Earth according to theoretical models. Our results show, for the first time, contrasting variations in the attenuation (Q-1) of P and S waves with water saturation in samples with and without fractures. The observed Qs/Qp ratios are indicative of saturation state and the presence or absence of fractures, offering an important new possibility for remote fluid detection and characterization.
A visco-poroelastic damage model for modelling compaction and brittle failure of porous rocks
NASA Astrophysics Data System (ADS)
Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena
2016-04-01
Hydraulic stimulation of geothermal wells is often used to increase heat extraction from deep geothermal reservoirs. Initiation and propagation of fractures due to pore pressure build-up increase the effective permeability of the porous medium. Understanding the processes controlling the initiation of fractures, the evolution of their geometries and the hydro-mechanical impact on transport properties of the porous medium is therefore of great interest for geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes occurring during deformation of a porous rock. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To validate and illustrate the model, simulations of the deformation behaviour of cylindrical porous Bentheimer sandstone samples under different confining pressures are compared to experiments. The first experiment under low confining pressure leads to shear failure, the second for high confining pressure leads to cataclastic compaction and the third one with intermediate confining pressure correspond to a transitional regime between the two firsts. Finally, we will demonstrate that this approach can also be used at the field
Experimental Measurements Of Seismic Wave Speeds And Attenuation In CO2 Saturated Porous Rocks
NASA Astrophysics Data System (ADS)
Njiekak, G.; Yam, H.; Kofman, R. S.; Chowdhury, M.; Schmitt, D. R.
2011-12-01
Due to the sensitivity of seismic waves to pore fluid contents, time lapse seismology is regarded as a promising monitoring method for geological CO2 sequestration projects and is employed in all industrial scale projects (Sleipner, Weyburn, In Salah). Therefore, understanding the effect of CO2 as a pore fluid on the overall rock seismic response is critical, and it is particularly interesting as CO2 can be in gas, liquid, or supercritical phases even at the relatively modest pore pressures and temperatures in the uppermost kilometer of the earth's crust. To address this issue, ultrasonic P- and S-wave pulse transmission experiments were carried out on fully CO2 saturated samples of a synthetic porous ceramic, Berea and Fontainebleau sandstones, and carbonates under a variety of temperatures and pressures representative of conditions expected in volcanic edifices and geological sequestration projects. The synthetic sample was chosen because of its lack of microcracks, which can complicate the acoustic behavior of real rocks. Although this sample is extremely porous (58%) and is not reflective of real reservoir rocks, its large porosity allows the overall rock behavior to be more susceptible to the changes in the physical properties of the pore fluid; this could provide an extreme end member understanding on the rock physics involved with CO2 as the pore fluid. Laboratory results show waveform variations (velocity, amplitude, attenuation) in response to CO2's varying phase state. For the ceramic rod, CO2 phase changes (gas to liquid and gas to supercritical fluid) are marked by a drop in velocities of 4-5% likely due to the increased density of the liquid or the supercritical fluid relative to the gas. Wave attenuation increases with pore pressure and with frequency. The measured elastic wave velocities showed good agreement with Biot's model in this highly porous sample. The real sandstones, in contrast, display more complicated behaviour at the point of the phase
A damage mechanics approach for quantifying stress changes due to brittle failure of porous rocks
NASA Astrophysics Data System (ADS)
Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena
2016-04-01
Natural fault zones or man-made injection or production of fluid impact the regional stress distribution in Earth's crust and can be responsible for localized stress discontinuities. Understanding the processes controlling fracturing of the porous rocks and mechanical behaviour of fault zones is therefore of interest for several applications including geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes controlling the deformation of porous rocks during and after brittle failure. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To illustrate the model, simulation of a compaction experiment of a sandstone leading to shear failure will be presented which allows to quantify the stress drop accompanying the failure. Finally, we will demonstrate that this approach can also be used at the field scale to simulate hydraulic fracturing and assess the resulting changes in the stress field.
On the micromechanics of slip events in sheared, fluid-saturated fault gouge
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-06-01
We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.
3-D Numerical Simulation of Hydrostatic Tests of Porous Rocks Using Adapted Constitutive Model
NASA Astrophysics Data System (ADS)
Chemenda, A. I.; Daniel, M.
2014-12-01
The high complexity and poor knowledge of the constitutive properties of porous rocks are principal obstacles for the modeling of their deformation. Normally, the constitutive lows are to be derived from the experimental data (nominal strains and stresses). They are known, however, to be sensitive to the mechanical instabilities within the rock specimen and the boundary (notably friction) conditions at its ends. To elucidate the impact of these conditions on the measured mechanical response we use 3-D finite-difference simulations of experimental tests. Modeling of hydrostatic tests was chosen because it does not typically involve deformation instabilities. The ends of the cylindrical 'rock sample' are in contact with the 'steel' elastic platens through the frictional interfaces. The whole system is subjected to a normal stress Pc applied to the external model surface. A new constitutive model of porous rocks with the cap-type yield function is used. This function is quadratic in the mean stress σm and depends on the inelastic strain γp in a way to generate strain softening at small σm and strain-hardening at high σm. The corresponding material parameters are defined from the experimental data and have clear interpretation in terms of the geometry of the yield surface. The constitutive model with this yield function and the Drucker-Prager plastic potential has been implemented in 3-D dynamic explicit code Flac3D. The results of an extensive set of numerical simulations at different model parameters will be presented. They show, in particular, that the shape of the 'numerical' hydrostats is very similar to that obtained from the experimental tests and that it is practically insensitive to the interface friction. On the other hand, the stress and strain fields within the specimen dramatically depend on this parameter. The inelastic deformation at the specimen's ends starts well before reaching the grain crushing pressure P* and evolves heterogeneously with Pc
Initial conditions or emergence; what determines dissolution patterns in heterogeneous porous rocks?
NASA Astrophysics Data System (ADS)
Szymczak, Piotr; Upadhyay, Virat; Ladd, Anthony
2016-04-01
Dissolution of fractured or porous rocks is often accompanied by the formation of highly localized flow paths. Dissolution, in general, does not proceed uniformly, as it is influenced both by the heterogeneities in the rock matrix and by the instabilities associated with the positive feedback loops between the flow, dispersion, and chemical reactions. As a result, distinct channels or "wormholes" develop within the rocks in which both the flow and dissolution focus. In this communication, we aim to investigate how these emerging flow paths are influenced by the initial local inhomogeneities of the porosity field. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow rates to the amplitude and correlation length characterizing the inhomogeneities. At long times wormhole competition overwhelms the initial variations in aperture distribution, resulting in a universal relation between the separation of the wormholes and their length. This hierarchy of scales even persists in the presence of relatively large inhomogeneities (vugs), which focus the flow at the beginning of the dissolution process, but - if the sample is large enough - with time tend to be overwhelmed by the spontaneous growth of instabilities. A natural consequence of wormhole competition is that the separation between growing wormholes corresponds roughly to their length, something that is borne out by field observations.
NASA Astrophysics Data System (ADS)
Guillon, S.; Vu, M. T.; Pili, E.; Adler, P. M.
2013-05-01
Air permeability is measured in the fractured crystalline rocks of the Roselend Natural Laboratory (France). Single-hole pneumatic injection tests as well as differential barometric pressure monitoring are conducted on scales ranging from 1 to 50 m, in both shallow and deep boreholes, as well as in an isolated 60 m3 chamber at 55 m depth. The field experiments are interpreted using numerical simulations in equivalent homogeneous porous media with their real 3-D geometry in order to estimate pneumatic parameters. For pneumatic injection tests, steady-state data first allow to estimate air permeability. Then, pressure recovery after a pneumatic injection test allows to estimate the air-filled porosity. Comparison between the various studied cases clarifies the influence of the boundary conditions on the accuracy of the often used 1-D estimate of air permeability. It also shows that permeabilities correlate slightly with fracture density. In the chamber, a 1 order-of-magnitude difference is found between the air permeabilities obtained from pneumatic injection tests and from differential barometric pressure monitoring. This discrepancy is interpreted as a scale effect resulting from the approximation of the heterogeneous fractured rock by a homogeneous numerical model. The difference between the rock volumes investigated by pneumatic injection tests and by differential barometric pressure monitoring may also play a role. No clear dependence of air permeability on saturation has been found so far.
NASA Astrophysics Data System (ADS)
Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.
2009-12-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to
NASA Astrophysics Data System (ADS)
Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John
2010-05-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our
Effect of fracture network geometry on density-driven flow in fractured porous rock
NASA Astrophysics Data System (ADS)
Vujevic, Katharina; Graf, Thomas
2013-04-01
Density-driven flow can be a highly efficient transport mechanism in hydrogeological systems, especially if head gradients as a driving force for groundwater movement are absent. Unstable density layering may lead to variable-density, free-convective flow. Convection cells may form whose number and shape depends on the prevailing concentration and temperature gradients. The presence of open fractures may complicate the free convective flow pattern because fractures represent preferential pathways where water flow velocities can be considerably larger than in the rock matrix. Therefore, the purpose of this study is to provide insight into the structural properties of fracture networks that determine flow and transport patterns and to make a statement on the applicability of the equivalent porous medium approach (EPM). We systematically study free convective flow in continuous, discontinuous, orthogonal and inclined fracture networks embedded in a low-permeability rock matrix. Layer stability and convection patterns for different fracture networks are compared to each other and to an unfractured base case representing an EPM. We examine rates of solute transport by monitoring the mass flux at the solute source and relate it to the critical structural properties of the fracture networks. Simulations are performed using the numerical variable-density groundwater flow and transport model HydroGeoSphere. Fractures are represented as discrete fractures, whose geometric properties are explicitly defined. Fracture permeability is calculated using the cubic law. Results show that for free convective flow, the EPM approach is not able to reliably represent a fractured porous medium if fracture permeability is more than 5 orders of magnitude larger than matrix permeability. Nonetheless the EPM approach can be a reasonable approximation if the fracture network (i) evenly covers the simulated rock, (ii) is of high fracture density, (iii) is well-connected, (iv) contains
Jang, Long-Kuan; Chang, Philip W.; Findley, John E.; Yen, Teh Fu
1983-01-01
This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species—Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum—potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate (∼106/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414
Quasistatic Shock Waves: A Mechanism for Nonuniform Compaction in Porous Rock
OLSSON,WILLIAM A.
2000-09-08
Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.
Use of GPU Computing to Study Coupled Deformation and Fluid Flow in Porous Rocks
NASA Astrophysics Data System (ADS)
Räss, Ludovic; Omlin, Samuel; Simon, Nina; Podladchikov, Yuri
2015-04-01
Actual challenges in computational geodynamics put high requirements for the development of new coupled models. These need to solve accurate physics, on high resolution and in reasonable computation time. Multi-scale problems such as deformation of porous rocks triggered by fluid flow require both high temporal and spatial resolution. The resulting preferential flow paths involve complex physics and a strong coupling between deformation and fluid flow processes. Shortcuts such as sequential or iterative coupling of two existing solvers will not be sufficient in these difficult cases to localize the deformation and flow. We base our numerical implementation on the physically and thermodynamically consistent mathematical model for fluid flow in porous rocks, taking nonlinear stress dependent visco-elasto-plastic rheology into account. The effective permeability used for the Darcy flow is obtained through the nonlinear Karman-Cozeny relation. The model is not restricted by the lithostatic stress assumption, allowing for background stress regime as it occurs in natural conditions. We have developed a fully three-dimensional numerical application based on an iterative finite difference scheme. The application is written in C-CUDA, is enabled for GPU accelerators and is parallelized with MPI to run on multi-GPU clusters. The parallelization on a rectangular grid is straightforward (at each iteration, the boundaries of the local problem are updated by the neighboring processes) and requires no MPI global operations, only MPI point-to-point communication between neighboring processes. This parallelization method should allow by construction for linear weak scaling on any number of processors. Our linearly scaling numerical application predicts the formation of dynamically evolving fluid pathways. These supercomuting applications are vital for resolving actual challenging high-resolution three-dimensional models.
Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.
Ishutov, Sergey; Hasiuk, Franciszek J; Jobe, Dawn; Agar, Susan
2017-09-28
Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore-network models ("proxies") using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post-processing and validation can reduce uncertainty in the 3D-printed proxy accuracy (difference of proxy geometry from the digital model). Post-processing is a multi-step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin-section images of 3D-printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D-printed "gap test" wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (∼13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15-, 23-, and 30-fold magnifications to validate the workflow. Helium porosities of the 3D-printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ∼1% point), though uncertainties remain regarding the nature of sub-micron "artifact" pores imparted by the 3D printing process. This study shows the benefits of including post-processing and validation in any workflow to produce porous rock proxies. © 2017, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Wang, Z.; Wang, F.; Wang, R.
2015-12-01
Currently the moduli and velocities of rocks at seismic frequencies are usually measured by the strain-stress method in lab. However, such measurements require well-designed equipment and skilled technicians, which greatly hinders the experimental investigation on the elastic and visco-elastic properties of rocks at seismic frequencies. We attempt to model the dynamic moduli of porous rocks saturated with viscous fluid at seismic frequencies on core scale using the strain-stress method, aiming to provide a complement to real core measurements in lab. First, we build 2D geometrical models containing the pore structure information of porous rocks based on the digital images (such as thin section, SEM, CT, etc.) of real rocks. Then we assume the rock frames are linearly elastic, and use the standard Maxwell spring-dash pot model to describe the visco-elastic properties of pore fluids. Boundary conditions are set according to the strain-stress method; and the displacement field is calculated using the finite element method (FEM). We numerically test the effects of fluid viscosity, frequency, and pore structure on the visco-elastic properties based on the calculation results. In our modeling, the viscosity of the pore fluid ranges from 103mPas to 109mPas; and the frequency varies from 5Hz to 500Hz. The preliminary results indicate that the saturated rock behaves stiffer and shows larger phase lag between stress and strain when the viscosity of the pore fluid and (or) the frequency increase.
Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods
NASA Astrophysics Data System (ADS)
David, Christian; Bertauld, Delphine; Dautriat, Jérémie; Sarout, Joël; Menéndez, Beatriz; Nabawy, Bassem
2015-07-01
Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i) the continuous monitoring of the mass increase during imbibition, (ii) the imaging of the water front motion using X-ray CT scanning, (iii) the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv) the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.
Numerical simulation of salt cementation in the porous rocks adjacent to salt diapirs
NASA Astrophysics Data System (ADS)
Allstadt, Raphael; Li, Shiyuan; Marquart, Gabriele; Reuning, Lars; Niederau, Jan
2015-04-01
Porosity and permeability are among the most important petrophysical properties of reservoirs rocks in oil systems. Observations during exploration indicate that in the vicinity of salt domes the porosity of reservoir rocks is often reduced by halite cementation. In this study we present results of simulating the process of salt precipitation near salt diapirs by using a schematic model of a Zechstein diapir in the North Sea basin. The numerical simulation is based on solving the transport equations for heat, porous flow and dispersive and reactive chemical species. Chemical reaction and equilibrium is based on the PHREEQC computer code. In our model over-pressured brine is entering from below and is deflected towards the diapir due to an intermediate layer of low permeability. The high thermal conductivity of salt yields a lateral temperature gradient starting from the diapir. Due to this effect the simulated temperature profile shows lower temperatures close to the salt dome than in comparable depths further away. Caused by the temperature-controlled solubility of NaCl in the brine and supplied ions by the diapir, halite first precipitates near the salt diapir by cementing the pore spaces and thus reducing the porosity. Salt-precipitation in the simulation starts after 840 000 years and reduces the porosity from 10 % to 5.5 % after 19 Mill. years. The permanent influx of brine causes growth of the cementation area and the related reduction of porosity in the reservoir.
Fluid Transport in Porous Rocks. II. Hydrodynamic Model of Flow and Intervoxel Coupling
NASA Astrophysics Data System (ADS)
Mansfield, P.; Issa, B.
In a preceding paper [P. Mansfield and B. Issa, J. Magn. Reson. A122, 137-148 (1996)], a stochastic model of fluid flow in porous rocks based upon the experimental observation of water flow through a Bentheimer sandstone core was proposed. The flow maps were measured by NMR-imaging techniques. The stochastic theory led to a Gaussian velocity distribution with a mean value in accord with Darcy's law. Also predicted was a linear relationship between flow variance and mean fluid flow through rock, the Mansfield-Issa equation, originally proposed as an empirical relationship. In the present work a flow coupling mechanism between voxels is proposed. Examination of the flow coupling between isolated voxel pairs leads to a complementary explanation of the Gaussian velocity distribution, and also gives further details of the Mansfield-Issa equation. These details lead to a new expression for the connectivity, < C>, between voxels with an experimental value of < C> = 5.64 × 10 -9for Bentheimer sandstone.
An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.; Gualda, Guilherme A. R.
2015-06-01
A thermodynamic model for estimating the saturation conditions of H2O-CO2 mixed fluids in multicomponent silicate liquids is described. The model extends the capabilities of rhyolite-MELTS (Gualda et al. in J Petrol 53:875-890, 2012a) and augments the water saturation model in MELTS (Ghiorso and Sack in Contrib Mineral Petrol 119:197-212, 1995). The model is internally consistent with the fluid-phase thermodynamic model of Duan and Zhang (Geochim Cosmochim Acta 70:2311-2324, 2006). It may be used independently of rhyolite-MELTS to estimate intensive variables and fluid saturation conditions from glass inclusions trapped in phenocrysts. The model is calibrated from published experimental data on water and carbon dioxide solubility, and mixed fluid saturation in silicate liquids. The model is constructed on the assumption that water dissolves to form a hydroxyl melt species, and that carbon dioxide both a molecular species and a carbonate ion, the latter complexed with calcium. Excess enthalpy interaction terms in part compensate for these simplistic assumptions regarding speciation. The model is restricted to natural composition liquids over the pressure range 0-3 GPa. One characteristic of the model is that fluid saturation isobars at pressures greater than ~100 MPa always display a maximum in melt CO2 at nonzero H2O melt concentrations, regardless of bulk composition. This feature is universal and can be attributed to the dominance of hydroxyl speciation at low water concentrations. The model is applied to four examples. The first involves estimation of pressures from H2O-CO2-bearing glass inclusions found in quartz phenocrysts of the Bishop Tuff. The second illustrates H2O and CO2 partitioning between melt and fluid during fluid-saturated equilibrium and fractional crystallization of MORB. The third example demonstrates that the position of the quartz-feldspar cotectic surface is insensitive to melt CO2 contents, which facilitates geobarometry using phase
Electrical spectroscopy of porous rocks: a review-I.Theoretical models
NASA Astrophysics Data System (ADS)
Chelidze, T. L.; Gueguen, Y.
1999-04-01
The complex dielectric permittivity epsilon* of porous water-bearing rocks in the frequency range from a few to hundreds of megahertz reveals several intensive relaxation effects and a non-trivial dependence on the water content. At high frequencies, f>10 MHz, both the real part of the complex dielectric permittivity epsilon' and the conductivity sigma of water-bearing rocks are correctly predicted by the Maxwell-Wagner-Bruggeman-Hanai (MWBH) theory of composite dielectrics. This theory takes into account only the bulk properties of components, their partial volumes and the configuration of particles. The theory ignores two important factors: the surface contribution to polarization and the effect of clustering of components. At frequencies f<10 MHz there are certain frequency domains which exhibit relaxation processes not predicted by MWBH theory. The characteristic times of these processes range from 10^- ^6 to 10 s. These relaxation effects are related to different surface polarization processes which are, in order of increasing water content, (i) orientational polarization of bound water, (ii) polarization of liquid films or pockets, producing a polarization catastrophe effect, (iii) polarization of rough fractal surfaces, (iv) polarization of the `closed' electrical double layer (EDL), when the displacement of the excess surface charges is limited by the external boundary of the EDL, and (v) polarization of the `open' double layer, implying free exchange of excess ions with the bulk electrolyte and generation of transient diffusional potentials, which lag behind the applied field. Some theoretical models predict large effective values of relative dielectric constants in the range 10^5 -10^6 at low frequencies. Knowledge of the characteristic signatures of these physical mechanisms is important for the correct interpretation of experimental data. Analysis of existing theories of polarization of heterogeneous media shows that electrical spectroscopy can be
Pore scale heterogeneity in the mineral distribution and surface area of porous rocks
NASA Astrophysics Data System (ADS)
Lai, Peter; Moulton, Kevin; Krevor, Samuel
2014-05-01
There are long-standing challenges in characterizing reactive transport in porous media at scales larger than individual pores. This hampers the prediction of the field-scale impact of geochemical processes on fluid flow [1]. This is a source of uncertainty for carbon dioxide injection, which results in a reactive fluid-rock system, particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2,3]. The objective of this study was to quantify heterogeneity in reactive surface and observe the extent of its non-normal character. In this study we describe our work in using micron-scale x-ray imaging and other spectroscopic techniques for the purpose of describing the statistical distribution of reactive surface area within a porous medium, and identifying specific mineral phases and their distribution in 3-dimensions. Using in-house image processing techniques and auxilary charactersation with thin section, electron microscope and spectroscopic techniques we quantified the surface area of each mineral phase in the x-ray CT images. This quantification was validated against nitrogen BET surface area and backscattered electron imaging measurements of the CT-imaged samples. Distributions in reactive surface area for each mineral phase were constructed by calculating surface areas in thousands of randomly selected subvolume images of the total sample, each normalized to the pore volume in that image. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be
NASA Astrophysics Data System (ADS)
Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan
2017-04-01
In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.
Natural thermal convection in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
Pure water injection into porous rock with superheated steam and salt in a solid state
NASA Astrophysics Data System (ADS)
Montegrossi, G.; Tsypkin, G.; Calore, C.
2012-04-01
Most of geothermal fields require injection of fluid into the hot rock to maintain pressure and productivity. The presence of solid salt in porous space may cause an unexpected change in the characteristics of the reservoir and produced fluids, and dramatically affect the profitability of the project. We consider an injection problem of pure water into high temperature geothermal reservoir, saturated with superheated vapour and solid salt. Pure water moves away from injection point and dissolves solid salt. When salty water reaches the low-pressure hot domain, water evaporation occurs and, consequently, salt precipitates. We develop a simplified analytical model of the process and derive the similarity solutions for a 1-D semi-infinite reservoir. These solutions are multi-valued and describe the reduction in permeability and porosity due to salt precipitation at the leading boiling front. If the parameters of the system exceed critical values, then similarity solution ceases to exist. We identify this mathematical behaviour with reservoir sealing in the physical system. The TOUGH2-EWASG code has been used to verify this hypothesis and investigate the precipitate formation for an idealized bounded 1-D geothermal system of a length of 500 m with water injection at one extreme and fluid extraction at the other one. Both boundaries are kept at constant pressure and temperature. The result for the semi-infinite numerical model show that the monotonic grow of the solid salt saturation to reach asymptotic similarity solution generally occurs over a very large length starting from the injection point. Reservoir sealing occurs if solid salt at the initial state occupies a considerable part of the porous space. Numerical experiments for the bounded 500 m system demonstrate that a small amount of salt is enough to get reservoir sealing. Generally, salt tend to accumulate near the production well, and salt plug forms at the elements adjacent to the extraction point. This type
NASA Astrophysics Data System (ADS)
Okubo, C. H.; Schultz, R. A.
2004-12-01
bands. Further, deformation band intensity for both nucleation and propagation tendencies is predicted and observed to increase toward the fault. These model predictions are consistent with independent observations of fault-related deformation band damage zone architecture from other paradigmatic outcrops in southern Utah and Nevada. By implication, specific locations within a damage zone that have the greatest reductions in fluid conductivity due to deformation band growth can be identified. We show that the tendency for fault growth and interaction within porous granular rock can be systematically predicted based on an understanding of in-situ stress state, fault and/or fold geometry, and rock strength and deformability at the time of deformation. This method is not limited to the prediction of deformation bands, but can also be used to predict the distribution of other types of fractures in other rock types, given that the appropriate critical strain energy density values are determined through laboratory testing for each fracture and rock type.
Andrade, JosÃÂ© E; Rudnicki, John W
2012-12-14
In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.
Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.
2016-12-01
Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m
Pore Scale Heterogeneity in the Mineral Distribution, Surface Area and Adsorption in Porous Rocks
NASA Astrophysics Data System (ADS)
Lai, P. E. P.; Krevor, S. C.
2014-12-01
The impact of heterogeneity in chemical transport and reaction is not understood in continuum (Darcy/Fickian) models of reactive transport. This is manifested in well-known problems such as scale dependent dispersion and discrepancies in reaction rate observations made at laboratory and field scales [1]. Additionally, this is a source of uncertainty for carbon dioxide injection, which produces a reactive fluid-rock system particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2, 3]. We use x-ray micro tomography to describe the non-normal 3-dimensional distribution of reactive surface area within a porous medium according to distinct mineral groups. Using in-house image processing techniques, thin sections, nitrogen BET surface area, backscattered electron imaging and energy dispersive spectroscopy, we compare the surface area of each mineral phase to those obtained from x-ray CT imagery. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. We combine the mineral specific surface area characterisation to dynamic tomography, imaging the flow of water and solutes, to observe flow dependent and mineral specific adsorption. The observations may contribute to the incorporation of experimentally based statistical descriptions of pore scale heterogeneity in reactive transport into upscaled models, moving it closer to predictive capabilities for field scale
Quantify fluid saturation in fractures by light transmission technique and its application
NASA Astrophysics Data System (ADS)
Ye, S.; Zhang, Y.; Wu, J.
2016-12-01
The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.
NASA Astrophysics Data System (ADS)
Turturro, Antonietta Celeste; Caputo, Maria C.; Gerke, Horst H.
2017-04-01
Unsaturated hydraulic properties are essential in the modeling of water and solute movement in the vadose zone. Since standard hydraulic techniques are limited to specific moisture ranges, maybe affected by air entrapment, wettability problems, limitations due to water vapor pressure, and are depending on the initial saturation, the continuous maximal drying curves of the complete hydraulic functions can mostly not reflect the basic pore size distribution. The aim of this work was to compare the water retention curves of soil aggregates and porous rocks with their porosity characteristics. Soil aggregates of Haplic Luvisols from Loess L (Hneveceves, Czech Republic) and glacial Till T (Holzendorf, Germany) and two lithotypes of porous rock C (Canosa) and M (Massafra), Italy, were analyzed using, suction table, evaporation, psychrometry methods, and the adopted Quasi-Steady Centrifuge method for determination of unsaturated hydraulic conductivity. These various water-based techniques were applied to determine the piece-wise retention and the unsaturated hydraulic conductivity functions in the range of pore water saturations. The pore-size distribution was determined with the mercury intrusion porosimetry (MIP). MIP results allowed assessing the volumetric mercury content at applied pressures up to 420000 kPa. Greater intrusion and porosity values were found for the porous rocks than for the soil aggregates. Except for the aggregate samples from glacial till, maximum liquid contents were always smaller than porosity. Multimodal porosities and retention curves were observed for both porous rocks and aggregate soils. Two pore-size peaks with pore diameters of 0.135 and 27.5 µm, 1.847 and 19.7 µm, and 0.75 and 232 µm were found for C, M and T, respectively, while three peaks of 0.005, 0.392 and 222 µm were identified for L. The MIP data allowed describing the retention curve in the entire mercury saturation range as compared to water retention curves that required
Failure mode, strain localization and permeability evolution in porous sedimentary rocks
NASA Astrophysics Data System (ADS)
Vajdova, Veronika
investigated on dry samples of Indiana and Tavel limestones. Despite the difference in deformation mechanisms, failure modes in the limestones were similar to that of porous sandstones reported in literature: dilatant brittle faulting and compactioe ductile flow at low and high confining pressures, respectively. The observations were interpreted by two micromechanical models. Our data combined with published data characterize pore collapse in carbonate rocks with porosities between 3% and 45%.
Dissolution in Fractured and Porous Rocks - the Cave Formation Paradox and Other Instabilities
NASA Astrophysics Data System (ADS)
Szymczak, P.; Ladd, A. J. C.
2012-04-01
It has long been realized that limestone caves are solutional in origin; the carbonic acid-enriched groundwater forms a weakly acidic solution which dissolves the surrounding limestone as it percolates through the fracture network. Under the simplest assumptions - uniform flow and linear kinetics - the concentration of reactant decays exponentially with distance into the fracture, making it apparently impossible for long conduits to develop. How does the dissolution get so deep then? The answer until recently has been described in terms of changes in chemical kinetics: in natural calcite the reaction rate decreases by orders of magnitude near saturation, which gives a slightly undersaturated solution possibility to penetrate deeper into the fractured rock. Although this is an appealing and widely accepted resolution of the cave formation paradox, it turns out to be incomplete. Both the computer simulations [1] and laboratory experiments [2] show that a fracture does not necessarily open uniformly across its width, but can develop localized regions of dissolution. We show that there is in fact a universal instability in the equations for fracture dissolution [3], even under the most idealized circumstances: i.e. a fracture modeled as two parallel plates, laminar flow, and linear reaction kinetics at the fracture surfaces. This generic instability provides a more effective means to promote dissolution than changes in chemical kinetics and has a profound effect on how long it takes for breakthrough (when the fracture opens along its whole length) to occur. This instability is related to a similar phenomenon in the reactive flow in porous rocks, first described by Chadam et. al [4] (so-called reactive-infiltration instability). The physical nature of both instabilites is different: the former is associated with an initial, uniform porosity state and the other with a steadily propagating dissolution front that separates regions of high and low porosity. We discuss the
The route to shear failure in a non-porous rock revealed by X-ray microtomography
NASA Astrophysics Data System (ADS)
Kandula, Neelima; Renard, Francois; Weiss, Jerome; Cordonnier, Benoit; Kobchenko, Maya
2017-04-01
The rocks in the crust of the Earth are heterogeneous at the microscale, which has implications on the mode of failure and the existence of precursors to rupture. Using high-resolution X-ray microtomography technique and a triaxial deformation rig called Hades installed at the European Synchrotron Radiation Facility, it is now possible to simulate in-situ rock deformation under crustal conditions at the laboratory scale. We report experiments on deformation of centimetre-scale cylindrical marble samples under compressive loading and confining pressure in the range 20 to 30 MPa. The rock is non-porous and the heterogeneities correspond to the grains and grain boundaries. High-resolution X-ray microtomography acquisitions at a voxel size of 6.5 micrometers are performed while the axial load is increased in steps until reaching the shear failure of the sample. Failure is preceded by numerous micro-fracturing events, which we call damage, that ultimately accumulate into a shear fault. Damage volume and sample density show significant accelerations with applied differential stress before rupture, indicating that precursory signals are present before rupture. This acceleration of damage towards the peak stress as well as the associated micro-fracture size distributions show power-law scaling that argues for an interpretation of rock failure as a critical phenomenon. The present study, therefore, sheds new light on precursory phenomena preceding failure in low-porosity carbonate rocks, which can be of help in unraveling the physics of precursors to earthquakes.
Kobayashi, Atsushi; Suzuki, Yui; Ohba, Tadashi; Noro, Shin-ichiro; Chang, Ho-Chol; Kato, Masako
2011-03-21
We synthesized new porous coordination polymers (PCPs) {Ln(III)[Co(III)(dcbpy)(3)]·nH(2)O} (Ln = La(3+), Nd(3+), Gd(3+); H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and characterized them by X-ray diffraction and vapor-adsorption measurements. These three Ln-Co-based PCPs have similar rock-salt types and highly symmetrical porous structure and show a reversible structural collapse-regeneration accompanied by water-vapor desorption-adsorption. Similar structural regeneration was also observed for the Gd-Co PCP upon exposure to MeOH and CH(3)CN vapors, whereas the remaining two PCPs barely responded to organic vapors.
Full waveform inversion of seismic waves reflected in a stratified porous medium
NASA Astrophysics Data System (ADS)
De Barros, Louis; Dietrich, Michel; Valette, Bernard
2010-09-01
In reservoir geophysics applications, seismic imaging techniques are expected to provide as much information as possible on fluid-filled reservoir rocks. Since seismograms are, to some degree, sensitive to the mechanical parameters and fluid properties of porous media, inversion methods can be devised to directly estimate these quantities from the waveforms obtained in seismic reflection experiments. An inversion algorithm that uses a generalized least-squares, quasi-Newton approach is described to determine the porosity, permeability, interstitial fluid properties and mechanical parameters of porous media. The proposed algorithm proceeds by iteratively minimizing a misfit function between observed data and synthetic wavefields computed with the Biot theory. Simple models consisting of plane-layered, fluid-saturated and poro-elastic media are considered to demonstrate the concept and evaluate the performance of such a full waveform inversion scheme. Numerical experiments show that, when applied to synthetic data, the inversion procedure can accurately reconstruct the vertical distribution of a single model parameter, if all other parameters are perfectly known. However, the coupling between some of the model parameters does not permit the reconstruction of several model parameters at the same time. To get around this problem, we consider composite parameters defined from the original model properties and from a priori information, such as the fluid saturation rate or the lithology, to reduce the number of unknowns. Another possibility is to apply this inversion algorithm to time-lapse surveys carried out for fluid substitution problems, such as CO2 injection, since in this case only a few parameters may vary as a function of time. We define a two-step differential inversion approach which allows us to reconstruct the fluid saturation rate in reservoir layers, even though the medium properties are poorly known.
Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.
2010-01-01
Magnetic Resonance Poroelastography (MRPE) is introduced as an alternative to single-phase model-based elastographic reconstruction methods. A three-dimensional (3D) finite element poroelastic inversion algorithm was developed to recover the mechanical properties of fluid-saturated tissues. The performance of this algorithm was assessed through a variety of numerical experiments, using synthetic data to probe its stability and sensitivity to the relevant model parameters. Preliminary results suggest the algorithm is robust in the presence of noise and capable of producing accurate assessments of the underlying mechanical properties in simulated phantoms. Further, a 3D time-harmonic motion field was recorded for a poroelastic phantom containing a single cylindrical inclusion and used to assess the feasibility of MRPE image reconstruction from experimental data. The elastograms obtained from the proposed poroelastic algorithm demonstrate significant improvement over linearly elastic MRE images generated using the same data. In addition, MRPE offers the opportunity to estimate the time-harmonic pressure field resulting from tissue excitation, highlighting the potential for its application in the diagnosis and monitoring of disease processes associated with changes in interstitial pressure. PMID:20199912
The effect of fluid saturation on the dynamic shear modulus of tight sandstones
NASA Astrophysics Data System (ADS)
Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Shuai, Da
2017-10-01
Tight sandstones have become important targets in the exploration of unconventional oil and gas reservoirs. However, due to low porosity, low permeability, complex pore structure and other petrophysical properties of tight sandstones, the applicability of Gassmann’s fluid substitution procedure becomes debatable. Aiming at this problem, this paper attempts to explore the applicability of Gassmann’s theory in tight sandstones. Our focus is to investigate the sensitivity of dynamic shear modulus to fluid saturation and the possible mechanism. Ultrasonic velocity in dry and saturated tight sandstone samples was measured in the laboratory under an effective pressure within the range of 1-60 MPa. This study shows that the shear modulus of the water-saturated samples appears to either increase or decrease, and the soft porosity model (SPM) can be used to quantitatively estimate the variation of shear modulus. Under the condition of in situ pressure, samples dominated by secondary pores and microcracks are prone to show shear strengthening with saturation, which is possibly attributed to the local flow dispersion. Samples that mainly have primary pores are more likely to show shear weakening with saturation, which can be explained by the surface energy mechanism. We also find good correlation between changes in shear modulus and inaccurate Gassmann-predicted saturated velocity. Therefore, understanding the variation of shear modulus is helpful to improving the applicability of Gassmann’s theory in tight sandstones.
On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid.
van Dalen, K N; Drijkoningen, G G; Smeulders, D M J
2010-04-01
Pseudo interface waves can exist at the interface of a fluid and a fluid-saturated poroelastic solid. These waves are typically related to the pseudo-Rayleigh pole and the pseudo-Stoneley pole in the complex slowness plane. It is found that each of these two poles can contribute (as a residue) to a full transient wave motion when the corresponding Fourier integral is computed on the principal Riemann sheet. This contradicts the generally accepted explanation that a pseudo interface wave originates from a pole on a nonprincipal Riemann sheet. It is also shown that part of the physical properties of a pseudo interface wave can be captured by loop integrals along the branch cuts in the complex slowness plane. Moreover, it is observed that the pseudo-Stoneley pole is not always present on the principal Riemann sheet depending also on frequency rather than on the contrast in material parameters only. Finally, it is shown that two additional zeroes of the poroelastic Stoneley dispersion equation, which are comparable with the P-poles known in nonporous elastic solids, do have physical significance due to their residue contributions to a full point-force response.
Approach to failure in a discrete element model of the compressive failure of porous rocks (Invited)
NASA Astrophysics Data System (ADS)
Kun, F.; Varga, I.; Lennartz-Sassinek, S.; Main, I. G.
2013-12-01
We investigate how a porous rock sample approaches failure under uniaxial compression. Computer simulations are carried out in the framework of a discrete element model (DEM) which takes into account both the microstructure of the material and the dynamics of local fracturing, revealing much more detail and observation bandwidth in then granular mechanics than possible during standard laboratory tests. The synthetic sample is generated by sedimentation of randomly-sized spherical particles with a log-normal size distribution inside a cylindrical container. The cohesive interaction of particles is represented by beam elements that break when overstressed. The breaking rule takes into account both stretching and shear of particle contacts. When particles not connected by a beam come into contact their interaction is described by the Hertz contact law. The time evolution of the system is generated by molecular dynamics simulations in three dimensions. Computer simulations showed that under strain controlled uniaxial loading of the system micro-cracks initially nucleate in an uncorrelated way all over the sample. As loading proceeds localization occurs, i.e. the damage concentrates into a narrow damage band. Inside the damage band the material is crushed, into a poorly sorted mixture of fine powder and larger fragments with a power-law mass distribution, as observed in fault wear products (gouge) in natural and laboratory faults. Dynamic bursts of radiated energy, analogous to acoustic emissions observed in laboratory experiments, are identified as correlated trails of local fracture emerging as the consequence of stress redistribution. Characteristic quantities of burst such as size/rupture area, released elastic energy, and duration proved to have power law probability-size distributions over a broad range. The energy and duration of bursts have power law dependence on the rupture area created. As the system approaches macroscopic failure consecutive bursts become
Hydromechanical Imaging of Fractured-Porous Rocks Properties and Coupled Processes
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Wang, J. S.
2009-12-01
The High-Pulse Poroelasticity Protocol (HPPP) project is dedicated to geophysical monitoring of CO2 injection in reservoirs (http://hppp.unice.fr/), focusing currently on hydromechanical testing in carbonate rock. The HPPP probe uses fiber-optic sensors for dynamic fluid pressure/mechanical deformation measurements in boreholes, with reflection of light at specific wavelength from fiber Bragg gratings mounted between inflatable packers. The probe requires no downhole electrical supply, thus the operation is passive, with response time << 0.5 ms and probe sizes from ~12 to ~25 mm. The sensor is immune to EM interference, and can stand harsh environments. The probe laboratory and in situ calibration and the development of receiving array of sensors around HPPP are established prior to borehole installation. The field measurements include the detection of coupled seismic - poroelastic waves (Fast Biot Waves) in saturated and unsaturated zones. Within the injection chamber, seismic pressure waves of 1 to 10 Hz and static hydraulic diffusion are measured to quantify the coupling to the reservoir. Oscillations with period of several ms are induced by the onset of fluid pulses and quickly reach quasi-static state with high pressure maintained for seconds. The accuracies of fiber optical displacement sensor is 10-7 m and pressure sensor 103 Pa. In the rock medium, 3D MEM accelerometers with frequency range of 0 - 1 kHz can be mounted with distances of deci-meters to meters from the HPPP probe. Undrained responses with strong differences in amplitude and shape between velocity components are detected right after the rise of fluid pressure. After the pressure pulse, seismicity related to pulse pressure diffusion is detected. Accelerometers are also deployed in the Coaraze site (in southeastern France) with both fault related fractures and bedding planes well characterized. Water tables can be raised or lowered in the fracture/porous block by closing and opening a spring
Seismic tomography in the lab-interferometry in a porous, scattering medium under pressure
NASA Astrophysics Data System (ADS)
Boschi, Lapo; Latour, Soumaya; Colombi, Andrea; Schubnel, Alexandre
2015-04-01
Our laboratory experiments and numerical simulations aim at determining the accuracy and reliability of seismic interferometry as an imaging and monitoring tool. In our analogue experiments, seismic waves are transmitted, via transducers, into rock samples under pressure, or are generated as the samples crack along a fault. We record the resulting signal at a number of receivers over the sample, and analyze those data via seismic inteferometry. Our samples include porous, scattering rocks, both dry and fluid-saturated, isotropic and anisotropic. The experimental apparatus we utilize allows to reproduce pressure and temperature conditions found in the Earth's crust. We so evaluate the role of isotropic and/or anisotropic cracking and fluid saturation (depending, in turn, on the fluid's viscosity) on wave propagation and, specifically, on the system's impulse response (Green's function). Whether the Green's function is correctly reconstructed by interferometry is in itself a signficant theoretical question that we also address. Numerical (spectral-element via SPECFEM) modeling allows to disentangle the role of various parameters who affect Green's function reconstructuon, e.g. source distribution which is particularly hard to control in analogue experiments.
NASA Astrophysics Data System (ADS)
Han, Tongcheng; Gurevich, Boris; Pervukhina, Marina; Clennell, Michael Ben; Zhang, Junfang
2016-04-01
Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.
NASA Astrophysics Data System (ADS)
Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.
2015-09-01
Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.
Porous reservoir rocks with fluids: Reservoir transport properties and reservoir conditions
Nur, Amos
2004-01-22
During the past three years we have carried out research efforts in three areas: (1) Modeling rock physical properties; (2) Properties and behavior of sediments with gas hydrates; and (3) Detectionand production of subsurface overpressure. Results were published in the informal Stanford Rock Physics reports, refereed papers and PhD theses, as detailed below.
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Cherkauer, Douglas S.
Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par
NASA Astrophysics Data System (ADS)
Wang, W.; Regueiro, R. A.
2014-12-01
The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short
ERIC Educational Resources Information Center
Lee, Alice
This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…
The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks.
Latief, F D E; Fauzi, U; Irayani, Z; Dougherty, G
2017-04-01
The study of digital rock physics has seen significant advances due to the development of X-ray micro computed tomography scanning devices. One of the advantages of using such a device is that the pore structure of rock can be mapped down to the micrometre level in three dimensions. However, in providing such high-resolution images (low voxel size), the resulting file sizes are necessarily large (of the order of gigabytes). Lower image resolution (high voxel size) produces smaller file sizes (of the order of hundreds of megabytes), but risks losing significant details. This study describes the effect of the image resolution obtained by means of hardware-based and software-based approach. Four samples of porous rock were scanned using a SkyScan 1173 High Energy Micro-CT. We found that acquisition using increased pixel binning of the camera (hardware-based resizing) significantly affects the calculated physical properties of the samples. By contrast, voxel resizing by means of a software-based approach during the reconstruction process yielded less effect on the porosity and specific surface area of the samples. However, the decreasing resolution of the image obtained by both the hardware-based and the software-based approaches affects the permeability significantly. We conclude that simulating fluid flow through the pore space using the Lattice Boltzmann method to calculate the permeability has a significant dependency on the image resolution.
Stress impact on elastic anisotropy of triclinic porous and fractured rocks
NASA Astrophysics Data System (ADS)
Shapiro, S. A.
2017-03-01
Understanding the stress dependence of elastic properties of rocks is important for reservoir characterization and seismic-hazard monitoring. Several known approaches describing this dependence are the following: the nonlinear elasticity theory, effective-medium theories for fractured rocks with stress-dependent crack densities, and the piezosensitivity approach (also called the porosity deformation approach). Here I propose a generalization of the piezosensitivity approach to triclinic rocks. I assume the isotropy of the tensor describing sensitivity of elasticity to small strains of the pore space, and generalize known linear and exponential stress dependencies of compliances. This generalization is capable of describing the effect of loads on elastic properties of anisotropic rocks when the principal stresses are not necessarily aligned with the symmetrical axes of the unstressed anisotropic material. For example, the generalization describes how monoclinic anisotropy changes under isostatic stress or pore pressure, and how tilted transverse isotropy changes to monoclinic anisotropy due to a pseudo-triaxial (or a uniaxial) load. The results are expected to be valid up to several hundred megapascals. This theory is closely related to the two other approaches mentioned above. On the one hand, for unloaded rocks, the theory is consistent with the noninteracting scalar-crack approximation. On the other hand, the theory's predictions of mutual relations between isotropic third-order elastic moduli is in good agreement with literature data on corresponding laboratory measurements. Thus, using the piezosensitivity approach, the physical nonlinearity of rocks can quantitatively be rather well explained by the strain of compliant pores.
A Circuit Model for the Measurement of the Streaming Potential in a Rock Sample
NASA Astrophysics Data System (ADS)
Yin, C.; Wang, J.; Qiu, A.; Liu, X.; Hu, H.
2012-04-01
Streaming potential is usually defined under the assumption that the rock sample under consideration is not connected electrically to any external circuit. In this study we investigate experimentally the effect of the external circuit on the measurement of the streaming potential. Cations usually dominate anions in the diffuse layer in the pore canals in a fluid-saturated porous sandstone sample. When a pressure difference is applied to the sample, fluid flows in the pores and causing a convective current due to the cation-dominate motion. With the separation of opposite ions at the two ends, a streaming potential occurs, and results in a conductive current. Those two current will be opposite and equal in value so that the streaming potential does not change. But in any experimental measurement of the streaming potential, the rock sample is not isolated in the circuit. An external circuit is necessary for the measurement of the potential difference at the ends of the sample. This external circuit will divert the flow of charges. This study investigates the effect of the external circuit on the convective current and conductive current in the pores by experiments, and gives an equivalent circuit model for the two currents. We connect an external resistance Rext to the ends of the fluid-saturated rock sample, and measure the potential difference at the ends of the sample . The impedance of the fluid-saturated rock sample Zrock is definite under a given salinity and can be separately measured. The circuit is governed by the following equations, Urock = ZrockIcond, (1) Urock = RextIext, (2) Iconv + Icond +Iext = 0, (3) where Iconv is the convective current, Icond is the conductive current, Iext is the external current and Urock is the potential difference at the ends of the rock sample. From the above three equations, we get - Urock(Zrock + Rext) Iconv = ---Z--R----- . rock ext (4) We repeated the measurement under different external resistance Rext. The computed
NASA Astrophysics Data System (ADS)
Johnsen, O.; Chevalier, C.; Toussaint, R.; Lindner, A.; Niebling, M.; Schmittbuhl, J.; Maloy, K. J.; Clement, E.; Flekkoy, E. G.
2009-04-01
We present experimental systems where we inject a fluid at high pressure in a poorly cohesive porous material saturated with the same fluid. This fluid is either a highly compressible gas (air), or an almost incompressible and viscous fluid (oil), in an otherwise identical porous matrix. We compare both situations. These porous materials are designed as analogs to real rocks in terms of processes, but their cohesion and geometry are tuned so that the hydrofracture process can be followed optically in the lab, in addition to the ability to follow the imposed pressure and fluxes. Namely, we work with lowly cohesive granular materials, confined in thin elongated Hele-Shaw cell, and follow it with high speed cameras. The fluid is injected on the side of the material, and the injection overpressure is maintained constant after the start. At sufficiently high overpressures, the mobilization of grains is observed, and the formation of hydrofracture fingering patterns is followed and analyzed quantitatively. The two situations where air is injected and where oil is injected are compared together. Many striking similarities are observed between both situations about the shape selections and dynamics, when time is rescaled according to the viscosity of the interstitial fluid. Some differences survive in the speed of the traveling hydrofracture, and their physical origin is discussed. In practice, this problem is relevant for important aspects in the formation and sustenance of increased permeability macroporous networks as demonstrated in nature and industry in many situations. E.g., in active hydrofracture in boreholes, piping/internal erosion in soils and dams, sand production in oil or water wells, and wormholes in oil sands. It is also important to understand the formation of macroporous channels, and the behavior of confined gouges when overpressured fluids are mobilized in seismic sources. Indeed, the formation of preferential paths in this situation can severely
Prediction of crack density in porous-cracked rocks from elastic wave velocities
NASA Astrophysics Data System (ADS)
Byun, Ji-Hwan; Lee, Jong-Sub; Park, Keunbo; Yoon, Hyung-Koo
2015-04-01
The stability of structures that are built over rock is affected by cracks in the rock that result from weathering, thawing and freezing processes. This study investigates a new method for determining rock crack densities using elastic wave velocities. The Biot-Gassmann model, which consists of several elastic moduli and Poisson's ratio, was used to determine a theoretical equation to predict the crack density of rocks. Ten representative specimens were extracted from ten boreholes to highlight the spatial variability. Each specimen was characterized using X-Ray Diffraction (XRD) analysis. The specimens were carved into cylinders measuring 50 mm in diameter and 30 mm in height using an abrasion process. A laboratory test was performed to obtain the elastic wave velocity using transducers that can transmit and receive compressional and shear waves. The measured compressional wave and shear wave velocities were approximately 2955 m/s-5209 m/s and 1652 m/s-2845 m/s, respectively. From the measured elastic wave velocities, the analyzed crack density and crack porosity were approximately 0.051-0.185 and 0.03%-0.14%, respectively. The calculated values were compared with the results of previous studies, and they exhibit similar values and trends. The sensitivity of the suggested theoretical equation was analyzed using the error norm technique. The results show that the compressional wave velocity and the shear modulus of a particle are the most influential factors in this equation. The study demonstrates that rock crack density can be estimated using the elastic wave velocities, which may be useful for investigating the stability of structures that are built over rock.
Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks
NASA Astrophysics Data System (ADS)
Kong, Liyun; Gurevich, Boris; Müller, Tobias M.; Wang, Yibo; Yang, Huizhu
2013-12-01
When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are saturated with the same fluid. In some situations, particularly when a fluid such as water or carbon dioxide is injected into a tight hydrocarbon reservoir, fractures may be filled with a different fluid (with capillary forces preventing fluid mixing). Here we develop a model for wave propagation in a porous medium with aligned fractures where pores and fractures are filled with different fluids. The fractured medium is modelled as a periodic system of alternating layers of two types: thick porous layers representing the background, and very thin and highly compliant porous layers representing fractures. A dispersion equation for the P-wave propagating through a layered porous medium is derived using Biot's theory of wave propagation in periodically stratified poroelastic media. By taking the limit of zero thickness and zero normal stiffness of the thin layers, we obtain expressions for dispersion and attenuation of the P waves. The results show that in the low-frequency limit the elastic properties of such a medium can be described by Gassmann's equation with a composite fluid, whose bulk modulus is a harmonic (Wood) average of the moduli of the two fluids. The dispersion is relatively large when the fluid in both pores and fractures is liquid, and also when the pores are filled with a liquid but fractures are filled with a highly compressible gas. An intermediate case exists where the fluid in the pores is liquid while the fluid in the fractures has a bulk modulus between those of liquid and gas. In this intermediate case no dispersion is observed. This can be explained by observing that for uniform saturation, wave-induced compression causes flow from fractures into pores due to the high compliance of the fractures. Conversely, when pores are filled
Semiarid watershed response to low-tech porous rock check dams
USDA-ARS?s Scientific Manuscript database
Rock check dams are used throughout the world as a technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US; however, their impact on watershed response and channel morphology is not well quantified. In...
NASA Astrophysics Data System (ADS)
Ayling, Mark R.; Meredith, Philip G.; Murrell, Stanley A. F.
1995-05-01
We present results from two series of triaxial deformation experiments performed on "dry" samples of two sandstones (Darley Dale and Gosford) carried out at confining pressures from 25 MPa to 200 MPa. Over this pressure range the mode of failure in both these sandstones passes from localized brittle failure with a clear through-going fault to distributed cataclastic flow. During these experiments, stress, strain, compressional-wave velocity ( VP) and shear-wave velocity ( VS) measurements were made simultaneously in the direction of the maximum principal compressive loading axis. Initial application of the hydrostatic confining pressure causes both VP and VS to increase, and upon raising the axial stress above the confining pressure both velocities increase further at first (generally by only a few percent), but then decrease as dilatant crack growth commences. During dilatancy, VS decreases proportionately more than VP, and this decrease is generally of the order of 10-15%. These velocity measurements allow changes in rock physical properties to be calculated along with the axial and transverse crack volume density parameters, ɛX and ɛZ. The results from two selected tests are analysed in detail. These tests were chosen because they exhibit; (a) typical brittle shear failure, and (b) typical ductile cataclastic flow, respectively. The full interrogating elastic waveforms were also recorded during testing, and these have been used to calculate the seismic quality factors QP and QS. To our knowledge, this is the first time this has been reported for rock samples undergoing triaxial deformation. The changes in Q values generally exhibit similar trends to those observed in the velocity measurements, but the percentage changes in Q are an order of magnitude greater, suggesting that this parameter is a more sensitive measure of dilatant crack damage. The measurements on dry rock samples reported here provide the basis for comparison with measurments of changes in
NASA Astrophysics Data System (ADS)
Dutka, Filip; Osselin, Florian; Kondratiuk, Paweł; Szymczak, Piotr
2017-04-01
We analyze the evolution of the shape of a dissolving porous body immersed in a reactive fluid. First, we consider the case of a semi-infinite body and transport-limited dissolution and show that in this case the resulting shape is parabolic. We derive the dissolution rate of such shapes depending on the contrast of permeabilities between the body and the surrounding matrix both in two and three spatial dimensions. Next, we consider a problem of the dissolution of a finite-sized porous object in a Hele-Shaw cell. We study this system both experimentally and numerically. In the experiment, we use a microfluidic chip with a gypsum block inserted in between two parallel polycarbonate plates. By changing the flow rate and the distance between the plates we can scan a relatively wide range of Péclet and Damköhler numbers, which characterize the relative magnitude of advection, diffusion and reaction in the system. The evolving geometries are captured by a camera and then analyzed by image-processing techniques. The experiments show a number of unexpected regularities. In particular, the upstream (trailing) edge of the dissolving object is shown to advance with a constant velocity whereas its curvature is changing in time. If the object had initially a sharp tip pointing upstream, its radius of curvature first increases and then decreases in time. Finally, we compare the obtained dissolution shapes with the natural forms such as pinnacles in a surface karst.
Micro-poromechanics model of fluid-saturated chemically active fibrous media
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2014-01-01
We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill’s volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete. PMID:25755301
Micro-poromechanics model of fluid-saturated chemically active fibrous media.
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2015-02-01
We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.
Fluid-Rock Characterization and Interactions in NMR Well Logging
Hirasaki, George J.; Mohanty, Kishore, K.
2001-07-13
The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.
Footprints of spontaneous fluid redistribution on capillary pressure in porous rock
NASA Astrophysics Data System (ADS)
Helland, Johan Olav; Friis, Helmer André; Jettestuen, Espen; Skjæveland, Svein M.
2017-05-01
Pore-scale imaging of two-phase flow in porous media shows that pore filling occurs as cooperative events with accompanying spontaneous fluid redistribution in other parts of the pore space. We present a level set method that controls saturation quasi-statically to model experiments controlled by low, constant flow rates and demonstrate that our method can describe the observed displacement mechanisms. The level set approach determines states of capillary equilibrium, which generally are different for displacement protocols constrained by saturation and pressure. Saturation-controlled simulations of drainage in sandstone show spontaneous fluid redistributions with abrupt pressure jumps and cooperative behavior, including snap-off and interface retraction events, consistent with experimental observations. Drainage capillary pressure curves are lower when saturation, rather than pressure, controls displacement. Remarkably, these effects are less significant for imbibition processes where the development of hydraulically connected wetting phase moderates the cooperative behavior and associated pressure jumps.
Growth of compaction bands: A new deformation mode for porous rock
OLSSON,WILLIAM A.; HOLCOMB,DAVID J.
2000-03-14
Compaction bands are thin, tabular zones of grain breakage and reduced porosity that are found in sandstones. These structures may form due to tectonic stresses or as a result of local stresses induced during production of fluids from wells, resulting in barriers to fluid (oil, gas, water) movement in sandstone reservoirs. To gain insight into the formation of compaction bands the authors have produced them in the laboratory. Acoustic emission locations were used to define and track the thickness of compaction bands throughout the stress history during axisymmetric compression experiments. Narrow zones of intense acoustic emission, demarcating the boundaries between the uncompacted and compacted regions were found to develop. Unexpectedly, these boundaries moved at velocities related to the fractional porosity reduction across the boundary and to the imposed specimen compression stress. This appears to be a previously unrecognized, fundamental mode of deformation of a porous, granular material subjected to compressive loading with significant implications for the production of hydrocarbons.
Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Donelick, R. A.; Donelick, M. B.
2016-12-01
We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as
Effect of isolated fractures on accelerated flow in unsaturated porous rock
Su, G.W.; Nimmo, J.R.; Dragila, M.I.
2003-01-01
Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low-angled isolated fractures compared to high-angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.
NASA Astrophysics Data System (ADS)
Stefansson, A.
2013-12-01
Reaction and reactive transport modeling is becoming an increasingly popular method to study fluid-rock interaction and fluid transport on small to large scales. In this study, fluid-rock experiments were carried out and the observations compared with the results of reaction and reactive transport models. The systems studied included fluid-rock interaction of olivine on one hand and basaltic glass on the other hand with dilute aqueous solutions containing CO2 at acid to neutral pH and temperatures from ambient to 250 °C. The experiments were conducted using batch type experiments in closed reactors and 1-D plug experiments in flow-through reactors and the solution chemistry, the reaction progress, secondary mineralization and porosity changes analyzed as a function of time. The reaction and 1-D reactive transport simulations were conducted with the aid of the PHREEQC program. For the simulations the thermodynamic database for mineral reactions was largely updated and the kinetics of mineral dissolution as well as mineral nucleation and crystal growth was incorporated. According to the experimental results and the reactive transport simulations, olivine and basaltic glass progressively dissolves forming secondary minerals and solutes that are partially transported out of them column (system). The exact reaction path was found to depend on solution composition and pH and reaction progress (time). The mass movement of the system at a particular steady state as well as porosity changes may be divided into three stages. Stage I is characterized by initial olivine or basaltic glass leaching, stage II is characterized by progressive mineral formation and decrease in porosity and stage III is characterized by remobilization of the previously formed secondary minerals and eventual increase in porosity. The reaction and reactive transport modeling was found to simulate reasonable the reaction path as a function of reaction time. However, exact mass movement and time
Effect of pore pressure on the velocity of compressional waves in low-porosity rocks.
NASA Technical Reports Server (NTRS)
Todd, T.; Simmons, G.
1972-01-01
The velocity V sub p of compressional waves has been measured in rock samples of low porosity to confining pressures P sub c of 2 kb for a number of different constant pore pressures P sub p. An effective pressure defined by P sub e = P sub c-nP sub p, n less than or equal to 1, is found to be the determining factor in the behavior of V sub p rather than an effective pressure defined simply by the differential pressure Delta P = P sub c-P sub p. As pore pressure increases at constant effective pressure, the value of n increases and approaches 1, but as effective pressure increases at constant pore pressure, the value of n decreases. These observations are consistent with Biot's theory of the propagation of elastic waves in a fluid-saturated porous solid.
Combined Geoelectrical and Georadar Measurement for State Characterization of porous Rock
NASA Astrophysics Data System (ADS)
Boerner, F. D.
2006-05-01
The state parameters volumetric pore water content and pore water composition influence geomechanical stability of near surface unconsolidated rock or soil. Changes of those characteristics can result in the instability of the rock and therefore in on set of a failure process. The geophysical monitoring of state parameters in space and time allows the assessment of compaction or soil water suction/pressure. The objective of the thereafter presented investigation was the quantitative determination of water saturation and water salinity using multimethod geophysical measurement. The application of only one geophysical method can give rise to gross uncertainties in the estimation of salinity or water saturation. The combination of a low frequency conductivity measurement (2 Hz) and a high frequency electromagnetic measurement (1 GHz) provides two petrophysical parameters: electrical conductivity and dielectric permittivity. Both parameters are strongly water saturation dependent and somewhat dependent on water salinity. A system of two nonlinear model-equations was used to determine salinity and saturation. An unique solution is possible in case of constant pore space structure. The experiments have been carried out on a rectangular designed sand box model and a hydraulically isolated sandstone block. Each of that has a size of 2m x 1m x 0.3 m. Three types of medium scale hydraulic experiments were monitored by multimethod geophysical measurements: - Water imbibition and drainage, - Displacement of water by density driven flow, - Displacement of water by forced convection 4-point electric conductivity measurement and radar transmission measurement have been carried out along several vertical profiles. The data were used to test the area of validity of the petrophysical model. The block model were divided into several descrete rock volumes. Water saturation and salinity were calculated for each single discrete rock volume. Independently water balance and hence the mean
Gutierrez, Marte
2013-05-31
Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in
NASA Astrophysics Data System (ADS)
Song, Z.; Song, Y.
2015-12-01
The characterization of pore and fracture is an important part of regional hydrological survey. Traditional methods (e.g. mercury intrusion, porosimetry, and pressure pulse) can effectively determine the parameters of pore and fracture for high-permeability rocks. However, these methods tend to fail for low-permeability rocks, especially quartz sandstone and granite. Thus, this work presented a novel method to determine the parameters of pore and fracture by analyzing the digital image of the casting thin sections under a microscope. Firstly, the size of representative elementary image was obtained by calculating pore parameters of different scales of samples. Then the method based on representative elementary image analyzed the casting thin sections of sandstone with low permeability, low anisotropy, and high water-binding capacity, and determined the parameters such as porosity, round-hole rate, roundness. Besides, this method analyzed the casting thin sections of low-permeability granite from Beishan, Gansu, China to determine more parameters such as fracture rate, length-width ratio of fracture, direction angle, and roundness. Finally, these parameters determined by the method were compared with those by transient pressure pulse method. The comparison demonstrated that the presented method can determine more high-accuracy parameters than transient pressure pulse method. Key words: digital image analysis, casting thin sections, pore, fracture, parameters analysis
NASA Astrophysics Data System (ADS)
Gland, N. F.; Talon, L.; Bauer, D.; Youssef, S.; Auradou, H.
2010-12-01
We present a numerical study of the flow field in complex geological porous media on the basis of 3D X-ray microtomography reconstructions of their microstructure using a Lattice-Boltzmann numerical method. Indeed LB method is now classicaly used to simulate Stockes flow in porous media. However, we are mainly interested in double porosity media as can often be found in reservoir rocks (e.g. carbonates), generally characterized by a macropore network (typical pore size of few µm to few tens of µm), a microporous matrix (typical pore size <µm), and impermeable grains. Thus, our principal goal is to evaluate the flow field in the macropores and in the microporous matrix as a function of their spatial arrangement and we will show that LB method can be successfully used to simulate such complex flow. A laboratory X-Ray microscanner scans cylindrical plugs of 5mm in diameter and delivers grey-level volumes (with sizes of 1000^3 voxels and a resolution of 3µm) to be segmented and labelled. The partitioning between macropores and microporous matrix is thus constrained by the system resolution; while the complex shapes of the macropores are well captured, the microporosity has to be treated as a single phase. A set of morphological operations is applied to the grey level volumes, in order to obtain a three phase's segmented volume. Flow modelling in bimodal porous media requires the use of specific boundaries conditions between the flows in the macropores and in the porous matrix (continuity of the velocity and the shear stress at the interface). This requires the extension of the Darcy's law with the Brinkman term. In order to solve for the flow field one needs to affect effective petrophysical properties to the microporous matrix (porosity φ_µ and permeability K_µ). The porosity φ_µ being estimated from the grey level images, the permeability K_µ is determined on the basis of an experimental K(φ) law representative of the microstructure of the microporous
NASA Astrophysics Data System (ADS)
Helland, J. O.; Jettestuen, E.
2016-07-01
We use a multiphase level set approach to simulate capillary-controlled motions of isolated fluid ganglia surrounded by two other continuous fluids (i.e., double displacements) during three-phase flow on 3-D porous rock geometries. Double displacements and three-phase snap-off mechanisms are closely related. Water snap-off on gas/oil interfaces can initiate double displacements that mobilize isolated oil ganglia in water-wet rock, but it can also terminate ongoing double displacements and trap oil in water. The multiphase level set approach allows for calculating the evolution of disconnected-phase pressure during the motion. In the events of pore filling by double displacement of oil ganglia, and water snap-off on gas/oil interfaces, we find that the local gas/oil capillary pressure drops, while local oil/water capillary pressure increases, by a similar magnitude as observed for the capillary pressure drops during single-pore filling events in dynamic pore-scale experiments of two-phase drainage. We also find that oil ganglia decrease their surface area, and achieve a more compact shape, when the gas/oil interfacial area decreases at the expense of increased oil/water interfacial area during double displacement. By comparison with similar two-phase gas/water simulations, we find that the level of the gas/water capillary pressure curves, including hysteresis loops, are smaller when a mobile, disconnected oil is present, which suggests double displacement of oil is more favorable than direct gas/water displacement. We also present cases in which phase trapping occurred in the three-phase simulations, but not in the corresponding two-phase simulations, supporting the view that more trapping is possible in three-phase flow.
Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock
Pruess, K.
1985-03-01
We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Tredak, Hanna; Ladd, Anthony J. C.; Szymczak, Piotr
2015-04-01
Coupled dissolution-precipitation reactions, where two minerals share a common ion, occur frequently in geological replacement; the reactions are driven by an inflow of precipitating secondary ions and an outflow of dissolved primary ions. Although crystallization pressure is frequently invoked to explain volume-preserving replacement, it cannot be operative if the chemical reactions lead to a loss of mineral volume; here the host rock that should confine the precipitating mineral is dissolving faster than the grains are growing. In this paper we propose two chemical mechanisms by which a rapid dissolution front and a slower precipitation front can be synchronized, and volume-for-volume replacement preserved. We analyze these mechanisms within the framework of reactive transport theory and show that morphological features observed in calcite replacement can be correlated with predictions of the models.
Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock
NASA Astrophysics Data System (ADS)
Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G.
2014-02-01
We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.
Rupture cascades in a discrete element model of a porous sedimentary rock.
Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G
2014-02-14
We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.
NASA Astrophysics Data System (ADS)
Li, Y.; Jackson, I.; David, E.; Schmitt, D. R.
2013-12-01
The stiffness of rocks is significantly affected by the presence of cracks as well as pore fluids, the latter potentially increasing the effective stiffness of cracks. Reversible pore-fluid flow within the crack network, occurring during seismic wave propagation, may result in strongly frequency dependent seismic properties. Theoretical models for fluid flow induced seismic wave dispersion have been proposed but have so far not been subject to thorough experimental testing. Soda-lime-silica glass beads, of ~300 μm diameter were sintered near the glass transition temperature to produce a synthetic analogue for sedimentary rock with low porosity (~2%) and a simpler microstructure. Widely distributed cracks with uniformly low aspect ratio (~0.0007) and crack porosity ~0.2% were introduced by quenching heated cylindrical samples into liquid water at room temperature. Combined use of low-frequency (mHz-Hz) forced oscillation techniques at the Australian National University with ultrasonic pulse transmission methods (MHz) at the University of Alberta, is allowing a broadband measurement of seismic velocities and attenuation on a thermally cracked glass-bead sample. A recent upgrade of the data acquisition system on the apparatus for forced oscillation measurements is providing improved precision in determining shear and Young's moduli, measured at seismic frequencies, reveal a strong systematic variation with effective pressure (Peff=Pc-Pf) and some relaxation at longer oscillation periods tentatively attributed to fluid flow. Under water-saturated conditions, at low frequencies, both shear and Young's moduli are noticeably higher than under dry or argon-saturated conditions, possibly attributed to spatial restricted flow of water during forced-oscillation tests. Ongoing measurement of ultrasonic velocities should thus provide the 'intermediate' to 'high' frequency bounds on elastic moduli.
Permeability Estimation of Porous Rock by Means of Fluid Flow Simulation and Digital Image Analysis
NASA Astrophysics Data System (ADS)
Winardhi, C. W.; Maulana, F. I.; Latief, F. D. E.
2016-01-01
Permeability plays an important role to determine the characteristics of how fluids flow through a porous medium which can be estimated using various methods. Darcy's law and the Kozeny-Carman equation are two of the most utilized methods in estimating permeability. In Darcy's law, permeability can be calculated by applying a pressure gradient between opposing sides of inlet-outlet of a certain direction. The permeability then depends on the fluid viscosity and the flowrate. The Kozeny-Carman equation is an empirical equation which depends on several parameters such as shape factor of the pore, tortuosity, specific surface area, and porosity to determine the permeability. For both methods, digital image obtained by means of Micro CT-Scan is used. In this research, the permeability estimation using the Darcy's law was conducted by simulating fluid flow through the digital image using Lattice Boltzmann Method (LBM). As for the Kozeny-Carman equation, digital image analysis was used to obtain the required parameters. Two Kozeny-Carman equations were used to calculate the permeability of the samples. The first equation (KC1) depends on pore shape factor, porosity, tortuosity, and specific surface area while the second equation (KC2) only depends on pore radius, porosity, and tortuosity. We investigate the methods by first testing on three simple pipe models which vary in the radii. By using the result from Darcy's law as a reference, we compare the results from the Kozeny-Carman equations. From the calculation, KC2 yield smaller difference to the reference. The three methods were then applied to the Fontainebleau sandstone to verify the previous result.
NASA Astrophysics Data System (ADS)
Hao, Y.; Nitao, J. J.; Buscheck, T. A.; Sun, Y.; Lee, K. H.
2004-12-01
Combined free and porous flows occur in a wide range of natural and engineered systems such as coupled transport processes driven by underground-engineered systems. One potential application for modeling these coupled flow processes is related to the emplacement of heat-generating radioactive waste package in tunnels lying above the water table. This example involves the flow of gas and moisture in large open tunnel and gas- and liquid-phase flow in the surrounding fractured, porous rocks. This study aims to develop a method of coupling the Navier-Stokes equations and the Darcy's law to achieve a more rigorous representation of all major flow and transport processes in underground tunnels and surrounding fractured host-rocks. While the thermohydrologic (TH) processes in host-rocks are treated based on porous-medium Darcy-flow approximations, the Navier-Stokes modeling is applied to describe in-tunnel flow behaviors (natural convection, realistic gas/moisture movement, turbulent flow conditions, etc.). The governing equations are numerically solved by a finite-element scheme in the NUFT code. Some numerical simulation results shown in this presentation provide environmental conditions that engineered systems would experience, which, therefore, may be useful for engineered system design analysis and performance assessment. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Mechanistic models of biofilm growth in porous media
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Al-Hadrami, Fathiya; Atekwana, Estella A.; Atekwana, Eliot A.
2014-07-01
Nondestructive acoustics methods can be used to monitor in situ biofilm growth in porous media. In practice, however, acoustic methods remain underutilized due to the lack of models that can translate acoustic data into rock properties in the context of biofilm. In this paper we present mechanistic models of biofilm growth in porous media. The models are used to quantitatively interpret arrival times and amplitudes recorded in the 29 day long Davis et al. (2010) physical scale biostimulation experiment in terms of biofilm morphologies and saturation. The model pivots on addressing the sediment elastic behavior using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann substitution for fluid saturation. The time-lapse P wave velocity (VP; a function of arrival times) is explained by a combination of two rock models (morphologies); "load bearing" which assumes the biofilm as an additional mineral in the rock matrix and "pore filling" which assumes the biofilm as an additional fluid phase in the pores. The time-lapse attenuation (QP-1; a function of amplitudes), on the other hand, can be explained adequately in two ways; first, through squirt flow where energy is lost from relative motion between rock matrix and pore fluid, and second, through an empirical function of porosity (φ), permeability (κ), and grain size. The squirt flow model-fitting results in higher internal φ (7% versus 5%) and more oblate pores (0.33 versus 0.67 aspect ratio) for the load-bearing morphology versus the pore-filling morphology. The empirical model-fitting results in up to 10% increase in κ at the initial stages of the load-bearing morphology. The two morphologies which exhibit distinct mechanical and hydraulic behavior could be a function of pore throat size. The biofilm mechanistic models developed in this study can be used for the interpretation of seismic data critical for the evaluation of biobarriers in bioremediation, microbial enhanced oil recovery, and CO2
Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones
NASA Astrophysics Data System (ADS)
Zimmerman, R. W.; David, E. C.
2011-12-01
During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always
Time-dependent Deformation in Porous Rocks Driven by Chemo-mechanical Coupling
NASA Astrophysics Data System (ADS)
Meredith, P. G.; Brantut, N.; Heap, M. J.; Baud, P.
2015-12-01
We report results from triaxial deformation of porous sandstone and limestone conducted to determine the time-dependency of deformation. Experiments were run on water-saturated samples under constant differential stress (creep) conditions. In sandstone, the deformation is entirely brittle for all levels of stress and for all resulting strain rates. The strain rate during creep is very stress sensitive, with a change of only 20 MPa in differential stress producing three orders of magnitude change in strain rate. Failure occurs by localized shear faulting after an extended period of dilatant microcracking, as evidenced by the output of acoustic emissions. By contrast, the behaviour of limestone is more complex. At low effective pressure, the creep behavior is brittle and characterised by the same features as observed for sandstone; a decelerating phase of creep, followed by an inflection and then an accelerating creep phase leading to macroscopic failure. Similarly, only a small amount of inelastic strain is accommodated before failure, and P wave speeds measured throughout deformation decrease continuously, indicating a continuous increase in dilatant crack damage. At higher effective pressure, brittle creep still occurs, but the details of the time-dependent deformation behavior are quite different. First, the total amount of accumulated creep strain increases dramatically with decreasing strain rate, and no localized failure occurs even at these higher strains. Second, the rate of decrease in P wave speeds during deformation decreases with decreasing strain rate; indicating that less damage is accumulated per unit strain when the strain rate is lower. Third, complementary strain rate stepping experiments indicate that the deformation becomes more compactant at lower strain rates. Taken together, these observations suggest that rate-dependent compactive deformation mechanisms compete with dilatant subcritical crack growth during creep in limestone under low
NASA Astrophysics Data System (ADS)
Yurie Khachay, Professor; Mindubaev, Mansur
2016-04-01
One of the main problems of the study of the intrusion thermal effects on the maturation of the organic matter is to estimate the volume, intensity, thermal effects of the intrusion and its redistribution in porous media by convection. A numerical algorithm for solving the problem of the developed convection in two-dimensional and three-dimensional models of the porous medium depending on the incline angle is developed. It is defined that the convective stability in the medium decreases with increasing incline angle. It was found that depending on the incline angle the structure of convection from many cells for a flat horizontal layer changes and it transfers to more elongated structures along the layer. It is shown that depending on the incline angles, invading sill and imbedding volume of the porous medium it can be realized either stationary or non-stationary convection that provides a principal different thermal conditions of hydrocarbons maturation in the motherboard porous medium. We give numerical examples of the influence of the incline angle on the flow structure inside the porous inclusion. By the stationary convection the volume of the boundary layers between the convective sells increases. That can lead to increasing of the part of motherboard rocks that are outer the temperature conditions of oil catalysis and as a consequence to the overestimation of the deposits.
NASA Astrophysics Data System (ADS)
Schicks, J. M.; Rydzy, M. B.; Spangenberg, E.; Batzle, M. L.
2012-12-01
Methane hydrate formation in sediments from the dissolved gas phase is a tedious and time-consuming task, due to the relatively low solubility of methane in water. A number of studies on physical properties of hydrated sediments have been conducted on sediments containing tetrahydrofuran (THF) hydrates instead. The use of THF as a hydrate former is convenient as it forms hydrate at atmospheric pressure and relatively high temperatures of about 277 K. It is completely miscible in water, thus forms hydrate out solution and promises homogeneous synthesis of THF hydrate in sediment. The applicability of THF as a proxy for methane hydrate formed out of solution, however, has often been questioned. To better understand whether THF hydrates represent a legitimate proxy for methane hydrates formed out of solution, ultrasonic velocity and resistivity measurements were performed on hydrated Ottawa Sand F110 sand and glass bead samples in conjunction with imaging techniques, such as micro X-ray computed tomography (MXCT), and scanning electron microscopy (SEM). Thereby the tests were conducted on samples containing hydrates formed both, from methane dissolved in water and with the use of THF. The results show, that in terms of ultrasonic velocities, THF and methane hydrates exhibit the same trend. As the hydrate crystallized in the pore space, no increase in velocity was observed until a critical hydrate saturation of 35-50 percent was exceeded. On the other hand, the bulk electrical resistivity increased with increasing gas hydrate saturation. Comparison with current rock physics models suggested that the gas hydrate formed out of solution in both cases exhibits pore-filling/ load-bearing behavior, i.e. it suggests that the hydrate is formed away from the grains. This was supported through the imaging. This series of measurements provided the first direct comparison of THF and methane hydrates formed out of solution in terms of how their distribution and location in the pore
NASA Astrophysics Data System (ADS)
Peng, D.; Alsina, M.; Chen, C.; Keane, D.; Packman, A. I.; Gaillard, J.; Aubeneau, A. F.; Pasten, P. A.; Pizarro, G.
2009-12-01
Synchrotron-based high resolution X-ray microtomography was used to characterize arsenic (As) deposits within porous media. The distribution of arsenic was determined using difference tomography, where the X-rays used to image the sample were selected to be just above and below the As absorption edge at 11,853 eV. The difference tomograms have background noise from other minerals contained in the sample, local variation of X-ray beam intensity, and electronic noise associated with the data acquisition process. Image processing filters, such as windowing or adaptive filters derived from the Fast Fourier Transform (FFT) method, were employed to reduce background noise in the tomograms and enhance information on the arsenic deposits. These errors are generally larger in difference tomography than in conventional X-ray microtomography because this method requires operating at very specific X-ray energies (i.e., an edge of the element of interest), and this constraint makes it very difficult to obtain optimal contrast for tomographic reconstruction. In particular, the signal-to-noise ratio is often low in difference tomograms of geological samples having high background X-ray absorption. The relationship between As concentration and difference image intensity was evaluated using well defined As samples prepared in the laboratory, along with As-rich sinter deposits from El Tatio hydrothermal field and fluvial sediments from the Loa River downstream of El Tatio. This relationship is non-linear because of interactions between the different sources of error in the construction of the difference tomograms. As a result, the difference tomography method is relatively insensitive to bulk As concentrations, and instead primarily provides information on the distribution of regions of the sample that have high As concentrations, such as As-rich particles, precipitates, or evaporite deposits. Tomographic 3D reconstructions of the porous media and of the aggregate structure thus
Protosenya, A.G.; Chernikov, A.K.; Shirkes, O.A.; Stavrogin, A.N.
1982-11-01
The limiting strength state of gas-pressurized rock is examined in this paper. In experiments, pores of rock specimens were filled with gas. Tests of the influence of pore pressure on the magitude of the limiting strength of coal were made. The structure of a gas-pressurized porous medium is defined. The strain process is seen to exert influence on the magnitude of the porosity of the limiting state of the rock. The limiting state for plastic fracture is derived. The system of equations for the theory of the limiting strength state under plastic deformation follows. The Coulomb plasticity condition is introduced. The system of equations in inhomogenous media is also studied. Finally, a few simple solutions--stress distribution around circular holes, the elastic plastic problem--are given, to be used as component parts of more complex solutions.
Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow
NASA Astrophysics Data System (ADS)
Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.
2011-12-01
Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference
Spetzler, Hartmut
2006-05-01
We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible
A Transverse Dynamic Deflection Model for Thin Plate Made of Saturated Porous Materials
NASA Astrophysics Data System (ADS)
Feng-xi, Zhou; Xiao-lin, Cao
2016-10-01
In this article, a transverse dynamic deflection model is established for thin plate made of saturated porous materials. Based on the Biot's model for fluid-saturated porous media, using the Love-Kirchhoff hypothesis, the governing equations of transverse vibrations of fluid-saturated poroelastic plates are derived in detail, which take the inertial, fluid viscous, mechanical couplings, compressibility of solid, and fluid into account. The free vibration and forced vibration response of a simply supported poroelastic rectangular plate is obtained by Fourier series expansion method. Through numerical examples, the effect of porosity and permeability on the dynamic response, including the natural frequency, amplitude response, and the resonance areas is assessed.
NASA Astrophysics Data System (ADS)
Kung, J.; Chien, Y. V.; Wu, W.; Dong, J.; Chang, Y.; Tsai, C.; Yang, M.; Wang, K.
2012-12-01
Previous studies showed that the voids and their geometry in the sedimentary rocks have great influence on the compressibility of rock, which reflects on its elastic velocities. Some models were developed to discuss the relations among velocity, porosity and void geometry. Therefore, the information of porosity, and void geometry and its distribution in rock is essential for understanding how the elastic properties of porous rocks affected by their poregeometry. In this study, we revisited a well-studied porous rock, Darley Dale sandstone, which has been studied by different groups with different purposes. Most of them are the deformation experiments. Different from previous studies, we measured the sound velocity of Darley dale sandstone under hydrostatic conditions. Also, we employed different techniques to investigate the pore geometry and porosity of Darley Dale sandstone to gain the insight of velocity changing behavior under the crustal conditions. Here, we measured a fully-dense copper block for a comparison. We performed X-ray CT scanning (XCT) to image the pore space of sandstone to construct the 3-D image of pore geometry, distribution and the pore size. The CT image data are allowed us to estimate the porosity of sandstone, too. One the other hand, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa). A set of specimens were cored from Darley Dale sandstone block. P and S wave velocities of specimens were measured at ambient conditions. We also performed high pressure velocity measurements on a selected rock specimen and a copper block up to 150 MPa under dry condition. Porosity of a set of rock specimens measured by imbibitions method was spanned from 6% to 15%, largely distributed within a range of 8%-11%. Compared the porosity obtained from three different techniques, imbibitions method, helium porosimeter and XCT, values from those measurements are in good agreement
NASA Astrophysics Data System (ADS)
Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe
2017-08-01
A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.