Science.gov

Sample records for fluidized bed incinerators

  1. Sludge incineration in a spinning fluidized bed incinerator

    SciTech Connect

    Swithenbank, J.; Basire, S.; Wong, W.Y.; Lu, Y.; Nasserzadeh, V.

    1999-07-01

    At the present time, the sewage treatment plants in the UK produce about 25 million tonnes of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about five million tonnes per year. Bubbling fluidized bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02 kg(dry)/s/m{sup 2}, and it follows that over 300 conventional fluidized bed incinerators of 3 meters bed diameter could be required to cope with the increased demand. At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidized bed incinerator. The key factor to note is that when air flows up through a bed of near mono-sized particles, it fluidizes when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor plate that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the g level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidized bed the authors have achieved combustion intensities with coal combustion as high as 100 MW/m{sup 3}. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidized bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidized beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge

  2. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    PubMed

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  4. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  5. Detoxification of ashes from a fluidized bed waste incinerator.

    PubMed

    Yu, Jie; Qiao, Yu; Sun, Lushi; Jin, Limei; Wang, Wenxia; Ma, Chuan

    2015-09-01

    This paper was to test and control the toxicity of bottom and fly ashes from a circulated fluidized bed (CFB) incinerator. Bottom and fly ashes were firstly subject to TCLP test. Even though leachates of most particle size of bottom ash were below regulatory limit, the leachates of finer bottom ash may exceed the regulatory limit. Therefore, finer bottom ash should be separated and treated before landfilled directly or used as cement replacement. Due to high amounts of leached heavy metals, thermal treatment of fly ash was carried out to remove heavy metals. The influence of temperature, residence time, metal chloride and gas velocity were studied. In all conditions, Cd can be well removed. Pb can be almost completely removed with MgCl2 addition at 1000°C in 1h. The removal of Zn and Cu was accelerated significantly by MgCl2 and higher temperature separately. At optimum conditions, more than 90% of Cu and 95% of Zn could be removed, while a maximum 20% of Cr was removed due to the existence or formation of CaCr2O4, MgCr2O4 and K2Cr2O4 in raw or treated fly ashes.

  6. Two-stage fluidized-bed/cyclonic agglomerating incinerator. Technology spotlight report

    SciTech Connect

    1995-08-01

    The two-stage fluidized-bed/cyclonic agglomerating incinerator combines and improves upon the fluidized-bed, agglomeration/ incineration-technology and the cyclonic-combustion technology developed at Institute of Gas Technolgy (IGT) over many years. The result is a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes. The system can operate over a wide range of conditions and has a destruction and removal efficiency (DRE) greater than 99.99%. Solid inorganic contaminants are contained within aglassy matrix, rendering them benign and suitable for disposal in an ordinary landfill.

  7. Apparatus for feeding fluidized bed incinerator, and method of autogenic operation of same

    SciTech Connect

    Nelson, J.F.

    1981-09-29

    This invention relates to an improved method and apparatus for continuous autogenic incineration of high-moisture easily friable combustible agglomerates in a fluidized-bed. The improvement comprises introducing the waste materials into the bed in a tube of air provided by supplemental air means which surrounds the in-bed feed means.

  8. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  9. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  10. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  11. An Evaluation of Stabilization/Solidification of Fluidized Bed Incinerator Ash (K048 and K051)

    DTIC Science & Technology

    1988-12-01

    TECHNICAl.. REPORT EL-88-24 AN EVALUATION OF STABILIZATION/ SOLIDIFICATION OF FLUIDIZED BED INCINERATOR ASH (K048 AND K051) ’r by R, Mark Bricka , Teresa...JONES US ARMY ENGINEER EPA WORK ASSIGNMENT MANAGER WATERWAYS EXPERIMENT JERRY VORBACHI STATION MARK BRICKA CONTRACT PROGRAM MANAGER JERRY STRAUSS VERSAR...restrictions, was funded under Interagency Agreement DW96930146-01-5. The work was performed during the period February to August 1987 by Mr. R. Mark

  12. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    SciTech Connect

    Wade, J.F.; Williams, P.M.

    1995-05-17

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

  13. Relationship between pressure fluctuations and generation of organic pollutants with different particle size distributions in a fluidized bed incinerator.

    PubMed

    Lin, Chiou-Liang; Wey, Ming-Yen; Cheng, Han-Tsung

    2004-09-01

    The hydrodynamic behaviors of fluidization perhaps significantly influence the uniformity of fluidization in fluidized bed incinerator. Good uniformity of fluidization expressed the air across uniformly through the bed and the particles being distributed well in the fluid stream. The aggregates, flocs and channels of particles do not happen during fluidization. The Good uniformity will maintain high heat and mass distribution to improve reaction efficiency. These parameters include the height of static bed, gas velocity, mixing and distribution of bed particle, which have rarely been studied in previous investigations. Consequently, this study examines how the hydrodynamic parameters affect the generation of organic pollutants (BTEXs and PAHs) during incineration. The statistical and power spectral analysis of the measured pressure fluctuation during incineration are used to elucidate the relationship between behaviors of fluidization and generation of pollutants during incineration. Experimental results show the organic concentration does not increase with uniformity of fluidization decreasing. The reason may be the explosion of the gas and the consequent thermal shock destroy the coalescent bubbles to form small bubbles again and enhance the efficiency of transfer of oxygen to increase combustion efficiency. Additionally, the mean amplitude and fluidized index of pressure fluctuation similarly vary with the concentration of organic pollutants. These two indices can be used to assess the efficiency of combustion. The four particle size distributions could be divided into two groups by statistical analysis. The Gaussian and narrow distributions belong to one group and the binary and flat the other. The organic concentration of the Gaussian and narrow distributions are lower than that of the other distributions. Consequently, the bed materials should maintain narrow or Gaussian distributions to maintain a good combustion efficiency during incineration.

  14. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator.

    PubMed

    Duan, Feng; Chyang, Chiensong; Chin, Yucheng; Tso, Jim

    2013-02-01

    Rice husk with high volatile content was burned in a pilot scale vortexing fluidized bed incinerator. The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height. The emission characteristics of CO, NO, and SO2 were studied. The effects of operating parameters, such as primary air flow rate, secondary air flow rate, and excess air ratio on the pollutant emissions were also investigated. The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone. The SO2 concentration in the flue gas decreases with increasing excess air ratio, while the NOx concentration shows reverse trend. The flow rate of secondary air has a significant impact on the CO emission. For a fixed primary air flowrate, CO emission decreases with the secondary air flowrate. For a fixed excess air ratio, CO emission decreases with the ratio of secondary to primary air flow. The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio. The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm, which conform to the EPA regulation of Taiwan.

  15. Fluidized Bed Incinerator for Disposal of Propellants and Explosives

    DTIC Science & Technology

    1978-10-01

    The merging (growth) of bubbles is mathematically governed by a Fibonacci Series and great- ly effects the bed’s characteristics. The larger...o +-> re •i— ^^CO Q) -r- s- c 3 4-) 00 S_ -D re cr4- • s- c QJ QJ >-H O O SI -M o: co—-o o i— re 58 transducers . These items must

  16. Emissions of polycyclic aromatic hydrocarbons from fluidized and fixed bed incinerators disposing petrochemical industrial biological sludge.

    PubMed

    Wang, Lin-Chi; Lin, Long-Full; Lai, Soon-Onn

    2009-08-30

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs) from two fluidized bed incinerators (FLBI_A and FLBI_B) and one fixed bed incinerator (FIBI) disposing biological sludge generated from the petrochemical industries in Taiwan. The results of 21 individual PAHs (including low (LM-PAHs), middle (MM-PAHs) and high molecular weight PAHs (HM-PAHs)) were reported. The LM-PAHs mainly dominated the total-PAHs in the stack flue gases, whereas the LM- and HM-PAHs dominated the total-PAHs in the bottom fly, fly ash and WSB effluent. Due to high carcinogenic potencies (=total-BaP(eq) concentrations) in the bottom ash (195 ng g(-1)) and WSB effluent (20,600 ng L(-1)) of the FIBI, cautious should be taken in treating them to avoid second contamination. Lower combustion efficiency and elevated fuel/feedstock (F/W) ratio for the FIBI led to the highest total emission factor of total-PAHs (38,400 microg kg(-1)). Lower total-PAH removal efficiencies of wet scrubber (WSB) (0.837-5.89%), cyclone (0.109-0.255%) and electrostatic precipitator (ESP) (0.032%) than those reported elsewhere resulted in high fraction in PAH contributions from the stack flue gases. Lower total-PAH emission factor was found for FLBI_A (2380 microg kg(-1) biological sludge) with higher combustion efficiency compared to those for FLBI_B (11,500 microg kg(-1)) and FIBI (38,400 microg kg(-1) biological sludge), implying that combustion efficiency plays a vital role in PAH emissions.

  17. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    SciTech Connect

    Bodenan, F.; Guyonnet, D.; Piantone, P.; Blanc, P.

    2010-07-15

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  18. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.

    PubMed

    Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R

    2001-01-01

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.

  19. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.

    PubMed

    Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P

    2010-07-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  20. Testing fluidized bed incinerators for energy-efficient operation for the Southtowns Sewage Treatment Agency. Final report

    SciTech Connect

    1996-01-01

    Two methods for improving the energy efficiency of fluidized bed sludge incinerators were evaluated. The first method used paper pulp and polymer as conditioning agents for municipal sludge instead of lime and ferric chloride. Automatic control of the incinerator was the second method evaluated for energy savings. To evaluate the use of paper pulp and polymer as conditioning agents, varying quantities of paper pulp were added to the liquid sludge to determine the optimal sludge-to-paper pulp ratio. The effect of the paper pulp and polymer-conditioned sludge on plant operations also was evaluated. When compared to sludge conditioned with lime and ferric chloride, the paper pulp and polymer-conditioned sludge had similar cake release and feed characteristics, higher BTU values for the dry sludge solids, required less auxiliary fuel for incineration, and generated less ash for disposal. The paper pulp and polymer did not have any appreciable negative effects on the operation of the wastewater treatment plant. It was estimated that processing and incinerating the sludge conditioned with paper pulp and polymer resulted in a cost savings of up to $91.73 per dry ton of activated sludge solids. To evaluate the effect of automatic control, all the incinerator operating parameters including air flow rates, fuel oil feed rates, and sludge feed rates, were automatically monitored and controlled to minimize auxiliary fuel oil use and to keep the incinerator running at optimal conditions. Although effective, the estimated cost savings for automatic control of the incinerator were small.

  1. Combined incineration of industrial wastes with in-plant residues in fluidized-bed utility boilers--decision relevant factors.

    PubMed

    Ragossnig, Arne M; Lorber, Karl E

    2005-10-01

    In Austria more than 50% of the high-calorific industrial residues and wastes generated are utilized for energy recovery in industrial utility boilers. This study investigated full-scale trials of combined incineration of in-plant residues with various industrial wastes. These trials were carried out in order to learn how the alternatively used fuel influences the incineration process itself as well as the quantity and quality of the various incineration products. The currently used fuel, which consisted of in-plant residues as well as externally acquired waste wood and the refuse-derived fuel (RDF) mixtures used during the full-scale trials are characterized in terms of material composition as well as chemical and physical parameters. An input-output mass balance for the incineration plant (two fluidized bed combustion units, 20 and 30 MW, respectively) has been established, based on the data collected during the full-scale incineration trials. Furthermore, pollutant concentrations in the off-gas as well as the solid incineration residue are reported. It is not only the pollutant content but also a variety of other internal as well as external factors that have to be considered if a company is to decide whether or not to thermally utilize specific waste types. Therefore a strengths and weaknesses profile for several types of waste and the specific industrial boiler is also presented.

  2. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    SciTech Connect

    Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  3. Mass balance for POPs in a real scale fluidized bed combustor co-incinerating automotive shredder residue.

    PubMed

    Van Caneghem, J; Block, C; Vermeulen, I; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2010-09-15

    The European directive 2000/53/EC implies a "reuse and recovery" rate for end-of-life vehicles (ELVs) of 95% to be reached by the year 2015. One of the options to increase the actual average European "reuse and recovery" rate of approximately 78% (EU 15, 2008) is incineration of automotive shredder residue (ASR) with energy-recovery. The mass balance and the congener fingerprints for PCDD/Fs, dioxin-like PCBs, PCBs and PAHs in a real scale fluidized bed combustor (FBC) incinerating 25% ASR with 25% refuse derived fuel (RDF) and 50% waste water treatment sludge (WWT sludge) were investigated. The PCDD/F, dioxin-like PCB, PCB and PAH concentrations in this input waste mix were more than hundred times higher than in the usual waste feed of the incinerator (30% RFD and 70% WWT sludge). In the outputs of the FBC, however, the concentrations of these POP groups were comparable or only slightly higher than in the outputs generated during the incineration of the usual waste feed. The considered POPs in the waste were destroyed efficiently and the formation of new POPs during cooling of the flue gas appeared to a large extent independent of the POP concentrations in the incinerated waste.

  4. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    PubMed

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-04-10

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China.

    PubMed

    Yan, J H; Chen, T; Li, X D; Zhang, J; Lu, S Y; Ni, M J; Cen, K F

    2006-07-31

    The levels and homologue profile of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from stack gas of three typical fluidized bed incinerators co-firing municipal solid waste (MSW) with Chinese coal were measured. The PCDD/Fs emission was in the range of 0.0054-0.1961 ng I-TEQ/N m(3). Comparison of PCDD/Fs detection results by HRGC/HRMS and HRGC/LRMS suggested that it was feasible to detect fly ash with high PCDD/Fs concentration by HRGC/LRMS. Several factors on PCDD/Fs emission were discussed. The primary reason for the lower PCDD/Fs emission was the inhibition mechanism of relatively high sulfur in feeding coal on PCDD/Fs formation. The emission results also showed that there was no directly correlation between PCDD/Fs levels and CO, O(2) and HCl concentration in flue gas. It was estimated that about 0.1034 g I-TEQ was annually emitted to atmosphere from the tested three MSW incinerators (total daily treatment capacity is 800 tonnes MSW).

  6. Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste.

    PubMed

    Zhang, Lin; Su, Xiaowen; Zhang, Zhixuan; Liu, Siming; Xiao, Yuxin; Sun, Mingming; Su, Jixin

    2014-11-01

    Treatment and disposal of fly ash in China are becoming increasingly difficult, since its production has steadily risen and its features are uncertain. The excess pollutant components of fly ash are the key factor affecting its treatment and resource utilization. In this study, fly ash samples collected from a power plant with circulating fluidized incinerators of municipal solid waste (MSW) located in Shandong Province (eastern China) were studied. The results showed that there were no obvious seasonal differences in properties of fly ash. The content of total salt, Zn, and pH exceeded the national standards and low-ring polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (Fs) were the main organic components of fly ash for this power plant, which posed great threats to the surrounding environment. The amount of Zn of fly ash was higher than other heavy metals, which should be due to alkaline batteries of MSW. The leachate of fly ash had low concentrations of heavy metals and the main soluble components were sulfates and chlorides. The major mineral crystals of fly ash were SiO2, CaSO4, and Fe2O3. The main organic pollutants were low-ring PAHs, polychlorinated PCDDs, and low-chlorinated PCDFs, and concentrations were lower than the limiting values of the national regulations. Additionally, the distribution of PCDD/Fs had either a positive or a negative linear correlation with fly ash and flue gas, which was associated with the chlorinated degree of PCDD/Fs. The analysis was conducted to fully understand the properties of fly ash and to take appropriate methods for further comprehensive utilization.

  7. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.

    PubMed

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan

    2016-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.

  8. Reduction in NO{sub x} emissions from an industrial sewage sludge incineration plant by employing primary measures in a fluidized bed furnace

    SciTech Connect

    Ludwig, P.; Stamer, F.

    1999-07-01

    The results of an inquiry in 1997 show that the percentage of sewage sludge disposed of by incineration in Germany is 19%. Legal developments in Germany clearly show that this percentage amount is expected to increase in the next few years. According to legislation, the treatment of the sewage sludge will have to achieve a result of {le}5% combustible (according to TA-Siedlungsabfall, i.e., Technical guideline for handling and disposal of urban waste). Sewage sludge incineration will therefore become a preferred treatment process. Fluidized bed combustion is especially suitable in relation to the burn-up results. Around 19 sewage sludge incineration plants are operating in Germany, 17 of which have stationary fluidized bed furnaces, the others are multiple hearth roasters. The German statutory law affecting emissions from sewage sludge incineration plants is 17.BlmSchV (i.e., Paragraph 17 of the Federal Emissions Control Regulations). These regulations stipulate mandatory compliance with limit values as a daily average value figured in standard conditions. The intention is to build up an overview of the various possibilities to reduce the NO{sub x} emissions from one problematic industrial sludge by using primary measures, and if possible, to avoid expensive secondary measures, like the SNCR (selective non catalytic reduction) or SCR (selective catalytic reduction) processes.

  9. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  10. MULTISTAGE FLUIDIZED BED REACTOR

    DOEpatents

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  11. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  12. Fluidized-bed boilers

    SciTech Connect

    Makansi, J.; Schwieger, B.

    1982-08-01

    This report reviews the current state of atmospheric fluidized-bed combustion. The fundamentals of fluidized-bed combustion and design considerations are first discussed. Tables provide details of manufacturers, worldwide, and of the boilers now installed. Eight plants in various countries and burning a variety of fuels, are described more fully.

  13. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  14. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  15. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  16. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.

    PubMed

    Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong

    2016-12-29

    The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm(3) and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm(3)) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm(3)). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm(3)) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm(3)). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm(3)) and PAHs (148.6-4986.5 μg/Nm(3)) were detected in the stack gases of MSWI

  17. PCDD/F concentrations of agricultural soil in the vicinity of fluidized bed incinerators of co-firing MSW with coal in Hangzhou, China.

    PubMed

    Yan, J H; Xu, M X; Lu, S Y; Li, X D; Chen, T; Ni, M J; Dai, H F; Cen, K F

    2008-03-01

    The concentrations of 17PCDD/F congeners as well as tetra- to octa-homologues were determined in 33 soil samples collected within a radius of 7 km from a municipal solid waste (MSW) incineration plant that is equipped with three fluidized bed incinerators (FBIs) of co-firing MSW with coal in Hangzhou, China. The total PCDD/F concentrations ranged from 0.39 to 5.04 pg I-TEQ g(-1) (54-285 pg g(-1)), with an average and a median value of 1.22 and 0.84 pg I-TEQ g(-1) (105 and 86 pg g(-1)), respectively. A systematic decrease of PCDD/F levels was observed with the increasing distances and with the decreasing downwind frequencies from the plant. The comparisons of homologue and congener patterns and multivariate analysis of soil and flue gas samples strongly indicated that most of the soil samples were influenced by the FBIs. Apart from the incineration plant, historical PCDD/F emissions of hazardous waste incinerator (HWI) and motor vehicles as well as the application of 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP) seemed to play an important role in soil samples adjacent to these potential sources.

  18. The use of a paper/wood/plastics mixing as a model waste to study the incineration of municipal solid waste in fluidized beds

    SciTech Connect

    Desroches-Ducarne, E.; Marty, E.; Martin, G.; Delfosse, L.

    1997-12-31

    Municipal Solid Waste (MSW) incineration in fluidized beds has recently become the subject of intense research. In this paper, the authors chose to elaborate a simple model waste prepared with 4 of the main MSW components (paper, wood, PE, and PVC). The behaviors of typical French MSW and model waste during their combustion in a fluidized bed incinerator were studied. To establish the comparison, the emissions of NO, N{sub 2}O, SO{sub 2} and HCl were investigated. Moreover, experiments were performed according to statistical experimental designs to examine the effect of various operating parameters including bed temperature, excess air, limestone feeding rate and waste moisture. On a qualitative point of view, the impact of the combustion conditions on the pollutants emissions was found to be the same for the two wastes. Bed temperature and excess air have, in both cases, an important impact on NO and N{sub 2}O emissions. Nitrogen oxides production was also directly related to limestone feed content. Very high sulphur and chlorine retention was obtained when limestone was added at much larger excess to the feed. N{sub 2}O emissions are less important during the model waste combustion. The nitrogen functionality seems to give rise to such a phenomenon. In MSW, nitrogen is included in high molecules which is released for a great part as HCN or remains in char, which are the main sources of N{sub 2}O. To confirm this assumption, tests for measuring the HCN/NH{sub 3} ratio for each fuel were performed.

  19. The partitioning of heavy metals in incineration of sludges and waste in a bubbling fluidized bed 2. Interpretation of results with a conceptual model.

    PubMed

    Toledo, José M; Corella, José; Corella, Luis M

    2005-11-11

    This work addresses the behavior, fate and/or partitioning of six targeted (Cd, Pb, Cr, Cu, Zn and Ni) heavy metals (HMs) in the incineration of sludges and waste in a bubbling fluidized bed (BFB) of 15 cm i.d. and 5.2m high followed by a filter chamber operated at 750-760 degrees C with a commercial ceramic filter. This paper presents three different things: (1) an in depth review of the published work relating to the problem of partitioning of the HMs in BFBs, (2) some more experimental incineration tests regarding the influence of the temperature of the bed of the BFB and the effect of the chlorine content in the feedstock on the partitioning of the HMs, and (3) the modelling of the partitioning of the HMs in the exit flows: bottom ash, coarse fly ashes, fine fly ash and vapour phase. The partitioning of the HMs is governed by fluid dynamic principles together with the kinetics of the diffusion of the HMs inside the ash particles and the kinetics of the reactions between the HMs and the components of the matrix of the ash. Some thermodynamic predictions do not fit the results from the BFB incinerator well enough because equilibria are not reached in at least three exit ash flows: coarse fly ash, fine fly ash and submicron particles. The residence time of these ash particles in these type of incinerators is very short and most of the HMs have no time to diffuse out of the ash particle. Finally, an examination was made on how in the ceramic hot filter the partition coefficients for the HMs increased, mainly for Cd and Pb, when the Cl-content in the feedstock was increased.

  20. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  1. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  2. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  3. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  7. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  8. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  9. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  10. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  11. Emission and control of N2O and composition of ash derived from cattle manure combustion using a pilot-scale fluidized bed incinerator.

    PubMed

    Oshita, Kazuyuki; Kawaguchi, Koji; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujimori, Takashi; Fujiwara, Taku

    2015-10-06

    This study investigates the emission of nitrous oxide (N2O) and discusses the reduction of N2O emissions during the 24-h combustion of cattle manure using a pilot-scale fluidized bed incinerator under various experimental conditions. The results of these experiments were then validated against previously reported data. In addition, the characteristics of cattle manure incineration ash and their changes under different combustion conditions were estimated. In incineration experiments with composted cattle manure, N2O concentrations using multi-stage combustion were 75% lower than the concentrations resulting from normal combustion without additional auxiliary fuel, since N2O could be decomposed in the high-temperature zone formed by the inlet of the secondary combustion air. The N2O emission factor under normal combustion conditions (800°C) was 6.0% g-N2O-N/g-N. This result is similar to the values found in previous studies at the same temperature. The N2O emission factor was decreased to 1.6% g-N2O-N/g-N using a multi-stage combustion procedure. The current Japanese N2O emission factor of 0.1% g-N2O-N/g-N is an underestimate for some conditions and should be uniquely specified for each condition. Finally, cattle manure ash contains ample fertilizer elements, little Fe, Al and Zn, but abundant Cl. Therefore if Cl could be removed by some kind of pretreatment, cattle manure ash could be used as a favourable fertilizer.

  12. Fluidized-bed boilers

    SciTech Connect

    Makansi, J.; Schwieger, B.

    1982-08-01

    Discusses atmospheric fluidized-bed (AFB) boilers with regard to designs available, manufacturers involved, and operating experience. Proven fuel flexibility and satisfactory SO/sub 2/ control without scrubbers make AFB boilers a viable option for industrial steam generation worldwide. Technical concepts on which AFB application is based are a departure from the more familiar methods of burning solid fuels. Behind US thrust for AFB development is the need to burn coal within pollution regulations.

  13. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  14. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  15. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  16. Fluidized-bed sorbents

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  17. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  18. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  19. Evaluation of stabilization/solidification of fluidized-bed incinerator ash (K048 and K051). Final report

    SciTech Connect

    Bricka, R.M.; Holmes, T.; Cullinane, M.J.

    1988-12-01

    This report presents the results of testing performed on a stabilized/solidified (S/S) incinerator ash. This study was conducted in support of the US Environmental Protection Agency, Best Demonstrated Available Technology program. The ash samples evaluated in the study were residuals resulting from the incineration of a mixture of dissolved air-flotation float (K048), API separator oily sludge (K051), and a biological sludge. Three S/S processes were evaluated. They included: (1) a cement process; (2) a kiln-dust process; and (3) a lime/fly ash process. Physical and leaching characteristics of the S/S waste-ash materials were evaluated. Physical characteristics were evaluated using the unconfined compressive-strength test. The waste-leaching characteristics were evaluated using the toxicity characteristic leaching procedure.

  20. Pulse enhanced fluidized bed combustion

    SciTech Connect

    Mueller, B.; Golan, L.; Toma, M.; Mansour, M.

    1996-12-31

    Various technologies are available for the combustion of high-sulfur, high-ash fuels, particularly coal. From performance, economic and environmental standpoints, fluidized bed combustion (FBC) is the leading candidate for utilization of high sulfur coals. ThermoChem, Inc., and the South Carolina Energy Research and Development Center (SCERDC) are installing a hybrid fluidized bed combustion system at Clemson University. This hybrid system, known as the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), will augment the University`s steam system by providing 50--60,000 lbs/hr of saturated process steam. The PAFBC, developed by Manufacturing and Technology Conversion International, Inc., (MTCI), integrates a pulse combustor with a bubbling-bed-type atmospheric fluidized bed coal combustor. The pulse combustion system imparts an acoustic effect that enhances combustion efficiency, SO{sub 2} capture, low NO{sub x} emissions, and heat transfer efficiency in the fluidized bed. These benefits of pulse combustion result in modestly sized PAFBC units with high throughput rates and lower costs when compared to conventional fluidized bed units.

  1. Particle pressures in fluidized beds

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-01-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  2. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  3. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  4. Laboratory Testing of a Fluidized-Bed Dry-Scrubbing Process for the Removal of Acidic Gases from a Simulated Incinerator Flue Gas

    DTIC Science & Technology

    1989-04-01

    Kuni and Levenspiel ) W0 Gildart clo,,itiat ion" Group ItI l rotI ed r desc r i bed in ASTM St arda rd C 110-87. 22 REFERENCES 1. W. M. Bradshaw...Cement; Lime; Gyp- sum, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1988. 3. D. Kuni and 0. Levenspiel , Fluidization

  5. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  6. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  7. Characteristics of fluidized-packed beds

    NASA Technical Reports Server (NTRS)

    Gabor, J. D.; Mecham, W. J.

    1968-01-01

    Study of fluidized-packed bed includes investigation of heat transfer, solids-gas mixing, and elutriation characteristics. A fluidized-packed bed is a system involving the fluidization of small particles in the voids of a packed bed of larger nonfluidized particles.

  8. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  9. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  10. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  11. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  12. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  13. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  14. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  15. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  16. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  17. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  18. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  19. Determination of the Pb, Cr, and Cd distribution patterns with various chlorine additives in the bottom ashes of a low-temperature two-stage fluidized bed incinerator by chemical sequential extraction.

    PubMed

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2015-09-15

    A novel low-temperature two-stage fluidized bed (LTTSFB) incinerator has been successfully developed to control heavy-metal emissions during municipal solid waste (MSW) treatment. However, the characteristics of the residual metal patterns during this process are still unclear. The aim of this study was to investigate the metal patterns in the different partitions of the LTTSFB bottom ash by chemical sequential extraction. Artificial waste was used to simulate the MSW. Different parameters including the first-stage temperature, chloride additives, and operating gas velocity were also considered. Results indicated that during the low-temperature treatment process, a high metal mobility phase exists in the first-stage sand bed. The main patterns of Cd, Pb, and Cr observed were the water-soluble, exchangeable, and residual forms, respectively. With the different Cl additives, the results showed that polyvinyl chloride addition increased metal mobility in the LTTSFB bottom ash, while, sodium chloride addition may have reduced metal mobility due to the formation of eutectic material. The second-stage sand bed was found to have a lower risk of metal leaching. The results also suggested that, the residual ashes produced by the LTTSFB system must be taken into consideration given their high metal mobility.

  20. Fluidization onset and expansion of gas-solid fluidized beds

    SciTech Connect

    Jones, O.C.; Shin, T.S.

    1984-08-01

    A simple, mass conservation-based, kinematic model is presented for accurately predicting both the onset of fluidization and the degree of (limit of) bed expansion in bubbling gas-solid fluidized beds. The model is consistant with inception correlations exisiting in the literature. Since the method has a sound physical basis, it might be expected to provide scaling between laboratory-scale fluidized beds and large-scale systems. This scaling ability, however, remains to be demonstrated as does the application to pressurized systems and where the terminal Reynolds numbers exceed 1000, (Archimedes numbers over about 3.2 x 10/sup 5/).

  1. Scaling of pressurized fluidized beds

    SciTech Connect

    Guralnik, S.; Glicksman, L.R.

    1994-10-01

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  2. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  3. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  5. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  6. Fluidized-bed copper oxide process

    SciTech Connect

    Shah, P.P.; Takahashi, G.S.; Leshock, D.G.

    1991-10-14

    The fluidized-bed copper oxide process was developed to simultaneously remove sulfur dioxide and nitrogen oxide contaminants from the flue gas of coal-fired utility boilers. This dry and regenerable process uses a copper oxide sorbent in a fluidized-bed reactor. Contaminants are removed without generating waste material. (VC)

  7. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  8. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  9. Correlating throughput and backmixing in fluidized beds

    SciTech Connect

    Papa, G. ); Zenz, F.A. )

    1995-01-01

    The homogeneity of a fluidized bed, usually regarded kinetically as a stirred tank reactor, can be altered to approach plug flow by properly designed internals that limit dense-phase mixing action. These internals can achieve desired temperature or concentration gradients along the bed height. A new correlation has been developed that models throughput and backmixing for gas-liquid and gas-solid systems. Maximum performance is in the neighborhood of 75% to 80% of the ultimate throughput capacity. The paper discusses backmixing mechanisms in fluidized beds; approaches to plug flow in fluidized beds; limiting capacities of structured internals; and the optimum design for structured grid internals.

  10. Solar energy assisted fluidized bed fruit drying

    NASA Astrophysics Data System (ADS)

    Kilkis, B.

    The possibility of using the fluidized-bed principle for solar drying of fruits economically and simply is explored. With the aid of computerized design methods, an optimized fluidized bed/packed bed combination was achieved, that in addition functions as a solar air heater. Based on this configuration, a novel aparatus was designed in Turkey for drying Turkish grapes. Comparisons with comparable systems are made.

  11. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  12. Internal Combustion Engines as Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  13. Fluidized bed heat treating system

    DOEpatents

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  14. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  15. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  16. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  17. Investigation of fluidized-bed biological denitrification

    SciTech Connect

    Acox, T.A.

    1982-12-16

    The performance of the fluidized-bed bioreactor was modelled for denitrification using a multiple linear regression. Reasonable accuracy was obtained; however, this type of analysis did not take into account the hydraulic characteristics of the fluidized-bed. The Mulcahy and LaMotta computer program previously used to model a fluidized-bed bioreactor cannot be used in this case due to the Michaelis-Menton constant k determined in this study, which was one to two orders of magnitude lower. With some additional bioreactor study and computer program modification, this may prove to be of some benefit.

  18. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  19. The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed.

    PubMed

    Wey, Ming-Yen; Chen, Ke-Hao; Liu, Kuang-Yu

    2005-05-20

    The phenomenon of filtering particles by a fluidized bed is complex and the parameters that affect the control efficiency of filtration have not yet been clarified. The major objective of the study focuses on the effect of characteristics of ash and filter media on filtration efficiency in a fluidized bed. The performance of the fluidized bed for removal of particles in flue gas at various fluidized operating conditions, and then the mechanisms of collecting particles were studied. The evaluated parameters included (1) various ashes (coal ash and incinerator ash); (2) bed material size; (3) operating gas velocity; and (4) bed temperature. The results indicate that the removal efficiency of coal ash increases initially with gas velocity, then decreases gradually as velocity exceeds some specific value. Furthermore, the removal of coal ash enhance with silica sand size decreasing. When the fluidized bed is operated at high temperature, diffusion is a more important mechanism than at room temperature especially for small particles. Although the inertial impaction is the main collection mechanism, the "bounce off" effect when the particles collide with the bed material could reduce the removal efficiency significantly. Because of layer inversion in fluidized bed, the removal efficiency of incinerator ash is decreased with increasing of gas velocity.

  20. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  1. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  2. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  3. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  4. Fluidized-bed development at JPL

    NASA Technical Reports Server (NTRS)

    Hsu, G.

    1986-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized bed reactor (FBR) was investigated as a low cost, high throughput method to produce high purity polysilicon for solar cell applications. The emphasis of the research is fundamental understanding of fluidized bed silicon deposition. The mechanisms involved were modeled as a six-path process: heterogeneous deposition; homogeneous decomposition; coalescence; coagulation; scavenging; and chemical vapor deposition growth on fines.

  5. Electrically enhanced fluidized bed heat exchanger

    SciTech Connect

    Lessor, D.L.; Robertus, R.J.; Roberts, G.L.

    1994-05-01

    The experiments have shown that a high level of electrical charging can be achieved in a fluidized bed of two resistive particle types; that bed stabilization rather than increased sensible heat transport dominates low frequency electric field effects on heat transfer with most bed loadings; and, hence, that applying an oscillatory potential difference between tubes or rods in a fluidized bed of two mutual contact-charging particle species gives reduced rather than improved heat transfer. Applying an oscillatory potential difference between rods in a bed of quartz particles fluidized alone did give improved heat transfer, however. With no electric field applied, most fluidized mixes were found to give higher heat transfer rates than the average of the values when each of the two species was fluidized alone. The high level of charging observed in some mixed beds may prove of interest for some air cleanup applications; the results show that simultaneous fluidization of pairs of bipolar charging materials of similar particle size is possible without excessive agglomeration. This would be important for air cleanup.

  6. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  7. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  8. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  9. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  10. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  12. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  13. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  14. Spatiotemporal dynamics of a shallow fluidized bed.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Clark, D. K.

    2000-12-05

    An experimental and theoretical study of the dynamics of an air-fluidized thin granular layer is presented. Near the threshold of instability, the system exhibits critical behavior with remarkably long transient dynamics. Above the threshold of fluidization the system undergoes a Hopf bifurcation as the layer starts to oscillate at a certain frequency due to a feedback between the layer dilation and the airflow rate. Based on our experimental data, we formulate a the simple dynamical model which describes the transition in a shallow fluidized bed.

  15. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  16. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  17. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  18. Special roundup feature report on incineration

    SciTech Connect

    Peacy, J.

    1984-04-01

    The document reviews incineration as a means of destroying hazardous and industrial wastes. The designs of several different incinerators are discussed including modular-type incinerators, rotary kilns, fluidized bed incinerators, grate systems, and multiple hearth incinerators. Environmental controls, recovery, ancillary equipment, utilities and services and financing are among the other incineration-related issues discussed.

  19. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a) Identification. An air-fluidized bed is a device employing the circulation of filtered air through...

  20. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a) Identification. An air-fluidized bed is a device employing the circulation of filtered air through...

  1. Velocity Fluctuations in Gas-Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  2. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  3. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  4. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  5. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  6. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  7. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  8. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  9. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  10. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    SciTech Connect

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  11. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  12. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  13. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  14. An innovative vibration fluidized bed ash cooler

    SciTech Connect

    Duan, Y.; Zhang, M.; Liu, A.; Yao, Z.; Tang, H.; Liu, Q.

    1999-07-01

    With the ever-increasing versatility, scaling up and commercialization of coal-fired fluidized bed boiler technologies, it has become more and more important to improve the technique of draining bed ash from bubbling or circulating fluidized bed boilers. Choosing an ash cooler is a good way but highly stable and reliable system is hard to find for a massive ash flow rate having a broad particle size distributions. An innovative technique known as Vibration Fluidized Bed Ash Cooler (VFBAC) is proposed in this paper. It can drain bottom ash at a high temperature from FB or CFB boilers continuously and controllably. In this device, air used for cooling can be used as combustion-aided air or coal spreading air. The hot ash is cooled by the air to a temperature which it can be transported easily and safely by conventional technology. Meanwhile, an industrial apparatus utilizing the new technology was manufactured and used in a 35 t/h bubbling FB boiler. For the purpose of detecting residence time distribution of wide-sieved bed materials in this ash cooler systematically, advantage was taken of a new approach for physical quality discrimination. Investigations into the hydrodynamic characteristics of the gas-solid two-phase flows and theoretical analyses on hot operational performance were carried out. The results show that heat recovery efficiency of the ash cooler reaches 85% greater when operating at a ratio of air to ash of 1.5{approximately}2.5 Nm{sup 3}/kg.

  15. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  16. Fluidized bed retorting of eastern oil shale

    SciTech Connect

    Gaire, R.J.; Mazzella, G.

    1989-03-01

    This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

  17. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  18. Fines in fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Hogle, R.; Rohatgi, N.; Morrison, A.

    1984-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized-bed reactor is investigated as a low-cost, high-throughput method to produce high-purity polysilicon for solar-cell applications. Studies of fines, particles 0.1-10 microns diam, initiated from homogeneous decomposition in the reactor were conducted using 2 and 6-in-diam fluidized beds. The studies show functional dependences of fines elutriation on silane feed concentration, temperature, gas velocity, and bubble size. The observation that the fines elutriation is generally below 10 percent of the silicon-in-silane feed is attributed to scavenging by large particles in an environment of less free space for homogeneous nucleation. Preliminary results suggest that, with proper conditions and distributor design, high-silane-concentration (over 50 percent SiH4 in H2) feed may be used.

  19. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  20. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  1. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  2. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  3. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  4. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  5. Predicting apparent Sherwood numbers for fluidized beds

    SciTech Connect

    Groenewold, H.; Tsotsas, E.

    1999-09-01

    Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.

  6. Biological denitrification in a fluidized bed.

    PubMed

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  7. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  8. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    PubMed

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  9. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Technical Reports Server (NTRS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Technical Reports Server (NTRS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  12. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory.

    PubMed

    Sornchamni, T; Jovanovic, G N; Reed, B P; Atwater, J E; Akse, J R; Wheeler, R R

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Status of the fluidized bed unit

    SciTech Connect

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  14. Characterizing fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Marban, G.; Pis, J.J.; Fuertes, A.B.

    1995-10-01

    A complete methodology for characterizing coal combustion in atmospheric fluidized bed reactors is presented. The methodology comprises studies of fragmentation and particle size variations during combustion, necessary to allow an accurate determination of kinetic parameters and attrition rates. Samples of three different carbonaceous materials (a medium-ash lignite, a medium-ash anthracite and a graphite) were pyrolyzed in N{sub 2} and partially burned in air in a bench-scale fluidized bed reactor at different operating conditions. The particle size distribution, apparent density and number of particles were evaluated by Image Analysis. Additionally, the sphericity factors were calculated. Combustion studies were carried out in batch experiments in the laboratory-scale, fluidized bed reactor at the same operating conditions. The reactor outlet concentrations of O{sub 2}, CO{sub 2}, and CO were monitored continuously. The results indicate that only anthracite particles experienced both primary (due to devolatilization) and secondary (during char combustion) fragmentation. Graphite particles underwent secondary fragmentation, whereas lignite particles did not significantly vary in number during combustion. Size and density variations during combustion suggest that graphite particles burn under regime II, interparticle diffusion being the rate controlling step. On the other hand, anthracite and lignite particles developed an ash layer, which may control combustion. The attrition constants of the medium-ash materials (lignite and anthracite) were found to be very low whereas that of graphite was much higher due mainly to peripheral percolation during combustion.

  15. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  16. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  17. Design of fluidized-bed fermentors

    SciTech Connect

    Andrews, G.F.; Przezdziecki, J.

    1986-06-01

    Designing a fluidized-bed bioreactor requires choosing the best support particle (if any). Effectiveness factors (proportional to reactor volumetric productivity) are derived for flocs, solid spherical supports, porous supports, and adsorbent supports. The derivation demonstrates a mathematical procedure for reducing the diffusion/uptake equations for many components (substrates and inhibitory products) to a single equation, and for identifying the limiting component. With solid supports there exists a film thickness that maximizes the effectiveness, and the design objective is to keep the film near this optimum throughout the bed. This involves consideration of the effect of support particle density and film growth on bed stratification. Other considerations in packing support particles are obtaining reasonable values for bed height and diameter, minimizing mass transfer resistance between liquid and biomass, and preventing surface shear from stripping off the biomass. 20 references.

  18. HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds.

    PubMed

    Chi, Yong; Wen, Jun-Ming; Zhang, Dong-Ping; Yan, Jian-Hua; Ni, Ming-Jiang; Cen, Ke-Fa

    2005-01-01

    The HCl emission characteristics of typical municipal solid waste (MSW) components and their mixtures have been investigated in a phi 150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent (CaO) is added during the incineration process. Based on these experimental results, a 14 x 6 x 1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.

  19. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  20. Design consideration on fuel flexibility of circulating fluidized bed boilers

    SciTech Connect

    Liu, E.H.; Surabian, M.; Haviland, R.W.

    1986-01-01

    This paper examines the inherent differences between a pulverized coal fired unit and a circulating fluidized bed unit, based on fuel properties, ash properties, and characteristics of combustion and heat transfer to determine generic advantages in fuel flexibility of a circulating fluidized bed combustor. This paper also examines how load control and fuel flexibility may be achieved based on the experience Bechtel gained from the first 650,000 pounds per hour circulating fluidized bed boiler project. The conclusion of this paper addresses the economic merits of having flexibility built in during the design phase of a circulating fluidized bed unit.

  1. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  2. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Cermak, J.; Dobrozemsky, J.; Fibinger, V.

    1982-04-20

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combuster, fuel bunker and crusher.

  3. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Dobrozemsky, J.; Fibinger, V.; Germak, J.

    1983-11-15

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combustor, fuel bunker and crusher.

  4. Solar heated fluidized bed gasification system

    SciTech Connect

    Frosch, R.A.; Qader, S.A.

    1981-09-22

    This solar-heated gasification system avoids the problems inherent in other solar processes (such as blackened solar-input windows and overheated zones on the reactor walls) by heating the fluidizing gas and steam in a solar-heat absorption zone before they enter the reactor. Energy to heat the gas and steam concentrates in high-heat-capacity refractory honeycomb that surrounds the fluidized-bed reactor zone. Solar concentrators focus the solar energy on the honeycomb through a solar window. The reaction zone is also heated directly and uniformly by thermal contact of the ceramic honeycomb with the walls of the reactor. The reactor handles such solids as coal and biomass.

  5. Method and apparatus for separation using fluidized bed

    SciTech Connect

    Ririe, M.; Albert, D.; Johnson, L.F.

    1989-09-12

    This patent describes an apparatus for using a fluidized bed to effect separation of articles into a float fraction of a mixture made up of articles generally having a first density and a sink fraction of the mixture made up of articles generally having a second density that is greater than the first density. The apparatus comprising: an inclined channelization means having input and output ends and being otherwise enclosed along the length of the sides and bottom thereof so as to form a continuous channel for containing the fluidized bed and for enabling the fluidized bed to flow under the influence of gravity and without interruption from the input end along the length of the channelization means and out through the output end of the channelization means; medium recirculation means for supplying to the input end of the channelization means a fluidization medium from which to create the fluidized bed. The medium recirculation means laterally encircling a substantial portion of the channelization means, including the output end of the channelization means so as to collect fluidization medium as the fluidized bed exits from the output end, the medium recirculation means lifting and returning to the input end of the channelization means the fluidization medium thus collected, pneumatic means for forcing air upwardly through the fluidization medium in the channelization means to create the fluidized bed from the fluidization medium; and mixture feed means for supplying the mixture of articles to the input end of the channelization means for entrainment in the fluidization bed throughout the length thereof whereby the separation of the float fraction from the sink fraction is effected as the fluidized bed exits the output end.

  6. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    PubMed

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  8. Mercury recovery using a fluidized bed

    SciTech Connect

    Harriss, C.; Baum, D.L. Jr.

    1996-12-31

    Philip Environmental Services Corporation`s (Philip`s) innovative fluidized bed thermal desorption system recovers mercury from contaminated soil. Referred to as the Thermal Recycling System, Philip has constructed a mobile thermal desorption system that has a processing rate up to five tons per hour. The system includes a continuous-feed system, all radiant heat, inert gas atmosphere, hot gas filter, two-stage cooling, and a water treatment system. Based on treatability studies, the processed soil can meet cleanup objectives as low as two milligrams per kilogram and passes the mercury toxicity characteristic leaching procedure test. 4 refs., 2 figs., 1 tab.

  9. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  10. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  11. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  12. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  13. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  15. Second-generation pressurized fluidized bed combustion

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.

    1992-01-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  16. Second-generation pressurized fluidized bed combustion

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.

    1992-05-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  17. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  18. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  19. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect

    Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

    1998-05-01

    The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

  20. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect

    Joel R. Schroeder; Robert C. Brown

    1998-04-23

    The purpose of this project is to investigate the origin of pressure fluctuations in fluidized bed systems. The study will asses the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers.

  1. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  2. On Motion of Biofuel Particles in a Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Buchilko, É. K.; Greben‧kov, A. Zh.; Borodulya, V. A.; Pitsukha, E. A.; Teplitskii, Yu. S.

    2016-11-01

    The migration of macroparticles in a fluidized bed of a finely divided quartz sand has been studied experimentally. The mechanism underlying the influence of the mixing of fluidized bed particles on the character of macroparticle motion is described. The dependence of the depth of macroparticle immersion on the physical and operational parameters has been obtained.

  3. Experimental investigation into the incineration of wool scouring sludges in a novel rotating fluidised bed.

    PubMed

    Wong, W Y; Lu, Y; Nasserzadeh, V S; Swithenbank, J; Shaw, T; Madden, M

    2000-04-03

    The main purpose of this research was to investigate the possibility of incineration of wool scouring sludges in a novel vertical axis rotating fluidized bed (RFB). A small-scale RFB was designed and constructed with an internal diameter (ID) of 200 mm and height of 50 mm to carry out the experiments. In phase one of the experiments, a cold test was conducted to investigate the fluidization performance of the RFB, which eventually led to the optimisation of the operating parameters, i.e., sand particle size, rotation speed and bed loading (bed thickness) which ensures complete fluidization and minimum particle elutriation. Sand particle size of 0.5 to 0.6 mm, rotation speed of 200 to 400 rpm and bed loading of 1 kg (equivalent to bed thickness of 27 mm) were found optimal. These information generated were useful for the second phase of the experiments, which was the hot test, in investigating the possibility of incinerating wool scouring sludges in the RFB. Nine wool sludges from different process routes generated from the wool scouring industries were analysed for their compositions. Most of these sludges were highly moist, had high volatile matter and high ash content with low level of fixed carbon. These characteristics made incineration difficult. Hence, the effect of varying the moisture content, rotation speed and sludge feed rate on the incineration of the three selected sludges were studied in the hot test. With 5% support methane, all sludges with a maximum moisture up to 70% as-received could be successfully burned in the RFB at rotating speeds of 200 and 300 rpm. The combustion was found to be intense with a high efficiency due to the good turbulence and mixing in the RFB. The combustion gases produced, i.e., CO, CO(2) and NO(x) were reasonably low due to the high combustion intensity and efficiency. To study the dynamics of the bed and freeboard region in the RFB, the velocity flow field was simulated using a computational fluid dynamics (CFD) model to

  4. Fluidized bed boiler having a segmented grate

    DOEpatents

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  5. Temperature measurement of particles in fluidized bed

    NASA Astrophysics Data System (ADS)

    Kueh, Kimberley; Lau, Timothy; Nathan, Graham; Alwahabi, Zeyad

    2016-11-01

    In order to improve process efficiencies in particle-laden flow applications, it is necessary to have a more comprehensive understanding of the heat transfer between particles and the flow in a turbulent environment. The presentation will detail the planar thermometry of radiatively heated particles in an optically-accessible fluidized bed. This is done by investigating the interaction between particles and the flow where a 3kW laser was used as the well-defined heat source. Laser-induced phosphorescence (LIP) technique was used for non-intrusive, planar, in-situ measurements that is temporally and spatially resolved. The thermometry was conducted in the fluidized bed where the air mass flow rate was kept constant at 15 L/min, and particles were subjected to varying radiative heat flux up to 32 MW/m2. It was found that the particle temperature measurement uncertainty was about 2K at room temperature, and 5K at 600K. Australian Research Council (ARC): ARC Discovery Grant DP130100198.

  6. Fluidized-bed calciner with combustion nozzle and shroud

    DOEpatents

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  7. [Structure and fluidization of an internally circulating fluidized bed for FGD process].

    PubMed

    Yang, Liuchun; Yang, Wenqi; Tong, Zhiquan

    2003-09-01

    A new internally circulating fluidized bed for FGD process was developed, and different types of top and bottom structures were employed in the experiment to find out the best fluidized bed structure. Fluidizing status, the axial distribution of solid hold-up and the fluid mechanics under cold conditions were investigated. The results indicate that the unit can realize internally circulating of a large number of solid particles which presents an core-annulus structure when the velocity of fluidizing gas was at the range of 2.5 to 5 m/s, and that the solid density in the bed is higher than that in traditional equal diameter fluidized bed, which provide the equipment with potential for application in FGD process.

  8. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  9. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  10. Method for wastewater treatment in fluidized bed biological reactors

    SciTech Connect

    Fan, L.; Wen, C.

    1981-03-03

    Wastewater is subjected to biological reaction in a bed containing the biological reaction bacteria on a particulate carrier wherein the lower portion of the bed is fluidized while the upper portion is maintained as a fixed bed. When the fixed bed portion becomes clogged with cellular material, the entire bed is fluidized and wash water is passed through the bed to remove excess cellular material. The method is applicable to advanced wastewater treatment, both secondary treatment for BOD removal, and tertiary treatment for nitrification and/or denitrification. The method is particularly advantageous for treatment of wastewater supplied at varying flow rates.

  11. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  12. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.

  13. Fuzzy control of a fluidized bed dryer

    SciTech Connect

    Taprantzis, A.V.; Siettos, C.I.; Bafas, G.V.

    1997-05-01

    Fluidized bed dryers are utilized in almost every area of drying applications and therefore improved control strategies are always of great interest. The nonlinear character of the process, exhibited in the mathematical model and the open loop analysis, implies that a fuzzy logic controller is appropriate because, in contrast with conventional control schemes, fuzzy control inherently compensates for process nonlinearities and exhibits more robust behavior. In this study, a fuzzy logic controller is proposed; its design is based on a heuristic approach and its performance is compared against a conventional PI controller for a variety of responses. It is shown that the fuzzy controller exhibits a remarkable dynamic behavior, equivalent if not better than the PI controller, for a wide range of disturbances. In addition, the proposed fuzzy controller seems to be less sensitive to the nonlinearities of the process, achieves energy savings and enables MIMO control.

  14. Atmospheric fluidized bed combustion gas erosion solution

    SciTech Connect

    Seitzinger, D.L.

    1995-12-31

    The Westwood Generating Station is a 30 MW, anthracite culm-fired plant located near Joliet, Pennsylvania. The culm firing technology is based on the Combustion Engineering-Lurgi circulating fluidized bed combustion (CFBC) technology first introduced in this country in boiler applications in the mid-80`s. This unit went into commercial operation In July 1988 and is the second of its type in service in this country. It is located on the original site of the Westwood Colliery that was in operation from 1920 to 1950 preparing anthracite coal for the commercial market and leaving behind a 15 year fuel supply of anthracite culm, a coal screening waste, that is now the fuel for this station. This paper documents the investigations and corrective actions taken to stop severe tube erosion encountered in the combustor and heat recovery surfaces of the unit. This erosion is attributed to high gas velocities due to changing operation requirements and gas flow distribution.

  15. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  16. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  17. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  18. (Pulsed atmospheric fluidized bed combustion (PAFBC))

    SciTech Connect

    Not Available

    1988-10-01

    This first Quarterly Technical Progress Report presents the results of work accomplished during the period April 19 through July 24,1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. the program scope consisted of two tasks; the first was to establish preliminary feasibility by the use of theoretical and state-of-the-art information. This task was completed during the first quarter of the contract period and a topical report entitled, Pulsed Atmospheric Fluidized Bed combustion (PAFBC) - Preliminary Feasibility Study'' was prepared as a decision point to proceed'' deliverable in accordance with the terms of the contract. This first quarterly progress report therefore covers the contract activities subsequent to the approval of the feasibility study and the decision to proceed with the Task 2 effort. As the initial quarterly technical progress report, this document includes a subsection on background which will be omitted in subsequent reports. All effort during this period was devoted to the design and analysis of the PAFBC. Design drawings were prepared and fabrication and procurement initiated. Quotations were evaluated and a fabrication contract awarded. A site adjacent to the MTCI building was chosen for the installation of the PAFBC. Some ancillary components were purchased, renovated, and tested. Some delays in delivery of components have resulted in some schedule delay. It is anticipated that the program pace will accelerate as soon as parts are received and installation and assembly are initiated. 10 figs.,1 tab.

  19. Reducing static charges in fluidized bed reactions

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Ballou, E. V.; Wood, P. C.; Spitze, L. A.

    1980-01-01

    Radio frequency glow discharge apparatus ionizes fluidizing gas, making it conductive enough to neutralize static charge on fluidized particles. Particles agglomerate less, and in one case reactant loading capacity was increased six fold.

  20. Particle pressures in fluidized beds. First year annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-09-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  1. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  2. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  3. A staged fluidized-bed comubstion and filter system

    SciTech Connect

    Mei, J.S.; Halow, J.S.

    1993-12-31

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  4. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  5. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  6. Coal-feeding mechanism for a fluidized bed combustion chamber

    SciTech Connect

    Gall, R. L.

    1981-06-02

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, E.G. Coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  7. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    PubMed

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Methods of forming a fluidized bed of circulating particles

    DOEpatents

    Marshall, Douglas W [Blackfoot, ID

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  9. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  11. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  12. Pressurized fluidized bed combustion ash management options

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Young, L.J.; Wheeldon, J.M.

    1995-12-31

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration and commercial deployment in the United States, as well as throughout the world. American Electric Power`s (AEP) bubbling PFBC 70 MW{sub e} Tidd demonstration program in Ohio and pilot-scale work at Ahlstrom Pyropower`s 10 MW{sub e} circulating PFBC at Karhula, Finland have demonstrated the advantages of PFBC technology. Development of uses for solid wastes from PFBC coal conversion systems is being actively pursued as part of the commercial demonstration of PFBC technologies. Ash collected from the low-sulfur subbituminous coal-fired Ahlstrom pilot circulating PFBC tests in Karhula, Finland and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI). Ash use options evaluated for these PFBC ashes were construction-related applications, such as (1) cement production, (2) fills and embankment, (3) soil stabilization, (4) synthetic aggregate production, as well as an amendment for acidic and sodic soil and mine spoil.

  13. Proceedings of recent fluidized bed projects

    SciTech Connect

    Mahr, D. )

    1992-01-01

    In the last several years, atmospheric fluidized bed combustion, AFBC, has become a commercial technology. AFBC power plants offer high combustion efficiency, control of sulfur emissions, and fuel options that are not available via other techniques. Fuel options include: high sulfur coal without the need to add an FGD system; low grade coal that has ash levels that are too high for conventional coal-fired units (mining reserves can be extended); agricultural waste that would otherwise be field burned which adversely affect air quality; waste from the wood products or construction industries that would otherwise be landfilled; sludge that would otherwise require processing for disposal. The utilization of some waste fuels is helping to clean our air and reduce the piles of waste that mar our landscape. Fuel selection is a major decision for the power engineer. It is the single largest item in the power plant operating budget and has a major effect on power plant economics. AFBC technology has gained a reputation for burning almost anything. Any specific unit must, however, be suitable for the application. Plant systems and the AFBC boiler itself are dependent upon an accurate assessment of the fuel, sorbent, and bed material. To a large extent, they establish plant design requirements and the types of systems/features that are provided. As a result, an early analysis of the combustion and handling characteristics of the plant's fuel, sorbent, and material should be completed. The papers in this volume describe recent AFBC projects. They include a variety of applications using coal, coal preparation waste, and agricultural waste products. The authors provide a glimpse of how AFBC technology is being commercially applied.

  14. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  15. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  16. Kinetic behavior of solid particles in fluidized beds: Annual report

    SciTech Connect

    Kono, H.O.; Huang, C.C.

    1987-10-01

    This report summarizes technical accomplishments for the first year in a 3-year contract project for the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) under contract number AC21-86MC23249. The objectives of the project are (1) to develop experimental techniques for measuring the forces of fluidized particles, and (2) to predict solid particle performance in fluidized beds using data analysis and mathematical modeling. During the first year, the fracture-sensitive tracer-particle method was developed and applied to investigate the effects of fluidized particle size, superficial gas velocity, bed height, bed diameter, and bed configuration on the kinetic behavior of solid particles in fluidized beds. Quantitative data and comprehensive information were obtained. A piezoresistive strain-gauge sensor and a PC data-acquisition system were also developed; these are being used to measure the force distribution in fluidized beds. The pressure fluctuation method will also be investigated in the near future. 12 refs., 24 figs., 2 tabs.

  17. Feasibility of rotating fluidized bed reactor for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Ludewig, H.; Manning, A. J.; Raseman, C. J.

    1974-01-01

    The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.

  18. Fluidized-bed boilers achieve commercial status worldwide

    SciTech Connect

    Schwieger, B.

    1985-02-01

    The author reviews the current status of commercial fluidized-bed boilers worldwide. Particular attention is given to circulating fluidised-bed systems. A number of detailed tables are presented providing details of manufacturers of afb boilers, and information on 88 installed boilers, their fuels, combustion systems and operational data. Less detailed information is given of a further 140 installations.

  19. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  20. Mechanisms of coal-water mixture combustion in fluidized beds

    SciTech Connect

    Brown, R.C.

    1989-01-01

    The first quarter of FY 1990 was used to correct problems described in the previous progress report and to initiate a series of experiments on calcination and sulfation of coal-water-limestone mixtures (CWLM) in fluidized beds. Results are discussed and compared to the burning of dry coal in a limestone bed. 10 refs., 5 figs.

  1. Torrefaction of sawdust in a fluidized bed reactor.

    PubMed

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors.

  2. Mathematical modelling of MSW incineration on a travelling bed.

    PubMed

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  3. Solid fuel feed system for a fluidized bed

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  4. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  5. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  6. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  7. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  8. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  9. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  10. Modeling the Optimal Heat Transfer Fluidization Velocity in Gas-Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Predey, Thomas; Bougie, Jon; Goltsiker, Aleksandr

    2014-11-01

    Fluidized beds are vital to a wide range of industrial applications and are useful for studying two-phase flow. However, modeling the optimal heat transfer fluidization velocity (OHTFV) in such beds has remained difficult. Previous investigations have commonly taken one of two approaches. One such approach attempts to find a general scaling formula for homogeneous fluidized beds by taking a harmonic average between the terminal and minimum fluidization velocities. Modern approaches using computer simulations and a wide range of parameters are more commonly used in industry today, but are generally concerned with specific applications. We propose a third approach, taking into account the inhomogeneity of the fluidized bed system while limiting the input parameters to gas velocity and particle size. We use this approach to find a general formula for OHTFV that accounts for the collective behavior of the particles rather than focusing on each individual particle in the bed. We then compare this model to previous experimental results. This research is supported by the Loyola Undergraduate Research Opportunities Program.

  11. Scaling of pressurized fluidized beds. Quarterly report, April 1994--July 1994

    SciTech Connect

    Glicksman, L.R.; Farrell, P.A.

    1994-07-01

    This project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized fluidized beds.

  12. An investigation of particle mixing in a gas-fluidized bed

    NASA Technical Reports Server (NTRS)

    Carlson, R. E.; Gabor, J. D.

    1968-01-01

    Mechanism for particle movement in gas-fluidized beds was studied both from the theoretical and experimental points of view. In a two-dimensional fluidized bed particle trajectories were photographed when a bubble passed through.

  13. Steam generator with circulating atmospheric fluidized bed combustion

    NASA Astrophysics Data System (ADS)

    Wein, W.; Hoeffgen, H.; Maintok, K. H.; Daradimos, G.

    1982-08-01

    The combustion of coal in power plants by conventional combustion techniques is studied with emphasis on combustion in a circulating atmospheric fluidized bed (CFBC). The CFBC method stays half way between the classical fluidized bed with a well defined bed height and the pneumatic transport where particles and fluidizing gas have the same velocity. The main advantages of CFBC are: flexibility with respect to coal types; easy elimination of 80% of sulfur by mixing the coal with calcium carbonate to a molecular ratio Ca/S of about two; reduced nitrogen oxides production due to the low combustion temperature of 900 C; high steam production efficiency with the combustion degree exceeding 99%; high overall efficiency with no further desulfurizing being needed; easy regulation; high heat transmission rates (350 to 400 W/m2K) reducing exchange surfaces; small boiler building; and the possibility to build in one module a 300 MW unit.

  14. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  15. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  16. Application of sedimentation model to uniform and segregated fluidized beds

    SciTech Connect

    Shippy, J.L. III; Watson, J.S.

    1990-10-24

    This paper incorporates concepts of unimodal and bimodal sedimentation to develop a model that accurately predicts bed expansion during particulate fluidization. During bed expansion a particle is considered to be fluidized not by the pure fluid, but by a slurry consisting of the pure fluid and other surrounding particles. The contributions of the other surrounding particles to the additional buoyant and drag forces are accounted for with the use of effective fluid or slurry properties, density and viscosity. As bed expansion proceeds, influences of the surrounding particles decrease; therefore, these effective properties are functions of the changing void fraction of the suspension. Furthermore, the expansion index, which empirically represents the degree to which viscous and inertial forces are present, is traditionally a function of a constant terminal Reynold's number. Because the effective fluid properties are considered to be changing as fluidization proceeds, the degree to which viscous and inertial forces also changes; therefore, the expansion index is written as a function of a local or intermediate Reynold's number. These concepts are further extended to bimodal fluidization in which small or light particles aid in the fluidization of the large or heavy particles. The results indicate that the proposed model more accurately predicts particulate bed expansion for a wider range of systems (gas -- liquid, low Reynold's number -- high Reynold's number) than other analytical or empirical models.

  17. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  18. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  19. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  20. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  1. PMB-Waste: An analysis of fluidized bed thermal treatment

    SciTech Connect

    Gat, U.; Kass, M.D.; Lloyd, D.B.

    1995-07-01

    A fluidized bed treatment process was evaluated for solid waste from plastic media blasting of aircraft protective coating. The treatment objective is to decompose and oxidize all organic components, and concentrate all the hazardous metals in the ash. The reduced volume and mass are expected to reduce disposal cost. A pilot test treatment was done in an existing fluidized bed equipped with emissions monitors, and emissions within regulatory requirements were demonstrated. A economic analysis of the process is inconclusive due to lack of reliable cost data of disposal without thermal treatment.

  2. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  3. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  4. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    SciTech Connect

    Jia, Dening; Cathary, Océane; Peng, Jianghong; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab; Liu, Yuping; Wang, Ruixu; Tsutsumi, Atsushi

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gas pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.

  5. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  6. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    SciTech Connect

    Rehmat, A.; Mensinger, M.C.; Richardson, T.L.

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  7. Granulation of urea in a fluidized-bed granulator: an application of three-phase fluidized beds

    SciTech Connect

    Kono, H.O.

    1980-01-01

    A fundamental process study was made on the granulation and simultaneous drying of urea from its concentrated solution by a fluidized-bed granulator. Relatively coarse urea pellets (1.5 to 3.0 mm in diameter), which have been required recently in the fertilizer market, were prepared. Through a series of experiments using a laboratory-scale plant (200-mm ID) and a pilot plant (500-mm ID), the best operational parameters have been obtained. In particular, the allowable maximum granulating rate per unit volume has been investigated and correlated with the granulating mechanism. These data were evaluated from the characteristics of the three-phase fluidized bed (a solids-gas fluidized-bed system with a small amount of liquid). Based on the above results, a semicommercial plant design was proposed.

  8. Computational and Experimental Study of Spherocylinder Particles in Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay; Kuipers, Hans; Padding, Johan; Multiphase Reactors Group, TU Eindhoven Team

    2016-11-01

    Non-spherical particle flows are often encountered in fluidized process equipment. A coupled computational fluid dynamics (CFD) and discrete element method(DEM) approach has been extensively applied in recent years to study these flows at the particle scale. However, most of these studies focus on spherical particles while in reality, the constituent particles are seldom spherical. Particle shape can significantly affect the hydrodynamical response in fluidized beds. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation of the particle, Reynolds number and packing fraction. In this work, a CFD-DEM approach has been extended to model a lab scale quasi-2D fluidized bed of spherocylinder (rod-like) particles. These particles can be classified as Geldart D particles and have an aspect ratio of 4. Numerical results for the pressure drop, bed height and solid circulation patterns are compared with results from a complementary laboratory experiment. We also present results on particle orientations close to the confining walls, which provides interesting insight regarding the particle alignment. Thus the capability of the CFD-DEM approach to efficiently account for global bed dynamics in fluidized bed of rod-like particle is demonstrated. This research work is funded by ERC Grant.

  9. Direct combustion of olive cake using fluidized bed combustor

    SciTech Connect

    Khraisha, Y.H.; Hamdan, M.A.; Qalalweh, H.S.

    1999-05-01

    A fluidized bed combustor of 0.146 m diameter and 1 m length was fabricated from stainless steel to burn olive cake. Initially, and in order to obtain fluidization, the system was operated under cold conditions using a sand with particle size in the range of 500 to 710 microns. The continuous combustion experiments were carried out under controlled conditions, such that the effects of bed temperature, olive cake feed rate, fluidization velocity, and particle size on combustion efficiency and flue gas composition were investigated. It was found that the combustion efficiency decreases with the bed temperature, fluidization velocity, and the feed rate, while it increases with the particle size used. Further, the gas products analysis carried out using a gas chromatography analyzer have shown a nonmeasured amount of SO{sub 2}, and small amounts of CO. Finally, the temperature distribution along the bed indicated that the temperature throughout the bed is fairly uniform, demonstrating a good mixing of reactants, which is important for efficient combustion.

  10. Investigation on Agropellet Combustion in the Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  11. The Operation of Magnetically Assisted Fluidized Bed in Microgravity and Variable Gravity: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Sornchamni, T.; Jovanovic, G.; Atwater, J.; Akse, J.; Wheeler, R.

    Typically, the operation of a conventional fluidized bed relies on the balance of gravitational, buoyancy, and drag forces. In the absence of normal gravity, or under microgravity and variable gravity conditions, the gravitational force must be replaced with an alternative force to restore fluidization. Our work has shown that, given a suitable variable magnetic field design, the resulting magnetic field gradient can create sufficient magnetic force acting upon the ferromagnetic particles to replace or supplement the gravitational force. Therefore, the ferromagnetic granular media can be fluidized in either microgravity or hypogravity. In this paper, we present our experimental and theoretical work leading to a) development of theoretical model based on fundamental principles for the design of the Gradient Magnetically Assisted Fluidized Bed (G-MAFB), and b) practical implementation of the G-MAFB in the filtration and destruction of solid biowaste particles from liquid streams. The G-MAFB system consists of a fluidization column and series of Helmholtz electromagnetic coils, with DC power supply. Each Helmholtz ring is powered and controlled separately. Experiments are performed in both 0g (on board NASA KC- 135) and 1g (laboratory) environments. The experiments in 0g are conducted in a two-dimensional, square cross-section, tapered fluidization column. The tapered shape is introduced to provide additional stability to the fluidization particles. The experiments in 0g prove that the magnetic force has a significant role in keeping the particles from extruding out of the bed. Without the magnetic force, it is impossible to have fluidization in space. Solid waste destruction technologies are needed to support long duration human habitation in space. The current technologies, including supercritical water oxidation (SCWO), microwave powered combustion and fluidized bed incineration, have been applied to the destruction of solid wastes, but none are compatible with

  12. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  13. Steam reforming of heptane in a fluidized bed membrane reactor

    NASA Astrophysics Data System (ADS)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  14. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L. )

    1989-01-01

    The rate of loss of dust from a laboratory-scale fluidized bed of Greenriver oil shale has been measured. The rate of loss of dust form raw shale in the bed was approximately 1%/min for the first few minutes and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rates for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation; fracture and wear.

  15. Iron crystallization in a fluidized-bed Fenton process.

    PubMed

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  17. Parametric performance studies on fluidized-bed heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-01-01

    The performance of single and multistage shallow fluidized beds is investigated for possible application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests are conducted to (1) investigate the effects of fouling due to liquid condensate in the gas stream on fluidized bed heat exchanger performance, (2) investigate the performance of fluidized beds which are staged using baffle plates, and (3) investigate the effects of different heat exchanger surface geometries. Work is progressing in selecting the conditions for that portion of the program involving fouling by a liquid condensate, and in modifying the fluidized bed heat exchanger facility for the fouling experiments. Preliminary tests were conducted with water vapor injection. Water vapor and glycerol vapor were chosen as the condensates. The results are summarized as follows: (1) heat exchanger performance is seriously degraded by condensation when the dew point temperature exceeds the heat exchanger wall temperature; and (2) the performance decrease occurs as a result of particle adherence to the heat exchanger surface and not as a result of particle agglomeration.

  18. Fluidized Bed Sputtering for Particle and Powder Metallization

    DTIC Science & Technology

    2013-04-01

    used microwave and radio frequency (RF) plasma coupled with a gas-fluidized bed to produce thin titania coatings on glass powders. Chen et al. (16...2000, 35 (6), 1439–1444. 8. Park, J.; Bae, D. H.; Lee, S. Y.; Kwak, J.; Park, H. W.; Lim, J. Large-Scale Production of Titania Nano-Coated Silica

  19. Four utility fluidized-bed combustion projects approach demonstration status

    SciTech Connect

    Not Available

    1986-12-01

    Fluidized bed combustors (FBCs) are being considered as viable options in an increasing number of applications where new power plant capacity is required and for schemes to extend the lives of existing power plants by retrofitting. Four large demonstration projects have been organized to allow evaluation of variations of this technology on a scale where essentially full-size components are employed. These four projects are: a 125 MW(e) atmospheric pressure fluidized-bed combustor retrofitted to Unit 2 of the Black Dog Station of Northern States Power Company near St. Paul, Minnesota; a 110 MW(e) circulating fluidized bed combustor at the Nucla Station of the Colorado Ute Electric Association, Inc. at Nucla, Colorado; a 160 MW(e) at the Shawnee Station of the Tennessee Valley Authority (TVA) at Paducah, Kentucky; and a 70 MW(e) pressurized fluidized-bed combustor at the Tidd Station of the Ohio Power Company (of AEP) at Brilliant, Ohio. The design, fuel, and schedule for each project are described. 10 references.

  20. JPL in-house fluidized bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1985-01-01

    The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.

  1. Suspension Electrodes Combining Slurries and Upflow Fluidized Beds.

    PubMed

    Cohen, Hagai; Eli, Shaked Ein; Jõgi, Morten; Suss, Matthew E

    2016-11-09

    Carbon-based suspension electrodes are currently intensively investigated for emerging electrochemical systems, such as flow batteries, flow capacitors, and capacitive deionization cells. The main limitation of such electrodes is their low electric conductivity, which is typically orders of magnitude lower than that of traditional static carbon electrodes. Two main categories of suspension electrodes exist: 1) slurry electrodes where particles are not significantly affected by gravity, and 2) fluidized bed electrodes where particles are affected by gravity. We introduce a novel category that we term "combined" suspension electrodes, which combine dilute slurries and dense fluidized beds. We present experimental measurements of the electrochemical impedance and electric conductivity of two combined electrodes. For one set of materials, the measured electric conductivity of the combined electrode is at least an order of magnitude above the fluidized bed and slurry components alone, demonstrating that a synergetic effect can be achieved when adding dilute slurry to dense fluidized bed. For a second set of materials, results show that the combined electrode conductivity is lower than the slurry component alone, a counter-intuitive result, demonstrating that increasing electrode carbon loading does not always enhance the electric conductivity. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  3. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.

    DTIC Science & Technology

    1981-03-01

    Kunii and Levenspiel Model ----------------- 66 C. FLUIDIZED BED VARIABLES THAT AFFECT HEAT TRANSFER ---------------------------------- 69 5 1...and Levenspiel Model -------------------------- 68 25. Heat transfer coefficient vs. mass velocity --------- 72 26. Contact geometry of surface-particle...becomes a very important factor. According to Kunii and Levenspiel [34], distributors should have a sufficient pressure drop to achieve equal flow

  4. Stability of flows in fluidized beds

    SciTech Connect

    Not Available

    1993-04-01

    We study the linearized stability of the state of uniform fluidization, within the context of the theory of mixtures. The mixture is assumed to be made up of a classical linearly viscous fluid mixed with solid particles. In marked departure from most of the previous studies, we model the solid as a granular material and assume a constitutive relation that stems from classical motions in continuum mechanics. The linearized stability analysis of the state of uniform fluidization, in general, leads to an eighth order equation for the characteristic whose root implies instability, when positive. We find that the characteristic equation can be factored and one of the factors is precisely the equation that governs the stability when we use a simplified analysis akin to that of the earlier study of Anderson and Jackson.

  5. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1994-04-01

    Laboratory combustion tests conducted this quarter support the hypothesis that localized reducing conditions promote formation of agglomerates in the bed of fluidized bed boilers. These tests were designed to simulate localized reducing conditions found in commercial fluidized bed combustors. Localized reducing conditions may occur from either poor lateral bed mixing or oxygen-starved bed conditions due to the coal feed configuration. It was found-that agglomeration can occur at lower theoretical air values while operating temperatures are within the range of fluidized bed boilers. Cohesion of bed particles appears to take place very rapidly when theoretical air in the bed approaches 70%. These tests also indicate that bed temperature, pressure drop, oxygen and carbon dioxide concentrations are affected by agglomeration. Agglomeration appears to result in: (1) An increase in the frequency of pressure fluctuations (bed pressure drop). (2) An increase in the magnitude of pressure fluctuations (bed pressure drop.) (3) A possible decrease in bed pressure differential over time. In addition, there appears to be an increase in the amount of available oxygen and a decrease in CO{sub 2}. Agglomerates formed in the laboratory are being subjected to mineralogical analyses which will then be compared to similar analyses of agglomerates removed from commercial boilers.

  6. Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors.

    PubMed

    Arnaiz, C; Buffiere, P; Elmaleh, S; Lebrato, J; Moletta, R

    2003-11-01

    This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m2m(-3)) and their low energy requirements for fluidization (gas velocity of 1.5 mm s(-1), 5.4 m h(-1)). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kgCOD m(-3) d(-1), respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass.

  7. Fluidized Bed Boiler Assessment for Navy Applications

    DTIC Science & Technology

    1986-11-01

    inertia and latent heat stored in the bed material allow newly added fuel to ignite quickly and evenly; even wet or low-quality fuels can be burned...about 97% inert bed material (e.g., sand) and 3% fuel. The upper bed is composed of finely ground sulfur sorbent and is where desulfurization of...can be burned without the need of the expensive back-end desulfurization equipment. In fact, most FBC boilers can practically burn all combustible

  8. Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds.

    PubMed

    Valverde, J M; Castellanos, A; Mills, P; Quintanilla, M A S

    2003-05-01

    Gas-fluidized powders of fine particles display a fluidlike regime in which the bed does not have a yield strength, it expands uniformly as the gas velocity is increased and macroscopic bubbles are absent. In this paper we test the extension of this fluidlike regime as a function of particle size and interparticle attractive force. Our results show that for sufficiently large particles, bubbling initiates just after the solidlike fluidized regime as it is obtained experimentally by other workers. A scaling behavior of the solid-phase pressure in the fluidlike regime and a predictive criterion for the onset of macroscopic bubbling are analyzed in the light of these results.

  9. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    SciTech Connect

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  10. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  11. Fluid bed porosity mathematical model for an inverse fluidized bed bioreactor with particles growing biofilm.

    PubMed

    Campos-Díaz, K E; Bandala-González, E R; Limas-Ballesteros, R

    2012-08-15

    A new mathematic model to estimate bed porosity as a function of Reynolds and Archimedes numbers was developed based in experimental data. Experiments were performed using an inverse fluidized bed bioreactor filled with polypropylene particles, Lactobacillus acidophillus as the immobilized strain and fluidized with a Man-Rogosa-Sharpe culture medium under controlled temperature and pH conditions. Bed porosity was measured at different flow rates, starting from 0.95 to 9.5 LPM. The new model has several advantages when compared with previously reported. Among them, advantages such as standard deviation values ≤ 1% between experimental and calculated bed porosity, its applicability in traditional and inverse fluidization, wall effects do not take account, it gives excellent agreement with spherical particles with or without biofilm, and inertial drag coefficient allow extend the new model a non-spherical particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Water softening by induced crystallization in fluidized bed.

    PubMed

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.

  13. Particle pressures in fluidized beds. Second year annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.

    1993-12-31

    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  14. A fluidized-bed continuous bioreactor for lactic acid production

    SciTech Connect

    Andrews, G.F.; Fonta, J.P.

    1988-05-01

    A laboratory bioreactor consists of a fluidized bed of monosized activated carbon coated with a biofilm of the homolactic fermentative organism Streptococcus thermophilus. Biofilm growth moves the carbon through the bed, and adsorption of substrate and product at the bottom and top of the bed respectively reduces their inhibitory effects on the organism. Theory shows that high reactor productivity and rapid recirculation of carbon through the bed require a biofilm thickness of 25 to 45% of the carbon particle radius on particles fed into the base of the bed. This could not be achieved in practice due to the fragility of the biofilm. Product concentration was higher than expected from measurements of product inhibition, possibly because it is the undissociated form of the acid that both inhibits metabolism and adsorbs on the activated carbon. The observed productivity of 12 gm/1 hr could be greatly increased by ph control. 13 refs., 7 figs., 2 tabs.

  15. An investigation into the fluidization and heat transfer of low density particles in a fluidized bed with applications

    NASA Astrophysics Data System (ADS)

    Modlin, J. M.

    1985-05-01

    The lack of reliable data on the fluidization and heat transfer characteristics of low density particles in a fluidized bed has prompted an experimental and analytical investigation into this subject. Seven groups of particles ranging in diameter from 0.25 mm to 2.0 mm and density from 2.5 to 32 pcf have been successfully fluidized and shown to be generally well predicted by classical fluidization and fluidized bed heat transfer theory. Two other groups of particles, also in this approximate range of particle diameter and density, are, however, unable to be fluidized due to significant inter-particle and static electric attractions. Using the experimental data and results as a basis of analysis, two application of low density particle fluidization in a building efficient energy management program are discussed. A fluidized bed can be incorporated into the wall cavity of a building for use as either a collector of solar energy or as a heat exchange medium in a building space heating/cooling program. As a solar collector, it is shown that the low density particle fluidized bed would thermally perform between comparable conventional liquid and air-cooled flat plate solar collectors. It would require less water pumping power and plumbing than the liquid collector and less air pumping power than the air collector.

  16. Heat transfer characteristics of the fluidized bed through the annulus

    NASA Astrophysics Data System (ADS)

    Shedid, Mohamed H.; Hassan, M. A. M.

    2016-09-01

    The annular fluidized bed can be regarded as a promising technique for waste heat recovery applications. This study investigates on the determination of steady state values of the average heat transfer on the surface of the inner tube under different operating conditions that include: (1) input heat flux ranging from 557 to 1671 W/m2, (2) superficial air velocity ranging between 0.12 and 0.36 m/s, (3) initial bed height ranging from 25 to 55 cm, (4) ratio of the inner to the outer diameters ranging from 1/6 to 1/2 and Kaolin particle diameters ranging between 282 and 550 µm. The average values of the heat transfer coefficient along the inner tube (consisting of the fluidized and free board sections) are also deduced. An empirical correlation for calculating the Nusselt number is obtained for the given parameters and ranges.

  17. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  18. International energy technology assessment: Atmospheric fluidized-bed combustion

    NASA Astrophysics Data System (ADS)

    Krishnan, R. P.; Johnsson, K. O.

    1982-04-01

    A survey was made of atmospheric fluidized bed combustion (AFBC) research and development and commercial activities in foreign countries. These activities indicate a broad interest in the process largely because of its flexibility in burning a wide range of coals and low grade fuels. The conclusion is made that AFBC is a viable system and is in the process of being confirmed on a commercial scale for industrial heat and power generation. A number of organizations in the United States and western Europe are offering fluidized bed package boilers, with some form of commercial guarantees. The major uncertainties of the process lie in the areas of coal and sorbent handling systems, availability of reliable construction materials; the system's ability to meet varying load demands; reduced sorbent requirements; and improved carbon utilization. Research and development programs in these areas are being pursued.

  19. Reduction of particulate carryover from a pressurized fluidized bed

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.

  20. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  1. Fluidized bed gasification ash reduction and removal system

    SciTech Connect

    Schenone, C.E.; Rosinski, J.

    1984-02-28

    In a fluidized bed gasification system, an ash removal system is disclosed to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  2. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  3. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  4. Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project

    SciTech Connect

    Holley, E.P.; Lewnard, J.J.; von Wedel, G.; Richardson, K.W.; Morehead, H.T.

    1995-04-01

    Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  5. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  6. Fluidized bed silicon deposition. [Si production via silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Morrison, A.; Rohatgi, N.; Lutwack, R.; Macconnell, T.

    1984-01-01

    The growth of silicon on seed particles from the pyrolysis of silane in a fluidized bed reactor (FBR) was studied. The grown particles were shown to be crystalline and to have a structure which has been interpreted to indicate growth by chemical vapor deposition as well as by the collection (scavenging) of silicon clusters on seed particle surfaces. Scanning electron microscopy was used to study the product morphology.

  7. Spectral methods applied to fluidized bed combustors. Final report

    SciTech Connect

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  8. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    SciTech Connect

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul; Shahnam, Mehrdad

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.

  9. Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis.

    PubMed

    Kim, Sung Won

    2015-01-01

    A predictive model was satisfactorily developed to describe the general trends of product distribution in fluidized beds of lignocellulosic biomass pyrolysis. The model was made of mass balance based on proximate analysis and an empirical relationship with operating parameters including fluidization hydrodynamics. The empirical relationships between product yields and fluidization conditions in fluidized bed pyrolyzers were derived from the data of this study and literature. The gas and char yields showed strong functions of temperature and vapor residence time in the pyrolyzer. The yields showed a good correlation with fluidization variables related with hydrodynamics and bed mixing. The predicted product yields based on the model well accorded well with the experimental data.

  10. Pulsed atmospheric fluidized-bed combustor development. Environmental Assessment

    SciTech Connect

    Not Available

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA`s have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International`s (MTCI) Baltimore, MD facility.

  11. Physicochemical characterizations of limestone for fluidized-bed coal combustion

    SciTech Connect

    Fuller, E.L. Jr.; Yoos, T.R. III; Walia, D.S.

    1981-05-01

    This study is an investigation of the physicochemical characteristics of three limestone samples, Quincy limestone (-20 + 60), Franklin limestone (-12 + 30), and Franklin limestone (-6 + 16), currently being tested at Oak Ridge National Laboratory for use in a fluidized-bed coal combustion unit. By correlating the chemistry, mineralogy, and surface area of these samples with empirical data obtained at Argonne National Laboratory, the sulfur capture ability and performance of these limestones can be loosely predicted. X-ray fluorescence and neutron activation analysis revealed a very high calcium content and very low concentrations of other elements in the three samples. X-ray diffraction patterns and petrographic examination of the limestone grains detected essentially no dolomite in the Quincy limestone or the fine Franklin limestone samples. The coarse Franklin limestone sample showed dolomite to be present in varying amounts up to maximum of 2.75%. Limited surface chemistry investigations of the samples were undertaken. Limestone and dolostone resources of the Tennessee Valley Authority region are widespread and abundant, and judged sufficient to meet industrial demand for many years. No problems are anticipated in securing limestone or dolostone supplies for a commercial fluidized-bed combustion plant in the Tennessee Valley Authority region. Transportation facilities and costs for limestone or dolostone will influence the siting of such a commercial fluidized-bed combustion plant. The most promising location in the Tennessee Valley Authority region at this time is Paducah, Kentucky.

  12. Fluidization, combustion and emission behavior of biomass in fluidized bed combustion units

    SciTech Connect

    Kaeferstein, P.; Tepper, H.; Gohla, M.; Reimer, H.

    1997-12-31

    Gaseous components were measured over the height and the cross section inside a circulating fluidized bed riser with a thermal power of 60 kW. The combustion behavior of lignite (German brown coal), hard coal, biomass (China reed), and sewage sludge was investigated. The burn-out behavior was investigated by in-situ and real time measurement of the oxygen consumption using solid electrolyte sensor probes within a bubbling fluidized bed combustor with 15 kW thermal power. Non-uniform oxygen concentration profiles were found over the small riser cross-section which differed for the various fuels. The feed location and the fuel distribution also influences the horizontal oxygen profile. The reasons for the non-uniformity of the horizontal oxygen concentration profile are the combustion of volatile matter and the recirculation of char near the walls. A simulation model was developed to calculate the hydrodynamics and the oxygen consumption for the difference fuels inside the CFBC riser.

  13. Development of new ash cooling method for atmospheric fluidized beds

    SciTech Connect

    Li Xuantian; Luo Zhongyang; Ni Mingjiang; Cheng Leming; Gao Xiang; Fang Mengxiang; Cen Kefa

    1995-12-31

    The pollution caused by hot ash drained from the bed is another challenge to atmospheric fluidized bed combustion technology when low-rank, high ash fuels are used. A new technique is developed for ash cooling and utilization of the waste heat of ash. Results from the demonstration of an 1.5 T/H patented device have shown the potential to use this type of ash cooler for drying and secondary air preheating. Bottom ash sized in the range 0--13 mm can be cooled from 1,650 F (900 C) to tolerable temperatures for conveying machinery, and the cooled ash can be re-utilized for cement production.

  14. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L.

    1989-03-01

    The rate of loss of dust from a laboratory scale fluidized bed of Green River oil shale has been measured. The rate of loss of dust from raw shale in the bed was approximately 1%/min for the first few minutes, and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rate for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes, and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation: fracture and wear. Fracture of large particles sometimes produced fragments which were small enough to be blown out of the bed. These fragments were much larger than the individual mineral grains in the shale. The fracture mechanism was dominant in the case of raw shale. Dust in the smaller particle-size range was generated by wear. Wear was the dominant mechanisms in the case of burned shale, whereas, for retorted shale, nearly equal amounts of dust were generated by each mechanism. 13 refs., 8 figs., 6 tabs.

  15. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  16. Fluidized bed combustion apparatus and method of operating same

    SciTech Connect

    Williams, R.M.

    1987-02-03

    This patent describes a coal burning boiler having a dense bed column with a closed end and opening into a combustion chamber, and a source of coal. The improvement described here comprises: (a) coal processing mill means adapted to receive coal from the source and having a first outlet conduit connected to a the dense bed column adjacent the closed end and a second outlet conduit connected to the dense bed column spaced from the connection of the first outlet conduit to the dense bed column; (b) means supplying air into the coal processing mill means for stripping fine particulate fractions and delivering the same into the first outlet conduit for injection into the dense bed column; (c) means in the second outlet conduit connection operable to feed coarse particulate fractions into the dense bed column for supplying coarse coal fractions into the column spaced from the injection of fines into the column; and (d) air supply means connected into the dense bed column adjacent the closed end of the dense bed column for fluidizing the fine and coarse coal fractions in the dense bed column.

  17. Entrainment of Solid Particles from a Fluidized-Bed Cyclone Chamber

    NASA Astrophysics Data System (ADS)

    Pitsukha, E. A.; Teplitskii, Yu. S.; Borodulya, V. A.

    2016-09-01

    An experimental study has been made of the entrainment of crushed-corn particles of diameter d = 0.88 mm from a fluidized bed with the vortex organization of an over-bed space. The dependence of the entrainment rate on the characteristics of the fluidized bed and the cyclone chamber has been established.

  18. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  19. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  20. Fluidized-bed bioreactor process for the microbial solubilization of coal

    SciTech Connect

    Scott, C.D.; Strandberg, G.W.

    1989-07-11

    This patent describes a fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  1. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  2. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  3. Destruction of a high sulfur pitch in an industrial scale fluidized bed combustor

    SciTech Connect

    North, B.; Eleftheriades, C.; Engelbrecht, A.; Rutherford-Jones, J.

    1999-07-01

    Sasol approached the CSIR's division of Materials Science and Technology (CSIR Mattek) for an environmentally acceptable solution to their steadily increasing stockpiles of a high sulfur pitch. Conventional incineration of the pitch would result in unacceptably high levels of sulfur dioxide emission to the atmosphere. In addition to the pitch, Sasol indicated a need to dispose of a waste water stream contaminated with organic compounds. After some initial development work CSIR Mattek, in conjunction with its licensee IMS Process Plant, presented a design for a multipurpose bubbling fluidized bed incineration plant that completely destroys the pitch and effluent water while capturing a minimum of 85% of the incoming sulfur in the pitch by limestone injection. The plant design caters for the variable consistency of both the pitch and the organic waste water, which can contain from 0 to 10% organics. The design also allows for potential future treatment of contaminated soils. In addition to the environment benefit of the reduction of sulfur dioxide emissions, the plant also makes use of the hot combustion gases to raise 20 t/hr of saturated steam at 20 bar via an external waste heat boiler. This represents a valuable commodity for the business unit responsible for the waste incineration and makes the Sasol plant a more energy efficient entity. It also represents a net reduction in CO{sub 2} emissions from Sasol. The high sulfur pitch incineration plant was commissioned in Sasolburg by a team of engineers from CSIR Mattek, IMS Process Plant and Sasol during December 1996 and January/February 1997. The plant has performed extremely well and it has complied with the environmental emission requirements as set out by the Department of Environmental Affairs and Tourism.

  4. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect

    Lee, Seong W.

    1996-11-01

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  5. CFD Analysis of Bubbling Fluidized Bed Using Rice Husk

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.

    Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.

  6. Economic and environmental benefits of fluidized bed

    SciTech Connect

    Maitland, J.

    1997-12-31

    The control of sulfur dioxide and nitrogen oxides within the process design, with little need for additional environmental controls external to the boiler, is a unique feature of the fluid bed technology. CFB`s unparalleled ability to achieve low NOx emissions is possible due to its low combustion temperature and by the careful design of air admission to the combustion zones. The addition of selected sorbents to capture sulfur dioxide within the boiler results in low SOx emissions and a dry waste product for ease of disposal. This paper will focus on the design and operating performance of CFBs from the environmental viewpoint. What factors affect emissions? What options are available? Case histories will be used to illustrate the proven track record of CFB in meeting specific emissions requirements for different plant sites.

  7. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed.

    PubMed

    Ho, T C; Kobayashi, N; Lee, Y K; Lin, C J; Hopper, J R

    2002-01-01

    A process model was developed to simulate elemental mercury sorption by activated carbon in three distinct beds, namely a confined, a semi-fluidized, and a fluidized bed. The model involved the coupling of a kinetic model based on the mechanisms of surface equilibrium and external mass transfer, and a material balance model based on the tank-in-series approach. For surface equilibrium, three different equilibrium laws were used in the model, namely the Henry's Law, the Langmuir isotherm and the Freundlich isotherm. Literature mercury sorption data were used to determine the best-fit values of parameters for these equilibrium expressions. The parameter-fitted model was then used to simulate mercury sorption processes in the three distinct beds. The simulation parameters were mercury concentration, gas flow rate, adsorption temperature and the degree of semi-fluidization. The simulation results have indicated that the model is capable of describing the literature available mercury sorption data. All the three surface equilibrium laws appear to simulate the adsorption profiles equally well mainly because the sorption process occurs in an extremely low concentration range. The simulation results for the three distinct beds have suggested that the confined bed has the best mercury control performance; however, it generates the highest pressure-drop across the bed. A fluidized bed creates the least pressure drop; however, its sorption performance is poor. A semi-fluidized bed offers acceptable performance with affordable pressure-drops and can be a practical candidate for the process.

  8. Fluidized bed gasification of waste-derived fuels.

    PubMed

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-01

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  9. Fluidized bed gasification of waste-derived fuels

    SciTech Connect

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-15

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  10. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  11. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor.

    PubMed

    Duan, Feng; Chyang, Chien-Song; Zhang, Li-hui; Yin, Siang-Fong

    2015-05-01

    To investigate bed agglomeration characteristics, the combustion of pelletized rice straw was conducted in a bench-scale vortexing fluidized bed. Effects of bed temperature, superficial velocity, secondary gas velocities, and mass blended ratio of coal on the defluidization time were investigated. The alkali concentrations in different sections of the bed zone were also studied. The bed materials and agglomerates were analyzed using SEM/EDX to obtain the surface morphology and the compositions. The results revealed that the defluidization time is increased with superficial gas velocity and is decreased with bed temperature. Eutectic composition with low melting point materials promote defluidization at high temperatures. Effect of the secondary gas velocity on the defluidization time indicates different trends at different bed temperatures. The highest value of alkali concentration appears at upper bubbling zone. Coal ash can avoid the existence of a certain eutectic composition, and increases its melting point. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Thermofluid effect on energy storage in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  13. Fluidized bed and method and system for gas component capture

    DOEpatents

    Krutka, Holly; Wilson, Cody; Starns, Travis

    2016-05-31

    The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.

  14. Kinetics of potato drying using fluidized bed dryer.

    PubMed

    Bakal, Sushant Balasaheb; Sharma, Gyanendra Prasad; Sonawane, Somnath P; Verma, Radhachran C

    2012-10-01

    The effect of air temperature and two different shapes (cuboidal and cylindrical) with 3 aspect ratio of each shape on the drying kinetics of potato (Solanum tuberosum) in fluidized bed dryer was investigated. Drying was carried out at 50, 60 and 70°C at 7 m/s air velocity. Drying data were analysed to obtain effective diffusivity of moisture transfer. During drying moisture transfer from potato were described by Fick's diffusion model. Two mathematical models were fitted to experimental data. The Page model gave better fit than simple exponential model. The Arrehnious activation energy value expresses the effect of temperature on diffusivity.

  15. Manual for applying fluidized bed combustion residue to agricultural lands

    SciTech Connect

    Stout, W. L.; Hern, J. L.; Korcak, R. F.; Carlson, C. W.

    1988-08-01

    Atmospheric fluidized bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from this process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of this residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. This report contains guidelines for applying AFBC residue to agricultural lands. 2 figs., 27 refs., 2 tabs.

  16. Four Rivers second generation pressurized circulating fluidized bed combustion project

    SciTech Connect

    Holley, E.P.; Lewnard, J.J.; Wedel, G. von; Richardson, K.W.; Morehead, H.T.

    1995-12-31

    Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  17. Standby cooling system for a fluidized bed boiler

    DOEpatents

    Crispin, Larry G.; Weitzel, Paul S.

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  18. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect

    Not Available

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  19. One-dimensional model of fluidized-bed combustor dynamics

    SciTech Connect

    Perez, R.B.

    1980-01-01

    Starting from Soo's basic multiphase equations, a set of one-dimensional time-dependent hydrodynamic and enthalpy equations was developed for a fluidized bed reactor by averaging over its cross sectional area. The following effects were not considered in the derivation of the FBC equations: forces to accelerate the apparent mass of the solid particle, basset force, heat exchange by radiation between solids and fluid or within each phase, and electrodynamic effects. Within these restrictions, the material developed here forms the basis for a sequel to this report devoted to the development of stability studies and to the application of stochastic methods for FBC surveillance.

  20. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  1. Production of activated carbon from coconut shell char in a fluidized bed reactor

    SciTech Connect

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    1997-09-01

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters are identified.

  2. Excitation of oscillations in a gas-blower-fluidized-bed system

    SciTech Connect

    Tolmachev, E.M.; Mikheev, S.N.

    1986-03-01

    This study examines one more mechanism of oscillation generation in a fluidized bed; this mechanism is associated with the reciprocal effect of the fluidization regime on the operation of the gasblower. It is shown that hydraulic characteristics in a fluidized bed oscillate in a spectrum that is discrete due to the reciprocal effect of the fluidization regime on gas-blower operation. The results of comparison of the theory with the experiment are shown, from which it is evident that the difference between the experimental and theoretical frequencies of self-sustained oscillations in different beds is not greater than 20%.

  3. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    PubMed

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.

  4. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    SciTech Connect

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F.

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  5. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  6. Feasibility of recovering high valency metal cyanide complexes with a fluidized bed of resin

    SciTech Connect

    Nesbitt, A.B.; Petersen, F.W.

    1995-09-01

    A commercially available strong base ion-exchange resin IRA 958 was used to recover polyvalent metal cyanide complexes in a fluidized-bed application. A method for modeling the expansion of a fluidized bed of resin is proposed. The method takes into account the difficulties associated with the hydrodynamic characteristics of a macroporous resin of this nature.

  7. Some features of the technology for thermochemical reprocessing of coals in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2007-06-01

    Results from theoretical investigations into transfer processes during the combustion of anthracite culm in a circulating fluidized bed furnace are presented. A method is described according to which hot air is separately admitted into the furnace: the primary air, to under the fluidized-bed grate, and the secondary air, to over its upper boundary. Calculation results together with their discussion are presented.

  8. Fluidized-bed copper oxide process. Proof-of-concept unit design

    SciTech Connect

    Shah, P.P.; Takahashi, G.S.; Leshock, D.G.

    1991-10-14

    The fluidized-bed copper oxide process was developed to simultaneously remove sulfur dioxide and nitrogen oxide contaminants from the flue gas of coal-fired utility boilers. This dry and regenerable process uses a copper oxide sorbent in a fluidized-bed reactor. Contaminants are removed without generating waste material. (VC)

  9. Fluidized bed boiler at the Royal Alexandra Hospital for Children, Camperdown.

    PubMed

    Ellis, J W

    1985-03-01

    A fluidized bed boiler has been installed at the Royal Alexandra Hospital for Children, Camperdown, N.S.W. This paper describes the reasons for developing a project to demonstrate that a fluidized bed coal fire combustor can be incorporated with a modern packaged steam boiler. The boiler and combustor are of Australian design as suitable proven designs from overseas were not available.

  10. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  11. Dynamic analysis of a circulating fluidized bed riser

    SciTech Connect

    Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris

    2012-01-01

    A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

  12. Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor

    PubMed Central

    Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  13. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    SciTech Connect

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  14. Specification considerations for a circulating fluidized bed boiler

    SciTech Connect

    Liu, E.H.; Surabian, M. )

    1988-01-01

    The circulating fluidized bed (CFB) boiler is gradually gaining acceptance in both the industrial and utility sectors for electric power generation. Boiler steaming capacity in CFBs has increased to over a million pounds per hour in the most recent units. Many CFB units commisioned during the last few years worldwide have had difficult and extended start-up periods, but this experience has provided a good base of feedback for future units. There has been widespread use of the same criteria for a conventional pulverized coal or stoker boiler to specify the CFB boiler. This paper examines the unique design aspects of a CFB boiler and provides suggestions in the areas where specific requirements should be included in the specification of the boiler and its related systems. Areas examined include fuel handling area, burner systems, the combustor, cyclone and solids recirculation equipment, convention pass, the design and installation of refractories, fans and blowers, bed ash removal system, and particulate control equipment.

  15. Update of the Black Dog atmospheric fluidized bed combustion project

    SciTech Connect

    Osthus, D.; Larva, J.; Rens, D. )

    1988-01-01

    Northern States Power Co. converted its Black Dog Unit 2, a pulverized coal-fired 100 MW unit that was built in 1954, to an atmospheric fluidized bed (bubbling bed) configuration, in order to commercially demonstrate AFBC technology as a cost-effective way to reduce SO2 emissions. As part of the AFBC conversion, the unit was upgraded to 130 MW capacity. Unit 2 burns Western coal, is equipped with electrostatic precipitators, and cycles on and off line daily. The innovative nature of this project contributed to a protracted encountered. These problems are discussed. Many of the problems have been solved, and the unit is now meeting most of the goals set for the project.

  16. Cold-Flow Circulating Fluidized-Bed Identification

    SciTech Connect

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  17. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  18. Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor.

    PubMed

    Deb, B; Kumar, V; Druffel, T L; Sunkara, M K

    2009-11-18

    Functionalizing nanoparticle surfaces is essential for achieving homogeneous dispersions of monodisperse particles in polymer nanocomposites for successful utilization in engineering applications. Functionalization reduces the surface energy of the nanoparticles, thereby limiting the tendency to agglomerate. Moreover, reactive groups on the surface can also participate in the polymerization, creating covalent bonds between the inorganic and organic phases. In this paper, a fluidized bed inductively coupled plasma (FB-ICP) reactor is used to break apart the agglomerates and functionalize commercial TiO2 nanoparticle powders in a batch of several grams. The fluidized bed could be implemented into a continuous flow reactor, potentially making this a viable method to treat larger quantities of commercial powders. The particles are treated with acrylic acid (AA) and tetraethylorthosilicate (TEOS) plasma and the functionalized particles were collected separately from bulk powder. High resolution transmission electron microscopy (HRTEM) analysis showed that the particles were coated uniformly with polymer coatings with thicknesses around a few nanometers. Fourier-transformed infrared spectroscopy (FTIR) studies of the polymer-coated particles showed the presence of different functional groups (poly-acrylic acid/siloxane) similar to that present in the bulk films. The dispersion behavior of the TiO2 nanoparticles showed much improvement with reduced agglomerate size.

  19. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.

    1993-06-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc ferrite and zinc titanate sorbents to be employed for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: (1) Investigating various manufacturing methods to produce zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; (2) Characterizing and screening the formulations for chemical reactivity, attrition resistance, and structural properties; (3) Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; (4) Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; (5) 100-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; (6) Addressing various reactor design issues; (7) Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems. (8) Transferring sorbent manufacturing technology to the private sector; and (9) Producing a large batch of the sorbent to demonstrate commercial feasibility of the preparation method.

  20. Hydrodynamic model of advanced pressurized fluidized bed combustion

    SciTech Connect

    Horio, Masayuki; Lei, H.W.

    1997-12-31

    A hydrodynamic model was developed for the advanced pressurized fluidized bed combustion (A-PFBC) process. The particular system investigated here is composed of a pressurized circulating fluidized bed (PCFB) for coal gasification/desulfurization and a PCFB for combustion with the gas-solid counter-current flow through the two PCFBs. One of the most important parameters may be the material seal height (MSH) in the downcomer connecting the gasifier/desulfurizer and the combustor, which is thought to strongly influence the safe and stable operation of the process. In this mode, MSH was determined according to the pressure balance between the gasifier/desulfurizer and the combustor. The solid flux in the lower dense region of the two PCFBs was estimated by considering the clustering suspension and core-annulus flow. The mean cluster size and voidage in the cluster phase were predicted by the cluster size model of Horio-Ito (1996). Solid flux of the gasifier and combustor was calculated based on mass balances of limestone, char and ash in the system. Based on this model, the whole pressure profile loop in the system was predicted, and the effects of operating conditions on MSH between the gasifier and the combustor were investigated. The feasibility of the A-PCFB system with PCFBs both for the gasifier/desulfurizer and for the combustor was successfully confirmed.

  1. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  2. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  3. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  4. Coal and biomass co-combustion on fluidized bed: Comparison of circulating and bubbling fluidized bed technologies

    SciTech Connect

    Armesto, L.; Cabanillas, A.; Bahillo, A.; Segovia, J.J.; Escalada, R.; Martinez, J.M.; Carrasco, J.E.

    1997-12-31

    The main objective of the proposed paper is to demonstrate the technical feasibility of fluidized bed as a clean technology for the combustion of low grade coal/biomass blends. The raw materials used as fuels in the tests are different blends of the following materials: refuse coal with a heating value of 3,658 kJ/kg (LHV, db) and 79.65% ash content; low grade coal--lignite with a heating value of 19952 kJ/kg (LHV, db), a sulfur content of 10.32% (db) and 23.70% ash content; and biomass--forestry wastes from wood cleaning whose heating value is 19555 kJ/kg (LHV, db). An absorbent, limestone, has been used for reducing sulfur emissions. Co-combustion tests, at the pilot plant level, have been carried out by using two fluidized bed technologies, circulating and bubbling. The object of this paper is to study, in an energy and emission point of view, the clean and efficient use of these resources. The paper collects, analyses and compares combustion test data.

  5. An Investigation into the Fluidization and Heat Transfer of Low Density Particles in a Fluidized Bed with Applications.

    DTIC Science & Technology

    1985-05-10

    Levenspiel [3] have developed an expression for analytically predicting the minimum i fluidization velocity of a bed of uniformly sized particles.i.. *d...checking for its constancy as U0 is decreased to the point of minimum fluidization. Kunii and Levenspiel recommend using this experimental method of...Chapter 2 it was shown that Kunii and Levenspiel , using the correlation of Eq. (2.3), have analytically expressed Umf in terms of, primarily, particle

  6. Investigating membrane fouling associated with GAC fluidization on membrane with effluent from anaerobic fluidized bed bioreactor in domestic wastewater treatment.

    PubMed

    Aslam, Muhammad; Kim, Jeonghwan

    2017-08-07

    Effect of mechanical scouring driven by granular activated carbon (GAC) fluidization on membrane fouling was investigated using a laboratory-scaled, fluidized membrane reactor filtering the effluent from anaerobic fluidized bed bioreactor (AFBR) in domestic wastewater treatment. The GAC particles were fluidized by recirculating a bulk solution only through the membrane reactor to control membrane fouling. The membrane fouling was compared with two different feed solutions, effluent taken from a pilot-scaled, AFBR treating domestic wastewater and its filtrate through 0.1-μm membrane pore size. The GAC fluidization driven by bulk recirculation through the membrane reactor was very effective to reduce membrane fouling. Membrane scouring under GAC fluidization decreased reversible fouling resistance effectively. Fouling mitigation was more pronounced with bigger GAC particles than smaller ones as fluidized media. Regardless of the fluidized GAC sizes, however, there was limited effect on controlling irreversible fouling caused by colloidal materials which is smaller than 0.1 μm. In addition, the deposit of GAC particles that ranged from 180 to 500 μm in size on membrane surface was very significant and accelerated fouling rate. Biopolymers rejected by the membranes were thought to play a role as binding these small GAC particles on membrane surface strongly.

  7. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  8. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  9. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  10. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  11. Dimensional similitude and the hydrodynamics of three- phase fluidized beds

    NASA Astrophysics Data System (ADS)

    Safoniuk, Michael

    It is proposed that scaling of three-phase fluidized bed hydrodynamics can be carried out based on geometric similarity and matching of a set of five dimensionless groups: (i)the M-group, M = g.Δρ.μ L4/(ρL2.σ 3); (ii)an Eötvös number, Eo = g.Δρ.d p2/σ (iii)the liquid Reynolds number, Re L = ρL.dp.UL/μ L; (iv)a density ratio, βd = ρp/ρ L; and (v)a superficial velocity ratio, βu = U g/UL. These were varied in an experimental study where four dimensionless hydrodynamic parameters were measured: (i)gas hold-up, ɛ g; (ii)bed expansion ratio, βbe (iii)the ratio of mean bubble diameter to particle diameter, db/dp ; and (iv)the ratio of mean bubble rise velocity to gas superficial velocity, Ub/Ug. This approach was validated experimentally by matching the dimensionless operating conditions from a kerosene-nitrogen-ceramic three-phase system with those in an aqueous magnesium sulphate solution-air-aluminum particle fluidized bed. There was good agreement between the gas hold-ups and bed expansion ratios in the two systems. A pilot-plant scale cold-flow co-current upwards-flowing three-phase fluidized bed column of inside diameter 292 mm was built and operated using three different liquids (tap water, an aqueous 44 mass % glycerol solution, and an aqueous 60 mass % glycerol solution), air, and cylindrical aluminum particles of diameter 4 mm and length 10 mm. The fluids and solids were carefully selected to result in dimensionless group values in the range of those of an industrial hydroprocessor. Specially built conductivity probes and pressure transducers were used to measure the hydrodynamic properties for different gas and liquid superficial velocities. Special attention was required to provide for drift and calibration when recording and analyzing data from the conductivity probes. Gas hold-ups were in the range of 5 to 20% by volume and were correlated as a function of liquid-phase Reynolds number and superficial velocity ratio. The gas hold-ups were a

  12. Conceptual design of a fluidized bed combustor for volume reduction of waste

    SciTech Connect

    Johnson, E.K.; Morris, G.J.; Atkinson, C.M.; Clark, N.N.; Gautam, M.; Loth, J.L.; Zhang, G.Q.; Zhang, L.M.; Kono, H.O.

    1992-06-01

    A group of research engineers was assembled to investigate novel fluidized bed combustion systems for incinerating low-level radioactive wastes. The goal of this project was to significantly reduce the volume of these wastes in an efficient and environmentally safe manner. The process is to be limited by a maximum temperature of 600 {degrees}C and the waste product was to contain a minimum of waste material produced by the process itself (refractory, absorbents, catalysts, etc.). The approach presented in this study is to evaluate: (1) a modification of the existing system, (2) a hybrid reactor concept, and (3) a fast circulating reactor concept. Carbon dioxide and oxygen were to be the only gases introduced into the reactors. The results of this study indicate that the existing system may be more efficient with gas and solids recirculation; however, two beds are required. The hybrid reactor concept involves a bubbling bed and a fast bed in one reactor. Although a simple operation is envisioned for this system, there are several technical questions which must be addressed in order to optimize the system for a final analysis. The fast circulating reactor concept also appears to represent a simple system to operate; however, it also presents several technical questions which must be addressed before a thorough evaluation of this concept may be completed. In conclusion, this report represents a first evaluation of new concepts for significant volume reduction of low-level radioactive wastes. The technical issues required for a complete evaluation of these concepts are presented. A future research effort is outlined the result of which should significantly increase our knowledge of these issues.

  13. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.; Bonk, D.

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  14. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  15. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  16. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    PubMed Central

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.

    2008-01-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824

  17. Control of a fluidized bed combustor using fuzzy logic

    SciTech Connect

    Koffman, S.J.; Brown, R.C.; Fullmer, R.R.

    1996-01-01

    Fuzzy logic--an artificial intelligence technique--can be employed to exploit the wealth of information human experts have learned about complex systems while attempting to control them. This information is usually of a qualitative nature that is unusable by rigid conventional control techniques. Fuzzy logic, uses as a control method, manipulates linguistically expressed, heuristic knowledge from a human expert to derive control actions for a described system. As an alternative approach to classical controls, fuzzy logic is examined for start-up control and normal regulation of a bubbling fluidized bed combustor. To validate the fuzzy logic approach, the fuzzy controller is compared to a classical proportional and integral (PI) controller, commonly used in industrial applications, designed by Ziegler-Nichols tuning.

  18. Oxy-combustion of biomass in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika; Kijo-Kleczkowska, Agnieszka; Luckos, Adam; Wolski, Krzysztof; Musiał, Tomasz

    2016-03-01

    The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis) burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB). Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA). The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate) in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.

  19. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect

    Fan, Rong

    2006-01-01

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  20. Filling abandoned mines with fluidized bed combustion ash grout

    SciTech Connect

    Gray, D.D.; Reddy, T.P.; Black, D.C.; Ziemkiewicz, P.F.

    1998-10-01

    The hydraulic backfilling of abandoned room and pillar coal mines with ash-based grout holds promise as an environmentally beneficial method of ash disposal, capable of preventing acid mine drainage and subsidence. For this scheme to be economically viable, the grout must be sufficiently flowable so that mines can be filled from a small number of boreholes. This paper describes the development and testing of a water-ash-bentonite grout using ash from a coal and gob burning atmospheric pressure fluidized bed combustor. Bentonite was needed to prevent settling which would limit the ability of the grout to spread. Laboratory techniques were devised to measure the rheological parameters of the grout. A static model was developed to predict the maximum distance of spread due to gravity. A field injection of 765 m{sup 3} of grout into an inactive mine panel showed that the grout flows well enough to make hydraulic backfilling feasible.

  1. Pressurized fluidized-bed hydroretorting of eastern oil shales

    SciTech Connect

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1991-12-01

    The overall objective of this project is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. Accomplishments for this period for these tasks are presented.

  2. Spectral methods applied to fluidized-bed combustors

    SciTech Connect

    Brown, R.C.; Raines, T.S.; Thiede, T.D.

    1995-11-01

    The goal of this research is to characterize coals and sorbents during the normal operation of an industrial-scale circulating fluidized bed (CFB) boiler. The method determines coal or sorbent properties based on the analysis of transient CO{sub 2} or SO{sub 2} emissions from the boiler. Fourier Transform Infrared (FTIR) spectroscopy is used to qualitatively and quantitatively analyze the gaseous products of combustion. Spectral analysis applied to the transient response of CO{sub 2} and SO{sub 2} resulting from introduction of a batch of coal or limestone into the boiler yields characteristic time constants from which combustion or sorbent models are developed. The method is non-intrusive and is performed under realistic combustion conditions. Results are presented from laboratory studies and power plant monitoring.

  3. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  4. Technical evaluation: pressurized fluidized-bed combustion technology

    SciTech Connect

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  5. Modeling of devolatilization in circulating fluidized bed combustion

    SciTech Connect

    Stenseng, M.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1997-12-31

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and heat transfer on the rate of devolatilization. The results show a good agreement with literature data. The fluid dynamic model describes the main characteristics of a CFB: a dense zone in the bottom, followed by a splash zone and a dilute zone with a core-annulus structure. Each zone is modeled as a number of CSTR`s and the size and number of CSTR`s has been estimated from tracer experiments in an 80 MW{sub th} CFB boiler. It was not possible to evaluate the model against experimental data, but the dependence of particle size on the degree of devolatilization in the dense bed agrees qualitative with the expected behavior. The mode4l shows that the devolatilization mainly occurs in the dense bed.

  6. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  7. Treatment of trichloroethene (TCE) with a fluidized-bed bioreactor

    SciTech Connect

    Foeller, J.R.; Segar, R.L. Jr.

    1997-12-31

    Fluidized-bed bioreactors (FBBR`s) offer a promising alternative to existing treatment technologies for the treatment of water contaminated with chlorinated solvents. The objective of this research was to test a laboratory-scale FBBR for removal of trichloroethene (TCE) from groundwater and to study the FBBR kinetic behavior so that field-scale treatment systems could be designed. Phenol was selected as the growth substrate for biofilm-forming microorganisms enriched from activated-sludge because phenol induces enzymes capable of cometabolizing TCE and lesser chlorinated ethenes. The biofilm forming microorganisms were identified as Pseudomonas putida, a common soil bacterium. Experiments with a conventional, single-pass FBBR addressed TCE removal as effected by changes in TCE loading, phenol loading, and media type. In this study, TCE removal using quartz filter sand and garnet filter sand as the biofilm attachment media was measured. Removal ranged from 20 to 60% and was not affected by the media type. Also, removal was not affected by inlet TCE concentration over the range of 100 to 500 {micro}g/L provided the phenol loading was decreased with increasing TCE loading. The FBBR was capable of complete phenol removal at an inlet concentration of 20 to 25 mg/L and an empty-bed contact time of 2.7 minutes. However, the empty-bed contact time was insufficient to sustain greater than 40 to 50% removal of TCE in a nutrient-amended groundwater.

  8. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  9. Simulation of coal gasification in a fluidized bed

    SciTech Connect

    O`Brien, T.J.

    1996-12-31

    In this analysis of coal gasification, a fundamental approach is used where a set of multiphase (Eulerian) fluid dynamic equations, obtained either by a suitable averaging technique (Anderson and Jackson, 1976; Drew, 1971) or the formulations of continuum mechanics (Drew, 1983), is used to describe the conservation of mass, momentum, and energy for three interpenetrating phases. The particles, like the fluidizing gas, are described as interpenetrating continua. Different particle types are treated as distinct phases; in this study, the feed coal and the bed char are represented as separate phases in order to account for their different histories. Constitutive laws account for the exchange of momentum between phases (``drag``) and interphase energy transfer. The stresses within the granular phases are determined by a formulation based on the kinetic theory, characterized by a ``granular temperature``. A computer code, based on this multiphase hydrodynamic model, has been developed at the Morgantown Energy Technology Center for the detailed simulation of gas and particle dynamics in heavily loaded coal conversion processes (Syamlal, Rogers, O`Brien, 1994; Syamlal, 1995). The hydrodynamic simulation showed the reactor operated in a jetting/bubbling mode. A gas jet penetrated a considerable distance into the bed, and then detached as ``bubbles`` which rose to the top of the column. The reaction scheme indicated that the feed coal did not begin to devolatilize until it had traversed this region, because of the time required to heat up. Thus, volatiles were not released in the jetting region of the bed, but higher in the bed. The oxygen fed with the coal, however, reacted immediately with the recirculating hot char. The net effect of the char reaction scheme was to created. CO, which burned in the region where.the jet detached, creating a, fairly stable ``flame``. The tar reaction scheme indicated that none of the tar escaped the bed.

  10. Task 3.8 - pressurized fluidized-bed combustion

    SciTech Connect

    1995-03-01

    The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

  11. Hydrogen storage as hydrides in a fixed or fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Bernis, A.; Storck, A.

    The results of experimental investigations of the performances of fixed and fluidized bed reactor configurations for hydride storage are reported. Constant -20 to 50 C temperatures and 0-10 bars pressures were examined. A membrane compressor was employed to circulate the hydrogen during fluidized bed tests. Measurements were made of the quantity of hydrogen absorbed and desorbed and the reaction speeds. The quality of the FeTi hydrides used, when industrial grade, adversely affected the purity of the gas. The reactions, being exothermic during hydrogenation, indicated that heat exchangers would be required in operation configurations. The desorption evacuation in the fluidized bed was accomplished 20-30 times faster than when using the fixed bed. Storage was also faster in the fluidized bed, which moderated the hydrogenation temperature rise. The expansion of the hydrides during hydrogenation and shrinkage during evacuation will be significant factors in the design of reactor shapes and sizes.

  12. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  13. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  14. A process to produce effervescent tablets: fluidized bed dryer melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-11-01

    The purpose of the present study was to apply melt granulation in a fluidized bed dryer (fluidized bed dryer melt granulation) to manufacture one-step effervescent granules composed of anhydrous citric acid and sodium bicarbonate to make tablets. This study permitted us to establish that such process parameters as concentrations of polyethylene glycol (PEG) 6000, residence times in the fluidized bed dryer, fineness of PEG6000, fineness of initial mixture effervescent systems, and efficiency of two lubricants markedly affect some granule and tablet characteristics. It is a dry process that is simple, rapid, effective, economical, reproducible, and particularly adapted to produce effervescent granules that are easily compressed into effervescent tablets.

  15. Mathematical modeling of a fluidized bed straw gasifier. Part 2: Model sensitivity

    SciTech Connect

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F.; Al-Taweel, A.M.

    1997-12-01

    The sensitivity of the kinetic-free homogeneous equilibrium model, developed for fluidized bed gasification of cereal straw, was tested under a wide range of parameters, including equivalence ratio, bed height, fluidization velocity, solid circulation coefficient, nitrogen-oxygen ratio, and fuel distribution function. The results showed that the bed temperature was sensitive to changes in all of these parameters. The composition and the higher heating value of the produced gas were only affected by the equivalence ratio and the nitrogen-oxygen ratio. The normalized gas production was mainly affected by the equivalence ratio, fluidization velocity, and nitrogen-oxygen ratio.

  16. The impact of bed temperature on heat transfer characteristic between fluidized bed and vertical rifled tubes

    NASA Astrophysics Data System (ADS)

    Blaszczuk, Artur; Nowak, Wojciech

    2016-10-01

    In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.

  17. Phase holdups in three-phase fluidized beds in the presence of disc promoter

    SciTech Connect

    Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.; Prabhakar, G.

    2011-02-15

    Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)

  18. On line diagnostics and self-tuning method for the fluidized bed temperature controller

    NASA Astrophysics Data System (ADS)

    Porzuczek, Jan

    2016-03-01

    The paper presents the method of on-line diagnostics of the bed temperature controller for the fluidized bed boiler. Proposed solution is based on the methods of statistical process control. Detected decrease of the bed temperature control quality is used to activate the controller self-tuning procedure. The algorithm that provides optimal tuning of the bed temperature controller is also proposed. The results of experimental verification of the presented method is attached. Experimental studies were carried out using the 2 MW bubbling fluidized bed boiler.

  19. Biomass drying in a pulsed fluidized bed without inert bed particles

    SciTech Connect

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab; Tsutsumi, Atsushi

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperature and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.

  20. Biomass drying in a pulsed fluidized bed without inert bed particles

    SciTech Connect

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab; Tsutsumi, Atsushi

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperature and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.

  1. Heat transfer to small horizontal cylinders immersed in a fluidized bed

    SciTech Connect

    Friedman, J.; Koundakjian, P.; Naylor, D.; Rosero, D.

    2006-10-15

    Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolate down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.

  2. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  3. Experimental study of large-scale pulsations of a fluidized bed

    SciTech Connect

    Glinskii, V.A.; Protod'yakonov, I.O.; Chesnokov, Yu.G.

    1980-01-01

    In experimental investigations of the hydrodynamics of fluidized beds, study of large- and small-scale pulsations of the most important characteristics of the fluidized bed: voidage, hydraulic resistance, velocities of the gaseous and solid phases, etc., is of considerable interest. The character of these pulsations is determined by the heterogeneity of the structure of the fluidized bed, due to the presence of channels, bubbles, stagnant zones, and circulation currents. The object of the present work was experimental study of fluctuations of the height h of the surface of a fluidized bed, with simultaneous recording of the corresponding fluctuations of the hydraulic resistance ..delta..P of the bed. The existence of a direct connection between large-scale pulsations of the hydraulic resistance ..delta..P of the fluidized bed and large-scale pulsations of the bed height h is demonstrated in the paper. It is proved on this basis that large-scale pulsations of h and ..delta..P can be described by equations of the same type. The coefficients of the equation are determined from experimental data on pulsations, and its solutions for different fluidization regimes are analyzed.

  4. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  5. Characterization of very dense mineral oxide-gel composites for fluidized-bed adsorption of biomolecules.

    PubMed

    Voute, N; Bataille, D; Girot, P; Boschetti, E

    1999-01-01

    Efficient design of fluidized-bed biomolecule adsorption from crude feed stock requires particles with elevated density, large adsorption capacity and broad chemical stability. Moreover, combinations of small particle diameters with high densities allow for high fluidization velocities while preserving a rapid mass transfer. This approach has been implemented by combining stable porous mineral oxide of high density (2.2, 4.7, 5.7, 9.4 g/ml) with functionalized hydrogels. The cross-linked hydrogel derivative fills the internal porosity of the beads and provides a high equilibrium binding capacity. Various porous mineral oxides (silica, titania, zirconia and hafnia) have been characterized in term of fluidization behavior, surface reactivity and chemical resistance to harsh CIP procedures. Porous zirconia particles were also modified into ion-exchangers by suitable surface modification and intraparticle polymerization of functionalized stable derivatives of acrylic monomers. Back-mixings in fluidized bed columns were analyzed by residence time distribution analysis of inert tracers. 328 and 218 mixing plates per meter were found for respectively, bed expansions of 1.7 and 2.9. The dynamic protein adsorption behaviors of zirconia-based polymeric anion-exchange sorbents were obtained in fluidized-bed, using BSA as model protein. A dynamic binding capacity of 62 mg/ml was observed at a fluidizing velocity of 320 cm/h. These investigations substantiate the favorable physical and chemical characteristics anticipated for dense composite beads for use as fluidized bed adsorbents.

  6. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    PubMed

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  7. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  8. Feasibility study on pliant media drying using fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Zakaria, J. H.; Zaid, M. H. H. M.; Batcha, M. F. M.; Asmuin, N.

    2015-09-01

    The usage of pliant media for blasting in surface preparation has gained substantial interest in various industries, particularly oil and gas. Being a clean technology, this relatively new method of surface preparation has become an alternative to conventional abrasive blasting technique which lowers fugitive emissions from blasting process and hence lowering risk to workers in the industry. Despite proven to be effective and cost efficient, the usage of pliant media in tropical climate poses a new challenge due to the torrential rain in the monsoon season. During rainy and wet conditions, the pliant media was literally soaked and the recovery rate of the pliant media for a continuous blasting becomes retarded. A viable technique for drying of this pliant media has then become imperative. The present study proposes to dry water laden pliant media in a Swirling Fluidized Bed Dryer (SFBD). In this preliminary study, three bed loadings of 1.7, 2.0 and 2.3 kg of pliant media was dried in the SfBd at 80°C, 90°C and 100°C. The experimental works revealed that the SFBD has shown excellent potential to dry the pliant media with a relatively short drying time. The behaviour of moisture ratio and drying rate against time are discussed. The findings conclude that the SFBD is a feasible technique for wet pliant media drying and can be extended for continuous processing system.

  9. Electric utility second-generation pressurized fluidized bed combustion plants

    SciTech Connect

    Robertson, A. ); Bonk, D. )

    1992-01-01

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

  10. Evaluation of waste pyrolysis characteristics in a pressurized fluidized bed reactor.

    PubMed

    Ono, A; Kurita, M; Nagashima, T; Horio, M

    2001-01-01

    To obtain the distribution of fuel components to gas, tar and char in a pressurized fluidized bed waste pyrolyzer, experiments were conducted with a laboratory scale fluidized bed reactor. Waste samples were fed batchwise from the top of the reactor into the fluidized bed of silica sand and pyrolyzed by nitrogen/nitrogen-O2 gas and the effects of pressure, particle size, heating rate and oxygen addition were investigated. In the case of rubber, the char yield tended to increase a little and the tar yield decrease over the pressure of 304-709 kPa. In comparison with the thermogravimetry data it was clearly demonstrated that the char yield from fluidized bed pyrolysis is much lower. A small amount of oxygen addition decreased both tar and char yields but its further increase did not affect them very much.

  11. Method and apparatus for improving heat transfer in a fluidized bed

    DOEpatents

    Lessor, Delbert L.; Robertus, Robert J.

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  12. Fluidized-bed combustion technology overview. Final report Dec 79-Dec 80

    SciTech Connect

    Dowdy, T.E.; Klett, M.G.; Rubow, L.N.; Seth, R.G.; Milliken, J.O.

    1981-04-01

    The report reviews fluidized-bed combustion (FBC) technology development through 1979, specifying the work of governmental agencies and individual investigators, highlighting key technical issues, and documenting the current degree of FBC commercialization.

  13. Numerical model for the motion of large object in fluidized bed

    NASA Astrophysics Data System (ADS)

    Tsuji, Takuya; Higashida, Kyohei; Tanaka, Toshitsugu; Osaka University Team

    2011-11-01

    The motion of large object in fluidized beds is quite complex because it is influenced by the fluid force, buoyant force in addition to the contact force from emulsion particles, other immersed objects and walls. Its behavior is expected to change depending on its shape, density and size along with the condition of fluidized bed. It is a physically interesting problem and it also has a practical importance in several engineering applications such as gasification, mixing, separation and granulation. In the present study, a numerical model which predicts the motion of large object in fluidized bed is developed. We concentrate on objects larger than surrounding emulsion particles by one order of magnitude at least. The basic concept of a proposed numerical model is presented and its performance is tested for fundamental problems such as sedimentation of single spherical object in a bubbling fluidized bed.

  14. Characterization of biofilm in 200W fluidized bed reactors

    SciTech Connect

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee E. R.; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  15. Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices

    NASA Astrophysics Data System (ADS)

    Parlak, Nezaket

    2015-08-01

    In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.

  16. Rivesville multicell fluidized-bed boiler. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Not Available

    1980-01-01

    The objective of this program is to design, construct and test a multicell fluidized-bed boiler as a pollution-free method of burning high-sulfur or highly corrosive coals without excessive maintenance problems. The fluidized-bed boiler will provide approximately 300,000 pounds of steam per hour. Steam pressure and temperature conditions were selected to meet requirements of the site at which the boiler was installed.

  17. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  18. Parametric performance studies on fluidized-bed heat exchangers. Task 1: Fouling characteristics

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-09-01

    Analyses and experiments are being performed to investigate the heat transfer performance of single and multistage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests were conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry out, heat transfer equal to that obtained prior to condensation was again obtained.

  19. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  20. Effect of vibration on the stability of a gas-fluidized bed of fine powder.

    PubMed

    Valverde, J M; Castellanos, A; Quintanilla, M A

    2001-08-01

    We have investigated the effect of vibrations on the stability of gas-fluidized beds of fine powders (particle size approximately 10 microm). The powder is uniformly fluidized by an adjustable gas flow that enables us to control the average solid volume fraction straight phi(0). The fluidized bed is then subjected to a vertical oscillatory motion of controlled amplitude and frequency. The response of the fluidized bed depends essentially on the value of straight phi(0). For straight phi(0)>0.28 the fluidized bed is in a weak solidlike regime, it has a mechanical strength, and particles are static. In this regime vibration causes compaction of the loosely packed bed. For straight phi(0)<0.28 the mechanical strength vanishes and stresses are carried by interstitial gas and collisions. In this fluidlike regime the fluidized bed displays a diffusive dynamics and particles aggregate due to the strong interparticle van der Waals forces. When vibration is applied the powder expands due to the partial disruption of aggregates. However at a critical value of the vibration amplitude A=A(c) either surface (sloshing) or flow (bubbling) instabilities develop. The nucleation of gas bubbles has been correlated to the saturation in particle diffusivity measured elsewhere. The size of the bubbles increases as A is further increased above A(c) and as the vibration frequency is reduced. Moreover, as it should be expected from the predictions of hydrodynamic models, A(c) is independent of cohesivity for particles of the same size and density.

  1. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983

    SciTech Connect

    Cole, W.E.; DeSaro, R.; Joshi, C.

    1983-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  2. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    SciTech Connect

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  3. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  4. Integrated Use of Fluidized Bed Technology for Oil Production from Oil Shale

    NASA Astrophysics Data System (ADS)

    Siirde, Andres; Martins, Ants

    The plant unit which consists of a fluidized bed retort and CFB furnace for burning the by-products of retorting (semicoke and semicoke gas) is presented in this paper. The oil shale retort consists of a fast fluidized bed shaft, coarse semicoke bit, semicoke separation chamber and cyclone for the separation of fine semicoke particles. The crashed oil shale and hot ash from the CFB ash separator are fed concurrently into the fast fluidized bed shaft. For fluidizing the mixture of oil shale and hot ash particles, the recycle semicoke gas is used. The pyrolysis of oil shale begins in fluidized bed and is completed in the semicoke separation chamber. The coarse semicoke particles are separated from fluidized bed directly while the medium size particles are separated from the gases in the semicoke separation chamber and the finest semicoke particles in the cyclone. All the fractions of semicoke from the fluidized bed retort and semicoke gas from the oil fractionator are burnt in the CFB furnace. The semicoke ash is separated from flue gases in the CFB ash separator. A part of separated hot ash is fed into the fluidized bed retort as a solid heat carrier material and the rest into the furnace through the ash cooler or separated from the process. The retention of sulphur dioxide formed during the semicoke and semicoke gas combustion, is guaranteed for about 99 % due to the high CaO content in the semicoke ash and convenient temperature (about 850°C) in the CFB furnace. The described plant unit is useful for retorting oil shale and other solid hydrocarbon-containing fuels. The advantages of the present retorting process and system are: improved oil yield, greater throughput, lower retorting time, avoidance of moving parts in the retorting zones, reduced downtime, etc. A new plant unit for oil shale oil production has been elaborated and defended by the Estonian Utility Model EE 200700671 UI.

  5. Experiment and grey relational analysis of CWS spheres combustion in a fluidized bed

    SciTech Connect

    Hui Wang; Xiumin Jiang; Jianguo Liu; Weigang Lin

    2007-08-15

    In order to study the combustion of coal water slurry (CWS) in fluidized bed boilers, artificial CWS droplet spheres were used for simulation of the spheres formed from CWS droplets which fall from the furnace top to the bed. The artificial spheres were introduced to a bench-scale fluidized bed furnace. Quartz sand was used as the bed material. The influence of the operation conditions (e.g., bed temperature, superficial gas velocity, and bed height) on the combustion characteristics was investigated. The bed temperatures were varied at 650, 750, 850, and 950{sup o}C. The gas velocities were in a range of fluidization numbers W (defined as U/U{sub mf}) of 3, 3.5, 4, and 4.5. The bed heights were varied 30, 50, 70, and 90 mm. The CWS spheres were taken out at five residence times (15, 30, 45, 60, and 75 s). The mass ratio of the residue fixed carbon to parent fixed carbon was calculated for studying the influential factors. Under the reference conditions, it is shown that the burnout time is less than 150 s. The grey relational analysis was used to study the degree of relative importance of the influential factors. The results showed that the influence of the bed height is the least, the fluidization number has the greatest influence in the early and later stages, and the bed temperature contributes most in the intermediate stages. 16 refs., 16 figs., 6 tabs.

  6. Optimization of Solid Circulation Rate in Compartmented Fluidized Bed Gasifier for Power Generation

    NASA Astrophysics Data System (ADS)

    Chok, V. S.; Wee, S. K.; Ariffin, M. Z. Mohd.; Gorin, A.; Chua, H. B.; Yan, H. M.

    2008-10-01

    The present paper reports the optimization of solid circulation rate (SCR) in Compartmented Fluidized Bed Gasifier (CFBG), an indirectly heated fluidized bed that incorporates two sets of v-valves and risers to control the solid circulation across the two compartments, i.e. combustor and gasifier of a pilot plant scale (the height and ID are 1.8m and 0.66m respectively). Sand was used as inert fluidized by air. Four operating variables were studied i.e. bed height, riser, v-valve and main bed flowrate. Based on 24 full factorial design of experiment in Yates' algorithm, at confidence level ⩾95%, ANOVA analysis has revealed six important effects. The steepest ascent method was applied on linear regression generated from these effects to design the subsequent optimization experiments. The optimum values of SCR have been estimated for both low and high bed level at specific operating parameters.

  7. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  8. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    PubMed

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  9. Inductive classification of operating data from a fluidized bed calciner

    SciTech Connect

    O'Brien, B.H.; Newby, B.J.

    1991-05-24

    A process flowsheet expert system for a fluidized bed calciner which solidifies high-level radioactive liquid waste was developed from pilot-plant data using a commercial inductive classification program. After initial classification of the data, the resulting rules were inspected and adjusted to match existing knowledge of process chemistry. The final expert system predicts performance of process flowsheets based upon the chemical composition of the calciner feed and has been successfully used to identify potential operational problems prior to calciner pilot-plant testing of new flowsheets and to provide starting parameters for pilot-plant tests. By using inductive classification techniques to develop the initial rules from the calciner pilot-plant data and using existing process knowledge to verify the accuracy of these rules, an effective expert system was developed with a minimum amount of effort. This method may be applied for developing expert systems for other processes where numerous operating data are available and only general process chemistry effects are known.

  10. Inductive classification of operating data from a fluidized bed calciner

    SciTech Connect

    O`Brien, B H

    1990-05-30

    A process flowsheet expert system for a fluidized bed calciner which solidifies high-level radioactive liquid waste was developed from pilot-plant data using a commercial, inductive classification program. After initial classification of the data, the resulting rules were inspected and adjusted to match existing knowledge of process chemistry. The final expert system predicts performance of process flowsheets based upon the chemical composition of the calciner feed and has been successfully used to identify potential operational problems prior to calciner pilot-plant testing of new flowsheets and to provide starting parameters for pilot-plant tests. By using inductive classification techniques to develop the initial rules from the calciner pilot-plant data and using existing process knowledge to verify the accuracy of these rules, an effective expert system was developed with a minimum amount of effort. This method may be applied for developing expert systems for other processes where numerous operating data are available and only general process chemistry effects are known.

  11. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    SciTech Connect

    Mazac, V.; Novacek, A.; Volny, J.

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  12. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  13. Circulating fluidized-bed boiler makes inroads for waste recycling

    SciTech Connect

    1995-09-01

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

  14. Treating exhaust gas from a pressurized fluidized bed reaction system

    SciTech Connect

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  15. Commercialization potential of AFBC (atmospheric fluidized bed combustion) concrete

    SciTech Connect

    Berry, E.E.; Hemmings, R.T.; Cornelius, B.J. )

    1991-01-01

    A study has been conducted of the mechanistic basis for cementing action, strength development and stability of no-cement'' concretes containing, as binders, only fluidized bed combustion (FBC) by-products and pulverized fuel ash (PFA) with no Portland cement. The FBC and PFA raw materials were selected to cover a wide range of potential compositions. The main reactive phases in the binders are calcium oxide/hydroxide, anhydrite and dehydroxylated clays from the FBC residues; and aluminosilicate glass from the PFA. The proportions of the reactive calcium phases to coal-associated mineral phases ranged from 2:1 to 1:5 for the different FBC sources. Possible applications for the binder include high volume applications -- such as production of blocks for undersea reef construction and underground mine support, mine backfill, soil cement, expansive grout, and waste stabilization in co-disposal with other waste forms -- where slow setting and expansion may not be a problem. 119 refs., 38 figs., 15 tabs.

  16. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  17. Product quality multi-objective optimization of fluidized bed dryers

    SciTech Connect

    Krokida, M.K.; Kiranoudis, C.T.

    2000-01-01

    Design of fluidized bed dryers constitutes a mathematical programming problem involving the evaluation of appropriate structural and operational process variables so that total annual plant cost involved is optimized. The increasing need for dehydrated products of the highest quality, imposes the development of new criteria that, together with cost, determine the design rules for drying processes. Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color. Color is determined as a three-parameter resultant, whose values for products undergone drying should deviate from the corresponding ones of natural products, as little as possible. In this case, product quality dryer design is a complex multi-objective optimization problem, involving the color deviation vector as an objective function and as constraints the ones deriving from the process mathematical model. The mathematical model of the dryer was developed and the fundamental color deterioration laws were determined for the drying process. Non-preference multi-criteria optimization methods were used and the Pareto-optimal set of efficient solutions was evaluated. An example covering the drying of sliced potato was included to demonstrate the performance of the design procedure, as well as the effectiveness of the proposed approach.

  18. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  19. Characterization of fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Daw, C.S. ); Rowley, D.R.; Perna, M.A. . Research Center); Stallings, J.W. ); Divilio, R.J. )

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  20. Sulfidogenic fluidized bed treatment of real acid mine drainage water.

    PubMed

    Sahinkaya, Erkan; Gunes, Fatih M; Ucar, Deniz; Kaksonen, Anna H

    2011-01-01

    The treatment of real acid mine drainage water (pH 2.7-4.3) containing sulfate (1.5-3.34 g/L) and various metals was studied in an ethanol-fed sulfate-reducing fluidized bed reactor at 35°C. The robustness of the process was tested by increasing stepwise sulfate, ethanol and metal loading rates and decreasing feed pH and hydraulic retention time. Highest sulfate reduction rate (4.6g/L day) was obtained with feed sulfate concentration of 2.5 g/L, COD/sulfate ratio of 0.85 and HRT of 12 h. The corresponding sulfate and COD removal efficiencies were about 90% and 80%, respectively. The alkalinity produced in sulfidogenic ethanol oxidation neutralized the acidic mine water. Highest metal precipitation efficiencies were observed at HRT of 24 h, the percent metal removal being over 99.9% for Al (initial concentration 55 mg/L), Co (9.0 mg/L), Cu (49 mg/L), Fe (435 mg/L), Ni (3.8 mg/L), Pb (7.5 mg/L) and Zn (6.6 mg/L), and 94% for Mn (7.21 mg/L). Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-09-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following active tasks: Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 6. environmental data and mitigation analyses; Task 8. project management and reporting; and Task 9. information required for the National Environmental Policy Act. In order to accomplish all of the program objectives, the Institute of Gas Technology (IGT), the prime contractor, is working with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed during the program quarter from June 1, 1992 through August 31, 1992.

  2. Effectiveness of fluidized pellet bed for removing soluble contaminants.

    PubMed

    Wang, Xiaochang; Li, Zhihua; Wang, Zhen; Li, Jinrong; Li, Jiayu; Chen, Rong

    2009-01-01

    Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PACl) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), total phosphorus (TP), and NH4+ -N were found to be only 2.2%-7.5%, 5.7%-25.5%, and 9.9%-18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (1) coagulated-and-settleable, (2) coagulated-but-nonsettleable, and (3) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation.

  3. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  4. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  5. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  6. Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review

    NASA Astrophysics Data System (ADS)

    Sun, Jingyuan; Yan, Yong

    2016-11-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.

  7. Fluidized-bed testing of Z-SORB III sorbent

    SciTech Connect

    Gupta, R. P.; Gangwal, S. K.; Khare, G. P.

    1994-08-01

    Phillips Petroleum Company (PPCo) successfully developed a fluidizable version of their proprietary Z-SORB sorbent. Z-SORB sorbent is a ZnO-based regenerable sorbent for removing hydrogen sulfide (H{sub 2}S) and carbonyl sulfide (COS). RTI conducted a life-cycle test on this sorbent in the high-temperature, high-pressure (HTHP) semi-batch fluidized-bed reactor. This test consisted of 50 cycles of sulfidation and regeneration to demonstrate the long-term chemical reactivity and mechanical strength of the Z-SORB sorbent. A simulated air-blown gasifier coal gas was used at 20 atm and 538 {degree}C (1,000{degree}F). The Z-SORB sorbent exhibited excellent sulfur removal capability; the prebreakthrough H{sub 2}S levels were below the detection limit of the analyzer (<10 ppmv). The sulfur capacity of the sorbent at breakthrough (500 ppM H{sub 2}S in reactor exit gas) was 20.2 g S/100 g sorbent in Cycle 1 and was 10 g S/100 g sorbent in Cycle 50. The sorbent loss from the reactor due to fines generation was small. While no significant change in particle size was observed, the bulk density increased by 8 percent over 51 cycles. The attrition resistance of the sorbent after the 51 cycles was slightly lower than the fresh material. The thermogravimetric analyzer (TGA) tests on fresh and reacted sorbents confirmed the sulfur capacity decline in the bench tests; however, the TGA data indicated no change in the H{sub 2}S absorption rate between the fresh and reacted sorbents. The regeneration of the sulfided sorbent was successfully carried out using 2 to 2.5 percent 0{sub 2} in N{sub 2} at a temperature of 649 to 704{degree}C (1,200 to 1,300{degree}F) with no evidence of sulfate formation. Overall, the sorbent exhibited good performance.

  8. [Configuration of pyrolytic chars from waste tires in fluidized bed reactor].

    PubMed

    Jin, Yu-qi; Yan, Jian-hua; Gu, Jie-yuan; Cen, Ke-fa

    2004-11-01

    With the fluidized bed as main reactor, the configuration of chars of waste tire was investigated. The change of specific surface area, porosity and specific pore volume of chars received at various temperature, diameter of bed materials and superficial fluidization number was mainly researched. The specific surface area and porosity of chars had the peak value at 650 degrees C or 750 degrees C, which showed there exists the best pyrolysis temperature from the angle of char quality and it will decrease with smaller diameter of bed materials, 0.135-0.304mm. The porosity of chars decreases with the fluidization number increasing. The change tendency of the specific surface area of chars with the fluidization number is correlated with the pyrolysis temperature. At 550 degrees C the specific surface area of chars decreases with the fluidization number increasing, while at 650 degrees C the other way round. The change tendency of the specific pore volume of chars with the temperature is correlated with the diameter of bed materials. With larger bed materials (0.304-0.4mm), the specific pore volume of chars rises at fisrt, then decreases with the temperature increasing, and with smaller bed materials, it decreases with the temperature increasing.

  9. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2002-03-29

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  10. Effects of using two- versus three-dimensional computational modeling of fluidized beds Part I, hydrodynamics

    SciTech Connect

    Xie, Nan; Battaglia, Francine; Pannala, Sreekanth

    2008-01-01

    Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.

  11. A novel fluidized bed respirometric technique for determination of in situ biofilm kinetics.

    PubMed

    Chowdhury, Nabin; Nakhla, George; Zhu, Jesse

    2012-01-01

    A respirometric approach has been developed to determine heterotrophic biofilm kinetics using fluidized bioparticles--particles with attached biomass. Lava rock particles of 600 microm were used as a biomass carrier medium. The modified respirometer successfully estimates in situ biofilm kinetics of the bioparticles collected from a pilot-scale liquid-solid circulating fluidized bed (LSCFB) bioreactor. The observed maximum specific growth rates (micro(max)) of 3.69 +/- 0.44 d(-1) and biomass yields (Y(H)) of 0.36 +/- 0.03 g COD/g COD in the fluidized bed respirometers were significantly different from the micro(max) of 5.57-5.72 d(-1) and Y(H) of 0.54-0.59 g COD/g COD observed in the conventional respirometric tests for bioparticles and detached biomass. The higher Monod half-saturation coefficient (K(S)) of 186-219mg COD/L observed in the fluidized bed respirometers relative to the 49-58 mg COD/L in the conventional respirometers reveals the presence of mass transfer resistance in the LSCFB despite fluidization. Significantly reduced yields in the fluidized bed respirometers and the estimated maintenance coefficient of 1.16 d(-1) for the particulate biofilm in the LSCFB clearly emphasize that a substantial amount of substrate was utilized for cell maintenance at the low food to microorganism (S/X) ratio of 0.5 g COD/g VSS.

  12. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  13. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  14. Characterization of alkali and sulfur sorbents for pressurized fluidized-bed combustion

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Yagla, S.L.

    1995-12-31

    Pressurized fluidized-bed combustion as applied to combined-cycle power generation has many advantages. Most important are high efficiency, fuel flexibility, and superior emissions control. The University of North Dakota Energy and Environmental Research Center is currently involved in a project to study further improvement of emissions control. The focus of this work has been utilizing in-bed sorbents for capture of sulfur and alkali. Results from the first series of tests utilizing kaolin for capturing alkali are reported, as are results from research to determine sulfur sorbent performance characteristics and to develop predictive techniques of sorbent classification in a pressurized fluidized-bed reactor.

  15. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  16. Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, L.; Soler, J.; Herguido, J.; Menéndez, M.

    2013-12-01

    The Two Zone Fluidized Bed Reactor concept is proposed for hydrogen production via the steam reforming of methane (SRM) including integrated catalyst regeneration. In order to study the effect of the contact mode, the oxidative SRM has been carried out over a Ni/Al2O3 catalyst using a fixed bed reactor (fBR), a conventional fluidized-bed reactor (FBR) and the proposed two-zone fluidized bed reactor (TZFBR). The technical feasibility of these reactors has been studied experimentally, investigating their performance (CH4 conversion, CO and H2 selectivity, and H2 global yield) and stability under different operating conditions. Coke generation in the process has been verified by several techniques. A stable performance was obtained in the TZFBR, where coke formation was counteracted with continuous catalyst regeneration. The viability of the TZFBR for carrying out this process with a valuable global yield to hydrogen is demonstrated.

  17. Cultivation of microorganisms in an air-solid fluidized bed fermentor with agitators

    SciTech Connect

    Tanaka, M.; Kawaide, A.; Matsuno, R.

    1986-09-01

    The productivity of a cell mass of Saccharomyces cerevisiae and enzymes of Eupenicillium javanicum increased by cultivation in an air-solid fluidized bed fermentor with agitators. The usefulness of the apparatus for the fluidized bed culture was verified. The productivity of amylase and protease of the fungus by fluidized bed culture was twice as high as that by stationary culture, considering the dry weight of cells and the enzyme activity. Physiological properties of yeast cells were changed by the fludized bed culture; there was a decrease in the cell size of yeast and changes to the aerobic properties of the yeast cells resulting from excessive supply of oxygen with a high flowrate of air. 8 references.

  18. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  19. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  20. A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Li, Yourong

    2000-12-01

    A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing status of the bed material in a bubbling bed, which was run with a circulating fluidized bed together in parallel operation, was influenced by the pressure difference between the CFB and the bubbling bed, the switch status of unlocking air, and the structure of the exit of the bubbling bed. There was a circulating flow of bed material between CFB and bubbling bed.

  1. Characterization of solids mixing in a laboratory-scale fluidized bed: Final report

    SciTech Connect

    Macek, A.; Amin, N.D.

    1986-12-01

    The objective of the present study was the demonstration of the capability of a novel optical measurement technique to characterize the mixing of solids in a laboratory-scale fluidized bed at fluidized-bed combustion temperatures. This report contains: (1) description of the measurement technique; (2) results of minimum fluidization velocity measurements as functions of temperature and particle size; (3) experimental mixing results in terms of two parameters defined for the purpose of solids mixing characterization; and (4) comparison of experimental data with the results obtained from a simple one-dimensional dispersion model. The technical basis for the experimental study was the recent development of an optical diagnostic technique which allows one to distinguish a burning particle from inert particles at an arbitrarily chosen location in the interior of a high-temperature fluidized bed. In the present application of this technique, continuous radiometric records were obtained simultaneously from optical probes placed at two locations in a fluidized bed, 15 cm in diameter. The basic concept was a correlation of arrival times and frequencies, registered by the probes, of fuel particles, injected at various distances from the probes. A general conclusion from both the experimental and modelling results is that at fluidization velocities exceeding about 2.3 U/sub mf/ the fuel and the inert bed particles are well mixed. It is also concluded that the solids dispersion coefficients for larger fluidized bed combustors should be as high as, or higher than, those reported in the present study. 24 refs., 6 figs., 10 tabs.

  2. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  3. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. ); Schultz, C.W. ); Parekh, B.K. ); Misra, M. ); Bonner, W.P. )

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  4. Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept

    SciTech Connect

    Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; Gubynskyi, Mykhailo V.; Barsukov, Michelle G.; Wells, Brain S.; Livitan, Mykola V.; Gogotsi, Oleksiy G.

    2015-12-08

    This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course of graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.

  5. Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept

    DOE PAGES

    Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...

    2015-12-08

    This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less

  6. The influence of complex biological feedstock on the fluidization and bed stability in expanded bed adsorption

    PubMed

    Fernandez-Lahore; Kleef; Kula; Thommes

    1999-08-20

    The stability of expanded bed adsorption systems (EBA) was studied in biomass containing culture broth by residence time distribution (RTD) experiments, using pulse inputs of fluorescent molecules as tracers. Different commercial adsorbents (Streamline DEAE, SP, Phenyl, Chelating, and AC) were tested at various biomass concentrations (2.5-12 %, wet weight) of whole (Saccharomyces cerevisiae) yeast, yeast cell homogenate, and Escherichia coli homogenate. Analyzing the RTD according to the PDE model (PDE: axially dispersed plug-flow exchanging mass with stagnant zones) allowed the calculation of three parameters: the number of transfer units for mass exchange between mobile and stagnant fraction (N), the Peclet number for overall axial dispersion (P), and the mobile fraction of the liquid in axially dispersed plug flow (varphi). When fluidization was performed in particle-free buffer the normalized response signal (after perfect input pulse) was symmetric (N:0; P: 50-100; varphi: 1), thus, demonstrating the formation of a homogeneous fluidized (expanded) bed. Upon application of suspended biomass the RTD was skewed, depending on the adsorbent used and the type and level of biomass present in the sample. This situation leads to three different characteristic pictures: the well-fluidized system (N: >/= 7-10; P: >/= 40; varphi: 0.80-0.90), the system exhibiting bottom channeling (N: < 1-2; P: >/= 40; varphi: 0.5-0.7) and, the system where extensive agglomeration develops (N: 4-7; P: 20-40; varphi: < 0.5). These results demonstrate that changes in the hydrodynamics of EBA already take place in the presence of moderate concentrations of biomass. Furthermore, those changes can be quantitatively described mainly in terms of the fraction of stagnant zones in the system, which are formed due to the interaction of biomass and adsorbent. The technique described here can be used to evaluate a certain combination of adsorbent and biomass with regard to its suitability for

  7. Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  8. Biomass drying in a pulsed fluidized bed without inert bed particles

    DOE PAGES

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less

  9. Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass.

    PubMed

    Weerachanchai, Piyarat; Horio, Masayuki; Tangsathitkulchai, Chaiyot

    2009-02-01

    The effect of steam gasification conditions on products properties was investigated in a bubbling fluidized bed reactor, using larch wood as the starting material. For bed material effect, calcined limestone and calcined waste concrete gave high content of H(2) and CO(2), while silica sand provided the high content of CO. At 650 degrees C, calcined limestone proved to be most effective for tar adsorption and showed high ability to adsorb CO(2) in bed. At 750 degrees C it could not capture CO(2) but still gave the highest cold gas efficiency (% LHV) of 79.61%. Steam gasification gave higher amount of gas product and higher H(2)/CO ratio than those obtained with N(2) pyrolysis. The combined use of calcined limestone and calcined waste concrete with equal proportion contributed relatively the same gas composition, gas yield and cold gas efficiency as those of calcined limestone, but showed less attrition, sintering, and agglomeration propensities similar to the use of calcined waste concrete alone.

  10. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    NASA Astrophysics Data System (ADS)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  11. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  12. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  13. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  14. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    SciTech Connect

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  15. Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979

    SciTech Connect

    Not Available

    1980-08-01

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  16. Nucleation and growth kinetics of struvite in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. Iqbal H.; Mavinic, D. S.; Beckie, R. D.

    2008-03-01

    Kinetics of struvite crystallization were studied to gain a better understanding of intentional struvite formation in fluidized bed reactors. Mechanisms controlling nucleation were studied in the laboratory by induction time experiments. pH monitoring proved to be an effective method of induction time determination, during the induction period. The induction period, when nucleation was the controlling process for struvite crystal formation, was found to be primarily reaction controlled, with minor transport influence. The metastable region for struvite was explored in this study. The solubility and supersolubility curves, which are the boundaries of the metastable region, were observed to be almost parallel straight lines in the concentration range studied. The growth rate of struvite determined in a fluidized bed reactor was mainly transport controlled. With the determination of the mass-transfer coefficient and surface-reaction coefficient for a specified condition, a two-step linear growth rate model for struvite growth determination in a fluidized bed reactor has been proposed.

  17. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  18. Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study

    SciTech Connect

    Jack A. Fuller; Harvie Beavers; Robert Bessette

    2006-06-15

    The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

  19. Development of a bioreactor based on magnetically stabilized fluidized bed for bioartificial liver.

    PubMed

    Deng, Fei; Chen, Li; Zhang, Ying; Zhao, Shan; Wang, Yu; Li, Na; Li, Shen; Guo, Xin; Ma, Xiaojun

    2015-12-01

    Bioartificial liver (BAL) based on microcapsules has been proposed as a potential treatment for acute liver failure. The bioreactors used in such BAL are usually expected to achieve sufficient flow rate and minimized void volume for effective application. Due to the superiorities in bed pressure drop and operation velocity, magnetically stabilized fluidized beds (MSFBs) show the potential to serve as ideal microcapsule-based bioreactors. In the present study, we attempted to develop a microcapsule-based MSFB bioreactor for bioartificial liver device. Compared to conventional-fluidized bed bioreactors, the bioreactor presented here increased perfusion velocity and decreased void volume significantly. Meanwhile, the mechanical stability as well as the immunoisolation property of magnetite microcapsules were well maintained during the fluidization. Besides, the magnetite microcapsules were found no toxicity to cell survival. Therefore, our study might provide a novel approach for the design of microcapsule-based bioartificial liver bioreactors.

  20. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  1. The use of fluidized bed combustor ash in the solidification of high oil and grease sediments

    SciTech Connect

    Bennett, R.G.; Stine, E.F. Jr.

    1996-10-01

    A multi-part treatability study was conducted to identify lower cost solidification reagents for the solidification of oily sediments from several storm sewer impoundment ponds. The information from the treatability study was successfully applied to full-scale remediation. Several reagents were investigated including Portland cement, Class C fly ash, lime, cement kiln dust, and fluidized bed combustor ash. Screening tests were performed using single reagents and blended mixes of reagents. Testing included strength development, permeability, oil retention and volume increase due to treatment. The applicability of using the fluidized bed combustor ash was tested in a full scale field pilot study prior to full scale remediation. This paper will present background and experimental data from this study showing the successful substitution of fluidized bed combustor ash for cement as a primary solidification reagent.

  2. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    SciTech Connect

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M.

    1992-11-01

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

  3. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    SciTech Connect

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  4. Investigation on side-spray fluidized bed granulation with swirling airflow.

    PubMed

    Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2013-03-01

    Top-spray fluidized bed granulation with axial fluidization airflow from the bottom of the granulator is well-established in the pharmaceutical industry. The application of swirling airflow for fluidized bed granulation was more recently introduced. This study examined the effects of various process parameters on the granules produced by side-spray fluidized bed with swirling airflow using the central composite and Box-Behnken design of experiment. Influence of the amount of binder solution, spray rate, and distance between spray nozzle and powder bed were initially studied to establish operationally viable values for these parameters. This was followed by an in-depth investigation on the effects of inlet airflow rate, atomizing air pressure and distance between spray nozzle and powder bed on granule properties. It was found that the amount of binder solution had a positive correlation with granule size and percentage of lumps but a negative correlation with size distribution and Hausner ratio of the granules. Binder solution spray rate was also found to affect the granules size. High drug content uniformity was observed in all the batches of granules produced. Both inlet airflow rate and atomizing air pressure were found to correlate negatively with granule size and percentage of lumps but correlate positively with the size distribution of the granule produced. Percentage of fines was found to be significantly affected by inlet airflow rate. Distance between spray nozzle and powder bed generally affected the percentage of lumps.

  5. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion...

  6. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion...

  7. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion...

  8. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion...

  9. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion...

  10. Sampling and instrumentation for fluidized-bed combustion. Annual report, October 1978-September 1979

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Myles, K.M.

    1980-09-01

    In the first section of this report, background information is presented on instrumentation for fluidized-bed combustion, i.e., for process control, scientific investigation, and safety in planned and operating fluidized-bed combustion systems. The objective of this study is to update and extend the fluidized-bed portion of a preceding report, A Study of the State-of-the-Art of Instrumentation for Process Control and Safety in Large-Scale Coal Gasification, Liquefaction, and Fluidized-Bed Combustion Systems, ANL-76-4. The second section of this report describes two prototype mass flow rate instruments installed on the solids feed lines of an existing ANL fluidized-bed combustor. The Fossil Instrumentation Group at ANL designed, fabricated, and installed these instruments in cooperation with Chemical Engineering Division personnel - one on the coal feedline and one on the coal/limestone feedline. Each instrument consisted of a capacitive sensor spoolpiece and an associated preamplifier and signal conditioning. One channel of each instrument provides three outputs. One delivers a density signal while two others deliver two signals for measuring velocity by cross-correlation. Operation was verified by using laboratory signal analyzers to process the signals. The third section of this report summarizes the results of a Spectron Development Laboratory subcontract from ANL to investigate analytical techniques suitable for monitoring the concentration of gaseous alkali compounds in the hot gas stream from a fluidized-bed combustor. It was concluded from the study that the concept of using the Na/sub 2/SO/sub 4/ dew point to detect the onset of hot corrosion conditions is the most attractive of the techniques evaluated.

  11. Gas-Phase Combustion in the Freeboard of a Fluidized Bed-Freeboard Characterization

    NASA Astrophysics Data System (ADS)

    Laviolette, Jean-Philippe; Patience, Gregory S.; Chaouki, Jamal

    The prediction of propane autoignition in the freeboard of a fluidized bed is complicated by the presence of solids, intermediate products and non-homogeneities (solids, temperature and species gradients) that should be accounted for in a reaction model. However, the simultaneous characterization of these parameters during combustion is very challenging. An experimental study of propane combustion inside the freeboard (I.D.=0.2 m) of a fluidized bed of sand (Ug=290 μm) was performed at a low superficial gas velocity (Ug=0.24 m/s). Propane was injected inside the fluidized bed (TBed=650°C) through a downward-facing sparger. Also, solids flux and species volume fractions were measured using a non-isokinetic sampling probe. The results showed an exponential decrease with height of the upward solids flux (GSU)-GSU was zero at 0.17 m above the bed surface, which was taken as the inflection point of the Gsu curve. GSUo measurements were significantly higher than the values given by the correlation of (1982). The bed surface (boundary condition) and freeboard were characterized by measuring pressure, solids flux, species volume fractions and temperature at several radial and axial positions. During the experiments, the fluidized bed achieved a pseudo steady-state operation that ensured that the measured temperature profile corresponded to the solids flux and species fractions. Partial propane combustion in the fluidized bed (71%) produced CO and cracking species that were transported in the freeboard. Complete combustion occurred within 0.15 m of the bed surface and the propane induction time in the freeboard (<0.25 s) was on the same order as the values given by three induction time correlations for homogeneous systems.

  12. Anomalous Sinking of Spheres due to Local Fluidization of Apparently Fixed Powder Beds.

    PubMed

    Oshitani, Jun; Sasaki, Toshiki; Tsuji, Takuya; Higashida, Kyohei; Chan, Derek Y C

    2016-02-12

    The sinking of an intruder sphere into a powder bed in the apparently fixed bed regime exhibits complex behavior in the sinking rate and the final depth when the sphere density is close to the powder bed density. Evidence is adduced that the intruder sphere locally fluidizes the apparently fixed powder bed, allowing the formation of voids and percolation bubbles that facilitates spheres to sink slower but deeper than expected. By adjusting the air injection rate and the sphere-to-powder bed density ratio, this phenomenon provides the basis of a sensitive large particle separation mechanism.

  13. Anomalous Sinking of Spheres due to Local Fluidization of Apparently Fixed Powder Beds

    NASA Astrophysics Data System (ADS)

    Oshitani, Jun; Sasaki, Toshiki; Tsuji, Takuya; Higashida, Kyohei; Chan, Derek Y. C.

    2016-02-01

    The sinking of an intruder sphere into a powder bed in the apparently fixed bed regime exhibits complex behavior in the sinking rate and the final depth when the sphere density is close to the powder bed density. Evidence is adduced that the intruder sphere locally fluidizes the apparently fixed powder bed, allowing the formation of voids and percolation bubbles that facilitates spheres to sink slower but deeper than expected. By adjusting the air injection rate and the sphere-to-powder bed density ratio, this phenomenon provides the basis of a sensitive large particle separation mechanism.

  14. Fluidized bed combustion of low-grade coal and wastes: Research and development

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M.; Dobkin, S.M.; Telegin, E.M.

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  15. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  16. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  17. A semi-empirical model for pressurised air-blown fluidized-bed gasification of biomass.

    PubMed

    Hannula, Ilkka; Kurkela, Esa

    2010-06-01

    A process model for pressurised fluidized-bed gasification of biomass was developed using Aspen Plus simulation software. Eight main blocks were used to model the fluidized-bed gasifier, complemented with FORTRAN subroutines nested in the programme to simulate hydrocarbon and NH(3) formation as well as carbon conversion. The model was validated with experimental data derived from a PDU-scale test rig operated with various types of biomass. The model was shown to be suitable for simulating the gasification of pine sawdust, pine and eucalyptus chips as well as forest residues, but not for pine bark or wheat straw.

  18. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds

    SciTech Connect

    Kono, H.O.

    1991-01-01

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds by measuring and utilizing the signals of transient motion of solid particles. The two signals were measured simultaneously and also synchronized by using the TTL signal technique in the same fluidized beds. Also, a simultaneous study of video bubble image, transient force and pressure signals was initiated in a two dimensional fluidized bed. we successfully synchronized three signals so that the relationship of bubble behavior and force pressure signals can be identified and characterized. It has been found that bubble image can well be correlated to the transient force signal of solid particles under certain conditions in three dimensional fluidized beds. Accordingly, it seems that the transient force signals can significantly help understanding the transient motion of bubbles (slugs), which is important to design the fluidized beds.

  19. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds. 1990 Annual report

    SciTech Connect

    Kono, H.O.

    1991-01-01

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds by measuring and utilizing the signals of transient motion of solid particles. The two signals were measured simultaneously and also synchronized by using the TTL signal technique in the same fluidized beds. Also, a simultaneous study of video bubble image, transient force and pressure signals was initiated in a two dimensional fluidized bed. we successfully synchronized three signals so that the relationship of bubble behavior and force pressure signals can be identified and characterized. It has been found that bubble image can well be correlated to the transient force signal of solid particles under certain conditions in three dimensional fluidized beds. Accordingly, it seems that the transient force signals can significantly help understanding the transient motion of bubbles (slugs), which is important to design the fluidized beds.

  20. Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal.

    PubMed

    Zhang, Kai; Yu, Bangting; Chang, Jian; Wu, Guiying; Wang, Tengda; Wen, Dongsheng

    2012-09-01

    The fluidization characteristics of binary mixtures containing tobacco stem (TS) and cation exchange resin (a substitute for coal) were studied in a rectangular bed with the cross-section area of 0.3 × 0.025 m(2). The presence of herbaceous biomass particles and their unique properties such as low density and high aspect ratio resulted in different fluidization behaviors. Three fluidization velocities, i.e. initial, minimum and full fluidization velocities, were observed as the TS mass fraction increased from 7% to 20%, and four hydrodynamic stages were experienced, including the static, segregation, transition and mixing stages, with increasing operational gas velocities. The results suggest that the operational gas velocity should be in the range of 2.0-5.0 times of the minimum fluidization velocity of the binary mixtures, and less than 7% TS mass fraction should be used in an existing bubbling fluidized bed. Higher TS fraction inclusion requires the introduction of central jet gas to improve the mixing effect.

  1. The characterization of fluidization behavior using a novel multichamber microscale fluid bed.

    PubMed

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka; Yliruusi, Jouko

    2004-03-01

    In the preformulation stage, there is a special need to determine the process behavior of materials with smaller amounts of samples. The purpose of this study was to assemble a novel automated multichamber microscale fluid bed module with a process air control unit for the characterization of fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified microcrystalline cellulose. During processing, the different characteristic fluidization phases (e.g., plugging, bubbling, slugging, and turbulent fluidization) of the materials were observed by the pressure difference over the bed. When the moisture content of the process air was increased, the amount of free charge carriers increased and the fine glass beads fluidized on the limited range of velocity. The silicification was demonstrated to improve the fluidization behavior with two different particle sizes of cellulose powders. Due to the interparticle (e.g., electrostatic) forces of the fine solids, the utilization of the computational predictions was restricted. The presented setup is a novel approach for studying process behavior with only a few grams of materials.

  2. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  3. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    SciTech Connect

    Jantzen, C

    2006-09-13

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability

  4. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  5. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment

  6. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect

    AYALA, R E; VENKATARAMANI, V S

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  7. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Hakim, Luis F.; George, Steven M.; Weimer, Alan W.

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al2O3 nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al2O3 vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  8. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor.

    PubMed

    Hakim, Luis F; George, Steven M; Weimer, Alan W

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al(2)O(3) nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al(2)O(3) vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  9. Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; McClymer, J. P.

    2004-01-01

    The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.

  10. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    SciTech Connect

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  11. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    PubMed

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBPS) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBPS. The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBPS are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O2, CO, SO2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O2 and CO2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to

  12. Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier

    NASA Astrophysics Data System (ADS)

    Xiao, Xianbin; Le, Due Dung; Morishita, Kayoko; Li, Liuyun; Takarada, Takayuki

    Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar cracking catalyst is studied at low temperature. Reaction conditions of the catalyst bed are discussed, including catalytic temperature and steam ratio. High energy efficiency and hydrogen-rich, low-tar product gas can be achieved in a properly designed multi-stage gasification process, together with high-performance catalyst. In addition, considering the economical feasibility, a newly-developed Ni-loaded brown coal char is developed and evaluated as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst shows a good ability and a hopeful prospect oftar decomposition, gas quality improvement and catalytic stability.

  13. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  14. Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  15. Heat exchanges between a fluidized bed and small-sized bodies

    SciTech Connect

    Teplitskii, Yu.S.

    1995-06-01

    On the basis of the two-zone model, a procedure is developed for calculating the complex heat exchange of a probe of small dimensions (comparable with the diameter of the bed particles). The procedure takes into account the influence of the fluidizing agent pressure.

  16. Optimization of circulating fluidized bed boiler operation through distributed control system design management

    SciTech Connect

    Swartz, M.; Utt, J. )

    1990-01-01

    The introduction of the circulating fluidized bed (CFB) technology to the boiler industry has also introduced some new considerations and unique criteria for design of the plant control system. The topics concerning selection, design, configuration, and operation of the control system for CFB applications are discussed.

  17. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds

    ERIC Educational Resources Information Center

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.

    2008-01-01

    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  18. Fuel and ash characterization of Indian coal for their suitability in fluidized bed combustions

    SciTech Connect

    Palit, A.; Mandal, P.K.

    1995-12-31

    The fluidized bed combustion (FBC) technology is now fully recognized and units with high capacity are in operation the world over. In the Indian context, now is the time to exploit the fluidized bed technology for electric power generation, which may nurture the poor grade Indian coal in a better way as compared to that of pulverized fuel fired system. The present paper deals with Indian coals and ash characterization and the effect of various coal properties on combustion in a fluidized bed like moisture, mineral/ash content, volatile matter, maceral structure (petrographic properties), swelling/caking index, ash properties including ash fusion temperature, etc. and their critical discussion based on experimental investigations with Indian coals and also their suitability in FBC. In addition, the experience with a 10 MW FBC unit in India with problems and parameters, some experimental investigations on suitability of Lalmatia coal (Rajmahal coal field) in fluidized bed combustion and pollutant formations vis-a-vis control (NOx, SOx, etc.) have also been discussed.

  19. Calculation of bubble shape and particle transport in a fluidized bed

    SciTech Connect

    Puzyrev, E.M.

    1986-07-01

    A model of bubble formation in a fluidized bed under the action of the return stream of the dense phase penetrating into the trail of an ascending bubble is constructed. The growth of bubbles as they rise and the process of replacement of solid material in the trail are analyzed on the basis of the model.

  20. Investigation of the flow in the vortex chamber with centrifugal fluidizing bed with and without combustion

    NASA Astrophysics Data System (ADS)

    Volchkov, E. P.; Dvornikov, N. A.; Lukashov, V. V.; Abdrakhmanov, R. Kh.

    2013-12-01

    The flow in the vortex chamber with centrifugal fluidized bed of solid particles was studied experimentally and simulated numerically. The chambers of different configurations were considered, and this allowed us to change the ratio of centrifugal and gravity forces. To estimate the hydraulic losses in the vortex chamber, a simple model was suggested.