Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor
ERIC Educational Resources Information Center
Saayman, Jean; Nicol, Willie
2011-01-01
A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth
2017-02-21
Here, wsing the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree ofmore » chemical cracking as controlled by the catalyst activity. Lastly, because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.« less
Lu, Liqiang; Gao, Xi; Li, Tingwen; ...
2017-11-02
For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models tomore » predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. The RTD of large-scale reactors can then be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.« less
Mohanty, C R; Adapala, Sivaji; Meikap, B C
2009-06-15
Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagpal, J.M.; Joshi, G.C.; Aswal, D.S.
1995-04-01
The high octane gasoline pool contains varying amounts of cracked naphthas as an important ingredient in formulating high octane lead free gasoline. The cracked naphthas are largely from Fluidized Catalytic Cracking (FCC) units and to lesser extend from thermal cracking units. While the role of olefinic unsaturation in gum formation during storage of gasoline has been extensively studied, there is little published work on contribution of individual olefin types in storage stability and gum formation tendency of gasoline containing these compound types. In the present work we report our results on storage stability and gum formation tendency of different olefinmore » types present in cracked naphthas through model compound matrix. It is found that cyclic olefins and cyclic diolefins are the most prolific gum formers. We have also studied the role of sulfur compounds present in the gasolines on gum formation tendency of olefins. While thiols enhance gum formation from all olefinic types, sulfides and disulfides interact depending on the structure of olefins. These can have either an accelerating, or inhibiting effect on gum formation.« less
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...
Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...
2015-01-01
Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less
Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...
Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Ted; Agblevor, Foster; Battaglia, Francine
The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. Themore » catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.« less
40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking Units As...
40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking Units As...
Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser
Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji
2017-11-21
Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less
40 CFR 63.1573 - What are my monitoring alternatives?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... for your catalytic cracking unit if the unit does not introduce any other gas streams into the... record the hourly average volumetric air flow rate to the catalytic cracking unit or catalytic reforming...
40 CFR 63.1573 - What are my monitoring alternatives?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... for your catalytic cracking unit if the unit does not introduce any other gas streams into the... record the hourly average volumetric air flow rate to the catalytic cracking unit or catalytic reforming...
The concept, reality and utility of single-site heterogeneous catalysts (SSHCs).
Thomas, John Meurig
2014-05-07
Very substantial advances have recently been made in the design and construction of solid catalysts and in elucidating both their mode of operation and the factors that determine their selectivity and longevity. This Perspective explains how and why such progress has been made. One important factor, the deployment of single-site heterogeneous and enzymatic catalysts, used either alone or in conjunction with other strategies, including metabolic engineering, enables a multitude of new products (for example, environmentally clean jet fuel) to be readily manufactured. In a practical sense SSHCs enable the advantages of homogeneous and to a lesser degree enzymatic catalysts to be united with those of heterogeneous ones. With the aid of the vastly increasing families of nanoporous solids, desired catalytically active sites may be engineered in atomic detail on their inner, accessible surfaces, thereby opening up new possibilities in synthetic organic chemistry - as in the smooth formation of C-C and C[double bond, length as m-dash]N bonds in a number of intermolecular reactions - as well as in photocatalysts and in fluidized catalytic cracking of hydrocarbons.
Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors.
Diano, Nadia; Grimaldi, Tiziana; Bianco, Mariangela; Rossi, Sergio; Gabrovska, Katya; Yordanova, Galya; Godjevargova, Tzonka; Grano, Valentina; Nicolucci, Carla; Mita, Luigi; Bencivenga, Umberto; Canciglia, Paolo; Mita, Damiano G
2008-12-10
The catalytic behavior of a mixture of pectic enzymes, covalently immobilized on different supports (glass microspheres, nylon 6/6 pellets, and PAN beads), was analyzed with a pectin aqueous solution that simulates apple juice. The following parameters were investigated: the rate constant at which pectin hydrolysis is conducted, the time (tau(50)) in which the reduction of 50% of the initial viscosity is reached, and the time (tau(comp,dep)) required to obtain complete depectinization. The best catalytic system was proven to be PAN beads, and their pH and temperature behavior were determined. The yields of two bed reactors, packed or fluidized, using the catalytic PAN beads, were compared to the circulation flow rate of real apple juice. The experimental conditions were as follows: pH 4.0, T = 50 degrees C, and beads volume = 20 cm(3). The initial pectin concentration was the one that was present in our apple juice sample. No differences were observed at low circulation rates, while at higher recirculation rates, the time required to obtain complete pectin hydrolysis into the fluidized reactor was found to be 0.25 times smaller than in the packed bed reactor: 131 min for the packed reactors and 41 min for the fluidized reactors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). 60.105a Section 60.105a... and operations for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). (a) FCCU and... Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). 60.105a Section 60.105a... and operations for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). (a) FCCU and... Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units...
40 CFR 63.1575 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... standard for catalytic cracking units or from the HCl concentration standard to percent reduction for... maintenance for your catalytic cracking unit according to the requirements in paragraph (j) of this section...
Pyrolysis of polyolefins for increasing the yield of monomers' recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.
2012-05-15
Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.« less
The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.
Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R
2012-05-01
In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566 What...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Gao, Xi; Li, Tingwen
For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models tomore » predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. The RTD of large-scale reactors can then be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.« less
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
Characteristics of Catalytic Gasification of Natural Coke with H2O in a Fluidized Bed
NASA Astrophysics Data System (ADS)
Lin, L. S.; Zhao, C. S.; Wang, S.; Zhu, G.; Xiang, W. G.
The experimental investigation on gasification characteristics of natural coke from Peicheng, Jiangsu with steam were conducted in a fluidized bed gasifier setup. The effects of several parameters, in terms of the catalyst type, the catalyst mixed manner and the dosage of catalyst over coke on the yield, the components, the heating value of fuel gas and the carbon conversion rate were examined. Results indicate that the fluidized bed gasification technology could overcome the shortcomings of natural coke. Ca-, Fe- and Cu-based nitrates could improve the gasification reaction effectively with a little difference, they could be listed in a descending sequence as follows: Cu-based>Fe-based>Ca-based according to their catalytic effect. The influences of Fe/Ca ratio and Cu/Ca ratio on gasification are similar, gas yield, carbon conversion rate and gas heating value per hour increase as Fe/Ca ratio or Cu/Ca ratio increases, but all of them go up first and then drop with decrease in Fe/Cu ratio. When the dosage of Ca-, Fe- and Cu-based nitrates mixed with the ratio of Ca/Fe/Cu= 10/35/55 is 3%, the best catalytic effect is achieved.
Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin
2015-09-01
Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 60.103 - Standard for carbon monoxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... the fluid catalytic cracking unit catalyst regenerator will be operated, or 180 days after initial... discharge or cause the discharge into the atmosphere from any fluid catalytic cracking unit catalyst...
40 CFR 60.103 - Standard for carbon monoxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... the fluid catalytic cracking unit catalyst regenerator will be operated, or 180 days after initial... discharge or cause the discharge into the atmosphere from any fluid catalytic cracking unit catalyst...
40 CFR 63.1563 - When do I have to comply with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units... for an existing catalytic cracking unit allowing additional time to meet the emission limitations and work practice standards for catalytic cracking units in §§ 63.1564 and 63.1565 if you commit to...
40 CFR 63.1563 - When do I have to comply with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units... for an existing catalytic cracking unit allowing additional time to meet the emission limitations and work practice standards for catalytic cracking units in §§ 63.1564 and 63.1565 if you commit to...
This report gives results of an evaluation of carbon paper adsorption catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) as control technologies to reduce volatile organic compound (VOC) emissions from paint spray booths.
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Spera, D. A.
1975-01-01
Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.
40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...
40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...
40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...
40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What...
In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.
In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less
In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...
2016-02-03
In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less
Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao
2018-04-01
This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.
Lokhandwala, Kaaeid A.; Baker, Richard W.
2001-01-01
Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.
learn more about the NESHAP for catalytic cracking and reforming units, as well as sulfur recovery units in petroleum refineries by reading the rule history, rule summary, background information documents, and compliance information
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, J.A.; Turner, C.B.; Johnson, I.
1980-03-13
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, John A.; Turner, Clarence B.; Johnson, Irving
1982-01-01
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Thermal-stress fatigue behavior of twenty-six superalloys
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Spera, D. A.
1976-01-01
The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.
40 CFR 60.107 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...
40 CFR 60.107 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...
40 CFR 63.1561 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic..., and fuel oils), or lubricants; (ii) Separating petroleum; or (iii) Separating, cracking, reacting, or...
40 CFR 63.1561 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic..., and fuel oils), or lubricants; (ii) Separating petroleum; or (iii) Separating, cracking, reacting, or...
Stable carbonous catalyst particles and method for making and utilizing same
Ganguli, Partha S.; Comolli, Alfred G.
2005-06-14
Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.
Attrition resistant fluidizable reforming catalyst
Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL
2011-03-29
A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins
NASA Astrophysics Data System (ADS)
Al-Sabawi, Mustafa N.
The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.
Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, J.W.; Zagula, E.J.
1987-05-01
The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less
Scott, Charles D.; Hancher, Charles W.
1977-01-01
A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
The goal of this Bioincubator Project was to improve the pyrolysis of biomass through the use of methane. Our initial concept was to use methane as a fluidizing gas with a hydrogen transfer catalyst. The results of the experiments did show that methane as a fluidizing gas, with a hydrogen transfer catalyst, does enhance catalytic pyrolysis over that which is achieved with an inert fluidizing gas. Using methane as a fluidizing gas, with a hydrogen transfer catalyst, consistently produced better products with lower oxygen content than the products produced when an inert gas was used. These improvements were also consistentmore » with the results obtained through pure component testing as well. However, the improvement was too small to justify any significant expense. The addition of hydrogen with a hydrogen transfer catalyst consistently showed a much greater, more significant effect than methane. This indicates that hydropyrolysis is a more effective approach to improved catalytic pyrolysis than methane addition. During the course of this project, another way to significantly increase biogenic liquid yields from pyrolysis through the use of methane was discovered. We discovered a remarkably stable CO2/steam reforming catalyst which directly makes a 2:1 H2/CO synthesis gas from the CO, CO2, methane, ethane and propane product gas from integrated hydropyrolysis and hydroconversion (IH2®). The biogenic synthesis gas can then be converted to liquid hydrocarbons using Fischer Tropsch. The hydrogen for the IH2 unit would then be provided through the use of added methane. By utilizing the biogenic gas to make liquids, 40% more biogenic liquid hydrocarbons can be made from wood, thereby increasing liquid yields from IH2 from 86GPT to 126GPT. It also simplifies the hydrogen plant since no CO or CO2 removal is required.« less
40 CFR 63.1576 - What records must I keep, in what form, and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Notifications, Reports, and Records... keep records required by Tables 6, 7, 13, and 14 of this subpart (for catalytic cracking units); Tables...
40 CFR 63.1576 - What records must I keep, in what form, and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Notifications, Reports, and Records... keep records required by Tables 6, 7, 13, and 14 of this subpart (for catalytic cracking units); Tables...
Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis
NASA Astrophysics Data System (ADS)
Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief
2017-03-01
Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.
Thermal fatigue performance of integrally cast automotive turbine wheels
NASA Technical Reports Server (NTRS)
Humphreys, V. E.; Hofer, K. E.
1980-01-01
Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.
Catalytic cracking of Mayan gas oil and selected hydrotreated products: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, J.W.; Zagula, E.J.; Brinkman, D.W.
1988-01-01
The catalytic cracking of a Mayan vacuum gas oil and the products from mild, moderate, and severe hydrotreating of this gas oil was evaluated over a low-metal equilibrium catalyst in a microconfined bed unit (MCBU). Results obtained with the Mayan feedstocks are compared with those of an earlier study conducted with similar feedstocks obtained from a Wilmington (CA) crude oil. Two levels of catalytic cracking severity were used in the evaluation. Performance and product analysis showed that hydrotreating improves the yields obtained from catalytic cracking and the quality of the resultant products. In contrast to results obtained with the Wilmingtonmore » feedstocks, conversion and gasoline yield do not improve with severity of the hydrotreating of the Mayan vacuum gas oils. The insensitivity of the cracking performance to hydrotreating severity may reflect the more facile removal of polar compounds (heteroatom compounds) on hydrotreating of the Mayan gas oil in comparison to the Wilmington. Sulfur and nitrogen contents of the liquid products (gasoline, light cycle oil, heavy cycle oil) decreased as the severity of the feed hydrotreating increased. 7 refs., 12 figs., 15 tabs.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji
Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
NASA Astrophysics Data System (ADS)
Ivashkina, Elena; Nazarova, Galina; Shafran, Tatyana; Stebeneva, Valeriya
2017-08-01
The effect of the feedstock composition and the process conditions on the current catalyst activity in catalytic cracking technology using a mathematical model is performed in this research. The mathematical model takes into account the catalyst deactivation by coke for primary and secondary cracking reactions. The investigation results have shown that the feedstock has significant effect on the yield and the content of coke on the catalyst. Thus, the relative catalyst activity is significantly reduced by 7.5-10.7 %. With increasing the catalytic cracking temperature due to the catalyst flow temperature rising, the coke content and the yield per feedstock increase and the catalyst activity decreases by 5.3-7.7%. Rising the process temperature together with the catalyst circulation ratio contributes to increase of the coke yield per feedstock in the catalytic cracking and decrease of the coke content on the catalyst. It is connected with the catalyst flow rising to the riser and the contact time decreasing in the reaction zone. Also, the catalyst activity decreases in the range of 3.8-5.5% relatively to the regenerated catalyst activity (83 %).
Rapid starting methanol reactor system
Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.
1984-01-01
The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.
Multifunctional two-stage riser fluid catalytic cracking process.
Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe
This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.
The transport phase of pyrolytic oil exiting a fast fluidized bed reactor
NASA Astrophysics Data System (ADS)
Daugaard, Daren Einar
An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.
Lagrangian Approach to Study Catalytic Fluidized Bed Reactors
NASA Astrophysics Data System (ADS)
Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration
2013-03-01
Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)
Producing gapped-ferrite transformer cores
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1980-01-01
Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.
Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina
NASA Astrophysics Data System (ADS)
Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief
2017-03-01
Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.
Method and apparatus for decoupled thermo-catalytic pollution control
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2006-07-11
A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
NASA Astrophysics Data System (ADS)
Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.
1994-05-01
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon
NASA Astrophysics Data System (ADS)
Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.
2009-06-01
Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
Supercritical Catalytic Cracking of Hydrocarbon Feeds Insight
2016-04-21
University teamed with Spectral Energies, LLC to develop appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial...We demonstrated the ability to follow in a spatiotemporal fashion, the decomposition of the structure-directing agent used to template the zeolite ...appropriate spatiotemporal imaging capabilities in single body zeolites to describe beneficial and parasitic catalytic cracking pathways. Beneficial
Iron crystallization in a fluidized-bed Fenton process.
Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin
2011-05-01
The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermal fatigue and oxidation data of TAZ-8A and M22 alloys and variations
NASA Technical Reports Server (NTRS)
Hofer, K. E.; Humphreys, V. E.
1981-01-01
Thermal fatigue and oxidation data were obtained on 36 specimens, representing 18 distinct variations (including the base systems) of TAZ-8A and M22 alloys. Double-edge wedge specimens for these systems were cycled between fluidized beds maintained at 1088 C and 316 C with a 180 s immersion in each bed. The systems included alloys TAZ-8A, M22, and 16 variations of these alloys. Each alloy variation consisted of a unique composition with an alternation in the percentage of carbon (C1 and C2), molydenum (M1 and M2), tungsten (W1 and W2), columbium (CB1, CB2, and CB3), tantalium (T1, T2, and T3), or boron (B1, B2, and B3) present. All of the alloys showed little weight change due to oxidation compared with other alloys previously tested in fluidized beds. Only both C1 alloy variation specimens survived 3500 cycles without cracking in the small radius, although substantial cracks were present, emanating from the end notches which were used for holding the specimens.
Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion
Shen, Ming-Shing; Yang, Ralph T.
1980-01-01
Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.
Liu, Yu; Pinnavaia, Thomas J
2003-03-05
Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 13 Table 13 to Subpart UUU of Part 63—Continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 13 Table 13 to Subpart UUU of Part 63—Continuous Compliance With Organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance With Organic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance With Organic...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 7 Table 7 to Subpart UUU of Part 63...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 7 Table 7 to Subpart UUU of Part 63...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 2 Table 2 to Subpart UUU of Part 63—Operating Limits for Metal HAP...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 13 Table 13 to Subpart UUU of Part 63—Continuous Compliance With Organic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 13 Table 13 to Subpart UUU of Part 63—Continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 2 Table 2 to Subpart UUU of Part 63—Operating Limits for Metal HAP...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions From...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 13 Table 13 to Subpart UUU of Part 63—Continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 2 Table 2 to Subpart UUU of Part 63—Operating Limits for Metal HAP...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 7 Table 7 to Subpart UUU of Part 63...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C; Kataria, Atish; Gupta, Rabhubir
The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. Wemore » will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.« less
40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... Catalytic Reforming Units 22 Table 22 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming Units...
40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... Catalytic Reforming Units 22 Table 22 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming Units...
40 CFR Table 15 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Reforming Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... Catalytic Reforming Units 15 Table 15 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 15 Table 15 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Reforming Units As...
40 CFR Table 15 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Reforming Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... Catalytic Reforming Units 15 Table 15 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 15 Table 15 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Reforming Units As...
Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, G.M.; De Moraes, F.F.
1997-12-31
Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less
Too much FCC catalyst activity can cut yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichers, W.R.; Upson, L.
1984-03-19
For many people working in the field of catalytic cracking, high equilibrium catalyst activity is inherently good. It is surprising how many times this line of reasoning is accepted by the refiner. There also seems to be something psychologically satisfying in seeing an equilibrium catalyst report where the catalyst activity is reported as a high number. Generally, everyone is happy when the reported activity of equilibrium catalyst is increasing and unhappy when it is going down. In the past, increasing catalyst activity did result in improved operations. For units that operated with substantial amounts of bed cracking, higher activity catalystmore » allowed the amount of bed cracking to be reduced and the relative amount of cracking that occurred in the riser to be increased. The switch from bed to riser cracking decreased catalytic coke make and gasoline overcracking, thus reducing regenerator temperature and improving gasoline yields.« less
High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.
Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen
2013-09-09
Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.
Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Timpe, R.C.
1995-12-31
Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively bymore » these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, W.H.
1981-02-01
Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/supmore » -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.« less
Thermal Cracking of Tars in a Continuously Fed Reactor with Steam
2011-05-01
Fluidized Bed using biomass 8 Tars Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and
Attrition of fluid cracking catalyst in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boerefijn, R.; Ghadiri, M.
1996-12-31
Particle attrition in fluid catalytic cracking units causes loss of catalyst, which could amount to a few tonnes per day! The dependence of attrition on the process conditions and catalyst properties is therefore of great industrial interest, but it is however not well established at present. The process of attrition in the jetting area of fluidised beds is addressed and the attrition test method of Forsythe & Hertwig is analysed in this paper. This method is used commonly to assess the attrition propensity of FCC powder, whereby the attrition rate in a single jet at very high orifice velocity (300more » m s{sup -1}) is measured. There has been some concern on the relevance of this method to attrition in FCC units. Therefore, a previously-developed model of attrition in the jetting region is employed in an attempt to establish a solid basis of interpretation of the Forsythe & Hertwig test and its application as an industrial standard test. The model consists of two parts. The first part predicts the solids flow patterns in the jet region, simulating numerically the Forsythe & Hertwig test. The second part models the breakage of single particles upon impact. Combining these two models, thus linking single particle mechanical properties to macroscopic flow phenomena, results in the modelling of the attrition rate of particles entrained into a single high speed jet. High speed video recordings are made of a single jet in a two-dimensional fluidised bed, at up to 40500 frames per second, in order to quantify some of the model parameters. Digital analysis of the video images yields values for particle velocities and entrainment rates in the jet, which can be compared to model predictions. 15 refs., 8 figs.« less
Thermal fatigue and oxidation data for alloy/braze combinations
NASA Technical Reports Server (NTRS)
Hill, V. L.; Humphreys, V. E.
1977-01-01
Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.
The extraction of bitumen from western oil sands. Final report, July 1989--September 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.
1994-03-01
Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.
Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.
Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang
2009-02-01
Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil.
Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mante, Ofei D.; Butcher, Thomas A.; Wei, George
The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less
Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil
Mante, Ofei D.; Butcher, Thomas A.; Wei, George; ...
2015-09-18
The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Life and death of a single catalytic cracking particle
Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.
2015-01-01
Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160
A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.
Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y
2018-08-01
Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi
The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO 2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability ofmore » the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.« less
Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M
2015-02-02
Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Additional thermal fatigue data on nickel- and cobalt-base superalloys, part 1
NASA Technical Reports Server (NTRS)
Howes, M. A. H.
1973-01-01
The fluidized bed technique was used to measure the relative thermal fatigue resistance of twenty-one superalloys. Among the thirty-six variations of composition, solidification method, and surface protection the cycles to cracking differed by two to three orders of magnitude. Some alloys suffered serious weight losses and oxidation. Thermal fatigue data, oxidation, and dimensional changes are reported. The types of superalloys are identified.
Process for magnetic beneficiating petroleum cracking catalyst
Doctor, R.D.
1993-10-05
A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.
Process for magnetic beneficiating petroleum cracking catalyst
Doctor, Richard D.
1993-01-01
A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.
40 CFR 63.1560 - What is the purpose of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... from petroleum refineries. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and work practice standards. ...
You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki
2010-05-01
Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.
Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei
2014-01-01
Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Packed-bed catalytic cracking of oak derived pyrolytic vapors
USDA-ARS?s Scientific Manuscript database
Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...
A CFD model for biomass fast pyrolysis in fluidized-bed reactors
NASA Astrophysics Data System (ADS)
Xue, Qingluan; Heindel, T. J.; Fox, R. O.
2010-11-01
A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.
Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,
The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less
Fluidizable particulate materials and methods of making same
Gupta, Raghubir P.
1999-01-01
The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.
Improvements in Production of Single-Walled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Balzano, Leandro; Resasco, Daniel E.
2009-01-01
A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.
Kalirai, Sam; Boesenberg, Ulrike; Falkenberg, Gerald; Meirer, Florian; Weckhuysen, Bert M
2015-11-01
Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentration at the exterior of the FCC catalyst particle and are highly co-localized. As concentrations increase as a function of catalytic life-stage, the deposition profiles of Fe, Ni, and Ca do not change significantly. V has been shown to penetrate deeper into the particle with increasing catalytic age. Although it has been previously suggested that V is responsible for damaging the zeolite components of FCC particles, no spatial correlation was found for V and La, which was used as a marker for the embedded zeolite domains. This suggests that although V is known to be detrimental to zeolites in FCC particles, a preferential interaction does not exist between the two.
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-09-23
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.
2016-12-06
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
USDA-ARS?s Scientific Manuscript database
Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honghong Shan; Jianfang Zhang; Guohe Que
The physical-chemical properties and catalytic cracking behaviors of Gudao VR and Gudao VRDS VR were studied. The properties are structural parameters show that the C/H, Mw, R{sub A}, f{sub A} values and nitrogen, sulfur, nickel, resin contents of the Gudao VRDS VR are obviously lower than those of Gudao VR, and that the content of saturates of Gudao VRDS VR are considerably higher than that of Gudao VR. The catalytic cracking experiments of Gudao VRDS VR in laboratory scale show that VRDS VR has good cracking behaviour. The research and industry scale results indicate that the VRDS process using Gudaomore » VR as feedstock is a kind of high efficiency hydrotreating process, and that VRDS-FCC complex technology can realize the deep processing of the crude, increase the light oil yields and enhance the economical profit of the enterprise.« less
Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components
USDA-ARS?s Scientific Manuscript database
Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...
USDA-ARS?s Scientific Manuscript database
Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...
Method of producing pyrolysis gases from carbon-containing materials
Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.
1989-01-01
A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agblevor, Foster A.; Elliott, Douglas C.; Santosa, Daniel M.
Pinyon juniper biomass feedstocks, which cover a large acreage of rangeland in the western United States, are being eradicated and, therefore, considered as a convenient biomass feedstock for biofuel production. Pinyon juniper whole biomass (wood, bark, and leaves) were pyrolyzed in a pilot-scale bubbling fluidized-bed reactor at 450 °C, and the noncondensable gases were recycled to fluidize the reactor. Red mud was used as the in situ catalyst for the pyrolysis of the pinyon juniper biomass. The pyrolysis products were condensed in three stages, and products were analyzed for physicochemical properties. The condenser oil formed two phases with the aqueousmore » fraction, whereas the electrostatic precipitator oils formed a single phase. The oil pH was 3.3; the higher heating value (HHV) was 28 MJ/kg; and the viscosity was less than 100 cP. There was a direct correlation between the viscosity of the oils and the alcohol/ether content of the oils, and this was also related to the aging rate of the oils. The catalytic pyrolysis oils were hydrotreated in a continuous single-stage benchtop hydrotreater to produce hydrocarbon fuels with a density of 0.80$-$0.82 cm 3/g. The hydrotreater ran continuously for over 300 h with no significant catalyst deactivation or coke formation. This is the first time that such a long single-stage hydrotreatment has been demonstrated on biomass catalytic pyrolysis oils.« less
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
Process of producing liquid hydrocarbon fuels from biomass
Kuester, James L.
1987-07-07
A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2012 CFR
2012-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2014 CFR
2014-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units
Code of Federal Regulations, 2014 CFR
2014-07-01
... Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Notification of Compliance Status 42 Table 42 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 42 Table 42 to Subpart UUU of Part 63—Additional Information for Initial Notification of...
40 CFR Table 30 to Subpart Uuu of... - Operating Limits for HAP Emissions From Sulfur Recovery Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfur Recovery Units 30 Table 30 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 30 Table 30 to Subpart UUU of Part 63—Operating Limits for HAP Emissions From Sulfur Recovery...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Notification of Compliance Status 42 Table 42 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 42 Table 42 to Subpart UUU of Part 63—Additional Information for Initial Notification of...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2013 CFR
2013-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units
Code of Federal Regulations, 2012 CFR
2012-07-01
... Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in...
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar
2006-01-01
In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.
Biodiesel synthesis using chicken manure biochar and waste cooking oil.
Jung, Jong-Min; Lee, Sang-Ryong; Lee, Jechan; Lee, Taewoo; Tsang, Daniel C W; Kwon, Eilhann E
2017-11-01
This study laid an emphasis on the possible employment of biochar generated from pyrolysis of chicken manure to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO 2 ), chicken manure biochar generated from 350°C showed better performance, resulting in 95.6% of the FAME yield at 350°C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40-60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350°C was highly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.
Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo
2018-01-01
Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm 3 of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm 3 of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2010 CFR
2010-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As stated in § 63...
40 CFR Table 44 to Subpart Uuu of... - Applicability of NESHAP General Provisions to Subpart UUU
Code of Federal Regulations, 2011 CFR
2011-07-01
... Provisions to Subpart UUU 44 Table 44 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 44 Table 44 to Subpart UUU of Part 63—Applicability of NESHAP General Provisions to Subpart UUU As...
40 CFR Table 44 to Subpart Uuu of... - Applicability of NESHAP General Provisions to Subpart UUU
Code of Federal Regulations, 2010 CFR
2010-07-01
... Provisions to Subpart UUU 44 Table 44 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 44 Table 44 to Subpart UUU of Part 63—Applicability of NESHAP General Provisions to Subpart UUU As...
40 CFR Table 36 to Subpart Uuu of... - Work Practice Standards for HAP Emissions From Bypass Lines
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions From Bypass Lines 36 Table 36 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 36 Table 36 to Subpart UUU of Part 63—Work Practice Standards for HAP Emissions From Bypass Lines...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2011 CFR
2011-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As stated in § 63...
40 CFR Table 36 to Subpart Uuu of... - Work Practice Standards for HAP Emissions From Bypass Lines
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions From Bypass Lines 36 Table 36 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 36 Table 36 to Subpart UUU of Part 63—Work Practice Standards for HAP Emissions From Bypass Lines...
Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang
2015-04-01
Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes". Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; Deutch, Steve; Iisa, Kristiina
2016-01-01
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research. PMID:28060311
Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E
2014-05-01
Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From Sulfur...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing
Liewhiran, Chaikarn; Phanichphantandast, Sukon
2007-01-01
ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.
Process of producing liquid hydrocarbon fuels from biomass
Kuester, J.L.
1987-07-07
A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.
Additional thermal fatigue data on nickel and cobalt-base superalloys
NASA Technical Reports Server (NTRS)
Howes, M. A. H.
1973-01-01
The fluidized bed technique was used to measure the relative thermal fatigue resistance of 21 superalloys: B1900, B1900 DID, IN-100, MAR-M 200, Udimet 700 wrought and cast, NX-188, WAZ-20, TAZ-8A, M22, IN 713C, IN 738, IN 162, MAR-M 509, Rene 80, RBH, NASA VI A, TD-NiCr, MAR-M 302, WI-52, and X-40. IN-100, MAR-M 200, NX-188, WAZ-20 and TAZ-8A were also tested in the directionally solidified form. B1900, B1900 DID, IN-100, MAR-M200, Udimet 700, NX-188, WAZ-20 and TAZ-8A were tested with surface protection. Among the 36 variations of composition, solidification method, and surface protection the cycles to cracking differed by 2 to 3 orders of magnitude. Some alloys suffered serious weight losses and oxidation. Previous fluidized bed thermal fatigue data on some of these alloys were reported in N71-10027. Thermal fatigue data, oxidation, and dimensional changes are reported in N73-30507. Metallographic and hardness data are given in this report.
Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, J H; Huss, E B; Ott, L L
1982-09-01
A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less
NASA Astrophysics Data System (ADS)
Gihm, Yong Sik; Kwon, Chang Woo
2017-04-01
In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are hosted in a massive pumiceous lapilli tuff intruded by intermediate dikes. Blocky peperites, the most abundant species, are characterized by polyhedral or platy juvenile clasts and a jigsaw-crack texture. Fluidal peperites occur only along dike margins, where the host sediments are composed of well sorted, fine to very fine ash (fine-grained zone), and are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The fine-grained zone is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, fine-grained zones formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma before fragmentation, which generated fluidal peperites. Outside the fine-grained zone, intruding magma fragmented in a brittle manner because of the relative deficiency of both pore water and fine-grained ash, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes, as reflected by the different peperite textures.
Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent
NASA Technical Reports Server (NTRS)
Benford, S. M.; Zellars, G. R.; Lowell, C. E.
1981-01-01
Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.
Karr, Jr., Clarence
1977-04-19
An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.
40 CFR 63.1578 - Who implements and enforces this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units.... (1) Approval of alternatives to the non-opacity emission limitations and work practice standards in...
Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon
2011-07-01
Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.
Salatino, Piero; Sannia, Giovanni
2014-01-01
In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564
NASA Astrophysics Data System (ADS)
Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao
2014-10-01
In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; ...
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Elliott, Douglas C.; French, Richard J.
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
Method to produce catalytically active nanocomposite coatings
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat
2016-02-09
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
Process to convert biomass and refuse derived fuel to ethers and/or alcohols
Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.
1996-01-01
A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.
NASA Astrophysics Data System (ADS)
Kwon, Chang Woo; Gihm, Yong Sik
2017-07-01
In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are developed in a bed of poorly sorted, massive pumiceous lapilli tuff (hot sediments) as a result of the vertical to subvertical intrusion of the trachyandesitic dikes into the bed. Blocky peperites are composed of polyhedral or platy juvenile clasts with a jigsaw-crack texture. Fluidal peperites are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The blocky peperites are ubiquitous in the host sediments, whereas the fluidal peperites only occur in fine-grained zone (well sorted fine to very fine ash) that are aligned parallel to the dike margin. The development of the fine-grained zone within the poorly sorted host sediments is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward the waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, the fine-grained zone formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma, which generated fluidal peperites. Outside the fine-grained zone, because of the relative deficiency of both pore water and fine-grained ash, intruding magma fragmented in a brittle manner, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes.
Volatile organic compound adsorption in a gas-solid fluidized bed.
Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T
2004-01-01
Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas concentration. Concentrations up to 220 ppm for methanol and 75 ppm for isobutane were prepared using this method.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
Types of Refined Petroleum Products
These are derived from crude oils through processes such as catalytic cracking and fractional distillation. Examples described here are gasoline, kerosene, no. 2 fuel oil, no. 4 fuel oil, no. 5 fuel oil, no. 6 fuel oil, and lubricating oil.
Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan
Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.
Ma, Rui; Huang, Xiaofei; Zhou, Yang; Fang, Lin; Sun, Shichang; Zhang, Peixin; Zhang, Xianghua; Zhao, Xuxin
2017-08-01
Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe 2 O 3 , and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe 2 O 3 , although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe 2 O 3 in aspect of H 2 production while Fe 2 O 3 was 103% higher than CaO in aspect of CH 4 production. Therefore, CaO was more suitable for H 2 production and Fe 2 O 3 was more suitable for CH 4 production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
Process to convert biomass and refuse derived fuel to ethers and/or alcohols
Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.
1996-04-02
A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.
Properties of gasification-derived char and its utilization for catalytic tar reforming
NASA Astrophysics Data System (ADS)
Qian, Kezhen
Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst were investigated. An increase in reaction temperature led to an increase in removal of most tar components except naphthalene. High pressure promoted the catalytic conditioning of lignin tar. Hydrogen promoted the conversion of lignin into non-condensable gas.
Multiple use of waste catalysts with and without regeneration for waste polymer cracking.
Salmiaton, A; Garforth, A A
2011-06-01
Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
..., Catalytic Cracking, Reforming and Sulfur Units (Renewal); EPA ICR Number 1844.04, OMB Control Number 2060... ICR Number 1844.04, OMB Control Number 2060-0554. ICR Status: This ICR is scheduled to expire on...
Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha
2011-04-15
The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.
Literature survey of properties of synfuels derived from coal
NASA Technical Reports Server (NTRS)
Flores, F.
1982-01-01
A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.
NASA Astrophysics Data System (ADS)
Bozlaker, Ayşe; Buzcu-Güven, Birnur; Fraser, Matthew P.; Chellam, Shankararaman
2013-04-01
Petroleum refineries may emit large quantities of pollutants during non-routine operations that include start-ups and shutdowns, planned maintenance, and unplanned equipment failures. The Texas Commission on Environmental Quality (TCEQ) tracks such events by requiring industries to self-report estimates of these emissions because they often have a detrimental impact on local air quality and potentially, public health. An inventory of non-routine episodic emission events is available via TCEQ's website. However, there is on-going concern that such episodic emissions are sometimes under-reported or even not cataloged. Herein, we present concentrations of 42 main group, transition, and lanthanoid elements in 114 time-resolved (3 or 6 h) samples collected over a 1-month period. We also develop strategies to identify aerosol sources using elemental tracers and compare source apportionment (performed by positive matrix factorization) based on ambient measurements to inventoried non-routine emission events. Through interpretation of key marker elements, five sources impacting concentrations of metals in PM10 were identified and calculated to contribute 73% of the measured PM10 mass. On average, primary emissions from fluidized-bed catalytic cracking (FCC) units negligibly contributed to apportioned PM10 mass. However, 35 samples were identified as impacted by transient PM10 emissions from FCC units because of elevated levels of lanthanoid metals and their ratios. Only 31 of these 35 samples coincided with self-reported non-routine emission events. Further, roughly half of the emission event self-reports detailed only emissions of gaseous pollutants. Based on this, we posit that not all PM10 emission events are reported and even self-reported emission events are incomplete - those that only catalog gaseous pollutants may also include unreported PM emissions.
[Progress in synthesis technologies and application of aviation biofuels].
Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua
2013-03-01
Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.
Kim, Jieun; Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Choi, Tae O; Kim, Jae-Kon; Jeon, Young Jae; Kwon, Eilhann E
2016-07-01
This study fundamentally investigated the pseudo-catalytic transesterification of dried Nannochloropsis oceanica into fatty acid methyl esters (FAMEs) without oil extraction, which was achieved in less than 5min via a thermo-chemical pathway. This study presented that the pseudo-catalytic transesterification reaction was achieved in the presence of silica and that its main driving force was identified as temperature: pores in silica provided the numerous reaction space like a micro-reactor, where the heterogeneous reaction was developed. The introduced FAME derivatization showed an extraordinarily high tolerance of impurities (i.e., pyrolytic products and various extractives). This study also explored the thermal cracking of FAMEs derived from N. oceanica: the thermal cracking of saturated FAMEs was invulnerable at temperatures lower than 400°C. Lastly, this study reported that N. oceanica contained 14.4wt.% of dried N. oceanica and that the introduced methylation technique could be applicable to many research fields sharing the transesterification platform. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of mesoporous Al-MCM-48 material to the conversion of lignin.
Lee, Hyung Won; Lee, In-Gu; Park, Sung Hoon; Jeon, Jong-Ki; Suh, Dong Jin; Jung, Jinho; Park, Young-Kwon
2014-04-01
Al-MCM-48 was applied to the catalytic pyrolysis of lignin for the first time. The pyrolysis reaction and in-situ product were analyzed by pyrolysis gas chromatography/mass spectrometry. The main products of the non-catalytic pyrolysis of lignin were phenols. The use of Al-MCM-48 increased the production of light phenols considerably. The yields of high-value-added compounds, such as hydrocarbons and aromatics, were also increased by catalytic upgrading. Al-MCM-48 is believed to promote cracking, aromatization and deoxygenation, such as decarbonylation. On the other hand, Si-MCM-48, which has no acid sites, showed lower deoxygenation efficiency than Al-MCM-48. Al-MCM-48 could be regenerated by calcining in air.
Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming
2018-03-06
This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.
Catalytic cracking of fast and tail gas reactive pyrolysis bio-oils over HZSM-5
USDA-ARS?s Scientific Manuscript database
While hydrodeoxygenation (HDO) of pyrolysis oil is well understood as an upgrading method, the high processing pressures associated with it alone justify the exploration of alternative upgrading solutions, especially those that could adapt pyrolysis oils into the existing refinery infrastructure. Ca...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrones, J.
1951-05-29
A process which produces H/sub 2/ water enriched in D is described. Natural gas is oxidized to CO and H/sub 2/. These gases at 600 C reduce FeO in a fluidized bed regenerator, and the mixture of gases leaving the regenerator is burned in the boiler which supplies steam at 600 C. This steam reacts with iron dust from the regenerator to produce FeO and H/sub 2/ The deuterium is stripped from the H/sub 2/ with water in a catalytic exchange tower. The water thus enriched passes to an electrolytic step which concentrates D/sub 2/O to 99.8%. (T.R.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Zhang; Jin-hu Wu; Dong-ke Zhang
The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only overmore » the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.« less
A mesostructured Y zeolite as a superior FCC catalyst--lab to refinery.
García-Martínez, Javier; Li, Kunhao; Krishnaiah, Gautham
2012-12-18
A mesostructured Y zeolite was prepared by a surfactant-templated process at the commercial scale and tested in a refinery, showing superior hydrothermal stability and catalytic cracking selectivity, which demonstrates, for the first time, the promising future of mesoporous zeolites in large scale industrial applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratorymore » (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.« less
Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward
2016-09-02
The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.
Chew, Thiam Leng; Bhatia, Subhash
2009-05-01
Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.
1987-01-01
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system to measure and record the opacity of emissions from each catalyst regnerator vent. 4. Option 3: Ni... monitoring system to measure and record the gas flow rate 1. 5. Option 4: Ni lb/1,000 lbs of coke burn-off...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system to measure and record the opacity of emissions from each catalyst regnerator vent. 4. Option 3: Ni... monitoring system to measure and record the gas flow rate 1. 5. Option 4: Ni lb/1,000 lbs of coke burn-off...
40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2013 CFR
2013-07-01
... operate at all times according to the procedures in the plan. (4) The emission limitations and operating... compliance with the emission limitations and work practice standards? You must: (1) Install, operate, and... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...
40 CFR Table 43 to Subpart Uuu of... - Requirements for Reports
Code of Federal Regulations, 2014 CFR
2014-07-01
... to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 43 Table 43 to Subpart UUU of Part 63—Requirements for Reports As stated in § 63.1575(a), you shall meet each...
40 CFR Table 43 to Subpart Uuu of... - Requirements for Reports
Code of Federal Regulations, 2012 CFR
2012-07-01
... to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 43 Table 43 to Subpart UUU of Part 63—Requirements for Reports As stated in § 63.1575(a), you shall meet each...
Palliative effects of H2 on SOFCs operating with carbon containing fuels
NASA Astrophysics Data System (ADS)
Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.
2017-12-01
Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.
Fluidization quality analyzer for fluidized beds
Daw, C. Stuart; Hawk, James A.
1995-01-01
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.
Fluidization quality analyzer for fluidized beds
Daw, C.S.; Hawk, J.A.
1995-07-25
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.
Apparatus and process for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1985-10-01
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Apparatus for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1987-05-12
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Aquatic hazard and biodegradability of light and middle atmospheric distillate petroleum streams.
Swigert, James P; Lee, Carol; Wong, Diana C L; Podhasky, Paula
2014-08-01
Light and middle atmospheric distillate petroleum substances are blended to produce fuels used in transportation and heating. These substances represent the majority by volume of crude oil refined products in the United States. The goal of this research was to develop biodegradability and aquatic toxicity data for four substances; heavy, straight-run naphtha (HSRN), hydro-desulfurized kerosene (HDK), hydro-cracked gas oil (HCGO), and catalytic-cracked gas oil (CCGO). Ready biodegradability tests demonstrated rapid and extensive microbial oxidation of these test substances, indicating a lack of persistence in the aquatic environment. Differences in biodegradation patterns reflected compositional differences in the constituent hydrocarbons. Results of aquatic toxicity tests on alga, cladocera, and fish demonstrated that toxicity was greatest for catalytic-cracked gas oil, which contained a high proportion of aromatic hydrocarbons. Aromatic hydrocarbons are more soluble, and hence more bioavailable, resulting in higher toxicity. When expressed on the basis of loading rates, acute toxicity values (LL/EL50) ranged between 0.3 and 5.5 mg L(-1) for all three species, while chronic no-observed-effect loading rates (NOELR) ranged between 0.05 and 0.64 mg L(-1). PETROTOX estimates for acute and chronic toxicity ranged from 0.18 to 2.3 mg L(-1) and 0.06 to 0.14 mg L(-1), respectively, which were generally more conservative than experimental data. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1982-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Oldrieve, R. E.
1975-01-01
Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.
1987-08-04
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...
Code of Federal Regulations, 2011 CFR
2011-07-01
... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...
40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2010 CFR
2010-07-01
... according to the procedures in the plan. (4) The emission limitations and operating limits for organic HAP... work practice standards? You must: (1) Install, operate, and maintain a continuous monitoring system... operating limit in Table 9 of this subpart that applies to you according to the procedures in Table 11 of...
40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the procedures in the plan. (4) The emission limitations and operating limits for organic HAP... work practice standards? You must: (1) Install, operate, and maintain a continuous monitoring system... operating limit in Table 9 of this subpart that applies to you according to the procedures in Table 11 of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of Continuous...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of Continuous...
Apparatus for controlling fluidized beds
Rehmat, A.G.; Patel, J.G.
1987-05-12
An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.
Brady, M. P.; Keiser, J. R.; Leonard, D. N.; ...
2017-01-31
Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, M. P.; Keiser, J. R.; Leonard, D. N.
Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less
Haydary, J; Susa, D; Dudáš, J
2013-05-01
Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pulse enhanced fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, B.
1996-12-31
Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.
NASA Astrophysics Data System (ADS)
Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto
2017-06-01
Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.
Fluidized bed combustor and tube construction therefor
De Feo, Angelo; Hosek, William
1981-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Tube construction for fluidized bed combustor
De Feo, Angelo; Hosek, William
1984-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Fluidized bed operations survey summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, C.
1996-12-31
A fluidized bed operations survey summary is presented. The survey contains information on: forced outage causes; forced outage concerns ranked numerically; 1996 boiler operation and maintenance (O&M) concerns; 1997 boiler O&M concerns; fluidized bed capacity factor results; and fluidized bed total outage time.
An innovative example of herb residues recycling by gasification in a fluidized bed.
Guo, Feiqiang; Dong, Yuping; Dong, Lei; Jing, Yuanzhuo
2013-04-01
A utilization way of herb residues is designed to convert herb residues to gas fuel in industrial-scale by a circulating fluidized bed gasifier in this paper. The product gas is used in the production of Chinese medicine, and the heat of the flue gas from the boiler can be used in herb residues drying to realize the energy recycling and no herb residues discharge. The gasification characteristics of herb residues in the circulating fluidized bed of 300 kg/h were investigated for about 200 h. The results indicated that the gas composition and tar yield were affected by biomass flow rate, equivalence ratio (ER), moisture content and char circulating. The lower heating value of product gas was 4-5 MJ/m(3) using herb residues as feedstock. When mean biomass flow rate was at 5.5 kg m(-2)s(-1) and ER at 0.35, the product gas reached a good condition with lower heating value of 4.89 MJ/m(3) and cold gas efficiency of 62.36%. When the moisture content changed from 12.5% to 18.7%, the concentrations of H2, CO and CO2 changed from 4.66% to 6.92%, 11.23% to 10.15%, and 16.55% to 17.82% respectively, and the tar content in gas decreased from 15.1g/m(3) to 14.4 g/m(3) when the moisture content increased from 12.5% to 15.4%. There are metal oxides in the ash of herb residues, especially CaO, MgO, K2O, Al2O3, and Fe2O3 which have obvious function on tar catalytic decomposition. The ash that attaches to the char particles can decrease the tar yield and improve the quality of gas after returning to the gasifier. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C
2015-11-04
A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.
Yuasa, H; Nakano, T; Kanaya, Y
1999-02-01
It has been reported that the degree of particle agglomeration in fluidized bed coating is greatly affected by the spray mist size of coating solution. However, the mist size has generally been measured in open air, and few reports have described the measurement of the mist size in a chamber of the fluidized bed, in which actual coating is carried out. Therefore, using hydroxypropylmethyl cellulose (HPMC) aqueous solution as a coating solution, the spray mist size of the coating solution in a chamber of the fluidized bed was measured under various coating conditions, such as the distance from the spray nozzle, fluidization air volume, inlet air temperature and addition of sodium chloride (NaCl) into the coating solution. The mist size in the fluidized bed was compared with that in open air at various distances from the spray nozzle. Further, the relationship between the spray mist size and the degree of suppression of agglomeration at various NaCl concentrations during fluidized bed coating was studied. The mist size distribution showed a logarithmic normal distribution in both cases of the fluidized bed and open air. The number-basis median diameter of spray mist (D50) in the fluidized bed was smaller compared with that in open air. D50 increased with the increasing distance from the spray nozzle in both cases. In the fluidized bed, D50 decreased with the increasing fluidization air volume and inlet air temperature. The effect of NaCl concentration on the mist size was hardly observed, but the degree of suppression of agglomeration during coating increased with the increasing NaCl concentration in the coating solution.
NASA Astrophysics Data System (ADS)
Crock, Christopher A.
Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-06-06
A general and efficient method for shaping MOFs into fluidized forms has been developed via direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These novel fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the... British thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and... auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF... nozzles must conduct a daily check of the air or water pressure to the spray nozzles and record the...
40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568(a)(1...
40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568(a)(1...
Thermal Shock Resistance of Si3N4/h -BN Composites Prepared via Catalytic Reaction-Bonding Route
NASA Astrophysics Data System (ADS)
Yang, Wanli; Peng, Zhigang; Dai, Lina; Shi, Zhongqi; Jin, Zhihao
2017-09-01
Si3N4/h-BN ceramic matrix composites were prepared via a catalytic reaction-bonding route by using ZrO2 as nitridation catalyst, and the water quenching (fast cooling) and molten aluminum quenching tests (fast heating) were carried out to evaluate the thermal shock resistance of the composites. The results showed that the thermal shock resistance was improved obviously with the increase in h-BN content, and the critical thermal shock temperature difference (Δ T c) reaches as high as 780 °C when the h-BN content was 30 wt.%. The improvement of thermal shock resistance of the composites was mainly due to the crack tending to quasi static propagating at weak bonding interface between Si3N4 and h-BN with the increase in h-BN content. For the molten aluminum quenching test, the residual strength showed no obvious decrease compared with water quenching test, which could be caused by the mild stress condition on the surface. In addition, a calculated parameter, volumetric crack density ( N f), was presented to quantitative evaluating the thermal shock resistance of the composites in contrast to the conventional R parameter.
Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my
2015-07-22
Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by usingmore » Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.« less
Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.
Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary
2015-03-25
Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermal energy storage for solar power generation - State of the art
NASA Astrophysics Data System (ADS)
Shukla, K. N.
1981-12-01
High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.
Fluidized bed regenerators for Brayton cycles
NASA Technical Reports Server (NTRS)
Nichols, L. D.
1975-01-01
A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1984-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Rapid ignition of fluidized bed boiler
Osborn, Liman D.
1976-12-14
A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.
Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...
2017-06-07
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Li, Tingwen; Musser, Jordan
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Hancsók, Jenő; Sági, Dániel; Valyon, József
2018-06-11
Sustainable production of renewable fuels has become an imperative goal but also remains a huge challenge faced by the chemical industry. A variety of low-value, renewable sources of carbon such as wastes and by-products must be evaluated for their potential as feedstock to achieve this goal. Hydrogenation of blends comprising waste animal fat (≤70 wt%) and low-value fluid catalytic cracking light cycle oil (≥30 wt%), with a total aromatic content of 87.2 wt%, was studied on a commercial sulfided NiMo/Al 2 O 3 catalyst. The fuel fraction in the diesel boiling range was separated by fractional distillation from the organic liquid product obtained from the catalytic conversion of the blend of 70 wt% waste animal fat and 30 wt% light cycle oil. Diesel fuel of the best quality was obtained under the following reaction conditions: T = 615-635 K, P = 6 MPa, LHSV = 1.0 h -1 , H 2 /feedstock ratio = 600 Nm 3 /m 3 . The presence of fat in the feedstock was found to promote the conversion of light cycle oil to a paraffinic blending component for diesel fuel. Thus, a value-added alternative fuel with high biocontent can be obtained from low-value refinery stream and waste animal fat. The resultant disposal of waste animal fat, and the use of fuel containing less fossil carbon for combustion helps reduce the emission of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gas fluidized-bed stirred media mill
Sadler, III, Leon Y.
1997-01-01
A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.
Mallon, R.G.
1983-05-13
The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.
Chew, Thiam Leng; Bhatia, Subhash
2008-11-01
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2010 CFR
2010-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-gas ratio above the limit established during the performance test. 4. Option 3: Ni lb/hr not subject to the NSPS for PM in 40 CFR 60.102. a. Continuous opacity monitoring system. The daily average Ni operating value must not exceed the site-specific Ni operating limit established during the performance test...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-gas ratio above the limit established during the performance test. 4. Option 3: Ni lb/hr not subject to the NSPS for PM in 40 CFR 60.102. a. Continuous opacity monitoring system. The daily average Ni operating value must not exceed the site-specific Ni operating limit established during the performance test...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Phillip N.
This report describes research into an innovative laser-enhanced catalytic pyrolysis technology that has the potential to significantly decrease the cost of cracking ethane and other alkanes found in shale gas ethylene. Similar to how water is resonantly heated by microwaves, a CO 2 laser can resonantly heat ethylene, producing radicals that convert ethane to ethylene at lower reactor temperatures. Proof of concept experiments were performed to determine if commercial grade CO 2 lasers at one-twenty fifth the cost of scientific grade lasers could crack ethane at lower temperatures than conventional technology. Cr doped MgO catalyst was then inserted in themore » reaction chamber to further increase conersion rates.« less
Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon
Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang
2016-01-01
Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280
Heat transfer to small horizontal cylinders immersed in a fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, J.; Koundakjian, P.; Naylor, D.
2006-10-15
Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
Glass fabrics self-cracking catalytic growth of boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi
2017-02-01
Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.
Fluidized bed boiler feed system
Jones, Brian C.
1981-01-01
A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
The ascent of kimberlite: Insights from olivine
NASA Astrophysics Data System (ADS)
Brett, R. C.; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.
2015-08-01
Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a "kimberlite factory" wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2-7 km and 15-25 km, respectively, at velocities of 0.1 to >4 m s-1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an absence of decompression cracks within olivine overgrowths suggests depths <25 km. Late stage (<25 km) resurfacing and reshaping of olivine by particle-particle milling is indicative of turbulent flow conditions within a fully fluidized, gas-charged, crystal-rich magma.
Pneumatic transportation of dispersed medium through a vertical tube immersed into a fluidized bed
NASA Astrophysics Data System (ADS)
Krasnykh, V. Yu.; Korolev, V. N.; Ostrovskaya, A. V.; Nagornov, S. A.
2013-11-01
We discuss the technical problem of how to transport granular material in a vertical direction from the underlying section of a multistage apparatus containing a fluidized bed to an upper section through tubes immersed into the fluidized bed without additional expenditures of energy. The intensity with which the dispersed medium (a mixture of gas and fuel particles) moves through the tube and the mass flowrate of particles are determined by the ratio between the hydraulic resistances of dispersed medium inside the tube and of the fluidized bed outside of it. In turn, this ratio depends on the fluidization number W (W = w s/ w 0, where w s is the seepage velocity and w 0 is the fluidization commencement velocity) and on the tube immersing depth into the bed.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Refiners have several options for reducing gasoline benzene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.
1993-09-13
Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less
Hodges, James L.; Cerkanowicz, Anthony E.
1983-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Hodges, James L.; Cerkanowicz, Anthony E.
1982-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2017-12-01
The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.
Comparative analyses for selected clean coal technologies in the international marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szpunar, C.B.; Gillette, J.L.
1990-07-01
Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less
A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface
NASA Astrophysics Data System (ADS)
Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang
2017-04-01
To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.
Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.
Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger
2017-10-01
Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang
2011-08-01
AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH(4) as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl(2) and NaH(2)PO(2), and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO(2)(2+), AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L(-1) UO(2)(2+) and 5.0-50 pmol L(-1) UO(2)(2+), respectively. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundstrom, D W; Klei, H E; Coughlin, R W
1979-05-01
The objective of this program is to show that the conversion of cellulose to glucose can be significantly increased by enzymatically removing the inhibitory cellobiose from the reaction system using immobilized ..beta..-glucosidase (..beta..-G). An enzymatic catalyst was prepared and used in a fluidized bed with cellobiose as the substrate, only a 10% loss of activity was observed during a 500 hour period. Cellulose was hydrolyzed in two batch reactors operated side-by-side, with one reactor containing immobilized ..beta..-G and cellulose and the other reactor containing an equal amount of cellulose only. After 30 hours the reactor containing the immobilized ..beta..-G hadmore » 100% more glucose, indicating that the catalytic removal of the cellobiose had a significant effect upon the production of glucose.« less
Fluidized-bed bioreactor system for the microbial solubilization of coal
Scott, C.D.; Strandberg, G.W.
1987-09-14
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.
Mallon, Richard G.
1984-01-01
Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.
Fluidized-bed bioreactor process for the microbial solubiliztion of coal
Scott, Charles D.; Strandberg, Gerald W.
1989-01-01
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.
Conversion of Small Algal Oil Sample to JP-8
2012-01-01
cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2013 CFR
2013-07-01
... coke burn-off emission limit (Option 4). (2) Comply with each operating limit in Table 2 of this... the PM emission rate (lb/1,000 lbs of coke burn-off) for each run using Equations 1, 2, and 3 (if applicable) of this section as follows: ER11AP02.000 Where: Rc = Coke burn-off rate, kg/hr (lb/hr); Qr...
40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2014 CFR
2014-07-01
... coke burn-off emission limit (Option 4). (2) Comply with each operating limit in Table 2 of this... the PM emission rate (lb/1,000 lbs of coke burn-off) for each run using Equations 1, 2, and 3 (if applicable) of this section as follows: ER11AP02.000 Where: Rc = Coke burn-off rate, kg/hr (lb/hr); Qr...
40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2012 CFR
2012-07-01
... coke burn-off emission limit (Option 4). (2) Comply with each operating limit in Table 2 of this... the PM emission rate (lb/1,000 lbs of coke burn-off) for each run using Equations 1, 2, and 3 (if applicable) of this section as follows: ER11AP02.000 Where: Rc = Coke burn-off rate, kg/hr (lb/hr); Qr...
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Bulicz, Tytus R.
1990-01-01
An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.
Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal; ...
2016-10-15
Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal
Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin
2014-12-01
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rheological measurements in reduced gravity
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.
1999-01-01
Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.
An experimental study of the transient regime to fluidized chimney in a granular medium
NASA Astrophysics Data System (ADS)
Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer
2017-06-01
Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haydary, J., E-mail: juma.haydary@stuba.sk; Susa, D.; Dudáš, J.
Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizingmore » of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.« less
Effect of water addition in a microwave assisted thermal cracking of biomass tar gasification
NASA Astrophysics Data System (ADS)
Warsita, A.; Surya, I.
2018-02-01
Producer gas from biomass gasification is plagued by the presence of tar which causes pipe blockages. Thermal and catalytic treatments in a microwave reactor have been shown to be effective methods for removing tar from producer gas. A question arises as to the possibility of enhancing the removal mechanism by adding water into the reactor. Thermal treatment with a various amount of water was added at temperatures in the range of 800-1200°C. The tar removal efficiency obtained 96.32% at the optimum temperature of 1200°C at the water to tar ratio (W/T) of 0.3. This study shows that the removal of tar by microwave irradiation with water addition is a significant and effective method in tar cracking.
Method for retorting oil shale
Shang, Jer-Yu; Lui, A.P.
1985-08-16
The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
Bulicz, T.R.
1990-04-17
An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.
Fluidized bed heating process and apparatus
NASA Technical Reports Server (NTRS)
McHale, Edward J. (Inventor)
1981-01-01
Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.
Control of bed height in a fluidized bed gasification system
Mehta, Gautam I.; Rogers, Lynn M.
1983-12-20
In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana
2003-01-01
This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.
Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow
Jia, Dening; Cathary, Océane; Peng, Jianghong; ...
2015-10-01
Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less
Automotive and Construction Equipment for Arctic Use: Heating and Cold Starting
1991-04-01
heater. Catalytic combustion heaters similar to that shown in Figure 12 produce flameless heat using gasoline, benzene or a similar fuel and have... combustion chamber; physical scientist, is a • engine compartment air; and member of CRREL’s * personnel and cargo compartments. Applied Research Wind...component warping and thermal cracking. When coolant is pumped, heat is not only provided to the cylinders, thereby warming the combustion cha iber and the
40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with the PM emission limit (Option 2); (iii) You can elect to comply with the Nickel (Ni) lb/hr emission limit (Option 3); or (iv) You can elect to comply with the Ni lb/1,000 lbs of coke burn-off... coke burn. ER11AP02.004 (iii) If you elect Option 3 in paragraph (a)(1)(iii) of this section, the Ni lb...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 4 of § 63.1564. 4. Option 3: Ni lb/hr a. Measure concentration of Ni and total metal HAP. Method 29 (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564. c. Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA...
40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the PM emission limit (Option 2); (iii) You can elect to comply with the Nickel (Ni) lb/hr emission limit (Option 3); or (iv) You can elect to comply with the Ni lb/1,000 lbs of coke burn-off... coke burn. ER11AP02.004 (iii) If you elect Option 3 in paragraph (a)(1)(iii) of this section, the Ni lb...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4 of § 63.1564. 4. Option 3: Ni lb/hr a. Measure concentration of Ni and total metal HAP. Method 29 (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564. c. Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA...
Hybrid fluidized bed combuster
Kantesaria, Prabhudas P.; Matthews, Francis T.
1982-01-01
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
Fluidized bed injection assembly for coal gasification
Cherish, Peter; Salvador, Louis A.
1981-01-01
A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.
Coal-feeding mechanism for a fluidized bed combustion chamber
Gall, Robert L.
1981-01-01
The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.
Sweet, W D; Schroeder, F
1986-01-01
The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Kwun; Keener, T.C.; Cook, J.L.
1993-12-31
The experimental data of lime sorbent attrition obtained from attriton tests in a circulating fluidized bed absorber (CFBA) are represented. The results are interpreted as both the weight-based attrition rate and size-based attrition rate. The weight-based attrition rate constants are obtained from a modified second-order attrition model, incorporating a minimum fluidization weight, W{sub min}, and excess velocity. Furthermore, this minimum fluidization weight, or W{sub min} was found to be a function of both particle size and velocity. A plot of the natural log of the overall weight-based attrition rate constants (ln K{sub a}) for Lime 1 (903 MMD) at superficialmore » gas velocities of 2 m/s, 2.35 m/s, and 2.69 m/s and for Lime 2 (1764 MMD) at superficial gas velocities of 2 m/s, 3 m/s, 4 m/s and 5 m/s versus the energy term, 1/(U-U{sub mf}){sup 2}, yielded a linear relationship. And, a regression coefficient of 0.9386 for the linear regression confirms that K{sub a} may be expressed in Arrhenius form. In addition, an unsteady state population model is represented to predict the changes in size distribution of bed materials during fluidization. The unsteady state population model was verified experimentally and the solid size distribution predicted by the model agreed well with the corresponding experimental size distributions. The model may be applicable for the batch and continuous operations of fluidized beds in which the solids size reduction is predominantly resulted from attritions and elutriations. Such significance of the mechanical attrition and elutriation is frequently seen in a fast fluidized bed as well as in a circulating fluidized bed.« less
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung
2005-01-01
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.
The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao
2008-05-15
A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less
Use of a fluidized bed for the thermal and chemicothermal treatment of metals
NASA Astrophysics Data System (ADS)
Varygin, N. N.; Ol'shanov, E. Ya.
1971-06-01
An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.
Nonspherical particles in a pseudo-2D fluidized bed: Experimental study.
Mahajan, Vinay V; Padding, Johan T; Nijssen, Tim M J; Buist, Kay A; Kuipers, J A M
2018-05-01
Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo-2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod-like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod-like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 64: 1573-1590, 2018.
Nonspherical particles in a pseudo‐2D fluidized bed: Experimental study
Mahajan, Vinay V.; Nijssen, Tim M. J.; Buist, Kay A.; Kuipers, J. A. M.
2018-01-01
Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo‐2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod‐like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod‐like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1573–1590, 2018 PMID:29706659
ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori
This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.
Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals.
Phillips, Katherine R; Shirman, Tanya; Shirman, Elijah; Shneidman, Anna V; Kay, Theresa M; Aizenberg, Joanna
2018-05-01
Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful self-assembly and minimize crack formation. Co-assembly of templating colloidal particles together with a sol-gel matrix precursor material helps to release stresses that accumulate during drying and solidification, as previously shown for the formation of high-quality inverse opal (IO) films out of amorphous silica. Expanding this methodology to crystalline materials would result in microscale architectures with enhanced photonic, electronic, and catalytic properties. This work describes tailoring the crystallinity of metal oxide precursors that enable the formation of highly ordered, large-area (mm 2 ) crack-free titania, zirconia, and alumina IO films. The same bioinspired approach can be applied to other crystalline materials as well as structures beyond IOs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...
Humbird, David; Trendewicz, Anna; Braun, Robert; ...
2017-01-12
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Trendewicz, Anna; Braun, Robert
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
Fluidized bed deposition of diamond
Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.
1998-01-01
A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gel'perin, N.I.; Ainshtein, V.G.; Nosova, V.V.
1983-01-01
The purpose of this article is to ascertain the reasons for the appearance of stagnant zones in a fluidized bed. Analyzed is the state of a hypothetical bed without the supporting gas distribution grate with fluctuations in the local velocities w of fluidizing agent in its cross sections in relation to the average value wav. It assumes that at any instant the distribution of the fluidizing agent over the bed cross section is inhomogeneous. As the local velocities and dimensions increase and the effective cross section of the grate decreases, the apparatus cross section regularly increases.
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
Particle withdrawal from fluidized bed systems
Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.
1982-01-01
Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.
Model of Fluidized Bed Containing Reacting Solids and Gases
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.
Thermal and chemical remediation of mixed waste
Nelson, P.A.; Swift, W.M.
1994-08-09
A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.
Thermal and chemical remediation of mixed waste
Nelson, Paul A.; Swift, William M.
1994-01-01
A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.
The Onset of Channelling in a Fluidized Mud Layer
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.
2012-12-01
Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.
Zhang, Junshuai; Yao, Tongjie; Zhang, Hui; Zhang, Xiao; Wu, Jie
2016-11-10
In this manuscript, we have introduced a novel method to improve the catalytic activity of metal nanoparticles via optimizing the support structure. To this end, raspberry-like γ-Fe 2 O 3 /crackled nitrogen-doped carbon (CNC) capsules were prepared by a two-step method. Compared with traditional magnetic capsules, in γ-Fe 2 O 3 /CNC capsules, the γ-Fe 2 O 3 nanoparticles were embedded in a CNC shell; therefore, they neither occupied the anchoring sites for metal nanoparticles nor came into contact with them, which was beneficial for increasing the metal nanoparticle loading. Numerous tiny cracks appeared on the porous CNC shell, which effectively improved the mass diffusion and transport in catalytic reactions. Additionally, the coordination interaction could be generated between the precursor metal ions and doped-nitrogen atoms in the capsule shell. With the help of these structural merits, γ-Fe 2 O 3 /CNC capsules were ideal supports for Pd nanoparticles, because they were beneficial for improving the Pd loading, reducing the nanoparticle size, increasing their dispersity and maximizing the catalytic performance of Pd nanoparticles anchored on the inner shell surface. As expected, γ-Fe 2 O 3 /CNC@Pd catalysts exhibited a dramatically enhanced catalytic activity towards hydrophilic 4-nitrophenol and hydrophobic nitrobenzene. The reaction rate constant k was compared with recent work and the corresponding reference samples. Moreover, they could be easily recycled by using a magnet and reused without an obvious loss of catalytic activity.
Methods of cracking a crude product to produce additional crude products
Mo, Weijian [Sugar Land, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX
2009-09-08
A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.
Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters
2015-12-01
characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121
The effect of positioning cations on acidity and stability of the framework structure of Y zeolite
Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun
2016-01-01
The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yunqian; Lim, Byungkwon; Yang, Yong
2010-10-25
Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less
Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, X.; Chen, Q.; Yang, Y.
1996-12-31
Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less
Granular compaction by fluidization
NASA Astrophysics Data System (ADS)
Tariot, Alexis; Gauthier, Georges; Gondret, Philippe
2017-06-01
How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".
Process for the production of fuel gas from coal
Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.
1982-01-01
An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.
Thermally activated creep and fluidization in flowing disordered materials
NASA Astrophysics Data System (ADS)
Merabia, Samy; Detcheverry, François
2016-11-01
When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.
Synchronized oscillations and acoustic fluidization in confined granular materials
NASA Astrophysics Data System (ADS)
Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.
2018-01-01
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Method for producing and regenerating a synthetic CO.sub.2 acceptor
Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA
1982-01-01
A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.
Method for producing and regenerating a synthetic CO[sub 2] acceptor
Lancet, M. S.; Curran, G. P.; Gorin, E.
1982-05-18
A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition
NASA Astrophysics Data System (ADS)
Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong
2015-07-01
A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Nan; Battaglia, Francine; Pannala, Sreekanth
2008-01-01
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less
Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor
2014-01-01
Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Treatment of N-Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...21 5.6.1 NDMA and DMN
CFD analysis of hydrodynamic studies of a bubbling fluidized bed
NASA Astrophysics Data System (ADS)
Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.
2018-03-01
Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights
Method and apparatus for improving heat transfer in a fluidized bed
Lessor, Delbert L.; Robertus, Robert J.
1990-01-01
An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.
Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang
2017-09-15
The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Fire blocking systems for aircraft seat cushions
NASA Technical Reports Server (NTRS)
Parker, J. A.; Kourtides, D. A. (Inventor)
1984-01-01
A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.
Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.
Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less
Conversion of wood residues to diesel fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, J.L.
1981-01-01
The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidizedmore » with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.« less
Effect of sulfation on the surface activity of CaO for N2O decomposition
NASA Astrophysics Data System (ADS)
Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping
2015-12-01
Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N2O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N2O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N2O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO2 or SO3 molecule forms stable local CaSO3 or CaSO4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SOx and the surface O anion. The formed local CaSO3 increases the barrier energy of N2O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO3 into CaSO4 is therefore the crucial step for deactivating the surface activity for N2O decomposition. Completely sulfated CaSO4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO4 for N2O decomposition.
Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...
2017-06-29
Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less
Engineering New Catalysts for In-Process Elimination of Tars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Larry G.
2012-09-30
The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-01-01
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Twelfth annual fluidized bed conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Heat exchanger support apparatus in a fluidized bed
Lawton, Carl W.
1982-01-01
A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.
Combined fluidized bed retort and combustor
Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen
1984-01-01
The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.
Recent advances in fluidized bed drying
NASA Astrophysics Data System (ADS)
Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.
2017-09-01
Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.
Li, Jie; Liu, Yung Y
2015-01-20
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
[Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].
Xing, Liming; Zhao, Zhengsheng
2012-07-01
To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of a Localized Fluidization Burrowing Robot
NASA Astrophysics Data System (ADS)
Dorsch, Daniel; Winter, Amos
2014-11-01
This presentation will focus on the critical fluid and granular mechanics principles that drove the design of RoboClam 2.0, a self-actuated, radially expanding underwater burrowing device. RoboClam 2.0 was inspired by the Atlantic razor clam, Ensis directus, which burrows by contracting its valves and fluidizing the surrounding soil to reduce burrowing drag. This contraction results in a localized fluidized region occurring 1-5 body radii away from the animal. Moving through a fluidized, rather than static, soil requires energy that scales linearly with depth, rather than depth squared. In addition to providing an advantage for the animal, localized fluidization may yield significant value to engineering applications such as subsea robot anchoring and pipe installation. RoboClam 2.0 is sized to be an anchoring platform for autonomous underwater vehicles. We will present the scaling relationships that can be used to design RoboClam derivatives for different size scales and applications. The critical speed, displacement and force with which the device must contract to create fluidization are calculated based on soil parameters. These parametric relationships allow for choosing actuators of appropriate size and power output for desired burrowing performance.
Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals.
Maher, K D; Bressler, D C
2007-09-01
Conversion of vegetable oils and animal fats composed predominantly of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to collect and review literature on the thermo-chemical conversion of triglyceride based materials. The literature was divided and discussed as (1) direct thermal cracking and (2) combination of thermal and catalytic cracking. Typically, four main catalyst types are used including transition metal catalysts, molecular sieve type catalysts, activated alumina, and sodium carbonate. Reaction products are heavily dependant on the catalyst type and reaction conditions and can range from diesel like fractions to gasoline like fractions. Research in this area is not as advanced as bio-oil and bio-diesel research and there is opportunity for further study in the areas of reaction optimization, detailed characterization of products and properties, and scale-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, F.A.; Parrish, G.
1984-10-01
A bulk sample of fractionator residue was analyzed for polynuclear aromatic (PNA) compounds at the catalytic cracking unit of ARCO Philadelphia Refinery (SIC-2911), Philadelphia, Pennsylvania in May, 1983. The study was requested by the Atlantic Independent Union to determine if skin rashes and skin irritation occurring among refinery workers were caused by PNA in the fractionators. The authors conclude that a health hazard from exposure to chemicals at the cracking unit may exist. No specific chemical agent can be identified. Dust from the catalyst and oily residues that could contaminate workers shoes and clothing may have contributed to some ofmore » the dermatitis cases. Recommendations include laundering workers coveralls by dry cleaning to insure the removal of oily residues, providing workers with oil resistant or oil proof work boots, and repairing the ventilator in the sample preparation room adjacent to the block house.« less
MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, D. W.; Fujita, Y.; Daubaras, D. L.
2016-09-01
Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium)more » from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.« less
NASA Astrophysics Data System (ADS)
Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan
2014-06-01
This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.
High-Purity Silicon Seeds for Silane Pyrolysis
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.; Morrison, A.
1985-01-01
Seed particles for fluidized-bed production of silicon made by new contamination-free, economical method. In new method, large particles of semiconductor-grade silicon fired at each other by high-speed streams of gas and thereby break up into particles of suitable size for fluidized bed. No foreign materials introduced, and leaching unnecessary. Method used to feed fluidized-bed reactor for continuous production of high-purity silicon.
Catalytic upgrading of oil fractions separated from food waste leachate.
Heo, Hyeon Su; Kim, Sang Guk; Jeong, Kwang-Eun; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Ji Man; Kim, Seung-Soo; Park, Young-Kwon
2011-02-01
In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the direct analysis of the pyrolytic products. Most acidic components, especially oleic acid, contained in the food waste oil fractions were converted to valuable products, such as oxygenates, hydrocarbons and aromatics. High yields of hydrocarbons within the gasoline-range were obtained when microporous catalysts were used; whereas, the use of Al-MCM-48, which exhibits relatively weak acidity, resulted in high yields of oxygenated and diesel-range hydrocarbons. The HZSM-5 catalyst produced a higher amount of valuable mono aromatics due to its strong acidity and shape selectivity. Especially, the addition of gallium (Ga) to HZSM-5 significantly increased the aromatics content. Copyright © 2010 Elsevier Ltd. All rights reserved.
Soil separator and sampler and method of sampling
O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID
2010-02-16
A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.
NASA Astrophysics Data System (ADS)
Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua
2012-12-01
This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.
Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan M.; Li, Tingwen
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotsuka, R.N.; Peck, R.W. Jr.; Drew, R.T.
1985-02-01
A fluidizing bed aerosol generator (FBG), designed for inhalation toxicity studies, was constructed and tested. A key design feature contributing to its operational stability was the partial masking of the screen supporting the bronze beads. This caused 20-80% of the bed to fluidize under normal operating conditions. The non-fluidizing areas functioned as reservoirs to feed the fluidizing areas. Using a bed volume of 1000 cc of bronze beads and 20 g of MnO/sub 2/ dust, the mass output rate ranged from 0.1 to 1.0 mg/min when operated at plenum pressures of 1.04 x 10/sup 2/ to 2.42 x 10/sup 2/more » kPa (minimum fluidization pressure was approximately 82.8 kPa). During daily operation at three different output rates, the FBG produced aerosols with little change in particle size distributions or concentration when operated six hours/day for five days. Furthermore, when the FBG was operated at a fixed output rate for 15 days with two recharges of MnO/sub 2/ dust, the particle size distribution did not show any cumulative increase. Thus, long-term operation of this FBG should result in a reproducible range of concentration and particle size distribution.« less
Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.
Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A
2007-11-01
Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.
[Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].
Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi
2008-06-01
Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.
NASA Astrophysics Data System (ADS)
Honda, Kazuhiro; Ohdaira, Keisuke; Matsumura, Hideki
2008-05-01
In catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD, source gases are decomposed by catalytic cracking reactions with heated catalyzing metal wires. In the case of silicon (Si) film deposition, such metal wires are often converted to silicide, which shortens the lifetime of catalyzing wires. As a catalyzer, tungsten (W) is widely used. Thus, the process of silicidation of a W catalyzer at temperatures over 1650 °C, which is the temperature used in Cat-CVD for Si film deposition, was studied extensively in various experiments. It is found that two phases of tungsten-silicide, WSi2 and W5Si3, are formed at this temperature, and that the radiation emissivity of WSi2 is 1.2 to 1.7 times higher than that of W5Si3 and pure W. The increase of surface emissivity due to the formation of WSi2 decreases the catalyzer surface temperature which induces further growth of the tungsten-silicide layer. It is also found that the suppression of WSi2 formation by elevating catalyzer temperatures over 1750 °C is a key to extending the lifetime of the W catalyzer in Cat-CVD.
Fluidized-bed calciner with combustion nozzle and shroud
Wielang, Joseph A.; Palmer, William B.; Kerr, William B.
1977-01-01
A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
Cole, Rossa W.; Zoll, August H.
1982-01-01
In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.
A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification
NASA Astrophysics Data System (ADS)
Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do
A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.
Apparatus for hot-gas desulfurization of fuel gases
Bissett, Larry A.
1992-01-01
An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.
1995-12-31
The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less
Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming.
Escola, J M; Aguado, J; Serrano, D P; Briones, L
2014-11-01
Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550°C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310°C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52-54%. Maximum selectivity to automotive fuels (∼81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71-86) and octane numbers (89-91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental studies on combustion of composite biomass pellets in fluidized bed.
Guo, Feihong; Zhong, Zhaoping
2017-12-01
This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to be closely related to O 2 : the NO reaches its peak value after initial stage and later decreases with the continued depletion of O 2 . Towards the end of combustion, NO increases with the increase of O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
History and utility of zeolite framework-type discovery from a data-science perspective
Zimmermann, Nils E. R.; Haranczyk, Maciej
2016-05-02
Mature applications such as fluid catalytic cracking and hydrocracking rely critically on early zeolite structures. With a data-driven approach, we find that the discovery of exceptional zeolite framework types around the new millennium was spurred by exciting new utilization routes. The promising processes have yet not been successfully implemented (“valley of death” effect), mainly because of the lack of thermal stability of the crystals. As a result, this foreshadows limited deployability of recent zeolite discoveries that were achieved by novel crystal synthesis routes.
Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine (Postprint)
2007-09-01
this research. Each 0.91-m-long heat exchanger was fabricated with a 50.8-mm-dia, inconel - 625 , Schedule-10 inner tube and a 63.5-mm-dia, inconel -600...detonation tube had an inconel heat exchanger (described later). The PDE cycle consisted of three equally timed phases--fill, fire, and purge, as shown in...prevent phase change. The fuel was pressure fed to the inlet of the fuel heating system (FHS). The FHS consisted of two inconel heat exchangers, a
Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Kwun; Keener, T.C.; Jiang, Xiaolin
1993-11-01
The experimental data of lime sorbent attrition obtained from mechanical and thermal attrition tests in a circulating fluidized bed absorber (CFBA) are represented. The results indicate that the predominant attrition mechanism during lime fluidization is surface abrasion due to collisions of the parent solids in a bed. Attrition of lime at higher temperatures decreased due to its hardened properties with rising temperature, while such solids as limestone become more attritable by the crepitation resulting from the increased internal pressure. With an introduction of the minimum weight of parent solids, the attrition rate of lime in a CFBA has a first-ordermore » dependency with respect to time. The attrition rate constant is expressed in an Arrhenius form, using the kinetic model which relates the attrition rate to the gas properties such as temperature and molecular weight and the geometry of the fluidized bed as well as the fluidization velocity. The experimental data obtained from these tests in a CFBA agree well with the attrition model, and the model indicates trends due to increased temperature considering thermal attrition. From the model the attrition activation energy, E[sub a] and k[sub o], can be obtained as E[sub a] = 3.383 [times] 10[sup [minus]3] kJ/kg and k[sub o] = 1.29 [times] 10[sup [minus]4]s[sup [minus]1], Comparisons of the mechanical and thermal attrition data obtained experimentally with the theoretical values computed with the attrition activation energy, E[sub a] and k[sub o], are in good agreement, and thus the results may be applicable to lime attrition in a fluidized bed.« less
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Inclined fluidized bed system for drying fine coal
Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.
1992-02-11
Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.
Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.
1984-04-01
The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
NASA Astrophysics Data System (ADS)
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L.
1979-01-01
Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
Staged fluidized-bed combustion and filter system
Mei, Joseph S.; Halow, John S.
1994-01-01
A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.
Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T
2017-12-01
In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
Valve for controlling solids flow
Staiger, M. Daniel
1985-01-01
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Fluidized combustion of coal. [to limit SO2 and NOx emissions
NASA Technical Reports Server (NTRS)
Pope, M.
1978-01-01
A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.
Valve for controlling solids flow
Staiger, M.D.
1982-09-29
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath
2004-01-01
Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.
Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass
NASA Astrophysics Data System (ADS)
Fotovat, Farzam
This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Staged cascade fluidized bed combustor
Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.
1984-01-01
A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
Regeneration of lime from sulfates for fluidized-bed combustion
Yang, Ralph T.; Steinberg, Meyer
1980-01-01
In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.
NASA Astrophysics Data System (ADS)
Abbasi Baharanchi, Ahmadreza
This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.
Low-temperature gas from marine shales: wet gas to dry gas over experimental time.
Mango, Frank D; Jarvie, Daniel M
2009-11-09
Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.
Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.
Vogt, E T C; Weckhuysen, B M
2015-10-21
Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.
Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi
2015-04-01
There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis
2015-01-01
Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875
JPL in-house fluidized-bed reactor research
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1984-01-01
Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
2017-01-01
The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Computational study of heat transfer in gas fluidization
NASA Astrophysics Data System (ADS)
Hou, Q. F.; Zhou, Z. Y.; Yu, A. B.
2013-06-01
Heat transfer in gas fluidization is investigated at a particle scale by means of a combined discrete element method and computational fluid dynamicsapproach. To develop understanding of heat transfer at various conditions, the effects of a few important material properties such as particle size, the Hamaker constant and particle thermal conductivity are examined through controlled numerical experiments. It is found that the convective heat transfer is dominant, and radiative heat transfer becomes important when the temperature is high. Conductive heat transfer also plays a role depending on the flow regimes and material properties. The heat transfer between a fluidized bed and an immersed surface is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. The findings should be useful for better understanding and predicting the heat transfer in gas fluidization.
NASA Technical Reports Server (NTRS)
Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian
2013-01-01
To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y
2014-06-01
In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bioleaching of rare earth elements from waste phosphors and cracking catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, David W.; Fujita, Yoshiko; Daubaras, Dayna L.
Four microbial cultures were evaluated for organic acid production and their potential utility for leaching of rare earth elements (REE) from retorted phosphor powder (RPP) and spent fluidized cracking catalyst (FCC). Three of the cultures (2 bacterial, 1 fungal) were isolated from environmental and industrial materials known to contain rare earth elements. The other was the well-known and industrially important bacterium Gluconobacter oxydans. Gluconic acid was the predominant identified organic acid produced by all of the cultures; citric and acetic acid were among the other acids detected. There was also maximum REE leaching by cell free culture supernatants obtained withmore » Gluconobacter and the FCC; 49% of total REE was recovered, with preferential recovery of lanthanum over cerium. The phosphor powder was more difficult to leach; only ~2 % total REE was leached from RPP with Gluconobacter. Tests with the RPP indicated that the extent of REE solubilization was similar whether whole cell cultures or cell-free supernatants were used. However, Gluconobacter cell-free culture supernatants with 10-15 mM gluconic acid outperformed abiotically prepared leaching solutions with 30 mM gluconic acid concentrations. Abiotic tests showed that increasing gluconic acid concentrations increased leaching efficiency; for example, total REE leaching from FCC increased from 24 to 36 to 45% when gluconic acid was increased from 10 to 30 to 90 mM. Our research shows that utilizing microorganisms that produce gluconic acid can result in effective leaching of REE from waste materials, and optimizing gluconic acid production will improve recovery.« less
Bioleaching of rare earth elements from waste phosphors and cracking catalysts
Reed, David W.; Fujita, Yoshiko; Daubaras, Dayna L.; ...
2016-08-22
Four microbial cultures were evaluated for organic acid production and their potential utility for leaching of rare earth elements (REE) from retorted phosphor powder (RPP) and spent fluidized cracking catalyst (FCC). Three of the cultures (2 bacterial, 1 fungal) were isolated from environmental and industrial materials known to contain rare earth elements. The other was the well-known and industrially important bacterium Gluconobacter oxydans. Gluconic acid was the predominant identified organic acid produced by all of the cultures; citric and acetic acid were among the other acids detected. There was also maximum REE leaching by cell free culture supernatants obtained withmore » Gluconobacter and the FCC; 49% of total REE was recovered, with preferential recovery of lanthanum over cerium. The phosphor powder was more difficult to leach; only ~2 % total REE was leached from RPP with Gluconobacter. Tests with the RPP indicated that the extent of REE solubilization was similar whether whole cell cultures or cell-free supernatants were used. However, Gluconobacter cell-free culture supernatants with 10-15 mM gluconic acid outperformed abiotically prepared leaching solutions with 30 mM gluconic acid concentrations. Abiotic tests showed that increasing gluconic acid concentrations increased leaching efficiency; for example, total REE leaching from FCC increased from 24 to 36 to 45% when gluconic acid was increased from 10 to 30 to 90 mM. Our research shows that utilizing microorganisms that produce gluconic acid can result in effective leaching of REE from waste materials, and optimizing gluconic acid production will improve recovery.« less
NASA Astrophysics Data System (ADS)
Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin
2015-01-01
A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.
Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua
2018-01-01
Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.
Fluidization of spherocylindrical particles
NASA Astrophysics Data System (ADS)
Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.
2017-06-01
Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.
Phase holdups in three-phase fluidized beds in the presence of disc promoter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.
2011-02-15
Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A
2017-10-21
ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher conversion levels. Coke remained low with both fresh and steam-deactivated P/ZSM-5 additives.