Sample records for fluidized primary particulate

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  3. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  7. Fluidizing a mixture of particulate coal and char

    DOEpatents

    Green, Norman W.

    1979-08-07

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  8. PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE

    EPA Science Inventory

    The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...

  9. Soil separator and sampler and method of sampling

    DOEpatents

    O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID

    2010-02-16

    A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

  10. Mixing method and apparatus

    DOEpatents

    Green, Norman W.

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  11. Analysis of the high-temperature particulate collection problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  12. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  13. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  14. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  15. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  16. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  17. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  18. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  19. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  20. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  1. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  2. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  3. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  4. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  5. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  6. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  7. Fluidizable particulate materials and methods of making same

    DOEpatents

    Gupta, Raghubir P.

    1999-01-01

    The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

  8. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  9. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  10. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  11. Fluidized bed boiler having a segmented grate

    DOEpatents

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  12. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  13. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  14. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  15. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  16. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  17. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  18. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    DOEpatents

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  19. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  20. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An approach for modeling thermal destruction of hazardous wastes in circulating fluidized bed incinerator.

    PubMed

    Patil, M P; Sonolikar, R L

    2008-10-01

    This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.

  2. Reduction of particulate carryover from a pressurized fluidized bed

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.

  3. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  4. Fluidized Bed Asbestos Sampler Design and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karen E. Wright; Barry H. O'Brien

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulatemore » including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this concentration. Opportunities for improvement with the fluidized bed include improving reproducibility among replicates, increasing mass recovery, improving the lid gasket seal.« less

  5. An Overview of Atmospheric Fluidized Bed Combustion Systems as Applied to Army Scale Central Heat Plants

    DTIC Science & Technology

    1992-11-01

    heat transfer surfaces located in the path of the exiting combustion gases generate additional steam. Flue gas particulates entrained in the combustion...anid the overall heat transfer surface anid boiler volume can be reduced. After the hot flue gas exits thie bed, it enters the external COnv.ctfion...rates, underfeed stoker fired combustors emit little smoke, and only a low concentration of particulates entrained in the flue gas . Under these

  6. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-shing

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  7. ELECTROSTATIC AIR CLEANING DEVICE AND METHOD

    DOEpatents

    Silverman, L.; Anderson, D.M.

    1961-07-18

    A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.

  8. Pneumatic System for Concentration of Micrometer-Size Lunar Soil

    NASA Technical Reports Server (NTRS)

    McKay, David; Cooper, Bonnie

    2012-01-01

    A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.

  9. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  10. 40 CFR 60.155 - Reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...

  11. 40 CFR 60.155 - Reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...

  12. 40 CFR 60.155 - Reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...

  13. 40 CFR 60.155 - Reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...

  14. Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment.

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2012-05-01

    Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  16. Structural evolution of a granular medium during simultaneous penetration

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, Jorge; Carreón, Yojana J. P.; Moctezuma, R. E.

    2018-01-01

    Typically, fluidized beds are granular systems composed of solid particles through which a fluid flows. They are relevant to a wide variety of disciplines such as physics, chemistry, engineering, among others. Generally, the fluidized beds are characterized by different flow regimes such as particulate, bubbling, slugging, turbulent, fast fluidization, and pneumatic conveying. Here, we report the experimental study of the structural evolution of a granular system due to simultaneous penetration of intruders in the presence of an upward airflow. We found that the granular medium evolves from the static state to the turbulent regime showing the coexistence of three regions in different flow regimes. Interestingly, the cooperative dynamic of intruders correlate with the formation of such regions. As a non-invasive method, we use lacunarity and fractal dimension to quantitatively describe the patterns arising within the system during the different stages of the penetration process. Finally, we found that our results would allow us to relate the evolution of the visual patterns appearing in the process with different physical properties of the system.

  17. Emission characteristics for gaseous- and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler.

    PubMed

    Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong

    2018-07-01

    The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Blast resistant vehicle seat

    DOEpatents

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  19. Water softening by induced crystallization in fluidized bed.

    PubMed

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.

  20. Simulation of fluidized bed combustors. I - Combustion efficiency and temperature profile. [for coal-fired gas turbines

    NASA Technical Reports Server (NTRS)

    Horio, M.; Wen, C. Y.

    1976-01-01

    A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.

  1. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    PubMed

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  2. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  3. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  5. Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, L.; Leckner, B.

    1995-04-01

    A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases frommore » the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.« less

  6. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  7. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter ofmore » the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)« less

  8. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  9. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.

    PubMed

    Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R

    2001-01-01

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.

  10. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  11. Fluidization, resolidification, and reorientation of the endothelial cell in response to slow tidal stretches

    PubMed Central

    Krishnan, Ramaswamy; Canović, Elizabeth Peruski; Iordan, Andreea L.; Rajendran, Kavitha; Manomohan, Greeshma; Pirentis, Athanassios P.; Smith, Michael L.; Butler, James P.; Fredberg, Jeffrey J.

    2012-01-01

    Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification. PMID:22700796

  12. Tar removal during the fluidized bed gasification of plastic waste.

    PubMed

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2009-02-01

    A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381 m and a maximum feeding capacity of 90 kg/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850 degrees C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131 and 215 kg, the fluidizing velocity was between 0.5 and 0.7 m/s, quartz sand and olivine were used as bed material, and air and steam were used as fluidizing reactants. The results confirm that the tar removal treatments applied inside the gasifier (primary methods) can eliminate or strongly reduce the need for a further downstream cleanup of the syngas. In particular, the utilization of a natural olivine as an in situ tar reduction agent remarkably improves the quality of the product gas, in terms of both high hydrogen volumetric fraction and larger syngas yield.

  13. "EGM" (Electrostatics of Granular Matter): A Space Station Experiment to Examine Natural Particulate Systems

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.

    1999-09-01

    A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.

  14. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  15. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  16. Single Crystal Casting with Fluidized Carbon Bed Cooling: A Process Innovation for Quality Improvement and Cost Reduction

    NASA Astrophysics Data System (ADS)

    Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.

    2017-12-01

    Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."

  17. Martian rampart crater ejecta - Experiments and analysis of melt-water interaction

    NASA Technical Reports Server (NTRS)

    Wohletz, K. H.; Sheridan, M. F.

    1983-01-01

    The possible effects of explosive water vaporization on ejecta emplacement after impact into a wet target are described. A general model is formulated from analysis of Viking imagery of Mars and experimental vapor explosions as well as consideration of fluidized particulate transport and lobate volcanic deposits. The discussed model contends that as target water content increases, the effects of vapor expansion due to impact increasingly modify the ballistic flow field during crater excavation. This modification results in transport by gravity-driven surface flowage, and is similar to that of atmospheric drag effects on ejecta modelled by Schultz and Gault (1979).

  18. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less

  19. Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor.

    PubMed

    Vicente, E D; Tarelho, L A C; Teixeira, E R; Duarte, M; Nunes, T; Colombi, C; Gianelle, V; da Rocha, G O; Sanchez de la Campa, A; Alves, C A

    2016-04-01

    Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution, reduced costs and improved efficiency of technologies. Under the European Union (EU) energy directive, biomass is a suitable renewable source. The aim of this study was to experimentally quantify and characterize the emission of particulate matter (PM2.5) resulting from the combustion of two biomass fuels (chipped residual biomass from pine and eucalypt), in a pilot-scale bubbling fluidized bed (BFB) combustor under distinct operating conditions. The variables evaluated were the stoichiometry and, in the case of eucalypt, the leaching of the fuel. The CO and PM2.5 emission factors were lower when the stoichiometry used in the experiments was higher (0.33±0.1 g CO/kg and 16.8±1.0 mg PM2.5/kg, dry gases). The treatment of the fuel by leaching before its combustion has shown to promote higher PM2.5 emissions (55.2±2.5 mg/kg, as burned). Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass, while carbonate (CO3(2-)) accounted for between 2.3 and 8.5 wt.%. The particulate mass was mainly composed of inorganic matter (71% to 86% of the PM2.5 mass). Compared to residential stoves, BFB combustion generated very high mass fractions of inorganic elements. Chloride was the water soluble ion in higher concentration in the PM2.5 emitted by the combustion of eucalypt, while calcium was the dominant water soluble ion in the case of pine. Copyright © 2015. Published by Elsevier B.V.

  20. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    NASA Astrophysics Data System (ADS)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  1. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  2. Wear resistance of metals and alloys; Proceedings of the Conference, Chicago, IL, Sept. 24-30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsbury, G.R.

    1988-01-01

    Techniques for characterizing and improving the wear properties of metals and composites are discussed in reviews and reports. Topics addressed include the use of interatomic potentials to study the relationship between abrasive wear and other mechanical properties, gas-detonation powder spraying of diamond coatings, a fluidized-bed test method for erosion resistance, the wear behavior of Al and Al-Si-Cu alloys, and abrasive wear of bronze and ZA alloys with and without lubrication. Consideration is given to continuously cast vs sand-cast Zn-Al alloys for bearings, sintered 6061 Al-alloy-based particulate composites with dry lubricants, Cu-based particulate composites, high-temperature friction and wear of X-750 andmore » X-188 superalloys for low-heat-rejection engines, a new metallurgical conception of wear-resistant steels, and the effect of matrix microstructure on the abrasion resistance of high-Cr white cast irons. Extensive graphs and micrographs are provided.« less

  3. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  4. The O₂-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.

    PubMed

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-01

    The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application.

    PubMed

    Jain, Shashank; Patel, Niketkumar; Shah, Mansi K; Khatri, Pinak; Vora, Namrata

    2017-02-01

    In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin

    2011-01-30

    Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.

    PubMed

    Dutta, Kasturi; Lee, Ming-Yi; Lai, Webber Wei-Po; Lee, Chien Hsien; Lin, Angela Yu-Chen; Lin, Cheng-Fang; Lin, Jih-Gaw

    2014-08-01

    The aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR) and influent COD concentration of 250mg/L. About 67% COD and 99% TSS removal efficiency could be achieved by the system treating the effluent from primary clarifier of municipal wastewater treatment plant, at HRT of 1.28h and OLR of 5.65kg COD/m(3)d. The system could also effectively remove twenty detected pharmaceuticals in raw wastewaters with removal efficiency in the range of 86-100% except for diclofenac (78%). No other membrane fouling control was required except scouring effect of GAC for flux of 16LMH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of combustion temperature on PCDD/Fs formation in laboratory-scale fluidized-bed incineration.

    PubMed

    Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M

    2001-12-15

    Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.

  9. The Origin of Chondrites: Metal-Silicate Separation Experiments Under Microgravity Conditions, Experiment 2

    NASA Technical Reports Server (NTRS)

    Moore, S. R.; Franzen, M.; Benoit, P. H.; Sears, D. W. G.; Holley, A.; Myers, M.; Godsey, R.; Czlapinski, J.

    2003-01-01

    Chondrites are categorized into different groups by several properties, including the metal-to-silicate ratio. Various processes have been suggested to produce distinct metal/silicate ratios, some based on sorting in the early solar nebular and others occurring after accretion on the parent body. Huang et al. suggested that a weak gravitational field accompanied by degassing, could result in metal/silicate separation on parent bodies. We suggest that asteroids were volatile-rich, at least early in their histories. Spectroscopic evidence from asteroid surfaces indicates that one-third of all asteroids maybe rich in clays and hydrated minerals, similar to carbonaceous chondrites. Internal and/or external heating could have caused volatiles to evaporate and pass through a surface dust layer. Spacecraft images of asteroids show they have a thick regoliths. Housen, and Asphaug and Nolan proposed that even a 10 km diameter asteroid could potentially have a significant regolith. Grain size and grain density sorting could occur in the unconsolidated layer by the process known as fluidization. This process occurs when an upward stream of gas is passed through a bed of particles which are lifted against a gravitational force. Fluidization is commonly used commercially to sort particulates. This type of behavior is based upon the bed, as a whole, and differs from aerodynamic sorting. Two sets of reduced gravity experiments were conducted during parabolic flights aboard NASA's KC-135 aircraft. The first experiment employed 310 tubes of 2.5 cm diameter, containing mixtures of sand and metal grains. A gas source was used to fluidize the mixture at reduced gravity conditions and mixtures were analyzed after the flight. However, this experiment did not allow a description of the fluidization as a function of gravity. A second experiment was conducted on the KC-135 aircraft in the summer of 2001, consisting of two Plexiglas cylinders containing a metal/silicate mixture, and video cameras to record the experiment on tape. Here we summarize this experiment and discusses the implications for metalsilicate separation on asteroid bodies.

  10. 40 CFR 60.41b - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produces both electric (or mechanical) and useful thermal energy from the same primary energy source. Coke.... Conventional technology means wet flue gas desulfurization (FGD) technology, dry FGD technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology. Distillate oil means fuel oils...

  11. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  12. CRADA opportunities in removal of particulates from hot-gas streams by filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D H

    1995-06-01

    Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanismmore » rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.« less

  13. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  14. Meat and bone meal as secondary fuel in fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Fryda; K. Panopoulos; P. Vourliotis

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less

  15. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  16. 40 CFR 63.1652 - Emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (including primary and tapping) containing particulate matter in excess of one of the following: (1) 0.23... from any existing open submerged arc furnace exhaust gases (including primary and tapping) containing... primary, tapping, and vent stacks) containing particulate matter in excess of 11.2 kg/hr (24.7 lb/hr) when...

  17. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  18. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  19. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.

  20. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    PubMed

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  2. Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.

    The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less

  3. Toxicological assessment of particulate emissions from the exhaust of old and new model heavy- and light-duty vehicles.

    DOT National Transportation Integrated Search

    2011-06-01

    The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...

  4. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  5. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.

    PubMed

    Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2014-11-01

    The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of an integrated sponge--granular activated carbon fluidized bed bioreactor for treating primary treated sewage effluent.

    PubMed

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2011-05-01

    An integrated fluidized bed bioreactor (iFBBR) was designed to incorporate an aerobic sponge FBBR (ASB-FBBR) into an anoxic granular activated carbon FBBR (GAC-FBBR). This iFBBR was operated with and without adding a new starch based flocculant (NSBF) to treat synthetic primary treated sewage effluent (PTSE). The NSBF contains starch based cationic flocculants and trace nutrients. The results indicate that the iFBBR with NSBF addition could remove more than 93% dissolved organic carbon (DOC), 61% total nitrogen (T-N) and 60% total phosphorus (T-P) at just a very short hydraulic retention time of 50 min. The optimum frequency of adding NSBF to the iFFBR is four times per day. As a pretreatment to microfiltration, the iFFBR could increase 5L/m(2)h of critical flux thus reducing the membrane fouling. In addition, better microbial activity was also observed with high DO consumption (>66%) and specific oxygen uptake rate (>35 mg O(2)/g VSS h). Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  8. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  9. Pulse enhanced fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  10. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    NASA Astrophysics Data System (ADS)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  11. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  12. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  13. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  14. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chirone, R.; Scala, F.; Solimene, R.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less

  15. Fluidized bed operations survey summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, C.

    1996-12-31

    A fluidized bed operations survey summary is presented. The survey contains information on: forced outage causes; forced outage concerns ranked numerically; 1996 boiler operation and maintenance (O&M) concerns; 1997 boiler O&M concerns; fluidized bed capacity factor results; and fluidized bed total outage time.

  16. Suppression of agglomeration in fluidized bed coating. II. Measurement of mist size in a fluidized bed chamber and effect of sodium chloride addition on mist size.

    PubMed

    Yuasa, H; Nakano, T; Kanaya, Y

    1999-02-01

    It has been reported that the degree of particle agglomeration in fluidized bed coating is greatly affected by the spray mist size of coating solution. However, the mist size has generally been measured in open air, and few reports have described the measurement of the mist size in a chamber of the fluidized bed, in which actual coating is carried out. Therefore, using hydroxypropylmethyl cellulose (HPMC) aqueous solution as a coating solution, the spray mist size of the coating solution in a chamber of the fluidized bed was measured under various coating conditions, such as the distance from the spray nozzle, fluidization air volume, inlet air temperature and addition of sodium chloride (NaCl) into the coating solution. The mist size in the fluidized bed was compared with that in open air at various distances from the spray nozzle. Further, the relationship between the spray mist size and the degree of suppression of agglomeration at various NaCl concentrations during fluidized bed coating was studied. The mist size distribution showed a logarithmic normal distribution in both cases of the fluidized bed and open air. The number-basis median diameter of spray mist (D50) in the fluidized bed was smaller compared with that in open air. D50 increased with the increasing distance from the spray nozzle in both cases. In the fluidized bed, D50 decreased with the increasing fluidization air volume and inlet air temperature. The effect of NaCl concentration on the mist size was hardly observed, but the degree of suppression of agglomeration during coating increased with the increasing NaCl concentration in the coating solution.

  17. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  18. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGES

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; ...

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  19. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  20. Synthesis of fluidized CO2 sorbents based on diamine coordinated to Metal-Organic Frameworks via direct conversion of metal oxides supported on mesoporous silica.

    PubMed

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    2018-06-06

    A general and efficient method for shaping MOFs into fluidized forms has been developed via direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These novel fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    NASA Astrophysics Data System (ADS)

    Didden, Arjen; Hillebrand, Philipp; Wollgarten, Markus; Dam, Bernard; van de Krol, Roel

    2016-02-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10-20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of powder. TEM and XPS analysis showed that all particles were coated with homogeneous shells containing titanium. Due to the large specific surface area of the nanoparticles, the TiN shells rapidly oxidize upon exposure to air. Electrical measurements show that the partially oxidized shells are conducting, with apparent resistivity of approximately 11 kΩ cm. The resistivity of the powders is strongly influenced by the NH3 dose, with a smaller dose giving an order-of-magnitude higher resistivity.

  2. Task 1.13 -- Data collection and database development for clean coal technology by-product characteristics and management practices. Semi-annual report, July 1--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflughoeft-Hassett, D.F.

    1997-08-01

    Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant tomore » the EPA evaluation criteria for the Phase 2 decision.« less

  3. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  4. Cost Effectiveness Of Selected Roadway Dust Control Methods For Eagle River, Alaska

    DOT National Transportation Integrated Search

    1988-01-01

    The U.S. Environmental Protection Agency has set air quality standards for airborne particulates with diameters equal to or less than ten microns (PM10 particulates). These particulates have been correlated with respiratory illnesses. The primary sta...

  5. CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE

    EPA Science Inventory

    The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...

  6. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  7. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  8. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE PAGES

    Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...

    2017-06-07

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  9. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Li, Tingwen; Musser, Jordan

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  10. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  11. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  12. Energy from biomass and wastes V; Proceedings of the Fifth Symposium, Lake Buena Vista, FL, January 26-30, 1981

    NASA Astrophysics Data System (ADS)

    Papers are presented in the areas of biomass production and procurement, biomass and waste combustion, gasification processes, liquefaction processes, environmental effects and government programs. Specific topics include a water hyacinth wastewater treatment system with biomass production, the procurement of wood as an industrial fuel, the cofiring of densified refuse-derived fuel and coal, the net energy production in anaerobic digestion, photosynthetic hydrogen production, the steam gasification of manure in a fluidized bed, and biomass hydroconversion to synthetic fuels. Attention is also given to the economics of deriving alcohol for power applications from grain, ethanol fermentation in a yeast-immobilized column fermenter, a solar-fired biomass flash pyrolysis reactor, particulate emissions from controlled-air modular incinerators, and the DOE program for energy recovery from urban wastes.

  13. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    EPA Science Inventory

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter ...

  14. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  15. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  16. Heat transfer to small horizontal cylinders immersed in a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, J.; Koundakjian, P.; Naylor, D.

    2006-10-15

    Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less

  17. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  18. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  19. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  20. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  1. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  2. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  3. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  4. Pneumatic transportation of dispersed medium through a vertical tube immersed into a fluidized bed

    NASA Astrophysics Data System (ADS)

    Krasnykh, V. Yu.; Korolev, V. N.; Ostrovskaya, A. V.; Nagornov, S. A.

    2013-11-01

    We discuss the technical problem of how to transport granular material in a vertical direction from the underlying section of a multistage apparatus containing a fluidized bed to an upper section through tubes immersed into the fluidized bed without additional expenditures of energy. The intensity with which the dispersed medium (a mixture of gas and fuel particles) moves through the tube and the mass flowrate of particles are determined by the ratio between the hydraulic resistances of dispersed medium inside the tube and of the fluidized bed outside of it. In turn, this ratio depends on the fluidization number W (W = w s/ w 0, where w s is the seepage velocity and w 0 is the fluidization commencement velocity) and on the tube immersing depth into the bed.

  5. Optimization of an integrated sponge--granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse.

    PubMed

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2012-06-01

    A specific integrated fluidized bed bioreactor (iFBBR) was optimized in terms of organic loading rate (OLR), hydraulic retention time (HRT) and frequency of new sustainable flocculant (NSBF) addition for primary treated sewage effluent (PTSE) treatment. It was observed that iFBBR achieved the best performance with the operating conditions of 4 times/day NSBF addition, HRT of 90 min and OLR of 8.64 kg COD/day m(3). The removal efficiencies were found to be more than 93% of dissolved organic carbon (DOC), 61% of total nitrogen (T-N) and 60% of total phosphorus (T-P). iFBBR as pretreatment of submerged microfiltration (SMF) is successful in increasing the critical flux and reducing the membrane fouling. NSBF-iFBBR-SMF hybrid system led to very high organic removal efficiency with an average DOC removal of 97% from synthetic PTSE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    PubMed

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  7. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  8. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  9. Experimental investigation into the initiation and intensity of erosion in granular flows and its effect on flow dynamics with applications to pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2017-12-01

    The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.

  10. Turkish Primary Students' Conceptions about the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2011-01-01

    This study was conducted to determine 4th, 5th, and 6th grade primary students' conceptions about the particulate nature of matter in daily-life events. Five questions were asked of students and interviews were used to collect data. The interviews were conducted with 12 students, four students from each grade, after they finished the formal…

  11. A COMPARISON OF THE UCD/CIT AIR QUALITY MODEL AND THE CMB SOURCE-RECEPTOR MODEL FOR PRIMARY AIRBORNE PARTICULATE MATTER. (R831082)

    EPA Science Inventory

    Source contributions to primary airborne particulate matter calculated using the source-oriented UCD/CIT air quality model and the receptor-oriented chemical mass balance (CMB) model are compared for two air quality episodes in different parts of California. The first episode ...

  12. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  13. Staged fluidized bed

    DOEpatents

    Mallon, Richard G.

    1984-01-01

    Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  14. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  15. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  16. Solids fluidizer-injector

    DOEpatents

    Bulicz, Tytus R.

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  17. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  18. Bench Scale Development and Testing of Aerogel Sorbents for CO 2 Capture Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begag, Redouane

    The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO 2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO 2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO 2 capacity, respectively (@ 40 °C adsorption / 100more » – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO 2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO 2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO 2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO 2 capture capacity after 20 cycles in the presence of 40 ppm SO 2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post combustion CO 2 capture process using a bituminous coal fired, super-critical steam cycle power plant producing 550 MWe net generation with 90% CO 2 capture using a methylethylamine (MEA) solvent. Using the NETL report as guidance, the designed CO 2 capture system was analyzed on a cost basis to determine relative cost estimates between the benchmark MEA system and the AFA sorbent system.« less

  19. DIFFERENTIAL GENE EXPRESSION PROFILES IN RAT TRACHAEL EPITHELIAL (RTE) CELLS IN RESPONSE TO COMBUSTION-SOURCE PARTICULATE MATTER (PM) AND VANADIUM (V) A PRIMARY METAL CONSTITUENT

    EPA Science Inventory

    Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
    Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...

  20. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Rheological measurements in reduced gravity

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    1999-01-01

    Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.

  2. An experimental study of the transient regime to fluidized chimney in a granular medium

    NASA Astrophysics Data System (ADS)

    Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer

    2017-06-01

    Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.

  3. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  4. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    NASA Astrophysics Data System (ADS)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  5. Solids fluidizer-injector

    DOEpatents

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  6. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  7. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  8. Microgravity and Hypogravity Compatible Methods for the Destruction of Solid Wastes by Magnetically Assisted Gasification

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana

    2003-01-01

    This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.

  9. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  10. Determination of the Turkish Primary Students' Views about the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Ozmen, Haluk; Kenan, Osman

    2007-01-01

    This study was conducted to determine 4th, 5th, and 6th grade Turkish primary students' conceptions about the particulate nature of matter via a test. The test consists of 36 items related to the changes of microscopic properties of solid, liquid and gas matters during phase changing, cooling, heating and pressing of them. The sample of the study…

  11. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  12. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  13. Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

    PubMed Central

    Sweet, W D; Schroeder, F

    1986-01-01

    The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369

  14. Attrition and changes in size distribution of lime sorbents during fluidization in a circulating fluidized bed absorber. Double quarterly report, January 1--August 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Kwun; Keener, T.C.; Cook, J.L.

    1993-12-31

    The experimental data of lime sorbent attrition obtained from attriton tests in a circulating fluidized bed absorber (CFBA) are represented. The results are interpreted as both the weight-based attrition rate and size-based attrition rate. The weight-based attrition rate constants are obtained from a modified second-order attrition model, incorporating a minimum fluidization weight, W{sub min}, and excess velocity. Furthermore, this minimum fluidization weight, or W{sub min} was found to be a function of both particle size and velocity. A plot of the natural log of the overall weight-based attrition rate constants (ln K{sub a}) for Lime 1 (903 MMD) at superficialmore » gas velocities of 2 m/s, 2.35 m/s, and 2.69 m/s and for Lime 2 (1764 MMD) at superficial gas velocities of 2 m/s, 3 m/s, 4 m/s and 5 m/s versus the energy term, 1/(U-U{sub mf}){sup 2}, yielded a linear relationship. And, a regression coefficient of 0.9386 for the linear regression confirms that K{sub a} may be expressed in Arrhenius form. In addition, an unsteady state population model is represented to predict the changes in size distribution of bed materials during fluidization. The unsteady state population model was verified experimentally and the solid size distribution predicted by the model agreed well with the corresponding experimental size distributions. The model may be applicable for the batch and continuous operations of fluidized beds in which the solids size reduction is predominantly resulted from attritions and elutriations. Such significance of the mechanical attrition and elutriation is frequently seen in a fast fluidized bed as well as in a circulating fluidized bed.« less

  15. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  16. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Aubrey L.

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFBmore » riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.« less

  17. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modest, Michael

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particlesmore » scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.« less

  18. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.

    2018-04-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  19. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B

    2018-01-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  20. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less

  1. Use of a fluidized bed for the thermal and chemicothermal treatment of metals

    NASA Astrophysics Data System (ADS)

    Varygin, N. N.; Ol'shanov, E. Ya.

    1971-06-01

    An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.

  2. Nonspherical particles in a pseudo-2D fluidized bed: Experimental study.

    PubMed

    Mahajan, Vinay V; Padding, Johan T; Nijssen, Tim M J; Buist, Kay A; Kuipers, J A M

    2018-05-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo-2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod-like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod-like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 64: 1573-1590, 2018.

  3. Nonspherical particles in a pseudo‐2D fluidized bed: Experimental study

    PubMed Central

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Buist, Kay A.; Kuipers, J. A. M.

    2018-01-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo‐2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod‐like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod‐like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1573–1590, 2018 PMID:29706659

  4. ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori

    This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.

  5. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    USDA-ARS?s Scientific Manuscript database

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  6. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  7. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  8. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  9. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  10. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...

  11. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  12. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  13. Stability of fluidization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gel'perin, N.I.; Ainshtein, V.G.; Nosova, V.V.

    1983-01-01

    The purpose of this article is to ascertain the reasons for the appearance of stagnant zones in a fluidized bed. Analyzed is the state of a hypothetical bed without the supporting gas distribution grate with fluctuations in the local velocities w of fluidizing agent in its cross sections in relation to the average value wav. It assumes that at any instant the distribution of the fluidizing agent over the bed cross section is inhomogeneous. As the local velocities and dimensions increase and the effective cross section of the grate decreases, the apparatus cross section regularly increases.

  14. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  15. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  16. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  17. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1994-08-09

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  18. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1994-01-01

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  19. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.

  20. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  2. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, X.; Chen, Q.; Yang, Y.

    1996-12-31

    Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less

  4. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  5. Process for the production of fuel gas from coal

    DOEpatents

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  6. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, D.B.

    1983-12-31

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspendedmore » crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN.« less

  7. Thermally activated creep and fluidization in flowing disordered materials

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  8. Synchronized oscillations and acoustic fluidization in confined granular materials

    NASA Astrophysics Data System (ADS)

    Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.

    2018-01-01

    According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.

  9. Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.

    DOT National Transportation Integrated Search

    2011-03-25

    "Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...

  10. Effect of ambient particulate matter expousre on hemostasis

    EPA Science Inventory

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  11. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  12. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less

  14. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    PubMed

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  16. Effects of using two- versus three-dimensional computational modeling of fluidized beds Part I, hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Nan; Battaglia, Francine; Pannala, Sreekanth

    2008-01-01

    Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less

  17. Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor

    DTIC Science & Technology

    2014-01-01

    Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Treatment of N-Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...21 5.6.1 NDMA and DMN

  18. Secondary aerosol production from agricultural gas precursors

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  19. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  20. Method and apparatus for improving heat transfer in a fluidized bed

    DOEpatents

    Lessor, Delbert L.; Robertus, Robert J.

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  1. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi

    2016-07-01

    Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.

  3. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  4. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE PAGES

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    2018-01-01

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  5. Twelfth annual fluidized bed conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  7. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  8. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  9. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  10. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    PubMed

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  11. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  12. Design of a Localized Fluidization Burrowing Robot

    NASA Astrophysics Data System (ADS)

    Dorsch, Daniel; Winter, Amos

    2014-11-01

    This presentation will focus on the critical fluid and granular mechanics principles that drove the design of RoboClam 2.0, a self-actuated, radially expanding underwater burrowing device. RoboClam 2.0 was inspired by the Atlantic razor clam, Ensis directus, which burrows by contracting its valves and fluidizing the surrounding soil to reduce burrowing drag. This contraction results in a localized fluidized region occurring 1-5 body radii away from the animal. Moving through a fluidized, rather than static, soil requires energy that scales linearly with depth, rather than depth squared. In addition to providing an advantage for the animal, localized fluidization may yield significant value to engineering applications such as subsea robot anchoring and pipe installation. RoboClam 2.0 is sized to be an anchoring platform for autonomous underwater vehicles. We will present the scaling relationships that can be used to design RoboClam derivatives for different size scales and applications. The critical speed, displacement and force with which the device must contract to create fluidization are calculated based on soil parameters. These parametric relationships allow for choosing actuators of appropriate size and power output for desired burrowing performance.

  13. Understanding chemistry behind secondary aerosol production from nitrogen and sulfur compounds from agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...

  14. Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear

    NASA Astrophysics Data System (ADS)

    Melhus, Martin Frederic

    2011-07-01

    Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted. We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.

  15. Pluto: Fluidized Transport of Tholins by Heating of the Subsurface

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Spohrer, Steven; Grundy, William M.; Moore, Jeffrey M.; Umurhan, Orkan M.; White, Oliver L.; Beyer, Ross A.; Dalle Ore, Cristina M.; Stern, S. A.; Young, Leslie; hide

    2017-01-01

    New Horizons images of Pluto show evidence of the transport of the colored non-ice component across the surface, with substantial accumulations in some areas of low elevation. The non-ice component is presumed to be tholin produced in the atmosphere as a precipitating aerosol, in the surface ices by photolysis or radiolysis, or both. We model the surface layer of N2 ice with varying amounts of incorporated tholin particles to explore the heating within the ice that occurs by the solid-state greenhouse effect. We find that in plausible models of the contaminated N2 surface ice the triple point temperature (63.15K) is reached at a depth of approximately less than 1m. At that depth the confining pressure of the ice column is much less than the triple point pressure (12.52 kPa), so N2 should convert to the gas phase, exerting pressure on the overburden. When the gas pressure exceeds the strength of the confining ice, a breakout on the surface will occur, fluidizing fragments of ice and its contaminants that are then free to flow downhill, rafted on entrained gas, similar in some ways to the pyroclastic volcanic phenomenon known as nuée ardente. The digital elevation map of Pluto made from stereo images shows some surface regions that may have been stripped of the N2 layer, exposing H2O ice (presumed to be bedrock) below, with a corresponding accumulation of dark material that was that was the previously entrained particulate tholin. Accumulations of tholin are found associated with some of the fossae, and some cover preexisting topography to depths of up to a few hundred meters.

  16. High-Purity Silicon Seeds for Silane Pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Rohatgi, N. K.; Morrison, A.

    1985-01-01

    Seed particles for fluidized-bed production of silicon made by new contamination-free, economical method. In new method, large particles of semiconductor-grade silicon fired at each other by high-speed streams of gas and thereby break up into particles of suitable size for fluidized bed. No foreign materials introduced, and leaching unnecessary. Method used to feed fluidized-bed reactor for continuous production of high-purity silicon.

  17. Pressurized fluidized-bed component test program shows good promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less

  18. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan M.; Li, Tingwen

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less

  19. THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: PM MASS CONCENTRATION RELATIONSHIPS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a one-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were t...

  20. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  1. INDIVIDUAL PARTICLE ANALYSIS OF PERSONAL SAMPLES FROM THE 1998 BALTIMORE PARTICULATE MATTER STUDY

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) recently conducted the 1998 Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly. The primary goal of that study was to establish the relationship between outdoor PM concentrations and actual h...

  2. Design and operation of a batch-feed fluidizing bed aerosol generator for inhalation toxicity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiotsuka, R.N.; Peck, R.W. Jr.; Drew, R.T.

    1985-02-01

    A fluidizing bed aerosol generator (FBG), designed for inhalation toxicity studies, was constructed and tested. A key design feature contributing to its operational stability was the partial masking of the screen supporting the bronze beads. This caused 20-80% of the bed to fluidize under normal operating conditions. The non-fluidizing areas functioned as reservoirs to feed the fluidizing areas. Using a bed volume of 1000 cc of bronze beads and 20 g of MnO/sub 2/ dust, the mass output rate ranged from 0.1 to 1.0 mg/min when operated at plenum pressures of 1.04 x 10/sup 2/ to 2.42 x 10/sup 2/more » kPa (minimum fluidization pressure was approximately 82.8 kPa). During daily operation at three different output rates, the FBG produced aerosols with little change in particle size distributions or concentration when operated six hours/day for five days. Furthermore, when the FBG was operated at a fixed output rate for 15 days with two recharges of MnO/sub 2/ dust, the particle size distribution did not show any cumulative increase. Thus, long-term operation of this FBG should result in a reproducible range of concentration and particle size distribution.« less

  3. Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.

    PubMed

    Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A

    2007-11-01

    Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.

  4. Iron crystallization in a fluidized-bed Fenton process.

    PubMed

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Study on the flow in the pipelines of the support system of circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  6. Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR).

    PubMed

    Andalib, Mehran; Hafez, Hisham; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2012-10-01

    The primary objective of this work was to investigate the treatability of thin stillage as a by-product of bioethanol production plants using an anaerobic fluidized bed bioreactor (AFBR) employing zeolite with average diameter of (d(m)) of 425-610 μm and specific surface area (SSA) of 26.5m(2)/g as the carrier media. Despite the very high strength of thin stillage with chemical oxygen demand of 130,000 mg TCOD/L and suspended solids of 47,000 mg TSS/L, the AFBR showed up to 88% TCOD and 78% TSS removal at very high organic and solids loading rates (OLR and SLR) of 29 kg COD/m(3)d and 10.5 kg TSS/m(3)d respectively and hydraulic retention time (HRT) of 3.5 days. Methane production rates of up to 160 L/d at the steady state equivalent to 40 L(CH4)/L(thin stillage)d and biogas production rate per reactor volume of 15.8L(gas)/L(reactor)d were achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  8. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  9. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  10. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  11. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  12. Fluidized-bed calciner with combustion nozzle and shroud

    DOEpatents

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  13. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  14. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  15. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  16. A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification

    NASA Astrophysics Data System (ADS)

    Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do

    A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.

  17. Primary particulate matter from ocean-going engines in the Southern California Air Basin.

    PubMed

    Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R

    2009-07-15

    The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.

  18. Air pollution: Household soiling and consumer welfare losses

    USGS Publications Warehouse

    Watson, W.D.; Jaksch, J.A.

    1982-01-01

    This paper uses demand and supply functions for cleanliness to estimate household benefits from reduced particulate matter soiling. A demand curve for household cleanliness is estimated, based upon the assumption that households prefer more cleanliness to less. Empirical coefficients, related to particulate pollution levels, for shifting the cleanliness supply curve, are taken from available studies. Consumer welfare gains, aggregated across 123 SMSAs, from achieving the Federal primary particulate standard, are estimated to range from $0.9 to $3.2 million per year (1971 dollars). ?? 1982.

  19. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    PubMed

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to be closely related to O 2 : the NO reaches its peak value after initial stage and later decreases with the continued depletion of O 2 . Towards the end of combustion, NO increases with the increase of O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang Kwun; Keener, T.C.; Jiang, Xiaolin

    1993-11-01

    The experimental data of lime sorbent attrition obtained from mechanical and thermal attrition tests in a circulating fluidized bed absorber (CFBA) are represented. The results indicate that the predominant attrition mechanism during lime fluidization is surface abrasion due to collisions of the parent solids in a bed. Attrition of lime at higher temperatures decreased due to its hardened properties with rising temperature, while such solids as limestone become more attritable by the crepitation resulting from the increased internal pressure. With an introduction of the minimum weight of parent solids, the attrition rate of lime in a CFBA has a first-ordermore » dependency with respect to time. The attrition rate constant is expressed in an Arrhenius form, using the kinetic model which relates the attrition rate to the gas properties such as temperature and molecular weight and the geometry of the fluidized bed as well as the fluidization velocity. The experimental data obtained from these tests in a CFBA agree well with the attrition model, and the model indicates trends due to increased temperature considering thermal attrition. From the model the attrition activation energy, E[sub a] and k[sub o], can be obtained as E[sub a] = 3.383 [times] 10[sup [minus]3] kJ/kg and k[sub o] = 1.29 [times] 10[sup [minus]4]s[sup [minus]1], Comparisons of the mechanical and thermal attrition data obtained experimentally with the theoretical values computed with the attrition activation energy, E[sub a] and k[sub o], are in good agreement, and thus the results may be applicable to lime attrition in a fluidized bed.« less

  1. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  2. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  3. Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.

    DTIC Science & Technology

    1984-04-01

    The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In

  4. Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices

    NASA Astrophysics Data System (ADS)

    Parlak, Nezaket

    2015-08-01

    In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.

  5. Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept

    DOE PAGES

    Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...

    2015-12-08

    This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less

  6. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  7. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  8. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less

  9. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  10. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  11. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.

    PubMed

    Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T

    2017-12-01

    In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.

  12. Are Atoms and Molecules Too Difficult for Primary Children?

    ERIC Educational Resources Information Center

    Skamp, Keith

    1999-01-01

    Presents evidence that suggests that upper elementary students can be taught about the particulate nature of matter in a meaningful way. Investigated the effects of lesson sequences on children's ability to apply a particulate understanding to chemical and physical phenomena and found conceptual gains on lesson specific phenomena. (Contains 15…

  13. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions

    EPA Science Inventory

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module ...

  14. 78 FR 23492 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY... submission contains the 24-hour fine particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS..., ``National primary and secondary ambient air quality standards for PM 2.5 .'' In the submission, IDEM has...

  15. Rotating Fluidized Bed Reactor for Space Nuclear Propulsion. Annual Report; Design Studies and Experimental Results

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.

  16. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  17. Fluidized combustion of coal. [to limit SO2 and NOx emissions

    NASA Technical Reports Server (NTRS)

    Pope, M.

    1978-01-01

    A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.

  18. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  19. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  20. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    NASA Astrophysics Data System (ADS)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).

  1. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  2. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  3. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  4. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  5. Development of a two-fluid drag law for clustered particles using direct numerical simulation and validation through experiments

    NASA Astrophysics Data System (ADS)

    Abbasi Baharanchi, Ahmadreza

    This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.

  6. PRODUCTION OF SHEET FROM PARTICULATE MATERIAL

    DOEpatents

    Blainey, A.

    1959-05-12

    A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.

  7. Novel insights into anoxic/aerobic(1)/aerobic(2) biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis.

    PubMed

    Ou, Hua-Se; Wei, Chao-Hai; Mo, Ce-Hui; Wu, Hai-Zhen; Ren, Yuan; Feng, Chun-Hua

    2014-10-01

    Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was applied to investigate the contaminant removal efficiency and fluorescent characteristic variations in a full scale coke wastewater (CWW) treatment plant with a novel anoxic/aerobic(1)/aerobic(2) (A/O(1)/O(2)) process, which combined with internal-loop fluidized-bed reactor. Routine monitoring results indicated that primary contaminants in CWW, such as phenols and free cyanide, were removed efficiently in A/O(1)/O(2) process (removal efficiency reached 99% and 95%, respectively). Three-dimensional excitation-emission matrix fluorescence spectroscopy and PARAFAC identified three fluorescent components, including two humic-like fluorescence components (C1 and C3) and one protein-like component (C2). Principal component analysis revealed that C1 and C2 correlated with COD (correlation coefficient (r)=0.782, p<0.01 and r=0.921, p<0.01), respectively) and phenols (r=0.796, p<0.01 and r=0.914, p<0.01, respectively), suggesting that C1 and C2 might be associated with the predominating aromatic contaminants in CWW. C3 correlated with mixed liquor suspended solids (r=0.863, p<0.01) in fluidized-bed reactors, suggesting that it might represent the biological dissolved organic matter. In A/O(1)/O(2) process, the fluorescence intensities of C1 and C2 consecutively decreased, indicating the degradation of aromatic contaminants. Correspondingly, the fluorescence intensity of C3 increased in aerobic(1) stage, suggesting an increase of biological dissolved organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of sorbent attrition on utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, Soon-Jai; Lee, S.K.

    1992-03-01

    Attrition of surface product levers of sulfite/sulfate may be the key to substantially increasing sorbent utilization in new dry scrubbing processes. This conclusion has been reached from research results obtained from new gas/solid contacting methods such as the Circulating Fluidized Bed Absorber and the Limestone Emission Control method. An additional savings may be reduced by the use of large initial sorbent, particle sizes which greatly reduces the cost of grinding and sorbent preparation. The objectives of project 1.7 were then to study attrition of sorbent particles in a systematic fashion in order to determine how to use attrition to increasemore » sorbent utilization. This was to be carried out by the construction of a bench scale fluidized bed where a series of experiments were to be conducted to measure attrition of lime and limestone samples. This has been accomplished and the project proceeded as anticipated. The results indicate that attrition differs for wet and dry conditions for certain sorbents and that these differences are substantial. Under dry conditions, the results of attrition tests on carefully characterized lime samples indicate that mechanical abrasion is the primary attrition mechanism. The rate of attrition is seen to be similar to a first order chemical reaction where the bed mass (or total surface area) is analagous to reactant concentration. A model for mechanical attrition is presented which expresses the rate constant in an Arrhenius type form proportional to a pseudo attrition activation energy and excess gas energy above a minimum level. The value of this pseudo attrition activation energy for lime has been found to be 106 KJ/KG. For the attrition of wetted lime particles in a fluidized bed. the attrition rate has been found to be directly related to the volumetric flow rate of injected water.« less

  9. JPL in-house fluidized-bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  10. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  11. Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; McClymer, J. P.

    2004-01-01

    The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.

  12. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production

    PubMed Central

    2017-01-01

    The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774

  13. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  14. Computational study of heat transfer in gas fluidization

    NASA Astrophysics Data System (ADS)

    Hou, Q. F.; Zhou, Z. Y.; Yu, A. B.

    2013-06-01

    Heat transfer in gas fluidization is investigated at a particle scale by means of a combined discrete element method and computational fluid dynamicsapproach. To develop understanding of heat transfer at various conditions, the effects of a few important material properties such as particle size, the Hamaker constant and particle thermal conductivity are examined through controlled numerical experiments. It is found that the convective heat transfer is dominant, and radiative heat transfer becomes important when the temperature is high. Conductive heat transfer also plays a role depending on the flow regimes and material properties. The heat transfer between a fluidized bed and an immersed surface is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. The findings should be useful for better understanding and predicting the heat transfer in gas fluidization.

  15. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  16. Characterization of coals for circulating fluidized bed combustion by pilot scale tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de

    1995-12-31

    The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less

  17. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.

    PubMed

    Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y

    2014-06-01

    In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: MODELING AMBIENT SOURCE CONTRIBUTION TO PERSONAL AND RESIDENTIAL PM MASS CONCENTRATIONS

    EPA Science Inventory

    The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...

  19. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  20. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  1. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  2. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  3. Deep-sea fluxes of barium and lithogenic trace elements in the subtropical northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Stern, Judith; Dellwig, Olaf; Waniek, Joanna J.

    2017-04-01

    Total particle flux, Barium and lithogenic trace element fluxes were measured at the mooring Kiel 276 (33°N, 22°W) in the deep-sea of the subtropical Northeast Atlantic. The particulate material was collected between 2002 and 2008 with a sediment trap in 2000 m depth and analyzed with ICP-OES/-MS to determine its geochemical composition. The particle flux is controlled by primary production, lithogenic particle inputs via atmospheric transport and the migration of the Azores Front. We used refractory trace elements (eg. Ti, Zr, and the rare earth elements) to demonstrate the changes in flux and composition of the material due to lithogenic inputs. Shortly after periods of high dust load and enhanced primary production an increase in lithogenic trace element fluxes occurred. Especially the formation of aggregates with biogenic matter seems to have a major impact on the downwards transport of lithogenic particles. The observation of particulate Ba is of great interest since it is known as a proxy for past and present primary production. Ba fluxes ranging between 0.02 mg m-2 d-1 and 1.21 mg m-2 d-1 with biogenic proportions up to 97%. The fluxes of particulate Barium in the water column are mainly attributed to the strength of primary production.

  4. Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961)

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin

    2015-01-01

    A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.

  5. Application of image processing on struvite recovery from swine wastewater by using the fluidized bed.

    PubMed

    Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua

    2018-01-01

    Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.

  6. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  7. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  8. Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

  9. Phase holdups in three-phase fluidized beds in the presence of disc promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.

    2011-02-15

    Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)

  10. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant.

    PubMed

    Jørgensen, Rikke Bramming; Kero, Ida Teresia

    2017-12-20

    Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPI TM , Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPS TM , TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 10⁴ particles/cm³ for the UFP fraction and 1.0 × 10⁵ particles/cm³ for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon.

  11. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant

    PubMed Central

    2017-01-01

    Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPITM, Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPSTM, TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 104 particles/cm3 for the UFP fraction and 1.0 × 105 particles/cm3 for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon. PMID:29261158

  12. Characterization of solid fuels at pressurized fluidized bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Hupa, M.

    1998-07-01

    The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less

  13. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    PubMed

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

  14. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  15. Lipid encapsulated phenolic compounds by fluidization

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  16. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less

  17. A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff

    2015-02-17

    In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less

  18. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  19. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Technical Reports Server (NTRS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  1. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  2. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    PubMed

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparison of attrition test methods: ASTM standard fluidized bed vs jet cup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, R.; Goodwin, J.G. Jr.; Jothimurugesan, K.

    2000-05-01

    Attrition resistance is one of the key design parameters for catalysts used in fluidized-bed and slurry phase types of reactors. The ASTM fluidized-bed test has been one of the most commonly used attrition resistance evaluation methods; however, it requires the use of 50 g samples--a large amount for catalyst development studies. Recently a test using the jet cup requiring only 5 g samples has been proposed. In the present study, two series of spray-dried iron catalysts were evaluated using both the ASTM fluidized-bed test and a test based on the jet cup to determine this comparability. It is shown thatmore » the two tests give comparable results. This paper, by reporting a comparison of the jet-cup test with the ASTM standard, provides a basis for utilizing the more efficient jet cup with confidence in catalyst attrition studies.« less

  4. Methods of forming a fluidized bed of circulating particles

    DOEpatents

    Marshall, Douglas W [Blackfoot, ID

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  5. Steam reforming of heptane in a fluidized bed membrane reactor

    NASA Astrophysics Data System (ADS)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  6. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  7. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  8. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  9. Effect of PDEODE Teaching Strategy on Turkish Students' Conceptual Understanding: Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Demircioglu, Hülya

    2017-01-01

    The aim of this study is to determine the effect of activities developed in accordance with PDEODE teaching strategy on students' understanding of the particulate nature of matter. The sample of the study consists of the first grade students who study in the Primary School Teacher Education Program. In order to determine the conceptual change on…

  10. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  11. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Rodney O.; Passalacqua, Alberto

    2016-02-01

    Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can bemore » then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are provided for the three quantities studied. Then the approach is applied to a bubbling fluidized bed with two uncertain parameters, particle-particle and particle-wall restitution coefficients. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the response are reconstructed using EQMOM with appropriate kernel density functions. The simulation results are compared to experimental data provided by the 2013 NETL small-scale challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of a circulating fluidized bed as an example application. The mean particle size is considered to be the uncertain input parameter. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities, and granular temperature are provided. Mean values and confidence intervals of the quantities of interest are compared to the experiment results. The univariate and bivariate PDF reconstructions of the system response are performed using EQMOM and ECQMOM.« less

  12. Measurement of gas and aerosol agricultural emissions

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  13. Assessment of organic contaminants in emissions from refuse-derived fuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrostowski, J.; Wait, D.; Kwong, E.

    1985-09-01

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source Assessment Sampling System (SASS) was used to sample the stack gas; Level 1 methodology was used to analyze the organic-contaminant levels. Combustion efficiencies of 93 to 98 percent were achieved in the test burns. Combustion of the EcoFuel generated fewer organic emissions than combustion of coal at similar combustion temperatures. The fine particulate collected by the SASS train filter contained higher concentrations of extractable organics thanmore » the reactor fly ash and the SASS cyclone samples. Combustion of a toluene/EcoFuel mix generated a large number of benzene derivatives not seen in the combustion of pure EcoFuel. Polycyclic aromatic hydrocarbons were the dominant organic compounds contained in the XAD-2 resin extract from coal combustion. A number of different priority pollutants were identified in the samples collected.« less

  14. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  15. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  16. Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves

    2018-05-01

    We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.

  17. The role of membrane fluidization in the gel-assisted formation of giant polymersomes

    DOE PAGES

    Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...

    2016-07-13

    Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less

  18. EXPLORING RELATIONSHIPS BETWEEN OUTDOOR AIR PARTICULATE-ASSOCIATED POLYCYCLIC AROMATIC HYDROCARBON AND PM2.5: A CASE STUDY OF BENZO(A)PYRENE IN CALIFORNIA METROPOLITAN REGIONS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...

  19. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  20. Low temperature fluidized wood chip drying with monoterpene analysis

    Treesearch

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  1. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    NASA Technical Reports Server (NTRS)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  2. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.

  3. Lateral solids dispersion coefficient in large-scale fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Daoyin; Chen, Xiaoping

    2010-11-15

    The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effectmore » on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)« less

  4. Alternating Field Electronanofluidization

    NASA Astrophysics Data System (ADS)

    Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.

    2009-06-01

    The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.

  5. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    PubMed Central

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  6. 40 CFR 60.155 - Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... than 3 percent. (b) The owner or operator of any multiple hearth, fluidized bed, or electric sludge... over each 1-hour incinerator operating period. (3) Temperatures of every hearth in multiple hearth...

  7. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  8. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less

  9. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei-Ping Pan; Andy Wu; John T. Riley

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved.more » Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.« less

  10. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    PubMed

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. Copyright © 2016. Published by Elsevier Ltd.

  11. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  12. Air-fluidized grains as a model system: Self-propelling and jamming

    NASA Astrophysics Data System (ADS)

    Daniels, Lynn J.

    This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. [12]. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we approach jamming. We obtain an equation of state that agrees well with simulation and free volume theory. We collapse the relaxation time by defining a time- and energy-scale using pressure, consistent with recent simulation [82]. These experiments are further confirmation of the universality of the concepts of self-propelling and jamming.

  13. Feasibility of rotating fluidized bed reactor for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Ludewig, H.; Manning, A. J.; Raseman, C. J.

    1974-01-01

    The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.

  14. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  15. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3. [using a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.

  16. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  17. Morphologic and morphometric studies of impact craters in the northern plains of Mars

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    Fresh impact craters in the northern plains of Mars display a variety of morphologic and morphometric properties. Ejecta morphologies range from radial to fluidized, interior features include central peaks and central pits, fluidized morphologies display a range of sinuosities, and depth-diameter ratios are being measured to determine regional variations. Studies of the martian northern plains over the past five years have concentrated in three areas: (1) determining correlations of ejecta morphologies with crater diameter, latitude, and underlying terrain; (2) determining variations in fluidized ejecta blanket sinuosity across the planet; and (3) measurement of depth-diameter ratios and determination of regional variations in this ratio.

  18. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  19. Environmental Compliance Assessment System (ECAS). Kentucky Supplement (Revised)

    DTIC Science & Technology

    1994-02-01

    vehicles or vehicle bodies. "* FGD - Flue Gas Desulfurization . "* Field-Erected - assembled from components at a final site of operation. "* Flare - a...34* Spare Flue Gas Desulfurization System Module - a separate system of sulfur dioxide emission con- trol equipment capable of treating an amount of flue ...Carryover - particulate matter which is passed from the primary chamber of an incinerator into the flue gas stream. " Particulate Matter Emissions

  20. The contribution of air-fluidization to the mobility of rapid flowslides involving fine particles

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Dewals, Benjamin; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel

    2016-04-01

    Air-fluidization can be the origin of the long runout of gravitational flows involving fine particles such as ash. An excessive air pore pressure dramatically reduces the friction angle of the material as long as this pressure has not been dissipated, which occurs during the flow. This phenomenon can be modelled thanks to the 2D depth-averaged equations of mass and momentum conservation and an additional transport equation for basal pore pressure evolution (Iverson and Denlinger, 2001). In this contribution, we discuss the application of this model in relation to recent experimental results on air-fluidized flows by Roche et al. (2008) and Roche (2012). The experimental results were used to set a priori the value of the diffusion coefficient in the model, taking into account the difference of scale between the experiments and real-world applications. We also compare the model predictions against detailed observations of a well-documented historical event, the collapse of a fly-ash heap in Belgium (Stilmant et al., 2015). In particular, we analyse the influence of the different components of the model on the results (pore pressure dissipation vs. pore pressure generation). The diffusion coefficient which characterizes the dissipation of air pore pressure is found sufficiently low for maintaining a fluidized flow over hundreds of meters. The study concludes that an air-fluidization theory is consistent with the field observations. These findings are particularly interesting as they seem not in line with the mainstream acceptation in landslide modelling that air generally plays a secondary role (e.g., Legros, 2002). References Iverson, R.M., Denlinger, R.P., 2001. Flow of variably fluidized granular masses across three-dimensional terrain - 1. Coulomb mixture theory. J. Geophys. Res. 106, 537 552. Legros, F., 2002. The mobility of long-runout landslides. Eng. Geol. 63, 301-331. Roche, O., 2012. Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74, 1807-1820. Roche, O., Montserrat, S., Niño, Y., Tamburrino, A., 2008. Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113, B12203. Stilmant, F., Pirotton, M., Archambeau, P., Erpicum, S., & Dewals, B. (2015). Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961). Geomorphology, 228, 746-755.

  1. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  2. A comparison between the four Geldart groups on the performance of a gas-phase annular fluidized bed photoreactor for volatile organic compound oxidation.

    PubMed

    Diniz, Leonardo Almeida; Hewer, Thiago Lewis Reis; Matsumoto, Danielle; Teixeira, Antonio Carlos Silva Costa

    2018-05-07

    Heterogeneous photocatalytic oxidation (PCO) is a widely studied alternative for the elimination of volatile organic compounds (VOC) in air. In this context, research on novel photoreactor arrangements to enhance PCO rates is desired. Annular fluidized bed photoreactors (AFBPR) have yielded prominent results when compared to conventional thin film reactors. However, very few works aimed at optimizing AFBPR operation. In this study, TiO 2 photocalytic agglomerates were synthesized and segregated in specific size distributions to behave as Geldart groups A, B, C, and D fluidization. The TiO 2 agglomerates were characterized by XRD, FTIR spectra, and N 2 adsorption. Photocatalyst performances were compared in a 10-mm gapped AFBPR for degrading the model pollutant methyl-ethyl-ketone (MEK), using a 254-nm radiation source. Geldart group C showed to be inadequate for AFBPR operation due to the short operation range between fluidization and elutriation. In all the cases, photocatalytic reaction rates were superior to sole UV photolysis. Group A and group B demonstrated the highest reaction rates. Considerations based on mass transfer suggested that the reasons were enhanced UV distribution within the bed at lower flow rates and superior catalyst surface area at higher flow rates. Results also revealed that groups A, B, and D perform equally per catalyst area within an AFBPR if the fluidization numbers (FN) are high enough.

  3. Flying MOFs: polyamine-containing fluidized MOF/SiO2 hybrid materials for CO2 capture from post-combustion flue gas.

    PubMed

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    2018-05-28

    Solid-state synthesis ensures a high loading and well-dispersed growth of a large collection of metal-organic framework (MOF) nanostructures within a series of commercially available mesoporous silica. This approach provides a general, highly efficient, scalable, environmentally friendly, and inexpensive strategy for shaping MOFs into a fluidized form, thereby allowing their application in fluidized-bed reactors for diverse applications, such as CO 2 capture from post-combustion flue gas. A collection of polyamine-impregnated MOF/SiO 2 hybrid sorbents were evaluated for CO 2 capture under simulated flue gas conditions in a packed-bed reactor. Hybrid sorbents containing a moderate loading of (Zn)ZIF-8 are the most promising sorbents in terms of CO 2 adsorption capacity and long-term stability (up to 250 cycles in the presence of contaminants: SO 2 , NO x and H 2 S) and were successfully prepared at the kilogram scale. These hybrid sorbents demonstrated excellent fluidizability and performance under the relevant process conditions in a visual fluidized-bed reactor. Moreover, a biochemically inspired strategy for covalently linking polyamines to MOF/SiO 2 through strong phosphine bonds has been first introduced in this work as a powerful and highly versatile post-synthesis modification for MOF chemistry, thus providing a novel alternative towards more stable CO 2 solid sorbents.

  4. Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.

    PubMed

    Valverde, Jose Manuel

    2015-06-01

    Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.

  5. A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya

    2007-01-01

    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.

  6. Analog laboratory experiments on the influence of substrate roughness on the run out distance of pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Roche, O.; Chedevile, C.

    2012-12-01

    We carried out scaled experiments on gas-particles flows propagating on a rough substrate in order to investigate the emplacement of pyroclastic flows. The flows were generated from the release of non-fluidized or gas-fluidized columns of fine (80 μm) glass beads of height of 30 cm into a 3 m-long horizontal channel. The base of the channel was either smooth or was made rough by gluing a monodisperse layer of spherical particles of diameter of 80 μm to 3 mm. We defined the substrate roughness as the size of the glued particles, which corresponded to up to several tens of centimeters when scaled to the natural system. The flow front kinematics and the detailed interactions between the base of the flow and the rough substrate were investigated from high speed videos. We measured systematically the run out distance of the flows, and experiments were repeated 8-10 times for each configuration to obtain a mean value. The run out distance increased with the substrate roughness for both initially non-fluidized and fluidized flows. The run out had a minimum value for a smooth base and was about twice that value for the highest roughness of 3 mm. Analysis of the flow kinematics revealed that the increase in run out was caused by higher front velocities essentially at late stages of emplacement, during which the head of the flows stretched considerably. High speed videos made at the base of the flows showed that their head first slid over the substrate before aggregates of particles fell into the interstices between the particles forming the rough substrate, at a mean speed of several centimeters per second. In contrast, complementary experiments on flows of coarse beads of 350 μm showed that the substrate roughness did not influence their run out, and at the flow base their particles bumped into those of the substrate before falling individually into the interstices. These observations suggest that the positive correlation between the flow run out and the substrate roughness for flows of fine particles could result from two mechanisms. The first was the reduction of the contact area between the flow base and the substrate as the roughness increased because of the reduced number of particles per unit length. The second, main mechanism was auto-fluidization generated as the fine particles falling into the interstices expulsed the air upward at a velocity much larger than the minimum fluidization velocity. This promoted at least partial fluidization or additional pore pressure in case of initially non-fluidized or fluidized flows, respectively. This experimental investigation provides some counterintuitive results and has implication for hazards assessment. Other things being equal, the run out distance of fines-rich pyroclastic flows is expected to increase with the roughness of the terrain on which they propagate.

  7. SIMULTANEOUS CAPTURE OF METAL, SULFUR AND CHLORINE BY SORBENTS DURING FLUIDIZED BED INCINERATION. (R826694C697)

    EPA Science Inventory

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental...

  8. PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...

  9. ANALYSIS OF AN AEROBIC FLUIDIZED BED REACTOR DEGRADING MTBE AND BTEX AT REDUCED EBCTS

    EPA Science Inventory

    The purpose of this study was to investigate the biodegradation of MTBE and BTEX using a fluidized bed reactor (FBR) with granular activated carbon (GAC) as a biological attachment medium. Batch experiments were run to analyze the MTBE and TBA degradation kinetics of the culture ...

  10. CONTINUOUS MICRO-SORTING OF COMPLEX WASTE PLASTICS PARTICLEMIXTURES VIA LIQUID-FLUIDIZED BED CLASSIFICATION (LFBC) FOR WASTE MINIMIZATIONAND RECYCLING

    EPA Science Inventory

    A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...

  11. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less

  12. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.

  13. The Effect of the 4MAT Learning Model on the Achievement and Motivation of 7th Grade Students on the Subject of Particulate Nature of Matter and an Examination of Student Opinions on the Model

    ERIC Educational Resources Information Center

    Aktas, Idris; Bilgin, Ibrahim

    2015-01-01

    Background: Many researchers agree that students, especially primary students, have learning difficulties on the "Particulate Nature of Matter" unit. One reason for this difficulty is not considering individual differences for teaching science. In 4MAT model learning, environment is arranged according to individual differences. Purpose:…

  14. Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi

    2017-04-01

    The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.

  15. Controlled Viscosity in Dense Granular Materials

    NASA Astrophysics Data System (ADS)

    Gnoli, A.; de Arcangelis, L.; Giacco, F.; Lippiello, E.; Ciamarra, M. Pica; Puglisi, A.; Sarracino, A.

    2018-03-01

    We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.

  16. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  17. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  18. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  19. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  20. Mercury Emission Measurement at a CFB Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less

  1. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom

    PubMed Central

    Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.

    2017-01-01

    Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098

  2. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  3. Effects of sorbent attrition on utilization. Final report, June 1, 1990--June 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, Soon-Jai; Lee, S.K.

    1992-03-01

    Attrition of surface product levers of sulfite/sulfate may be the key to substantially increasing sorbent utilization in new dry scrubbing processes. This conclusion has been reached from research results obtained from new gas/solid contacting methods such as the Circulating Fluidized Bed Absorber and the Limestone Emission Control method. An additional savings may be reduced by the use of large initial sorbent, particle sizes which greatly reduces the cost of grinding and sorbent preparation. The objectives of project 1.7 were then to study attrition of sorbent particles in a systematic fashion in order to determine how to use attrition to increasemore » sorbent utilization. This was to be carried out by the construction of a bench scale fluidized bed where a series of experiments were to be conducted to measure attrition of lime and limestone samples. This has been accomplished and the project proceeded as anticipated. The results indicate that attrition differs for wet and dry conditions for certain sorbents and that these differences are substantial. Under dry conditions, the results of attrition tests on carefully characterized lime samples indicate that mechanical abrasion is the primary attrition mechanism. The rate of attrition is seen to be similar to a first order chemical reaction where the bed mass (or total surface area) is analagous to reactant concentration. A model for mechanical attrition is presented which expresses the rate constant in an Arrhenius type form proportional to a pseudo attrition activation energy and excess gas energy above a minimum level. The value of this pseudo attrition activation energy for lime has been found to be 106 KJ/KG. For the attrition of wetted lime particles in a fluidized bed. the attrition rate has been found to be directly related to the volumetric flow rate of injected water.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, S.K.; Gupta, R.P.; Khare, G.P.

    The objectives of this project are to determine the long-term chemical reactivity and mechanical durability of a fluidized version of Phillips Petroleum Company`s proprietary Z-SORB sorbent for the desulfurization of coal-derived gases in a high-pressure (20 atm) fluidized-bed reactor under simulated U-Gas conditions and at a moderate operating temperature of 538 degrees C.

  5. Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor

    ERIC Educational Resources Information Center

    Saayman, Jean; Nicol, Willie

    2011-01-01

    A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…

  6. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  7. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    USDA-ARS?s Scientific Manuscript database

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  8. JPL in-house fluidized bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1985-01-01

    The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.

  9. Propagation of a fluidization - combustion wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  10. Correlation between loose density and compactibility of granules prepared by various granulation methods.

    PubMed

    Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M

    2001-03-23

    The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.

  11. Method of pyrolyzing brown coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, W.; Heberlein, I.; Ossowski, M.

    A two-step method and apparatus are disclosed based on the fluidized bed principle, for the production of coke, rich gas and pyrolysis tar, with the object of executing the method in a compact apparatus arrangement, with high energy efficiency and high throughput capacity. This is accomplished by a sequence in which the fine grains removed from the drying vapor mixture are removed from the actual pyrolysis process, and a hot gas, alien to the carbonization, is used as fluidization medium in the pyrolysis reactor, and with a hot gas-high performance separator being used for the dust separation from the pyrolysismore » gas, with the combustion exhaust gas produced in the combustion chamber being used for the indirect heating of the fluidization medium, for the pre-heating of the gas, which is alien to the carbonization, and for the direct heating in the dryer. The dryer has a double casing in the area of the fluidized bed, and a mixing chamber is arranged directly underneath its initial flow bottom, while the pyrolysis reactor is directly connected to the combustion chamber and the pre-heater.« less

  12. Wall fluidization in two acts: from stiff to soft roughness.

    PubMed

    Derzsi, Ladislav; Filippi, Daniele; Lulli, Matteo; Mistura, Giampaolo; Bernaschi, Massimo; Garstecki, Piotr; Sbragaglia, Mauro; Pierno, Matteo

    2018-02-14

    Fluidization of soft glassy materials (SGMs) in microfluidic channels is affected by the wall roughness in the form of microtexturing. When SGMs flow across microgrooves, their constituents are likely trapped within the grooves' gap, and the way they are released locally modifies the fluidization close to the walls. By leveraging a suitable combination of experiments and numerical simulations on concentrated emulsions (a model SGM), we quantitatively report the existence of two physically different scenarios. When the gap is large compared to the droplets in the emulsion, the droplets hit the solid obstacles and easily escape scrambling with their neighbors. Conversely, as the gap spacing is reduced, droplets get trapped inside, creating a "soft roughness" layer, i.e. a complementary series of deformable posts from which overlying droplets are in turn released. In both cases, the induced fluidization scales with the grooves' density, although with a reduced prefactor for narrow gaps, accounting for the softness of the roughness. Both scenarios are also well distinguished via the statistics of the droplets displacement field close to the walls, with large deviations induced by the surface roughness, depending on its stiffness.

  13. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    PubMed

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Heat transfer to horizontal tubes immersed in a fluidized-bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Menart, J.; Hajicek, D.R.

    Experiments were carried out to measure the heat transfer rates to water-cooled horizontal tubes immersed in an atmospheric fluidized-bed combustor burning North Dakota lignite. The effect of bed temperature (T/sub B/ = 587 to 1205K), particle size (anti d/sub p/ = 0.544 to 2.335 mm), and fluidizing velocity (U = 0.73 to 2.58 m/s) on the heat transfer rate to horizontal tubes immersed in a fluidized-bed combustor (0.45 x 0.45 m) was investigated. Among existing correlations, correlations proposed by Glicksman and Decker (1980), Zabrodsky et al. (1980), Catipovic et al. (1980), Grewal (1981), and Bansal et al. (1980) are foundmore » to predict the present data quite well, when the contribution due to radiation is included. The radiative heat transfer is estimated as the difference between the heat transfer to an oxidized boiler tube and to a gold-plated tube. The relative contribution of radiation is found to be 11% for a bed of sand particles (anti d/sub p/ = 0.9 mm) operating at 1088K. 40 refs., 7 figs., 5 tabs.« less

  15. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.

    PubMed

    Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R

    2012-05-01

    In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.

  17. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  18. 40 CFR 62.3100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...

  19. 40 CFR 62.3100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...

  20. 40 CFR 62.3100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...

  1. 40 CFR 62.3100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Idaho Fluoride Emissions from Existing Primary Aluminum Plants § 62.3100 Identification of plan—negative... that there are no existing primary aluminum plants in the State subject to part 60, subpart B of this chapter. [47 FR 47250, Oct. 25, 1982] Metals, Acid Gases, Organic Compounds, Particulates and Nitrogen...

  2. Influence of internal biogas production on hydrodynamic behavior of anaerobic fluidized-bed reactors.

    PubMed

    Wu, Chun-Sheng; Huang, Ju-Sheng; Chou, Hsin-Hsien

    2006-01-01

    Predictive models for describing the hydrodynamic behavior (bed-expansion and bed-pressure gradient) of a three-phase anaerobic fluidized bed reactor (AFBR) was developed according to wake theory together with more realistic dynamic bed-expansion experiments (with and without internal biogas production). A reliable correlation equation for the parameter k (mean volume ratio of wakes to bubbles) was also established, which is of help in estimating liquid hold up of fluidized beds. The experimental expansion ratio of three-phase fluidized beds (E(GLS)) was approximately 18% higher than that of two-phase fluidized beds (E(LS)); whereas the experimental bed-pressure gradient of the former [(-DeltaP/H)(GLS)] was approximately 9.3% lower than that of the latter [(-DeltaP/H)(LS)]. Both the experimental and modeling results indicated that a higher superficial gas velocity (u(g)) gave a higher E(GLS) and a higher E(GLS) to E(LS) ratio as well as a lower (-DeltaP/H)(GLS) and a lower (-DeltaP/H)(GLS) to (-DeltaP/H)(LS) ratio. As for the operation stability of the AFBR, the sensitivity of u(g) to expansion height (H(GLS)) and (-DeltaP/H)(GLS) is between the sensitivity of superficial liquid velocity and biofilm thickness. The model predictions of E(GLS), (-DeltaP)(GLS), and (-DeltaP/H)(GLS) agreed well the experimental measurements. Accordingly, the predictive models accounting for internal biogas production described fairly well the hydrodynamic behavior of the AFBR.

  3. Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph; Barlow, Nadine; Mouginis-Mark, Peter; Stewart, Sarah

    2010-04-01

    Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters. In addition, average ejecta mobility (EM) ratios indicate that the ejecta of these bodies are self-similar with crater size, but are systematically smaller on Ganymede and Europa. This may be due to the effects of the abundant ice in the crusts of these satellites that results in increased ejection angle causing ejecta to impact closer to the crater and with lower horizontal velocity.

  4. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less

  5. Gaseous and particulate emissions from a DC arc melter.

    PubMed

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  6. Improvements in Production of Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.

  7. Primary productivity (PP) in the North Pacific Subtropical Gyre: Understanding drivers of variability via 14C-tracer incubations and PP diagnosed via the diurnal cycle of particulate carbon.

    NASA Astrophysics Data System (ADS)

    White, A. E.; Letelier, R. M.

    2016-02-01

    The rate of primary production (PP) in the ocean is a fundamental step in the ocean's food web and biological carbon pump. For more than 50 years oceanographers have relied primarily on estimates of PP based on in vitro measurements of 14CO2 uptake rates. Yet, it is difficult to reconcile PP rates measured in vitro with in situ rates. Here we present diurnal cycles of optically-derived particulate organic carbon (POC) and particle size distributions measured over a series of cruises in the North Pacific relative to traditional 14C-based PP measurements. We have calculated net PP from the daytime increase in optically-derived particulate organic carbon (POC) and the sum of respiration, grazing and sinking from the nighttime POM decrease. Comparison of optically derived NPP to parallel 12-hr 14C incubations are highly significant. The variability in productivity measurements over daily to seasonal to annual time-scales are discussed relative to predominant chemical, physical and climactic forcing.

  8. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor.

    PubMed

    Hatzinger, Paul B; Lewis, Celeste; Webster, Todd S

    2017-12-01

    The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 μg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 μg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m 3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m 3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...

  10. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...

  11. Fluidized-Bed Drying and Storage Stability of Cryptococcus flavescens OH 182.9, a Biocontrol Agent of Fusarium Head Blight

    USDA-ARS?s Scientific Manuscript database

    A method to produce dried granules of Cryptococcus flavescens (formerly Cryptococcus nodaensis) OH 182.9 was developed and the granules evaluated for storage stability. Small spherical granules were produced and dried using a fluidized bed dryer. A drying and survival curve was produced for the pr...

  12. CIBO special project study: Fluidized bed combustion by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soyka, P.A.

    1996-12-31

    Information is outlined on a Council of Industrial Boiler Owners (CIBO) Special Project Study on fluidized bed combustion by-products. Data are presented on a fossil fuel combustion by-products (FFCB) Survey; study population and response pattern; survey respondent characteristics; FFCB characterization; productive use and impacts; on-site FFCB disposal; and environmental characteristics of FFCB disposal units.

  13. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  14. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  15. Evaluation of Radial Flow Fluidized Filter (R3F) Followed by Microfiltration and Ultrafiltration Systems in Calimesa, California

    EPA Science Inventory

    U.S. EPA coordinated a field study with South Mesa Water Utility to look for treatment alternatives for California State Project Water in the small community of Calimesa, California. EPA evaluated the performance of a system comprised of Radial Flow Fluidized Filtration (R3f) fo...

  16. Nitric Oxide Reduction over Sewage Sludge and Coal Chars at Conditions Relevant to Staged Fluidized Bed Combustion

    NASA Astrophysics Data System (ADS)

    Salatino, P.; Solimene, R.; Chirone, R.

    The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.

  17. Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo

    With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.

  18. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  19. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  20. Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time.

    PubMed

    Aller, J Y; Aller, R C; Kemp, P F; Chistoserdov, A Y; Madrid, V M

    2010-06-01

    Reworked and fluidized fine-grained deposits in energetic settings are a major modern-day feature of river deltas and estuaries. Similar environments were probably settings for microbial evolution on the early Earth. These sedimentary systems act as efficient biogeochemical reactors with high bacterial phylogenetic diversity and functional redundancy. They are temporally rather than spatially structured, with repeated cycling of redox conditions and successive stages of microbial metabolic processes. Intense reworking of the fluidized bed entrains bacteria from varied habitats providing new, diverse genetic materials to contribute to horizontal gene transfer events and the creation of new bacterial ecotypes. These vast mud environments may act as exporters and promoters of biosphere diversity and novel adaptations, potentially on a globally important scale.

  1. Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.

    PubMed

    Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2012-06-01

    The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  3. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  4. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...

  5. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...

  6. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...

  7. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...

  8. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...

  9. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  10. Heat transfer in three-phase fluidization and bubble-columns with high gas holdups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Kusakabe, K.; Fan, L.S.

    1993-08-01

    Bubble column and three-phase fluidized bed reactors have wide applications in biotechnological and petroleum processes (Deckwer, 1985; Fan, 1989). In such biotechnological processes as fermentation and waste water treatment, small bubbles of oxygen and/or nitrogen are introduced in the column to enhance oxygen transfer and to ensure the stability of immobilized cell particles. In addition, tiny bubbles are produced during the biological process due to the production of surface active compounds. The presence of these small bubbles causes an increase in the gas holdup of the system. High gas holdups are also characteristics of industrial processes such as coal liquefactionmore » and hydrotreating of residual oils. Good understanding of the transport properties of three-phase fluidized beds with high gas holdups is essential to the design, control and optimum operations of the commercial reactors employed in the above-mentioned processes. Heat-transfer studies in three-phase fluidized beds have been reviewed recently by Kim and Laurent (1991). Past studies focused primarily on the measurements of time-averaged heat transfer from the column wall to bed (Chiu and Ziegler 1983; Muroyama et al., 1986) or on immersed heating objects to bed (Baker et al., 1978; Kato et al., 1984) in aqueous systems. Recently, Kumar et al. (1992) provided a mechanistic understanding of the heat transfer in bubbly-liquid and liquid-solid systems. The purpose of this work is to investigate the heat transfer in a three-phase fluidized bed under high gas holdup conditions. The associated hydrodynamic behavior of the system is also studied.« less

  11. Dynamic analysis of a circulating fluidized bed riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris

    2012-01-01

    A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solidsmore » fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.« less

  12. Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Hegde, Uday

    2012-01-01

    Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.

  13. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  14. 40 CFR Table 2 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  15. 40 CFR Table 2 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  16. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  17. Fluidized bed catalytic pyrolysis of eucalyptus over hzsm-5: effect of acid density and gallium modification on catalyst deactivation

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...

  18. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  19. Entrained-flow gasifier and fluidized-bed combustor temperature monitoring using arrays of fs-IR written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Grobnic, Dan; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan

    2015-09-01

    Femtosecond written fiber Bragg gratings, have shown great potential for sensing in extreme environments. This paper discusses the fabrication and deployment of several fs-IR written FBG arrays, for monitoring main-spool skin temperatures of an entrained-flow gasifier, as well as the internal temperature gradient of a fluidized bed combustor.

  20. A system for measuring bubble voidage and frequency around tubes immersed in a fluidized bed of particles

    NASA Astrophysics Data System (ADS)

    Whitty, Kevin J.; Siddoway, Michael

    2010-07-01

    Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.

  1. Particle circulation and solids transport in large bubbling fluidized beds. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homsy, G.M.

    1982-04-01

    We have undertaken a theoretical study of the possibility of the formation of plumes or channeling when coal particles volatilize upon introduction to a fluidized bed, Fitzgerald (1980). We have completed the analysis of the basic state of uniform flow and are currently completing a stability analysis. We have modified the continuum equations of fluidization, Homsy et al. (1980), to include the source of gas due to volatilization, which we assume to be uniformly distributed spatially. Simplifying these equations and solving leads to the prediction of a basic state analogous to the state of uniform fluidization found when no sourcemore » is present within the medium. We are currently completing a stability analysis of this basic state which will give the critical volatilization rate above which the above simple basic state is unstable. Because of the experimental evidence of Jewett and Lawless (1981), who observed regularly spaced plume-like instabilities upon drying a bed of saturated silica gel, we are considering two-dimensional periodic disturbances. The analysis is similar to that given by Homsy, et al. (1980) and Medlin et al. (1974). We hope to determine the stability limits for this system shortly.« less

  2. Volume I: fluidized-bed code documentation, for the period February 28, 1983-March 18, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piperopoulou, H.; Finson, M.; Bloomfield, D.

    1983-03-01

    This documentation supersedes the previous documentation of the Fluidized-Bed Gasifier code. Volume I documents a simulation program of a Fluidized-Bed Gasifier (FBG), and Volume II documents a systems model of the FBG. The FBG simulation program is an updated version of the PSI/FLUBED code which is capable of modeling slugging beds and variable bed diameter. In its present form the code is set up to model a Westinghouse commercial scale gasifier. The fluidized bed gasifier model combines the classical bubbling bed description for the transport and mixing processes with PSI-generated models for coal chemistry. At the distributor plate, the bubblemore » composition is that of the inlet gas and the initial bubble size is set by the details of the distributor plate. Bubbles grow by coalescence as they rise. The bubble composition and temperature change with height due to transport to and from the cloud as well as homogeneous reactions within the bubble. The cloud composition also varies with height due to cloud/bubble exchange, cloud/emulsion, exchange, and heterogeneous coal char reactions. The emulsion phase is considered to be well mixed.« less

  3. Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1997-12-31

    Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less

  4. Novel designs of fluidized bed combustors for low pollutant emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.; Bleek, C.M. van den; Dam-Johansen, K.

    1995-12-31

    It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the charmore » combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.« less

  5. A system for measuring bubble voidage and frequency around tubes immersed in a fluidized bed of particles.

    PubMed

    Whitty, Kevin J; Siddoway, Michael

    2010-07-01

    Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.

  6. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation results were compared with the experimental data obtained from the demonstration plant. Keywords: Biomass gasification; Mathematical model; Circulating fluidized bed; Hydrodynamics; Kinetics; Sensitivity analysis; Validation; Equivalence ratio; Temperature; Feed rate; Moisture; Syngas composition; Lower heating value; Gasification efficiency; Carbon conversion

  7. Reactions homogenes en phase gazeuse dans les lits fluidises

    NASA Astrophysics Data System (ADS)

    Laviolette, Jean-Philippe

    This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous measurements of solids flux, chemical composition, temperature and pressure. Autoignition was only recorded within 0.06 m of the bed surface at temperatures greater than 833 K. Propane conversion predicted by six different microkinetic mechanistic models were compared to the experimental measurements: all six models underestimated the reaction rate above the bed surface. However, accounting for the production of H2O2 during in-bed combustion significantly increased the calculated reaction rates and resulted in a better agreement between predicted and measured propane conversion. In the third part of this work, a novel spectroscopic method was developed to measure quantitatively and simultaneously solids volume fraction (1-epsilon) and gaseous species composition (Yi) in a gas/solid system. The method was comprised of an FT-IR coupled to a fibre-optic probe that could perform real-time and in-situ measurements of absorbance. The effect of (1-epsilon) and Yi on the absorbance spectra were additive and could be independently calibrated. Experiments were conducted with alkane/nitrogen mixtures and two types of particles: sand and FCC. Fuel mole fractions and (1-epsilon) were varied between 1.8 - 10.1 mol% and 0 - 0.45, respectively. The relative errors for Yi time-averaged measurements were below 6% and the error increased significantly with decreasing beam intensity. A proof of concept for a novel application in fluidized beds was also completed: the fibre-optic probe was used to measure the molar fraction of a tracer gas inside the emulsion and bubble phases during gas tracer experiments. (Abstract shortened by UMI.)

  8. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  9. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  10. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  11. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds

    DOE PAGES

    Li, Tingwen

    2015-09-25

    The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less

  12. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  13. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  14. PRIMARY PARTICLES GENERATED BY THE COMBUSTION OF HEAVY FUEL OIL AND COAL: REVIEW OF RESEARCH RESULTS FROM EPA'S NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

    EPA Science Inventory

    Researchers at the U.S. Environmental Protection Agency's (EPA's) Office of Research and
    Development (ORD) have conducted a series of tests to characterize the size and composition of primary particulate matter (PM) generated from the combustion of heavy fuel oil and pulverize...

  15. PREPARATION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  16. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  17. Survey of Microcleaning Methods for Application to Army Coal-Fired Plants

    DTIC Science & Technology

    1989-02-01

    Authority (TVA) has successfully reduced its cost of controlling SOX by combining postcombustion flue gas desulfurization equipment with precombustion coal...effective way of meeting the new standards for SOl Several options are available, in- cluding flue gas desulfurization , fluidized bed combustors, and...are available, including flue gas desulfurization , fluidized bed combustors, and precombustion cleaning. This report (Cont’d.) 20 DISTRIBUTION

  18. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  19. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    PubMed

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high efficiency. The new technology was experimentally investigated and proven using model-RDF, actual-RDF and impurities of different densities. In addition, numerical simulations were also done. The fluidization chamber was operated in batch mode. The article describes experiences and difficulties in using rotating fluidized bed systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.

    PubMed

    Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar

    2011-10-01

    Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier-Stokes Equations (RANS) or Large Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian-Lagrangian and the Eulerian-Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation.

    PubMed

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria

    2014-01-01

    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  2. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    PubMed

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  3. Air cleaning performance of a new environmentally controlled primary crusher operator booth.

    PubMed

    Organiscak, J A; Cecala, A B; Zimmer, J A; Holen, B; Baregi, J R

    2016-02-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company's Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system's effectiveness in controlling airborne dusts and particulates. The booth's dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions.

  4. Composition and oxidation state of sulfur in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  5. Landslides and impacts on comets.

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200 (2009) 280-291

  6. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.

    PubMed

    Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko

    2014-03-15

    The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in themore » return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.« less

  8. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  9. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.

  10. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  11. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    PubMed

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  12. Deposition method for producing silicon carbide high-temperature semiconductors

    DOEpatents

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  13. An investigation of the mechanisms of calcination and sulfation in coal-water mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christofides, N.

    1990-09-21

    The purpose of this investigation is to study the mechanisms of sulfur capture when burning coal-water-limestone mixtures (CWLM) in fluidized beds. Special care is taken to make comparisons with to dry coal and sorbent under comparable experimental conditions. A series of experiments were performed in an eight-inch diameter bubbling fluidized bed combustor to address this problem. 33 refs., 17 figs., 5 tabs.

  14. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  15. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOEpatents

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  16. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  17. Experimental study and discrete element method simulation of Geldart Group A particles in a small-scale fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Rabha, Swapna; Verma, Vikrant

    Geldart Group A particles are of great importance in various chemical processes because of advantages such as ease of fluidization, large surface area, and many other unique properties. It is very challenging to model the fluidization behavior of such particles as widely reported in the literature. In this study, a pseudo-2D experimental column with a width of 5 cm, a height of 45 cm, and a depth of 0.32 cm was developed for detailed measurements of fluidized bed hydrodynamics of fine particles to facilitate the validation of computational fluid dynamic (CFD) modeling. The hydrodynamics of sieved FCC particles (Sauter meanmore » diameter of 148 µm and density of 1300 kg/m3) and NETL-32D sorbents (Sauter mean diameter of 100 µm and density of 480 kg/m3) were investigated mainly through the visualization by a high-speed camera. Numerical simulations were then conducted by using NETL’s open source code MFIX-DEM. Both qualitative and quantitative information including bed expansion, bubble characteristics, and solid movement were compared between the numerical simulations and the experimental measurement. Furthermore, the cohesive van der Waals force was incorporated in the MFIX-DEM simulations and its influences on the flow hydrodynamics were studied.« less

  18. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    NASA Astrophysics Data System (ADS)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  19. Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors.

    PubMed

    Diano, Nadia; Grimaldi, Tiziana; Bianco, Mariangela; Rossi, Sergio; Gabrovska, Katya; Yordanova, Galya; Godjevargova, Tzonka; Grano, Valentina; Nicolucci, Carla; Mita, Luigi; Bencivenga, Umberto; Canciglia, Paolo; Mita, Damiano G

    2008-12-10

    The catalytic behavior of a mixture of pectic enzymes, covalently immobilized on different supports (glass microspheres, nylon 6/6 pellets, and PAN beads), was analyzed with a pectin aqueous solution that simulates apple juice. The following parameters were investigated: the rate constant at which pectin hydrolysis is conducted, the time (tau(50)) in which the reduction of 50% of the initial viscosity is reached, and the time (tau(comp,dep)) required to obtain complete depectinization. The best catalytic system was proven to be PAN beads, and their pH and temperature behavior were determined. The yields of two bed reactors, packed or fluidized, using the catalytic PAN beads, were compared to the circulation flow rate of real apple juice. The experimental conditions were as follows: pH 4.0, T = 50 degrees C, and beads volume = 20 cm(3). The initial pectin concentration was the one that was present in our apple juice sample. No differences were observed at low circulation rates, while at higher recirculation rates, the time required to obtain complete pectin hydrolysis into the fluidized reactor was found to be 0.25 times smaller than in the packed bed reactor: 131 min for the packed reactors and 41 min for the fluidized reactors.

  20. Experimental study and discrete element method simulation of Geldart Group A particles in a small-scale fluidized bed

    DOE PAGES

    Li, Tingwen; Rabha, Swapna; Verma, Vikrant; ...

    2017-09-19

    Geldart Group A particles are of great importance in various chemical processes because of advantages such as ease of fluidization, large surface area, and many other unique properties. It is very challenging to model the fluidization behavior of such particles as widely reported in the literature. In this study, a pseudo-2D experimental column with a width of 5 cm, a height of 45 cm, and a depth of 0.32 cm was developed for detailed measurements of fluidized bed hydrodynamics of fine particles to facilitate the validation of computational fluid dynamic (CFD) modeling. The hydrodynamics of sieved FCC particles (Sauter meanmore » diameter of 148 µm and density of 1300 kg/m3) and NETL-32D sorbents (Sauter mean diameter of 100 µm and density of 480 kg/m3) were investigated mainly through the visualization by a high-speed camera. Numerical simulations were then conducted by using NETL’s open source code MFIX-DEM. Both qualitative and quantitative information including bed expansion, bubble characteristics, and solid movement were compared between the numerical simulations and the experimental measurement. Furthermore, the cohesive van der Waals force was incorporated in the MFIX-DEM simulations and its influences on the flow hydrodynamics were studied.« less

  1. [Feasibility of treatment of landfill leachates by external loop three phase fluidized bed-constructed wetland system].

    PubMed

    Zhang, Jin-Sheng; Yuan, Xing-Zhong; Zeng, Guang-Ming; Dong, Bei-Bei; Liang, Yun-Shan

    2009-11-01

    In this study, the system composed with the external loop fluidized bed reactor and constructed wetland was used to treat the landfill leachate. The change of water quality for the landfill leachate treated by this system was investigated. The experimental results indicated that the COD and NH4(+) -N of the influent reduced from 4000 mg x L(-1) and 300 mg x L(-1) to 1 500 mg x L(-1) and 150 mg x L(-1) after the external loop three phase fluidized bed reactor and steady at 200 mg x L(-1) and 10 mg x L(-1) behind treated by the constructed wetland. The heavy metals of Cd, Zn, Pb were also reduced for treatment by external loop three phase fluidized bed reactor. They were steady at 0.01 mg x L(-1), 0.5 mg x L(-1), 0.1 mg x L(-1) from 0.12 mg x L(-1), 3.0 mg x L(-1), 1.4 mg x L(-1) because of the constructed wetland. We also compared the different plants for the efficiency, the results showed that whatever plants, there was little effects on the efficiency of the COD and NH4(+) -N, but the effect of heavy metal was markedness.

  2. Nuclei-mode particulate emissions and their response to fuel sulfur content and primary dilution during transient operations of old and modern diesel engines.

    PubMed

    Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B

    2007-09-15

    The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.

  3. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements in the federally approved SIP remain in effect. See § 52.1870(c)(27). (j) Approval—EPA is...) for the Huntington-Ashland area. (3) Ohio's 2005 NOX, primary PM2.5, and SO2 and 2007/2008 ammonia and... Clean Air Act for Washington County. (4) Ohio's 2005 NOX, primary PM2.5, and SO2 and 2007/2008 ammonia...

  4. Primary Teachers' Particle Ideas and Explanations of Physical Phenomena: Effect of an In-Service Training Course

    ERIC Educational Resources Information Center

    Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael

    2010-01-01

    This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…

  5. Nutrient utilisation and particulate organic matter changes during summer in the upper mixed layer (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.

    1997-01-01

    The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.

  6. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  7. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow retained bubbles to rise and be carried to the break tank. The overall conclusion of the testing is that fluidization is an effective method to remove hydrogen gas from a bed of sRF resin, but that a single fluidization velocity that is adequate to release gas in 55 ºC water will over-fluidize sRF resin in most LAW liquids, including both nominal and high-limit LAW simulants used in testing. An upper packed bed can retain hydrogen gas and pose a flammability hazard. Using periodic on:off fluidization, such as 5:55 min. on:off cycles, is effective at releasing gas while not creating an upper packed bed. Note that lengthening the fluidization duration in a one-hour cycle did result in a stable upper packed bed in one case with the nominal LAW simulant, so testing focused on shorter “on” periods which are needed for effective hydrogen release with periodic on:off fluidization« less

  8. Producing Silicon Carbide for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Rohatgi, N. K.

    1986-01-01

    Processes proposed for production of SiC crystals for use in semiconductors operating at temperatures as high as 900 degrees C. Combination of new processes produce silicon carbide chips containing epitaxial layers. Chips of SiC first grown on porous carbon matrices, then placed in fluidized bed, where additional layer of SiC grows. Processes combined to yield complete process. Liquid crystallization process used to make SiC particles or chips for fluidized-bed process.

  9. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  10. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  11. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  12. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  13. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  14. Method for the production of cementitious compositions and aggregate derivatives from said compositions, and cementitious compositions and aggregates produced thereby

    DOEpatents

    Minnick, L. John

    1983-01-01

    The present invention relates to a method for preparing synthetic shaped cementitious compositions having high quality even without the addition of high energy binders, such as portland cement, through the use of the spent residue from a fluidized combustion bed of the type wherein limestone particles are suspended in a fluidized medium and sulfur oxides are captured, and pulverized coal fly ash.

  15. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  16. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less

  17. Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Bauman, Steve; Johnson, Kyle

    2016-01-01

    Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.

  18. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGES

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  19. Screening of zinc-based sorbents for hot-gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joong B. Lee; Chong K. Ryu; Chang K. Yi

    2008-03-15

    Highly reactive and attrition-resistant ZnO-based sorbents that are suitable for bubbling fluidized-bed reactors can be produced using the spray-drying method. Most of the ZnO-based sorbents prepared here (ZAC-X, X = 18N-25N) satisfy the physical and chemical criteria for bubbling fluidized-bed application (spherical shape, average particle size, 90-110 {mu}m; size distribution, 40-230 {mu}m; bulk density, 0.9-1.0 g/mL; attrition index (AI), 40-80%; sulfur sorption capacity, 14-17 wt %; sorbent use, 70-80%). The performance test of the ZAC-C sorbent at Korea Institute of Energy Research (KIER) with a bubbling fluidized-bed for 70 h also demonstrated that it had good sulfidation and regeneration performancemore » (11 wt % sorption capacity and 52% sorbent use) as well as reasonable attrition resistance (1.1% attrition loss for 70 h). 14 refs., 7 figs., 6 tabs.« less

  20. Air cleaning performance of a new environmentally controlled primary crusher operator booth

    PubMed Central

    Organiscak, J.A.; Cecala, A.B.; Zimmer, J.A.; Holen, B.; Baregi, J.R.

    2016-01-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company’s Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system’s effectiveness in controlling airborne dusts and particulates. The booth’s dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions. PMID:26937052

Top