Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Oreopoulos, John; Yip, Christopher M.
2009-01-01
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557
Combining single-molecule manipulation and single-molecule detection.
Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J
2014-10-01
Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon
2011-01-01
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru
2006-03-01
We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
NASA Astrophysics Data System (ADS)
Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam
Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.
State-dependent fluorescence of neutral atoms in optical potentials
NASA Astrophysics Data System (ADS)
Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Meschede, D.
2018-02-01
Recently we have demonstrated scalable, nondestructive, and high-fidelity detection of the internal state of 87Rb neutral atoms in optical dipole traps using state-dependent fluorescence imaging [M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke, and D. Meschede, Phys. Rev. Lett. 119, 180503 (2017), 10.1103/PhysRevLett.119.180503]. In this paper we provide experimental procedures and interpretations to overcome the detrimental effects of heating-induced trap losses and state leakage. We present models for the dynamics of optically trapped atoms during state-dependent fluorescence imaging and verify our results by comparing Monte Carlo simulations with experimental data. Our systematic study of dipole force fluctuations heating in optical traps during near-resonant illumination shows that off-resonant light is preferable for state detection in tightly confining optical potentials.
Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor
2012-01-01
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062
Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi
2009-01-01
The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano
2018-01-01
We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.
Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor
2011-04-07
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
Laser-induced fluorescence spectroscopy for improved chemical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less
Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred
2008-01-01
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong
2017-03-01
Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto
2017-02-01
We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.
Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less
Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced-fluorescence spectroscopy (LIFS) for improved chemical-analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed-laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the first time, to themore » study of energy transfer in ions.« less
Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy
NASA Astrophysics Data System (ADS)
Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan
2009-10-01
We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.
Stylianou, Andreas; Yova, Dido
2015-12-01
Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.
Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui
2014-01-30
The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Resolving the Pinning Force of Nanobubbles with Optical Microscopy
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
2017-02-01
Many of the remarkable properties of surface nanobubbles, such as unusually small contact angles and long lifetimes, are related to the force that pins them onto their substrates. This pinning force is yet to be quantified experimentally. Here, surface-attached nanobubbles are pulled with an atomic force microscope tip while their mechanical responses are observed with total internal reflection fluorescence microscopy. We estimate that a pinning force on the order of 0.1 μ N is required to unpin a nanobubble from its substrate. The maximum force that the tip can exert on the nanobubble is limited by the stability of the neck pulled from the bubble and is enhanced by the hydrophobicity of the tip.
Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua
2013-04-01
The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Huang, Qian; Lee, Joon; Arce, Fernando Teran; Yoon, Ilsun; Angsantikul, Pavimol; Liu, Justin; Shi, Yuesong; Villanueva, Josh; Thamphiwatana, Soracha; Ma, Xuanyi; Zhang, Liangfang; Chen, Shaochen; Lal, Ratnesh; Sirbuly, Donald J.
2018-01-01
Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1–4 and optical and magnetic tweezers5–8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14–16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon–dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution. PMID:29576804
Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.
Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun
2014-11-26
MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.
Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S
2018-05-29
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.
Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha
2016-04-05
Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.
Li, Zhen; Li, Zhigang; Yang, Lingling; Xie, Yuanzhe; Shi, Jie; Wang, Ruiyong; Chang, Junbiao
2015-03-01
In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV-visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.
Energy profile of nanobody-GFP complex under force.
Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich
2015-09-10
Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.
Solid state protein monolayers: Morphological, conformational, and functional properties
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.
2004-12-01
We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.
Hentschel, Carsten; Wagner, Hendrik; Smiatek, Jens; Heuer, Andreas; Fuchs, Harald; Zhang, Xi; Studer, Armido; Chi, Lifeng
2013-02-12
Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.
Dynamics of diamond nanoparticles in solution and cells.
Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg
2007-12-01
The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.
Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J
2017-11-21
The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.
Vilmart, G; Dorval, N; Orain, M; Lambert, D; Devillers, R; Fabignon, Y; Attal-Tretout, B; Bresson, A
2018-05-10
Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts. A fluorescence signal from iron atoms after excitation at 248 nm is observed for the first time in propellant flames. Images of the spatial distribution of iron atoms are recorded in the flame in which turbulent structures are generated. Iron fluorescence is detected up to 1.0 MPa, which opens the way to application in propellant combustion.
Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.
Baumann, Fabian; Bauer, Magnus S; Milles, Lukas F; Alexandrovich, Alexander; Gaub, Hermann E; Pippig, Diana A
2016-01-01
Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.
Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy
NASA Astrophysics Data System (ADS)
Baumann, Fabian; Bauer, Magnus S.; Milles, Lukas F.; Alexandrovich, Alexander; Gaub, Hermann E.; Pippig, Diana A.
2016-01-01
Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.
Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G
2009-03-01
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.
Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, Fabian; Pippig, Diana A., E-mail: diana.pippig@physik.uni-muenchen.de; Gaub, Hermann E.
Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize itsmore » position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip’s surface unimpaired.« less
Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li
2002-02-01
A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.
An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas
NASA Astrophysics Data System (ADS)
Davydov, V. G.; Kulyasov, V. N.
2018-01-01
A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.
Microscopy basics and the study of actin-actin-binding protein interactions.
Thomasson, Maggie S; Macnaughtan, Megan A
2013-12-15
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Wang, Huijuan; Song, Kailun; Wang, Yongzhao; Zuo, Ying; Zhang, Liwei; Zhang, Bingtai
2017-02-01
The inclusion complexes of ferulic acid (FA) with p-Sulfonatocalix[n]arenes (SCXn, n = 4, 6, 8) were prepared and characterized both in the solid state and in solution using fluorescence spectroscopy, 1H nuclear magnetic resonance (1H NMR), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results show that FA is able to form inclusion complexes with SCXn in a molar ratio of 1:1, causing a significant decrease in the fluorescence intensity of FA. The association constant of the inclusion complexes was calculated from the fluorescence titration data. 1H NMR spectroscopy analysis demonstrates that the aromatic ring and methoxy group of FA are partially covered by SCXn.
2015-01-22
applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum
Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim
2005-02-04
Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn2+, was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device.
Ramachandran, Gayathri
2017-01-01
Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.
Role of small oligomers on the amyloidogenic aggregation free-energy landscape.
He, Xianglan; Giurleo, Jason T; Talaga, David S
2010-01-08
We combine atomic-force-microscopy particle-size-distribution measurements with earlier measurements on 1-anilino-8-naphthalene sulfonate, thioflavin T, and dynamic light scattering to develop a quantitative kinetic model for the aggregation of beta-lactoglobulin into amyloid. We directly compare our simulations to the population distributions provided by dynamic light scattering and atomic force microscopy. We combine species in the simulation according to structural type for comparison with fluorescence fingerprint results. The kinetic model of amyloidogenesis leads to an aggregation free-energy landscape. We define the roles of and propose a classification scheme for different oligomeric species based on their location in the aggregation free-energy landscape. We relate the different types of oligomers to the amyloid cascade hypothesis and the toxic oligomer hypothesis for amyloid-related diseases. We discuss existing kinetic mechanisms in terms of the different types of oligomers. We provide a possible resolution to the toxic oligomer-amyloid coincidence.
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Singh, Andy; Luening, Katharina; Brennan, Sean; ...
2017-01-01
Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Andy; Luening, Katharina; Brennan, Sean
Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less
NASA Astrophysics Data System (ADS)
Wang, Yan; Cui, Haixin; Sun, Changjiao; Du, Wei; Cui, Jinhui; Zhao, Xiang
2013-03-01
We evaluated the performance of green fluorescent magnetic Fe3O4 nanoparticles (NPs) as gene carrier and location in pig kidney cells. When the mass ratio of NPs to green fluorescent protein plasmid DNA reached 1:16 or above, DNA molecules can be combined completely with NPs, which indicates that the NPs have good ability to bind negative DNA. Atomic force microscopy (AFM) experiments were carried out to investigate the binding mechanism between NPs and DNA. AFM images show that individual DNA strands come off of larger pieces of netlike agglomerations and several spherical nanoparticles are attached to each individual DNA strand and interact with each other. The pig kidney cells were labelled with membrane-specific red fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and nucleus-specific blue fluorescent dye 4',6-diamidino-2-phenylindole dihydrochloride. We found that green fluorescent nanoparticles can past the cell membrane and spread throughout the interior of the cell. The NPs seem to locate more frequently in the cytoplasm than in the nucleus.
Huo, Bingbing; Liu, Bingping; Chen, Tao; Cui, Liang; Xu, Gengfang; Liu, Mengli; Liu, Jingquan
2017-10-10
A facile and effective approach for the preparation of functionalized born nitride quantum dots (BNQDs) with blue fluorescence was explored by the hydrothermal treatment of the mixture of boric acid and melamine at 200 °C for 15 h. The as-prepared BNQDs were characterized by transmission electron microscopy (TEM), high-resolution TEM, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The single layered BNQDs with the average size of 3 nm showed a blue light emission under the illumination of the UV light. The BNQDs could be easily dispersed in an aqueous medium and applied as fluorescent probes for selective detection of Fe 3+ with remarkable selectivity and sensitivity (the lowest detection limit was 0.3 μM). The fluorescence fiber imaging demonstrated that the as-prepared quantum dots could be used as a valuable fluorchrome. Therefore, the BNQDs could be envisioned for potential applications in many fields such as biocompatible staining, fluorescent probes, and biological labeling.
NASA Technical Reports Server (NTRS)
Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.
1993-01-01
A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.
Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong
2018-05-23
Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.
Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.
ERIC Educational Resources Information Center
Horlick, Gary
1984-01-01
This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belugina, N. V.; Gainutdinov, R. V.; Tolstikhina, A. L., E-mail: alla@ns.crys.ras.ru
2011-11-15
Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas
2011-04-01
The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society
Active substrates improving sensitivity in biomedical fluorescence microscopy
NASA Astrophysics Data System (ADS)
Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.
2005-08-01
Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meschede, Dieter; Ueberholz, Bernd; Gomer, Victor
1999-06-11
We are experimenting with individual neutral cesium atoms stored in a magneto-optical trap. The atoms are detected by their resonance fluorescence, and fluorescence fluctuations contain signatures of the atomic internal and external degrees of freedom. This noninvasive probe provides a rich source of information about atomic dynamics at all relevant time scales.
Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.
Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong
2018-02-28
The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.
Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.
Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng
2018-08-17
Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan
2011-07-01
The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.
Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging
Bright, Vanessa
2011-01-01
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146
NASA Astrophysics Data System (ADS)
Moores, A. N.; Cadby, A. J.
2018-02-01
Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.
Determination of atomic sodium in coal combustion using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeny, P.G.; Abrahamson, H.B.; Radonovich, L.J.
1987-01-01
A laser-induced fluorescence spectrometer (LIFS) was assembled and sodium atom densities produced from the aspiration of solutions and direct introduction of a lignite into a flame were determined from fluorescence measurements. The average flame volume observed was 0.4mm/sup 3/. This small volume allowed the measurement of sodium concentrations as a function of vertical and horizontal flame position. Temperature profiles of the flames employed were also obtained and compared with the sodium atom densities. The sodium atom densities calculated from the fluorescence measurements (N/sub tt/) are compared with the sodium atom densities calculated from thermodynamic considerations (N/sub tt/) and sodium concentrationsmore » derived from aspiration/introduction rates (N/sub ta/).« less
1982-08-01
Session on Recent Advances in High Temperature Chemistry’ Thursday. July 29 Ab Initio Calculations of Molecular W. Weltner, Discussion Leader Structure...atomic fluorescence 13 R. Schoonmaker, Oberlin College: "Scattering of molecular beams from surfaces, dynamics of gas-surface interactions and the...Air Force Geophys. Lab., Ianscom, AFB ,iA Group V1310, lela Park, Cleveland, OH 44112 01731 Saboungi, Marie-Louise off campus Myers, Clifford and
NASA Astrophysics Data System (ADS)
Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam; Smith, Steve
2017-02-01
Clathrin-mediated endocytosis (CME) is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. Currently, there are two models describing membrane bending during the formation of clathrin cages: the first involves the deposition of all clathrin molecules to the plasma membrane, forming a flat lattice prior to membrane bending, whereas in the second model, membrane bending happens simultaneously as the clathrin arrives to the site to form a clathrin-coated cage. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorophores (actin filaments labeled with green phalloidin and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. An extensive statistical survey of many hundreds of CME events, at various stages of progression, are observed via this method, allowing inferences about the dominant mechanisms active in CME in SKMEL cells. Results indicate a mixed model incorporating aspects of both the aforementioned mechanisms for CME.
Basu, Anirban; Kumar, Gopinatha Suresh
2016-12-01
Interaction of proflavine with hemoglobin (Hgb) was studied employing spectroscopy, calorimetry, and atomic force microscopy. The equilibrium constant was found to be of the order 10 4 M -1 . The quenching of Hgb fluorescence by proflavine was due to the complex formation. Calculation of the molecular distance (r) between the donor (β-Trp37 of Hgb) and acceptor (proflavine) suggested that energy can be efficiently transferred from the β-Trp37 residue at the α1β2 interface of the protein to the dye. Proflavine induced significant secondary structural changes in Hgb. Synchronous fluorescence studies showed that proflavine altered the microenvironment around the tryptophan residues to a greater extent than the tyrosine residues. Circular dichroism spectral studies showed that proflavine caused significant reduction in the α-helical content of Hgb. The esterase activity assay further complemented the circular dichroism data. The Soret band intensity of Hgb decreased upon complexation. Differential scanning calorimetry and circular dichroism melting results revealed that proflavine induced destabilization of Hgb. The binding was driven by both positive entropy and negative enthalpy. Atomic force microscopy studies revealed that the essential morphological features of hemoglobin were retained in the presence of proflavine. Overall, insights on the photophysical aspects and energetics of the binding of proflavine with Hgb are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U
2006-07-01
In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less
NASA Astrophysics Data System (ADS)
Terranova, U.; Nifosı`, R.
2010-05-01
Spontaneous chromophore formation is probably the key feature for the remarkable success of GFPs (Green Fluorescent Proteins) and related proteins in fluorescence microscopy. Though a quantitative analysis of the involved energetics still remains elusive, substantial progress has been made in identifying the steps of chromophore biosynthesis and the contribution of individual residues and surrounding protein matrix. The latter clearly enforces a peculiar configuration of the pre-cyclized chromophore-forming tripeptide. However, it is debated whether a mechanical compression is also at play in triggering backbone cyclization. Here, by molecular dynamics and potential of mean force calculations, we estimate the contribution of the protein scaffold in promoting the proximity of reacting atoms- and hence backbone cyclization - by a sort of compression mechanism. Comparing several mutants we highlight the role of some surrounding residues. Finally, we analyze the case of HAL (Histidine Ammonia-Lyase) active site, which undergoes an analogous cyclization reaction.
[The research of UV-responsive sensitivity enhancement of fluorescent coating films by MgF2 layer].
Lu, Zhong-Rong; Ni, Zheng-Ji; Tao, Chun-Xian; Hong, Rui-Jin; Zhang, Da-Wei; Huang, Yuan-Shen
2014-03-01
A low cost and less complicated expansion approach of wavelength responses with a Lumogen phosphor coating was adopted, as they increased the quantum efficiency of CCD and CMOS detectors in ultra-violet by absorbing UV light and then re emitting visible light. In this paper, the sensitivity enhancement of fluorescence coatings was studied by adding an anti-reflection film or barrier film to reduce the loss of the scattering and reflection on the incident interface. The Lumogen and MgF2/Lumogen film were deposited on quartz glasses by physical vacuum deposition. The surface morphology, transmittance spectrum, reflectance spectrum and fluorescence emission spectrum were obtained by atomic force microscope (AFM), spectrophotometer and fluorescence spectrometer, respectively. The results indicated that MgF2 film had obvious positive effect on reducing scattering and reflection loss in 500-700 nm, and enhancing the absorption of Lumogen coating in ultraviolet spectrum. Meanwhile, the fluorescent emission intensity had a substantial increase by smoothing the film surface and thus reducing the light scattering. At the same time, the MgF2 layer could protect Lumogen coating from damaging and contamination, which give a prolong lifetime of the UV-responsive CCD sensors with fluorescent coatings.
NASA Astrophysics Data System (ADS)
Karagodova, Tamara Y.
1999-03-01
The theory of resonant fluorescence of multilevel system in two monochromatic intense laser fields has been applied for investigating the temporal decay of magnetic sublevels of an atom. As for two-level system the triplet of resonant fluorescence is observed, for real atom being the multilevel system the multiplet of resonant fluorescence can be observed. The excitation spectra, defining the intensities of lines in the multiplet of resonant fluorescence, and shifts of components of spectra are shown. Typical temporal dependence of fluorescence intensity for magnetic sublevels of an atom having different relaxation constants is shown. The computer simulation of resonant fluorescence for simple systems can help to understand the regularities in temporal decay curves of atherosclerotic plaque, malignant tumor compared to normal surrounding tissue.
Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.
Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal
2017-01-01
The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.
Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche
2016-01-01
Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
NASA Astrophysics Data System (ADS)
Filimonenko, D. S.; Khairullina, A. Ya.; Yasinskii, V. M.; Kozlova, N. M.; Zubritskaja, G. P.; Slobozhanina, E. I.
2011-07-01
Changes in the surface structure of lymphocyte membranes exposed to various concentrations of zinc ions are studied. It is found by atomic force microscopy that increasing the concentration of zinc ions leads to a reduction in the correlation length of the autocorrelation function of the roughness profile of a lymphocyte compared to control samples; this may indicate the existence of fine structure in the membrane surface. Fluorescence markers are used to observe a reduction in the microviscosity of the lipids in the outer monolayer of the lipid bilayer after lymphocytes are exposed to Zn ions, as well as the exposure of phosphatidylserine on the surface membrane, and the oxidation of HS-groups of membrane proteins. Calculations of the absorption coefficients of lymphocytes modified with zinc reveal the existence of absorption bands owing to the formation of metal-protein complexes and zinc oxide nanoparticles. These results indicate significant changes in the structural and functional state of lymphocyte membranes exposed to zinc ions.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Andriukonis, Eivydas; Stirke, Arunas; Garbaras, Andrius; Mikoliunaite, Lina; Ramanaviciene, Almira; Remeikis, Vidmantas; Thornton, Barry; Ramanavicius, Arunas
2018-04-01
In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN) 6 ] 3-/4- , performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomic Force Microscopy Based Cell Shape Index
NASA Astrophysics Data System (ADS)
Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia
2013-03-01
Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.
Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.
2009-01-01
Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian
2018-04-25
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
NASA Astrophysics Data System (ADS)
Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert
2016-01-01
Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.
Resonance fluorescence from an atom in a squeezed vacuum
NASA Astrophysics Data System (ADS)
Carmichael, H. J.; Lane, A. S.; Walls, D. F.
1987-06-01
The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.
NASA Astrophysics Data System (ADS)
Omenetto, N.; Smith, B. W.; Winefordner, J. D.
1989-01-01
Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.
NASA Astrophysics Data System (ADS)
Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.
2015-03-01
The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.
Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly
NASA Astrophysics Data System (ADS)
Persichilli, Christopher; Hill, Shannon E.; Mast, Jason; Muschol, Martin
2011-03-01
Recent results have shown that oligomeric intermediates of amyloid fibril assembly represent the main toxic species in disorders such as Alzheimer's disease and type II diabetes. Thioflavin-T (ThT) is among the most commonly used indicator dyes for mature amyloid fibrils in vitro. We used ThT to monitor amyloid fibril formation of lysozyme (HEWL), and correlated ThT fluorescence to concurrent dynamic light scattering and atomic force microscopy measurements. Specifically, we tested the ability of ThT to discern among oligomer-free vs. oligomeric fibril assembly pathways. We found that ThT fluorescence did not detect oligomer growth; however, fluorescence increases did coincide with the formation of monomeric filaments in the oligomer-free assembly pathway. This implies that ThT fluorescence is not generally suitable for the detection of oligomeric intermediates. The results further suggest different internal structures for oligomeric vs. monomeric filaments. This research was supported, in part, by funding through the Byrd Alzheimer's Institute (ARG-2007-22) and the BITT-Florida Center of Excellence for M.M., an NSF-REU grant (DMR-1004873) for C. P. and an NSF-IGERT fellowship for S.H.
As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells
NASA Astrophysics Data System (ADS)
Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili
2016-07-01
Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.
Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states
NASA Astrophysics Data System (ADS)
Xu, Qing; Mølmer, Klaus
2015-09-01
We explore the fluorescence signals from a pair of atoms driven towards Rydberg states on a three-level ladder transition. The dipole-dipole interactions between Rydberg excited atoms significantly distort the dark state and electromagnetically induced transparency behavior observed with independent atoms and, thus, their steady-state light emission. We calculate and analyze the temporal correlations between intensities and amplitudes of the signals emitted by the atoms and explain their origin in the atomic Rydberg state interactions.
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli
2016-10-05
The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan
2016-09-01
We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.
The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment
NASA Astrophysics Data System (ADS)
Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna
2008-05-01
We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.
NASA Astrophysics Data System (ADS)
Ananth, Devanesan Arul; Rameshkumar, Angappan; Jeyadevi, Ramachandran; Jagadeeswari, Sivanadanam; Nagarajan, Natarajan; Renganathan, Rajalingam; Sivasudha, Thilagar
2015-03-01
Quantum dots not only act as nanocarrier but also act as stable and resistant natural fluorescent bio markers used in various in vitro and in vivo photolabelling and biological applications. In this study, the antimicrobial potential of TGA-CdTe QDs and commercial phenolics (rutin and caffeine) were investigated against Escherichiacoli. UV absorbance and fluorescence quenching study of TGA-CdTe QDs with rutin and caffeine complex was measured by spectroscopic technique. QDs-rutin conjugate exhibited excellent quenching property due to the -OH groups present in the rutin structure. But the same time caffeine has not conjugated with QDs because of lacking of -OH group in its structure. Photolabelling of E. coli with QDs-rutin and QDs-caffeine complex was analyzed by fluorescent microscopic method. Microbe E. coli cell membrane damage was assessed by atomic force (AFM) and confocal microscopy. Based on the results obtained, it is suggested that QDs-rutin conjugate enhance the antimicrobial activity more than the treatment with QDs, rutin and caffeine alone.
Diode Lasers and Practical Trace Analysis.
ERIC Educational Resources Information Center
Imasaka, Totaro; Nobuhiko, Ishibashi
1990-01-01
Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)
Mirror image DNA nanostructures for chiral supramolecular assemblies.
Lin, Chenxiang; Ke, Yonggang; Li, Zhe; Wang, James H; Liu, Yan; Yan, Hao
2009-01-01
L-DNA, the mirror image of natural D-DNA, can be readily self-assembled into designer discrete or periodic nanostructures. The assembly products are characterized by polyacrylamide gel electrophoresis, circular dichroism spectrum, atomic force microscope, and fluorescence microscope. We found that the use of enantiomer DNA as building material leads to the formation of DNA supramolecules with opposite chirality. Therefore, the L-DNA self-assembly is a substantial complement to the structural DNA nanotechnology. Moreover, the L-DNA architectures feature superior nuclease resistance thus are appealing for in vivo medical applications.
Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms.
Miao, Xuepei; Liu, Tuan; Zhang, Chen; Geng, Xinxin; Meng, Yan; Li, Xiaoyu
2016-02-14
The strong fluorescence, in both the solution and the bulk state, of a chromophore-free aliphatic hyperbranched polyether which does not contain N and P atoms was reported for the first time. Effects of concentration and solvent solubility were measured. Its ethanol solution shows a strong blue-green fluorescence (Yu = 0.11-0.39), and its fluorescence shows a strong selective quenching with respect to Fe(3+).
Bondu, Virginie; Wu, Chenyu; Cao, Wenpeng; Simons, Peter C.; Gillette, Jennifer; Zhu, Jieqing; Erb, Laurie; Zhang, X. Frank; Buranda, Tione
2017-01-01
Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation. PMID:28835374
Nonradiative transport of atomic excitation in Na vapor
NASA Astrophysics Data System (ADS)
Zajonc, Arthur G.; Phelps, A. V.
1981-05-01
Measurements are reported which show the effect of nonradiative losses at a gas-window interface on the backscattered fluorescence intensity for Na vapor at frequencies in the vicinity of the resonance lines near 589 nm. The Na 3P12,32 states are excited with a low-intensity single-mode tunable dye laser at high Na densities and the frequency integral of the backscattered fluorescence intensity in the D1 and D2 lines is measured. As the laser is tuned through resonance, the loss of atomic excitation to the window appears as a sharp decrease in the frequency-integrated fluorescence intensity. For example, at 7×1020 atoms m-3 the fluorescence intensity decreases by a factor of 4 in a frequency interval of 4 GHz. Measured absolute fluorescence intensities versus laser frequency are compared with predictions made using the theory of Hummer and Kunasz which includes both radiative and nonradiative transport processes. The agreement between theory and experiment is remarkably good when one considers that the theory contains only one unknown coefficient, i.e., the reflection coefficient for excited atoms at the windows. In our case the excited atoms are assumed to be completely destroyed at the window.
Investigating bioconjugation by atomic force microscopy
2013-01-01
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448
Investigating bioconjugation by atomic force microscopy.
Tessmer, Ingrid; Kaur, Parminder; Lin, Jiangguo; Wang, Hong
2013-07-15
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.
High-speed atomic force microscopy imaging of live mammalian cells
Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei
2017-01-01
Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. PMID:28900590
Inhibition of cathelicidin activity by bacterial exopolysaccharides.
Foschiatti, Michela; Cescutti, Paola; Tossi, Alessandro; Rizzo, Roberto
2009-06-01
The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp; Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011; Adachi, Makoto
We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells wasmore » evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.« less
He, Huan; Xu, Juan; Cheng, Dan-Yang; Fu, Li; Ge, Yu-Shu; Jiang, Feng-Lei; Liu, Yi
2017-02-16
The amino naphthalene 2-cyanoacrylate (ANCA) probe is a kind of fluorescent amyloid binding probe that can report different fluorescence emissions when bound to various amyloid deposits in tissue, while their interactions with amyloid fibrils remain unclear due to the insoluble nature of amyloid fibrils. Here, all-atom molecular dynamics simulations were used to investigate the interaction between ANCA probes with three different amyloid fibrils. Two common binding modes of ANCA probes on Aβ40 amyloid fibrils were identified by cluster analysis of multiple simulations. The van der Waals and electrostatic interactions were found to be major driving forces for the binding. Atomic contacts analysis and binding free energy decomposition results suggested that the hydrophobic part of ANCA mainly interacts with aromatic side chains on the fibril surface and the hydrophilic part mainly interacts with positive charged residues in the β-sheet region. By comparing the binding modes with different fibrils, we can find that ANCA adopts different conformations while interacting with residues of different hydrophobicity, aromaticity, and electrochemical properties in the β-sheet region, which accounts for its selective mechanism toward different amyloid fibrils.
Stiffness nanotomography of human epithelial cancer cells
NASA Astrophysics Data System (ADS)
Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert
2012-02-01
The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.
Biocatalytic response of multi-layer assembled collagen/hyaluronic acid nanoengineered capsules.
Sousa, Fernanda; Kreft, Oliver; Sukhorukov, Gleb B; Möhwald, Helmuth; Kokol, Vanja
2014-01-01
Biodegradable hollow capsules filled with fluorescently labelled bovine serum albumin (BSA) as a model drug were prepared via layer-by-layer (LbL) self-assembly of type-I collagen (COL) and hyaluronic acid (HA) using calcium carbonate micro-particles and co-precipitation method. Capsules loaded with fluorescein isothiocyanate (FITC)-BSA, tetramethylrhodamin isothiocyanate (TRITC)-BSA or Alex-Fluor-488-BSA, respectively, were characterised before and after core removal using Confocal Laser Scanning Microscopy (CLSM), whilst the morphologies of individual hollow capsules were assessed using Atomic Force Microscopy (AFM). The sustained release of the encapsulated FITC-BSA protein was attained using enzymatic degradation of the capsule shells by collagenase. The released profile of the fluorescently-labelled BSA indicated that it could be successfully controlled by modulating the number of layers and/or by collagen crosslinking either before or after the capsule's assembly.
NASA Astrophysics Data System (ADS)
Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.
2012-08-01
The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.
A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK
NASA Technical Reports Server (NTRS)
Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.
1982-01-01
A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.
Tomura, Akihiro; Umemura, Kazuo
2018-04-15
We demonstrated the attachment of different kinds of dyes, Uranine, Rhodamime 800 (R800), and Indocyanine green (ICG), to single-walled carbon nanotubes pre-wrapped with single-stranded DNAs (ssDNA-SWCNTs). A new but simple method was employed, in which a dye solution was added to ssDNA-SWCNTs that had been prepared beforehand in the conventional way. Resulting conjugates of dyes, DNA, and SWCNTs were precisely evaluated by ultraviolet to near-infrared fluorescence/absorbance spectrometry and atomic force microscopy. In particular, simultaneous measurements of fluorescence and absorbance spectroscopy enabled us to find differences in the behaviors of the dyes on SWCNT surfaces. As a result, the fluorescence/absorbance spectra of dyes showed significant changes upon adsorption on SWCNTs. The fluorescence/absorbance peaks of Uranine, R800, and ICG were quenched by 41.3/2.8%, 72.3/48.9%, and 88.3/45.0%, respectively, in the presence of 11.5 μg/mL SWCNTs. We concluded firstly that by pre-wrapping SWCNTs with ssDNA, stable hybrids with these components were obtained even if the dyes used were relatively hydrophobic and secondly that Uranine retained light absorption on the surface of SWCNT while R800 and ICG did not. Copyright © 2018 Elsevier Inc. All rights reserved.
Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA
Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.
2010-01-01
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039
ERIC Educational Resources Information Center
Cizdziel, James V.
2011-01-01
In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…
Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor.
Parayil, Sreenivasan Koliyat; Lee, Jooran; Yoon, Minjoong
2013-05-01
Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.
Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh
2018-02-01
Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurements of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device
Gutierrez, Edgar; Groisman, Alex
2011-01-01
Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments. PMID:21980487
Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin.
Kishen, Anil; Sum, Chee-Peng; Mathew, Shibi; Lim, Chwee-Teck
2008-07-01
Enterococcus faecalis is frequently associated with post-treatment endodontic infections. Because adherence of bacteria to a substrate is the earliest stage in biofilm formation, eliciting the factors that links adherence of this bacterium to dentin would help in understanding its association with treatment-failed root canals. This investigation aimed to study the effects of endodontic irrigants on the adherence of E. faecalis to dentin. The bacteria adherence assay was conducted by using fluorescence microscopy, and the adhesion force was measured by using atomic force microscopy. There were significant increases in adherence and adhesion force after irrigation of dentin with ethylenediaminetetraacetic acid (EDTA), whereas sodium hypochlorite (NaOCl) reduced it. With the use of chlorhexidine (CHX), the force of adhesion increased, but the adherence assay showed a reduction in the number of adhering bacteria. The irrigation regimen of EDTA, NaOCl, and CHX resulted in the least number of adhering E. faecalis cells. This study highlighted that chemicals that alter the physicochemical properties of dentin will influence the nature of adherence, adhesion force, and subsequent biofilm formation of E. faecalis to dentin.
Sun, Xue; Qian, Yuting; Jiao, Yajie; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping
2017-04-01
Despite complex molecular and atomic doping, efficient post-functionalization strategies for graphene quantum dots (GQDs) are of key importance to control the physicochemical properties and broaden the practical applications. With ionic liquid as specific modification agents, herein, the preparation of ionic liquid-capped GQDs (IL-GQDs) and its application as label-free fluorescent probe for direct detection of anion were reported. Hydroxyl-functionalized GQDs that could be easily gram-scale synthesized and possessed single-crystalline were chosen as the model GQDs. Also, the most commonly used ionic liquids, water-soluble 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF 4 ) was chosen as the model IL. Under the ultrasonic treatment, BMIMBF 4 easily composited with GQDs to form IL-GQDs. The synthesized IL-GQDs were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and fluorescence (FL) spectrum. After successful combination with IL, the excitation-independent photoluminescence behavior of GQDs presented almost no change, whereas, the anion responsiveness of IL-GQDs drastically improved, which afforded the IL-GQDs a sensitive response to Fe(CN) 6 3- . Based on the strong fluorescence quench, a facile and sensitive detection of Fe(CN) 6 3- was achieved. A wide linear range of 1.0×10 -7 to 2.5×10 -3 moll -1 with a low detection limit of 40 nmol l -1 was obtained. As the composition and properties of IL and GQDs could be easily tuned by varying the structure, ionic liquids-capped GQDs might present promising potential for their applications in sensing and catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaiser, Theo E; Stepanenko, Vladimir; Würthner, Frank
2009-05-20
A series of highly soluble and fluorescent, at core tetraaryloxy-substituted and in imide positions hydrogen atom containing perylene bisimide (PBI) dyes 1a-e with varying peripheral side chains have been synthesized and thoroughly characterized. The self-assembly of these PBIs has been studied in detail by UV/vis, linear dichroism (LD) and circular dichroism (CD) spectroscopy, and scanning probe microscopy (AFM, STM). These studies revealed that the present PBIs self-assemble into extended double string cables, which consist of two hydrogen-bonded supramolecular polymeric chains of densely packed and strongly excitonically coupled PBI chromophores, providing highly fluorescent J-aggregates. The aggregation strength ("melting" temperature) and the fluorescence properties of these J-aggregates are dependent on the number and chain length of the peripheral alkoxy substituents, thus revealing a structure-property relationship. In contrast to previously reported assemblies of PBIs, for which the aggregation process is described by the isodesmic (or equal K) model, a cooperative nucleation-elongation mechanism applies for the aggregation of the present assemblies as revealed by concentration-dependent UV/vis absorption studies with the chiral PBI 1e, providing equilibrium constants for dimerization (= nucleation) of K(2) = 13 +/- 11 L mol(-1) and for elongation of K = 2.3 +/- 0.1 x 10(6) L mol(-1) in methylcyclohexane (MCH). LD spectroscopic measurements have been performed to analyze the orientation of the monomers within the aggregates. The nonlinearity of chiral amplification in PBI aggregates directed by sergeants-and-soldiers principle has been elucidated by coaggregation experiments of different PBI dyes using CD spectroscopy. The dimensions as well as the molecular arrangement of the monomeric units in assemblies have been explored by atomic force microscopy (AFM) and scanning tunneling microscopy (STM).
MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. PARKIN; L. CHEN; ET AL
2000-09-01
We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution.more » Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.« less
NASA Astrophysics Data System (ADS)
Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.
2010-03-01
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P
2010-03-19
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)
1995-01-01
Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.
Wang, Yaofeng; Kraut, Rachel; Mu, Yuguang
2015-01-01
The Amyloid-β (Aβ)-derived, sphingolipid binding domain (SBD) peptide is a fluorescently tagged probe used to trace the diffusion behavior of sphingolipid-containing microdomains in cell membranes through binding to a constellation of glycosphingolipids, sphingomyelin, and cholesterol. However, the molecular details of the binding mechanism between SBD and plasma membrane domains remain unclear. Here, to investigate how the peptide recognizes the lipid surface at an atomically detailed level, SBD peptides in the environment of raft-like bilayers were examined in micro-seconds-long molecular dynamics simulations. We found that SBD adopted a coil-helix-coil structural motif, which binds to multiple GT1b gangliosides via salt bridges and CH–π interactions. Our simulation results demonstrate that the CH–π and electrostatic forces between SBD monomers and GT1b gangliosides clusters are the main driving forces in the binding process. The presence of the fluorescent dye and linker molecules do not change the binding mechanism of SBD probes with gangliosides, which involves the helix-turn-helix structural motif that was suggested to constitute a glycolipid binding domain common to some sphingolipid interacting proteins, including HIV gp120, prion, and Aβ. PMID:26540054
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames
NASA Astrophysics Data System (ADS)
Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin
2017-05-01
Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.
Zhuang, Qianfen; Wang, Yong; Ni, Yongnian
2016-05-01
The work demonstrated that solid citric acid, one of the most common food additives, can be converted to graphene quantum dots (GQDs) under microwave heating. The as-prepared GQDs were further characterized by various analytical techniques like transmission electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, fluorescence and UV-visible spectroscopy. Cytotoxicity of the GQDs was evaluated using HeLa cells. The result showed that the GQDs almost did not exhibit cytotoxicity at concentrations as high as 1000 µg mL(-1). In addition, it was found that the GQDs showed good solubility, excellent photostability, and excitation-dependent multicolor photoluminescence. Subsequently, the multicolor GQDs were successfully used as a fluorescence light-up probe for live-cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Tringe, J. W.; Ileri, N.; Levie, H. W.; ...
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D
2016-01-26
The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
Grimm, Jonathan B.; Klein, Teresa; Kopek, Benjamin G.; Shtengel, Gleb; Hess, Harald F.; Sauer, Markus
2015-01-01
Abstract The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. PMID:26661345
Diagnosing the Internal Architecture of Zeolite Ferrierite
Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong
2017-01-01
Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081
Wang, Yaping; Zhang, Guowen; Wang, Langhong
2015-01-14
Dimethyl phthalate (DMP) is widely used as a plasticizer in industrial processes and has been reported to possess potential toxicity to the human body. In this study, the interaction between DMP and trypsin in vitro was investigated. The results of fluorescence, UV–vis, circular dichroism, and Fourier transform infrared spectra along with cyclic voltammetric measurements indicated that the remarkable fluorescence quenching and conformational changes of trypsin resulted from the formation of a DMP–trypsin complex, which was driven mainly by hydrophobic interactions. The molecular docking and trypsin activity assay showed that DMP primarily interacted with the catalytic triad of trypsin and led to the inhibition of trypsin activity. The dimensions of the individual trypsin molecules were found to become larger after binding with DMP by atomic force microscopy imaging. This study offers a comprehensive picture of DMP–trypsin interaction, which is expected to provide insights into the toxicological effect of DMP.
Biomedical Applications of Nanodiamonds: An Overview.
Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C
2015-02-01
Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.
Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin
2008-12-01
Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.
Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi
2012-12-01
Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, J.B.
An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.
Charge transport and intrinsic fluorescence in amyloid-like fibrils
del Mercato, Loretta Laureana; Pompa, Pier Paolo; Maruccio, Giuseppe; Torre, Antonio Della; Sabella, Stefania; Tamburro, Antonio Mario; Cingolani, Roberto; Rinaldi, Ross
2007-01-01
The self-assembly of polypeptides into stable, conductive, and intrinsically fluorescent biomolecular nanowires is reported. We have studied the morphology and electrical conduction of fibrils made of an elastin-related polypeptide, poly(ValGlyGlyLeuGly). These amyloid-like nanofibrils, with a diameter ranging from 20 to 250 nm, result from self-assembly in aqueous solution at neutral pH. Their morphological properties and conductivity have been investigated by atomic force microscopy, scanning tunneling microscopy, and two-terminal transport experiments at the micro- and nanoscales. We demonstrate that the nanofibrils can sustain significant electrical conduction in the solid state at ambient conditions and have remarkable stability. We also show intrinsic blue-green fluorescence of the nanofibrils by confocal microscopy analyses. These results indicate that direct (label-free) excitation can be used to investigate the aggregation state or the polymorphism of amyloid-like fibrils (and possibly of other proteinaceous material) and open up interesting perspectives for the use of peptide-based nanowire structures, with tunable physical and chemical properties, for a wide range of nanobiotechnological and bioelectronic applications. PMID:17984067
Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M
2010-06-21
Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.
Jayalekshmi, A C; Sharma, Chandra P
2015-02-01
The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Darain, Farzana; Gan, Kai Ling; Tjin, Swee Chuan
2009-06-01
A simple microfluidic immunoassay card was developed based on polystyrene (PS) substrate for the detection of horse IgG, an inexpensive model analyte using fluorescence microscope. The primary antibody was captured onto the PS based on covalent bonding via a self-assembled monolayer (SAM) of thiol to pattern the surface chemistry on a gold-coated PS. The immunosensor chip layers were fabricated from sheets by CO(2) laser ablation. The functionalized PS surfaces after each step were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After the antibody-antigen interaction as a sandwich immunoassay with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody, the intensity of fluorescence was measured on-chip to determine the concentration of the target analyte. The present immunosensor chip showed a linear response range for horse IgG between 1 microg/ml and 80 microg/ml (r = 0.971, n = 3). The detection limit was found to be 0.71 microg/ml. The developed microfluidic system can be extended for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.
Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films
Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.
2009-01-01
A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356
[Recent Development of Atomic Spectrometry in China].
Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei
2015-09-01
As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.
NASA Astrophysics Data System (ADS)
von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E.; Bragas, Andrea V.; Pietrasanta, Lía I.
2017-01-01
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E; Bragas, Andrea V; Pietrasanta, Lía I
2017-01-01
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
NASA Technical Reports Server (NTRS)
deBoer, Gary; Scott, Carl
2003-01-01
Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal atoms survive for several milliseconds while the gaseous carbon atoms and small molecules nucleate more rapidly. Additional experiments and the development of in situ methods for carbon nanotube detection would allow these results to be interpreted from the perspective of carbon nanotube formation.
NASA Astrophysics Data System (ADS)
Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.
2016-08-01
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.
Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures
NASA Astrophysics Data System (ADS)
Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.
2014-03-01
Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.
Characterization of fiber-forming peptides and proteins by means of atomic force microscopy.
Creasey, Rhiannon G; Gibson, Christopher T; Voelcker, Nicolas H
2012-05-01
The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
NASA Astrophysics Data System (ADS)
Nijegorodov, N.; Mabbs, R.
2001-06-01
The absorption and fluorescence properties of 26 specially selected aromatic and heteroaromatic compounds, from different classes, are studied quantum chemically and experimentally at room temperature (293 K). Seven of these compounds have not been studied before. The compounds are arranged in seven groups, which illustrate different cases of the internal heavy atom effect. The quantum yield of fluorescence, γ and fluorescence decay time, τf of deaerated and non-deaerated cyclohexane or ethanol solutions are measured. The oscillator strength, fe, fluorescence rate constant, kf, natural lifetime, τ0t, and intersystem crossing rate constant, kST, were calculated for each compound. The orbital nature of the lowest excited singlet state and direction of polarization of the S0→ S1 transitions are determined using the PPP-CI method for each molecule. The investigation shows that substitution of a heavy atom(s) (Cl, S, Br, I etc.) into an aromatic or heteroaromatic molecule may produce different changes in all the fluorescence parameters (sometimes dramatically) and not necessarily lead to the quenching of fluorescence. Substitution of a heavy atom(s) may increase the value of the spin-orbit operator, \\Hcirc SO, if the S0→ S1 excitation is localized to some extent on a carbon atom bonded to a heavy atom(s) or on the heavy atom itself (Ö or S). Such substitution may change the symmetry of a molecule and hence the values of the ΨS 1\\HcircsoΨT i' matrix elements would change (in molecules of higher symmetry groups not all Ti states are able to mix with the perturbing S1 state). Such substitution may change the arrangement of Ti states below the S1, state and hence, the Franck-Condon factors would change. Such substitution may also change the value of the ΨS 0M jΨS 1 matrix element and, consequently, the oscillator strength of the S0→ S1 transition would change. A combination of all these possible changes determines the value of kf and kST and, consequently, determines the value of γ and τf. It is observed that in many cases, the value of the spin-orbit operator is related to the dipole moment operator, e.g. if the introduction of a heavy atom increases kST then, as a rule, it decreases fe( 1A→ 1La).
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-01
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416.
X-ray Fluorescence Holography: Principles, Apparatus, and Applications
NASA Astrophysics Data System (ADS)
Hayashi, Kouichi; Korecki, Pawel
2018-06-01
X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.
Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald
2008-01-01
Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.
Balasuriya, Dilshan; D'Sa, Lauren; Talker, Ronel; Dupuis, Elodie; Maurin, Fabrice; Martin, Patrick; Borgese, Franck; Soriani, Olivier; Edwardson, J. Michael
2014-01-01
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K+ channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane. PMID:25266722
The architecture of neutrophil extracellular traps investigated by atomic force microscopy
NASA Astrophysics Data System (ADS)
Pires, Ricardo H.; Felix, Stephan B.; Delcea, Mihaela
2016-07-01
Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis.Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis. Electronic supplementary information (ESI) available: Fluorescence microscopy and AFM images of NETs; fluorescence and AFM images of chromatin of a neutrophil adhered on mica; height contrast AFM image of two plasmids evidencing supercoiling. See DOI: 10.1039/c6nr03416k
Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.
Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue
2012-10-08
We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.
Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail
2014-03-01
We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, John B.
1981-01-01
An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.
Optically trapped atomic resonant devices for narrow linewidth spectral imaging
NASA Astrophysics Data System (ADS)
Qian, Lipeng
This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.
Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D
2005-09-01
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250 degrees C for several hours. As a function of both time and annealing temperature, the surface plasmon band at approximately 420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are observed, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.
Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.
1977-01-01
A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.
Velocity measurements by laser resonance fluorescence. [single atom diffusional motion
NASA Technical Reports Server (NTRS)
She, C. Y.; Fairbank, W. M., Jr.
1980-01-01
The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.
Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions
NASA Astrophysics Data System (ADS)
Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert
2018-06-01
In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.
Yamamura, Masaki; Albrecht, Marcel; Albrecht, Markus; Nishimura, Yoshinobu; Arai, Tatsuo; Nabeshima, Tatsuya
2014-02-03
A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.
Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing
2017-10-01
High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.
Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids.
Villa, Jordan K; Tran, Hong-Anh; Vipani, Megha; Gianturco, Stephanie; Bhasin, Konark; Russell, Brent L; Harbron, Elizabeth J; Young, Douglas D
2017-07-16
The ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore. Relative to wild type GFP, the fluorescence spectrum of the protein is altered with each additional fluorine atom, and the mutant GFPs have the potential to be employed as pH sensors due to the altered electronic properties of the fluorine atoms.
Wang, Liying; Meng, Zhenyu; Martina, Felicia; Shao, Huilin
2017-01-01
Abstract DNA tetrahedron as the simplest 3D DNA nanostructure has been applied widely in biomedicine and biosensing. Herein, we design and fabricate a series of circular assemblies of DNA tetrahedron with high purity and decent yields. These circular nanostructures are confirmed by endonuclease digestion, gel electrophoresis and atomic force microscopy. Inspired by rotary protein motor, we demonstrate these circular architectures can serve as a stator for a rotary DNA motor to achieve the circular rotation. The DNA motor can rotate on the stators for several cycles, and the locomotion of the motor is monitored by the real-time fluorescent measurements. PMID:29126166
Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M
2008-01-01
The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.
THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS
Three decades of study of environmental conditions necessary for the protection of freshwater
aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
The...
Mapping the distribution of specific antibody interaction forces on individual red blood cells
NASA Astrophysics Data System (ADS)
Yeow, Natasha; Tabor, Rico F.; Garnier, Gil
2017-02-01
Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG - IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Li, Qifei; Parchur, Abdul K.; Zhou, Anhong
2016-01-01
Abstract Highly dispersible Eu3+-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) exhibit optical properties, such as plasmon resonances in the near-infrared region at 790 nm and luminescence at 615 nm, offering multimodal capabilities: fluorescence imaging, surface-enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs were conjugated with a Raman reporter (4-mercaptobenzoic acid), showing a desired SERS signal (enhancement factor 5.0 × 105). The HNPs have a heat conversion efficiency of 25.6%, and a hyperthermia temperature of 42°C could be achieved by adjusting either concentration of HNPs, or laser power, or irradiation time. HNPs were modified with antibody specific to cancer biomarker epidermal growth factor receptor, then applied to human lung cancer (A549) and mouse hepatocyte cells (AML12), and in vitro PTT effect was studied. In addition, the biomechanical properties of A549 cells were quantified using atomic force microscopy. This study shows the potential applications of these HNPs in fluorescence imaging, SERS detection, and PTT with good photostability and biocompatibility. PMID:27877887
USDA-ARS?s Scientific Manuscript database
A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...
Application of fluorescent Eu:Gd2O3 nanoparticles to the visualization of protein micropatterns
NASA Astrophysics Data System (ADS)
Dosev, Dosi; Nichkova, Mikaela; Liu, Maozi; Guo, Bing; Liu, Gang-yu; Xia, Younan; Hammock, Bruce D.; Kennedy, Ian M.
2005-03-01
Nanoparticles made of lanthanide oxides are promising fluorophores as a new class of tags in biochemistry because of their large Stokes shift, sharp emission spectra, long lifetime and lack of photobleaching. We demonstrate for first time the application of these nanoparticles to the visualization of protein micropatterns. Europium-doped gadolinium oxide (Eu:Gd2O3) nanoparticles were synthesized by spray pyrolysis and were characterized by means of laser-induced fluorescent spectroscopy and TEM. Their main emission peak is at 612 nm. And their size distribution is from 5 nm to 500 nm. The nanoparticles were coated with avidin through physical adsorption. Biotinylated Bovine Serum Albumin (BSA-b) was patterned on a silicon wafer using a micro-contact printing technique. The BSA-b - patterned wafer was incubated in a solution containing the avidin-coated nanoparticles. The specific interaction between biotin and avidin was studied by means of fluorescent microscopy and atomic-force microscopy (AFM). The fluorescent microscopic images revealed that the nanoparticles were organized into designated structures as defined by the microcontact printing process - non-specific binding of the avidin-coated nanoparticles to bare substrate was negligible. The fluorescent pattern did not suffer any photobleaching during the observation process which demonstrates the suitability of Eu:Gd2O3 nanoparticles as fluorescent labels with extended excitation periods - organic dyes, including chelates, suffer bleaching over the same period. More detailed studies were preformed using AFM at a single nanoparticle level. The specific and the non-specific binding densities of the particles were qualitatively evaluated.
Ultraviolet absorption experiment MA-059
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.
1976-01-01
The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.
"DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim
2017-04-12
A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.
Tungsten devices in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Hou, Xiandeng; Jones, Bradley T.
2002-04-01
Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.
Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B
1999-06-01
Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.
Evidence of a rolling motion of a microparticle on a silicon wafer in a liquid environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiwek, Simon; Stark, Robert W., E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian, E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de
2016-05-21
The interaction of micro- and nanometer-sized particles with surfaces plays a crucial role when small-scale structures are built in a bottom-up approach or structured surfaces are cleaned in the semiconductor industry. For a reliable quantification of the interaction between individual particles and a specific surface, however, the motion type of the particle must be known. We developed an approach to unambiguously distinguish between sliding and rolling particles. To this end, fluorescent particles were partially bleached in a confocal laser scanning microscope to tailor an optical inhomogeneity, which allowed for the identification of the characteristic motion pattern. For the manipulation, themore » water flow generated by a fast moving cantilever-tip of an atomic force microscope enabled the contactless pushing of the particle. We thus experimentally evidenced a rolling motion of a micrometer-sized particle directly with a fluorescence microscope. A similar approach could help to discriminate between rolling and sliding particles in liquid flows of microfluidic systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, C.; Stanescu, M.; Chen, L.
1999-03-30
Organogels formed from novel organic gelators containing a cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, macroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescencemore » in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.« less
DMD-based LED-illumination super-resolution and optical sectioning microscopy.
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.
DMD-based LED-illumination Super-resolution and optical sectioning microscopy
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373
NASA Astrophysics Data System (ADS)
Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien
2015-12-01
Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.
The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System
NASA Astrophysics Data System (ADS)
Lor, Chai; Hirst, Linda
2011-03-01
Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu
2011-07-11
The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAY), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RCmore » within the tethered membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.« less
Aslan, Kadir; Lakowicz, Joseph R; Geddes, Chris D
2005-04-07
A simple and rapid wet-chemical technique for the deposition of silver triangles on conventional glass substrates, which alleviates the need for lithography, has been developed. The technique is based on the seed-mediated cetyltrimethylammonium-bromide-directed growth of silver triangles on glass surfaces, where smaller spherical silver seeds that were attached to the surface were subsequently converted and grown into silver triangles in the presence of a cationic surfactant and silver ions. The size of the silver triangles was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration time of immersion. Atomic force microscopy studies revealed that the size of the silver triangles ranged between 100 and 500 nm. Interestingly, these new surfaces are a significant improvement over traditional silver island films for applications in metal-enhanced fluorescence. A routine 16-fold enhancement in emission intensity was typically observed, for protein-immobilized indocyanine green, with a relatively very low loading density of silver triangles on the glass surface.
NASA Astrophysics Data System (ADS)
Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.
1999-01-01
Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.
Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy.
Giessibl; Hembacher; Bielefeldt; Mannhart
2000-07-21
The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.
Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd
2014-01-01
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767
Cardiolipin effects on membrane structure and dynamics.
Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J
2013-12-23
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
Barquero-Quirós, Miriam; Arcos-Martínez, María Julia
2016-01-01
A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III) ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF) and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III), with a reproducibility of 7.9% (n = 5). Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5). Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3). The study of interfering ions has also been carried out. PMID:27681735
Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao
2016-10-01
Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.
Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.
2011-01-01
Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909
DOT National Transportation Integrated Search
2014-04-01
A correlation between Wavelength Dispersive X-ray Fluorescence(WDXRF) analysis of Hardened : Concrete for Chlorides and Atomic Absorption (AA) analysis (current method AASHTO T-260, procedure B) has been : found and a new method of analysis has been ...
Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry
NASA Technical Reports Server (NTRS)
Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.
1978-01-01
Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.
CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNA by an Evolved Polymerase
2010-01-01
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting “CyDNA” displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties. PMID:20235594
CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.
Ramsay, Nicola; Jemth, Ann-Sofie; Brown, Anthony; Crampton, Neal; Dear, Paul; Holliger, Philipp
2010-04-14
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji
To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less
In-situ AFM measurement of single fibrin fiber stiffness before and after addition of Factor XIII
NASA Astrophysics Data System (ADS)
Houser, John; O'Brien, E. Timothy; Lord, Susan T.; Superfine, Richard; Falvo, Michael R.
2008-10-01
Fibrin fibers are the main structural component of blood clots. Ligation of fibrin by native Factor XIII (FXIII) serves to fine tune the mechanical properties of the clot. Mechanical alteration is important because a clot must be stiff enough to resist forces from blood flow but compliant enough to prevent embolism (fracture). Cone and Plate measurements of fibrin gels, which represent the vast majority of mechanical measurements on fibrin, show that FXIII increases clot stiffness. More recently, measurements on individual fibrin fibers show that they exhibit remarkable extensibility, breaking at strains up to 300%. As of yet, the origin of this extensibility is not fully understood. The different responses of ligated and unligated fibrin fibers can give us clues as to it's mechanism of extension. We use a combined fluorescence/atomic force microscope to stretch individual, isolated, fibrin fibers and then compare force extension curves of the same fiber before and after addition of FXIII. We found up to a 3.5-fold increase in fiber stiffness after addition of FXIII. We also show stiffening of individual fibrin fibers after crosslinking by gluteraldehyde.
Han, Lin; Fang, Chun; Zhu, Ruixue; Peng, Qiang; Li, Ding; Wang, Min
2017-02-01
As the aglycone of phloridzin, phloretin belongs to dihydrochalcone with antioxidant, anti-inflammatory and antimicrobial activities. In this study, multispectroscopic techniques and molecular docking analysis were used to investigate the inhibitory activity and mechanisms of phloretin on α-glucosidase. The results showed that phloretin reversibly inhibited α-glucosidase in a mixed-type manner and the value of IC 50 was 31.26μgL -1 . The intrinsic fluorescence of α-glucosidase was quenched by the interactions with phloretin through a static quenching mechanism and spontaneously formed phloretin-α-glucosidase complex by the driving forces of van der Waals force and hydrogen bond. Atomic force microscope (AFM) studies and FT-IR measurements suggested that the interactions could change the micro-environments and conformation of the enzymes and the molecular docking analysis displayed the exact binding site of phloretin on α-glucosidase. These results indicated that phloretin is a strong α-glucosidase inhibitor, thus could be contribute to the improvement of diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Sriram, K. K.; Chang, Chun-Ling; Rajesh Kumar, U.; Chou, Chia-Fu
2014-01-01
Molecular combing and flow-induced stretching are the most commonly used methods to immobilize and stretch DNA molecules. While both approaches require functionalization steps for the substrate surface and the molecules, conventionally the former does not take advantage of, as the latter, the versatility of microfluidics regarding robustness, buffer exchange capability, and molecule manipulation using external forces for single molecule studies. Here, we demonstrate a simple one-step combing process involving only low-pressure oxygen (O2) plasma modified polysilsesquioxane (PSQ) polymer layer to facilitate both room temperature microfluidic device bonding and immobilization of stretched single DNA molecules without molecular functionalization step. Atomic force microscopy and Kelvin probe force microscopy experiments revealed a significant increase in surface roughness and surface potential on low-pressure O2 plasma treated PSQ, in contrast to that with high-pressure O2 plasma treatment, which are proposed to be responsible for enabling effective DNA immobilization. We further demonstrate the use of our platform to observe DNA-RNA polymerase complexes and cancer drug cisplatin induced DNA condensation using wide-field fluorescence imaging. PMID:25332730
Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin
2011-01-01
Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633
Thermal Casimir-Polder forces on a V-type three-level atom
NASA Astrophysics Data System (ADS)
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-24
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH<0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416. Copyright © 2013 Elsevier B.V. All rights reserved.
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing
Vanommeslaeghe, K.; MacKerell, A. D.
2012-01-01
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.
Vanommeslaeghe, K; MacKerell, A D
2012-12-21
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .
Karakas, Esra; Taveneau, Cyntia; Bressanelli, Stéphane; Marchi, Massimo; Robert, Bruno; Abel, Stéphane
2017-01-01
In this paper, we describe the derivation and the validation of original RESP atomic partial charges for the N, N-dimethyl-dodecylamine oxide (LDAO) surfactant. These charges, designed to be fully compatible with all the AMBER force fields, are at first tested against molecular dynamics simulations of pure LDAO micelles and with a fragment of the lipid kinase PIK4A (DI) modeled with the QUARK molecular modeling server. To model the micelle, we used two distinct AMBER force fields (i.e. Amber99SB and Lipid14) and a variety of starting conditions. We find that the micelle structural properties (such as the shape, size, the LDAO headgroup hydration, and alkyl chain conformation) slightly depend on the force field but not on the starting conditions and more importantly are in good agreement with experiments and previous simulations. We also show that the Lipid14 force field should be used instead of the Amber99SB one to better reproduce the C(sp3)C(sp3)C(sp3)C(sp3) conformation in the surfactant alkyl chain. Concerning the simulations with LDAO-DI protein, we carried out different runs at two NaCl concentrations (i.e. 0 and 300 mM) to mimic, in the latter case, the experimental conditions. We notice a small dependence of the simulation results with the LDAO parameters and the salt concentration. However, we find that in the simulations, three out of four tryptophans of the DI protein are not accessible to water in agreement with our fluorescence spectroscopy experiments reported in the paper.
Highly Fluorescent Noble Metal Quantum Dots
Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.
2009-01-01
Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.; ...
2017-04-05
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
X-ray fluorescence holography studies for a Cu3Au crystal
NASA Astrophysics Data System (ADS)
Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.
2015-12-01
In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.
Gómez-Ariza, José Luis; Lorenzo, Fernando; García-Barrera, Tamara
2005-05-01
Mercury and arsenic are two elements of undoubted importance owing to their toxic character. Although speciation of these elements has been developed separately, in this work for the first time the speciation of As and Hg using two atomic fluorescence detectors in a sequential ensemble is presented. A coupling based on the combination of high-performance liquid chromatography (where mercury and arsenic species are separated) and two atomic fluorescence detectors in series, with several online treatments, including photooxidation (UV) and hydride generation, has allowed the determination of mercury and arsenic compounds simultaneously. The detection limits for this device were 16, 3, 17, 12 and 8 ng mL(-1) for As(III), monomethylarsinic acid, As(V), Hg2+ and methylmercury, respectively. This coupling was compared with an analogous one based on inductively coupled plasma-mass spectrometry (ICP-MS) detection, with detection limits of 0.7, 0.5, 0.8, 0.9 and 1.1 ng mL(-1), respectively. Multispeciation based on ICP-MS exhibits better sensitivity than the coupling based on tandem atomic fluorescence, but this second device is a very robust system and exhibits obvious advantages related to the low cost of acquisition and maintenance, as well as easy handling, which makes it a suitable system for routine laboratories.
NASA Astrophysics Data System (ADS)
Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-06-01
An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.
NASA Astrophysics Data System (ADS)
Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.
2003-10-01
Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.
Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader
2014-10-01
Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives.
Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing
2014-10-15
Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, (1)H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu=0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives
NASA Astrophysics Data System (ADS)
Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing
2014-10-01
Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, 1H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445 nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu = 0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules.
Spontaneous lateral atomic recoil force close to a photonic topological material
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.
2018-05-01
We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.
Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits
NASA Astrophysics Data System (ADS)
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2015-05-01
Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.
NASA Astrophysics Data System (ADS)
Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2005-03-01
Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.
NASA Technical Reports Server (NTRS)
Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis
1993-01-01
Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.
Malisauskas, Mantas; Weise, Christoph; Yanamandra, Kiran; Wolf-Watz, Magnus; Morozova-Roche, Ludmilla
2010-02-12
Amyloid formation is a universal behavior of proteins central to many important human pathologies and industrial processes. The extreme stability of amyloids towards chemical and proteolytic degradation is an acquired property compared to the precursor proteins and is a major prerequisite for their accumulation. Here, we report a study on the lability of human insulin amyloid as a function of pH and amyloid ageing. Using a range of methods such as atomic force microscopy, thioflavin T fluorescence, circular dichroism, and gas-phase electrophoretic mobility macromolecule analysis, we probed the propensity of human insulin amyloid to propagate or dissociate in a wide span of pH values and ageing in a low concentration regime. We generated a three-dimensional amyloid lability landscape in coordinates of pH and amyloid ageing, which displays three distinctive features: (i) a maximum propensity to grow near pH 3.8 and an age corresponding to the inflection point of the growth phase, (ii) an abrupt cutoff between growth and disaggregation at pH 8-10, and (iii) isoclines shifted towards older age during the amyloid growth phase at pH 4-9, reflecting the greater stability of aged amyloid. Thus, lability of amyloid strongly depends on the ionization state of insulin and on the structure and maturity of amyloid fibrils. The stability of insulin amyloid towards protease K was assessed by using real-time atomic force microscopy and thioflavin T fluorescence. We estimated that amyloid fibrils can be digested both from the free ends and within the length of the fibril with a rate of ca 4 nm/min. Our results highlight that amyloid structures, depending on solution conditions, can be less stable than commonly perceived. These results have wide implications for understanding the propagation of amyloids via a seeding mechanism as well as for understanding their natural clearance and dissociation under solution conditions unfavorable for amyloid formation in biological systems and industrial applications. Copyright 2009 Elsevier Ltd. All rights reserved.
Multichannel processes of H2O in the 18 eV region
NASA Technical Reports Server (NTRS)
Wu, C. Y. Robert; Judge, D. L.
1988-01-01
Measurements were made of: (1) the fluorescence cross sections of OH(A 2Sigma+) fragments; (2) the absolute cross sections producing H atoms in the n = 2, 3, and 4 states; (3) the cross section for producing excited O atoms which has an upper limit of 5 x 10 to the -21 sq cm; and (4) the fluorescence cross section for producing H2(a 3Sigma g +) fragments. It is shown that, in the 16-20 eV region, there are excellent correspondences in the peak positions and spacings among the photoabsorption, photoionization spectra, and fluorescence functions of OH(A) and H(n).
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Atoms and Molecules Interacting with Light
NASA Astrophysics Data System (ADS)
van der Straten, Peter; Metcalf, Harold
2016-02-01
Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.
Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.
Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B
2005-11-01
Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.
NASA Astrophysics Data System (ADS)
Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.
2017-06-01
X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.
Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS
NASA Astrophysics Data System (ADS)
Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang
2018-06-01
This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.
Krogmeier, J R; Clancy, C M; Pawlak, A; Rozanowska, M; Sarna, T; Simon, J D; Dunn, R C
2001-05-01
Several high resolution imaging techniques are utilized to probe the structure of human ocular lipofuscin granules. Atomic force microscopy reveals typical granule sizes to be about one micrometre in diameter and hundreds of nanometres in height, in agreement with previous electron microscopy results. For issues concerning the role of lipofuscin in age-related macular degeneration, recent attention has focused on the orange-emitting fluorophore, A2E. Confocal microscopy measurements are presented which reveal the presence of a highly emissive component in the granules, consistent with the presence of A2E. It is shown, however, that the interpretation of these results is complicated by the lack of structural details about the particles. To address these issues, near-field scanning optical microscopy (NSOM) measurements are presented which measure both the lipofuscin fluorescence and topography, simultaneously. These measurements reveal distinct structure in the fluorescence image which do not necessarily correlate with the topography of the granules. Moreover, direct comparison between the NSOM fluorescence and topography measurements suggests that A2E is not the major component in lipofuscin. These measurements illustrate the unique capabilities of NSOM for probing into the microstructure of lipofuscin and uncovering new insights into its phototoxicity.
Densil, Simon; Chang, Chien-Huei; Chen, Chia-Ling; Mathavan, Alagarsamy; Ramdass, Arumugam; Sathish, Veerasamy; Thanasekaran, Pounraj; Li, Wen-Shan; Rajagopal, Seenivasan
2018-06-01
Three anthracene-based Schiff base complexes, R1-R3 (R1 = (E)-N´-((anthracen-10-yl)methylene)benzohydrazide; R2 = (E)-1-((anthracen-10-yl)methylene)-4-phenylsemicarbazide; and R3 = (E)-1-((anthracen-10-yl)methylene)-4-phenylthiosemicarbazide) were synthesized from 9-anthracenecarboxaldehyde, benzohydrazide, 4-phenylsemicarbazide and 4-phenylthiosemi-carbazide respectively, and characterized by various spectral techniques. The absorption spectral characteristics of R1-R3 were bathochromically tuned to the visible region by extending the π conjugation. These target compounds were weakly fluorescent in tetrahydrofuran (THF) solution because of rapid isomerization of the C=N double bond in the excited state. However, the aqueous dispersion of R1-R3 in the THF/water mixture by the gradual addition of water up to 90% resulted in an increase in the fluorescence intensity mainly due to aggregation-induced emission enhancement (AIEE) properties. The formation of nanoaggregates of R1-R3 were confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The compounds R1-R3 are ideal probes for the fluorescence sensing of bovine serum albumin (BSA) and breast cancer cells by optical cell imaging. Copyright © 2018 John Wiley & Sons, Ltd.
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium
NASA Astrophysics Data System (ADS)
Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan
2017-12-01
A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.
Flash photolysis resonance fluorescence investigation of the reaction of O /P-3/ atoms with ClONO2
NASA Technical Reports Server (NTRS)
Kurylo, M. J.
1977-01-01
The rate constant for the reaction of O (P-3) atoms with ClONO2 at 10 torr total pressure is assessed over the temperature range 225-273 K by the flash photolysis resonance fluorescence technique. The data, taken together with results given by Molina et al. (1977), have been used to formulate an Arrhenius expression suitable for stratospheric modeling applications. Comparison of the rate of ClONO2 destruction via the oxygen atom reaction with the solar photolysis rate shows that chemical reaction accounts for less than 15% of the CLONO2 removal at altitudes between 20 and 30 km.
Observation of a barium xenon exciplex within a large argon cluster.
Briant, M; Gaveau, M-A; Mestdagh, J-M
2010-07-21
Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Multiloop atom interferometer measurements of chameleon dark energy in microgravity
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-02-01
Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.
Pan, Xiaoyong; Wang, Weizhi; Ke, Lin; Zhang, Nan
2017-07-20
In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
NASA Astrophysics Data System (ADS)
Ono, Ryo; Takezawa, Kei; Oda, Tetsuji
2009-08-01
Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.
Dong, Xiu-Yan; Zhao, Qing; Wei, Zhi-Li; Mu, Hao-Ran; Zhang, Han; Dong, Wen-Kui
2018-04-25
A novel heterotrinuclear complex [Cu₂(L)Na( µ -NO₃)]∙CH₃OH∙CHCl₃ derived from a symmetric bis(salamo)-type tetraoxime H₄L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H₄L with 2 equivalents of Cu(NO₃)₂·2H₂O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N₂O₂ coordination environments of fully deprotonated (L) 4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O₆ cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H₄L.
2016-08-01
OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS James D. Scofield (AFRL/RQQE) and James R. Gord (AFRL/RQTC) Electrical Systems Branch, Power and Control...Division (AFRL/RQQE) Combustion Branch, Turbine Engine Division (AFRL/RQTC) Jacob B. Schmidt and Sukesh Roy Spectral Energies LLC Brian Sands...LASER-INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM
NASA Astrophysics Data System (ADS)
Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul
2017-04-01
Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.
2015-06-01
Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8 × 1015 to 2.0 × 1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Reactive thin polymer films as platforms for the immobilization of biomolecules.
Feng, Chuan Liang; Zhang, Zhihong; Förch, Renate; Knoll, Wolfgang; Vancso, G Julius; Schönherr, Holger
2005-01-01
Spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and gold surfaces were investigated as reactive layers for obtaining platforms for biomolecule immobilization with high molecular loading. The surface reactivity of PNHSMA films in coupling reactions with various primary amines, including amine-terminated poly(ethylene glycol) (PEG-NH2) and fluoresceinamine, was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and ellipsometry measurements, respectively. The rate constants of PEG-NH2 attachment on the PNHSMA films were found to be significantly increased compared to the coupling on self-assembled monolayers (SAMs) of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) on gold under the same conditions. More significantly, the PEG loading observed was about 3 times higher for the polymer thin films. These data indicate that the coupling reactions are not limited to the very surface of the polymer films, but proceed into the near-surface regions of the films. PNHSMA films were shown to be stable in contact with aqueous buffer; the swelling analysis, as performed by atomic force microscopy (AFM), indicated a film thickness independent swelling of approximately 2 nm. An increased loading was also observed by surface plasmon resonance for the covalent immobilization of amino-functionalized probe DNA. Hybridization of fluorescently labeled target DNA was successfully detected by fluorescence microscopy and surface plasmon resonance enhanced fluorescence spectroscopy (SPFS), thereby demonstrating that thin films of PNHSMA comprise an attractive and simple platform for the immobilization of biomolecules with high densities.
NASA Astrophysics Data System (ADS)
Oba, Masaki; Miyabe, Masabumi; Akaoka, Katsuaki; Wakaida, Ikuo
2016-02-01
We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3-4 mm (2 mm) from the sample surface.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.
Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M
2015-01-01
This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.
Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
Patterning nanoparticles into rings by "2-D Pickering emulsions".
Lee, Cheol Hee; Crosby, Alfred J; Hayward, Ryan C; Emrick, Todd
2014-04-09
We present a simple method for the two-dimensional self-assembly of CdSe/ZnS quantum dots (QDs) into well-defined rings at the air/water interface, through the formation of "2-D Pickering emulsions". Surfactant molecules assemble at the air/water interface into islands that are subsequently surrounded by adsorption of QDs from the aqueous subphase. The QD rings emanating from this process range from ∼100 nm to several micrometers in diameter, as characterized by atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. The deposition and alignment of QD rings onto large areas (cm(2)) were demonstrated by dip-coating onto a substrate. This simple method produces rings of QDs without the need for any templating or fabrication steps.
Assembly and microscopic characterization of DNA origami structures.
Scheible, Max; Jungmann, Ralf; Simmel, Friedrich C
2012-01-01
DNA origami is a revolutionary method for the assembly of molecular nanostructures from DNA with precisely defined dimensions and with an unprecedented yield. This can be utilized to arrange nanoscale components such as proteins or nanoparticles into pre-defined patterns. For applications it will now be of interest to arrange such components into functional complexes and study their geometry-dependent interactions. While commonly DNA nanostructures are characterized by atomic force microscopy or electron microscopy, these techniques often lack the time-resolution to study dynamic processes. It is therefore of considerable interest to also apply fluorescence microscopic techniques to DNA nanostructures. Of particular importance here is the utilization of novel super-resolved microscopy methods that enable imaging beyond the classical diffraction limit.
Guzman, Nury; Ball, Alexander D; Cuif, Jean-Pierre; Dauphin, Yannicke; Denis, Alain; Ortlieb, Luc
2007-10-01
Fluorochrome marking of the gastropod Concholepas concholepas has shown that the prismatic units of the shell are built by superimposition of isochronic growth layers of about 2 mum. Fluorescent growth marks make it possible to establish the high periodicity of the cyclic biomineralization process at a standard growth rhythm of about 45 layers a day. Sulphated polysaccharides have been identified within the growth layers by using synchrotron radiation, whereas high resolution mapping enables the banding pattern of the mineral phase to be correlated with the layered distribution of polysaccharides. Atomic force microscopy has shown that the layers are made of nanograins densely packed in an organic component.
Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology
2011-01-01
Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175
Wang, Liying; Meng, Zhenyu; Martina, Felicia; Shao, Huilin; Shao, Fangwei
2017-12-01
DNA tetrahedron as the simplest 3D DNA nanostructure has been applied widely in biomedicine and biosensing. Herein, we design and fabricate a series of circular assemblies of DNA tetrahedron with high purity and decent yields. These circular nanostructures are confirmed by endonuclease digestion, gel electrophoresis and atomic force microscopy. Inspired by rotary protein motor, we demonstrate these circular architectures can serve as a stator for a rotary DNA motor to achieve the circular rotation. The DNA motor can rotate on the stators for several cycles, and the locomotion of the motor is monitored by the real-time fluorescent measurements. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.
Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A
2011-12-16
Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical. Copyright © 2011 Elsevier Ltd. All rights reserved.
Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik
2015-01-01
Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521
One-to-one quantum dot-labeled single long DNA probes.
He, Shibin; Huang, Bi-Hai; Tan, Junjun; Luo, Qing-Ying; Lin, Yi; Li, Jun; Hu, Yong; Zhang, Lu; Yan, Shihan; Zhang, Qi; Pang, Dai-Wen; Li, Lijia
2011-08-01
Quantum dots (QDs) have been received most attention due to their unique properties. Constructing QDs conjugated with certain number of biomolecules is considered as one of the most important research goals in nanobiotechnology. In this study, we report polymerase chain reaction (PCR) amplification of primer oligonucleotides bound to QDs, termed as QD-based PCR. Characterization of QD-based PCR products by gel electrophoresis and atomic force microscopy showed that QD-labeled long DNA strands were synthesized and only a single long DNA strand was conjugated with a QD. The QD-based PCR products still kept fluorescence properties. Moreover, the one-to-one QD-labeled long DNA conjugates as probes could detect a single-copy gene on maize chromosomes by fluorescence in situ hybridization. Labeling a single QD to a single long DNA will make detection of small single-copy DNA fragments, quantitative detection and single molecule imaging come true by nanotechnology, and it will promote medical diagnosis and basic biological research as well as nano-material fabrication. Copyright © 2011 Elsevier Ltd. All rights reserved.
Winkler, Cornelia; Schäfer, Lina; Felthaus, Oliver; Allerdings, Juri; Hahnel, Sebastian; Behr, Michael; Bürgers, Ralf
2014-05-01
Bacterial adhesion on and cytotoxicity of eight luting agents used for implant-supported restorations were investigated. Surface roughness (Ra), surface free energy (SFE) values and three-dimensional images by atomic-force microscopy of circular specimens were determined. Bacterial suspensions of Streptococcus sanguinis and Streptococcus epidermidis were incubated at 37°C for 2 h. Adhering bacteria were examined with fluorescence dye CytoX-Violet, stained with 4',6-diamidino-2-phenylindole (DAPI) and visualized by fluorescence-microscopy. Cytotoxicity-testing was done with WST-1-tests (water soluble tetrazolium). No significant differences, neither with regard to Ra nor regarding SFE were determined. Adherence of S. sanguinis was less on titanium, TempBondNE and TempBond. TempBond, TempBondNE, RelyX Unicem and Implantlink Semi Classic presented low amounts of S. epidermidis. WST-testing showed high cytotoxic potential of Harvard, Aqualox, TempBondNE and TempBond. No combination of low adherent bacteria with low cytotoxicity was found. From a biological in-vitro perspective, none of the cements may be recommended for implant-supported restorations.
Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).
Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R
2016-03-14
We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Human metabolism of inorganic arsenic (iAs) yields methylated arsenicals that contain arsenic in +3 or +5 oxidation state. Trivalent methylated arsenicals are significantly more toxic than their pentavalent counterparts. Therefore, determination of tri- and pentavalent forms of m...
Spatial Concentrations of Silicon Atoms in RF Discharges of Silane.
1985-02-18
regions. These profiles were much more sensitive to plasma chemistry changes than profiles obtained from plasma emission. Experiments with nitrogen...addition demonstrated significant changes in the silicon atom profiles near the sheath boundary. Originator supplied keywords include: rf discharge, silane, plasma chemistry , silicon atom, laser-induced fluorescence.
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Effect of coating on properties of esthetic orthodontic nickel-titanium wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru
2012-03-01
To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n = 10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.
Van der Waals interactions and the limits of isolated atom models at interfaces
Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst
2016-01-01
Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Recoilless Nuclear Resonance Absorption of Gamma Radiation
NASA Astrophysics Data System (ADS)
Mössbauer, Rudolf L.
It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.
2015-03-25
lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
Laser-induced fluorescence of space-exposed polyurethane
NASA Technical Reports Server (NTRS)
Hill, Ralph H., Jr.
1993-01-01
The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.
Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.
DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter
2013-04-01
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.
Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng
2018-02-15
Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik
2018-02-01
We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Zhang, Shuo
2015-09-01
The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.
NASA Astrophysics Data System (ADS)
Gao, Ying; Pan, Qing-Qing; Zhao, Liang; Geng, Yun; Su, Tan; Gao, Ting; Su, Zhong-Min
2018-06-01
To seek effective thermally activated delayed fluorescence (TADF) molecules, we have designed compounds 1-4 by introducing substituents on the para-position of boron atom of blue TADF molecule (DABNA-1). The results indicate that 1-4 not only retain the blue emission from 454 to 466 nm, but also possess larger oscillator strength. Besides, the fluorescence radiative rates (kr) of 1-4 are higher than that of DABNA-1. The singlet-triplet energy splitting (ΔΕST) values of designed compounds are smaller than that of DABNA-1. Taking both ΔΕST and kr into account, designed compounds show better TADF performances, indicating their potential as TADF materials.
Determination of the atomic density of rubidium-87
NASA Astrophysics Data System (ADS)
Zhao, Meng; Zhang, Kai; Chen, Li-Qing
2015-09-01
Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement. In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of 87Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of 87Rb atomic density is given. Project supported by the Natural Science Foundation of China (Grant Nos. 11274118 and 11474095), the Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 13ZZ036), and the Fundamental Research Funds for the Central Universities of China.
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh
2017-05-01
Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.
Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-10-01
X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.
EDITORIAL: Nanotechnology in motion Nanotechnology in motion
NASA Astrophysics Data System (ADS)
Demming, Anna
2012-02-01
Microscopes provide tools of inimitable value for probing the building blocks of the world around us. The identity of the inventor of the first microscope remains under debate, but a name unequivocally linked with early developments in microscopy is Robert Hooke. His Micrographia published in 1665, was the first ever bestseller in science and brought topics in microscopy to the broader public eye with pages of detailed micrographs, most famously the fly's eye and plant cells. Since the first microscopes in the late 16th century, ingenious alternatives to the original optical microscopes have been developed to create images of the world at ever smaller dimensions. Innovations include scanning probe techniques such as the atomic force microscope [1]. As Toshio Ando describes in a review in this issue [2], these devices have also entered a new era in the past decade with the development of high-speed atomic force microscopy. Now, we can not only see the nanoscale components that make up the world around us, but we can watch them at work. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained by a researcher in the early 1930s, 'It is obvious that if the dyes used for selective staining in ordinary microscopical work are supplemented by substances which cause a particular detail of the structure to fluoresce with a specific colour in ultraviolet light, then many strings will be added to the bow of the practical microscopist' [3]. More recently, emphasis on the role of plasmons—collective oscillations of electrons in nanoscale metal structures—has received considerable research attention. Plasmons enhance the local electromagnetic field and can lead to increased fluorescence rates from nearby fluorophores depending on the efficiency of the counteracting process, non-radiative transfer [4]. The 1930s also saw the development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue, Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields
Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689
Resonance fluorescence microscopy via three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar
2018-02-01
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.
Quantum Chemical Topology: Knowledgeable atoms in peptides
NASA Astrophysics Data System (ADS)
Popelier, Paul L. A.
2012-06-01
The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
NASA Astrophysics Data System (ADS)
Butcher, David James
1990-01-01
Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium, and lithium, detection limits between 0.7 and 2 pg were obtained, with an LDR of 3.5 orders of magnitude. Sodium was shown to severely depress the indium LEI signal in an ETA.
NASA Astrophysics Data System (ADS)
Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang
2010-03-01
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
Optical Diagnostics in the Gaseous Electronics Conference Reference Cell
Hebner, G. A.; Greenberg, K. E.
1995-01-01
A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748
1980-01-01
ting Oils 6. PERFORMING 04G. REPORT NUMBER -7 AUTHOR(s) 8 . CONTRACT OR GRANT NUMBER(s) O /Thomna-s F. Wynn, Jr: Capt, USAF 9. PERFORMING ORGANIZATION...EXCITED FURNACE ATOMIC FLUORESCENCE SYSTEM FOR THE DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS \\Ac ces-.ic’flr For DDC TL3 Unp-nnounced...DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS By Thomas F. Wynn, Jr. March, 1980 Chairman: James D. Winefordner Major Department: Chemistry A
Containerless high temperature property measurements by atomic fluorescence
NASA Technical Reports Server (NTRS)
Schiffman, R. A.; Walker, C. A.
1984-01-01
Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.
Li, Shan; Wang, Yuji; Wang, Feng; Wang, Yaonan; Zhang, Xiaoyi; Zhao, Ming; Feng, Qiqi; Wu, Jianhui; Zhao, Shurui; Wu, Wei; Peng, Shiqi
2015-01-01
Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl)-Trp-Lys-OBzl (PZL318), was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 μM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 μmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform–mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY) two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward DNA were correlated with the antitumor mechanism of PZL318. PMID:26345234
Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger
2016-11-01
The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains
Sabater, Carlos; Untiedt, Carlos
2015-01-01
Summary This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose. PMID:26734525
Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids
NASA Astrophysics Data System (ADS)
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui
2018-04-01
A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.
Friction and Wear on the Atomic Scale
NASA Astrophysics Data System (ADS)
Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst
Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.
Cell Uptake and Validation of Novel PECs for Biomedical Applications.
Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe
2011-01-01
This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.
Cell Uptake and Validation of Novel PECs for Biomedical Applications
Palamà, Ilaria E.; Musarò, Mariarosaria; Coluccia, Addolorata M. L.; D'Amone, Stefania; Gigli, Giuseppe
2011-01-01
This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability. PMID:21876815
NASA Astrophysics Data System (ADS)
Baum, Olga; Wachsmann-Hogiu, Sebastian; Milner, Thomas; Sobol, Emil
2017-06-01
Pores in sclera enhance uveoscleral water outflow and can normalize intraocular pressure in glaucomatous eyes. The aims of this study are to demonstrate laser-induced formation of pores with a dendritic structure and to answer the questions: How is a pore system stable and can laser treatment provide a long-lasting pressure stabilization effect? Effect of 1.56 µm laser radiation on porcine eye sclera was studied using atomic force microscopy and super resolution structured irradiation microscopy with fluorescent markers. Results suggest that the pores with a complex spatial configuration can arise as a result of laser irradiation and that laser-generated stable gas nanobubbles coated with calcium ions allow pore stabilization in the sclera. Our results support a laser based approach for treatment of glaucoma.
Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit[8]uril.
Lei, Wanhua; Jiang, Guoyu; Zhou, Qianxiong; Zhang, Baowen; Wang, Xuesong
2010-10-28
Binding affinity towards serum albumin and intracellular proteins is of importance for a photodynamic therapy (PDT) sensitizer to selectively localize in tumours and efficiently induce cell death. In this paper, it was found that cucurbit[8]uril (CB8) can greatly improve the binding affinity of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), a promising PDT photosensitizer, towards bovine serum albumin (BSA). Absorption, fluorescence emission, (1)H NMR, dynamic light scattering, atomic force microscope, as well as protein photocleavage measurements suggest that the binding enhancement originates from the formation of a ternary complex of CB8·TMPyP·tryptophan residues. This finding opens up a new approach for the development of more efficient PDT agents.
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus
2011-03-01
Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.
Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films.
Ren, Kefeng; Ji, Jian; Shen, Jiacong
2006-03-01
The layer-by-layer (LbL) self-assembly of poly-l-lysine (PLL) and deoxyribonucleic acid (DNA) was used to construct the enzymatic biodegradable multilayered films. The LbL build up of DNA multilayers was monitored by UV-vis spectrometry, and atomic force microscopy (AFM). AFM, UV-vis spectrometry and fluorescence spectrometry measurements indicated that 90% of DNA within the films was released almost linearly under 5 U mL(-1)alpha-chymotrypsin in PBS at 37 degrees C in 35 h. TEM and zeta potential experiments revealed that the released DNA molecules were condensed into the slight positive complexes with size from 20 to several hundred nanometers. The well-structured, easy processed enzymatic biodegradable multilayered film may have great potential for gene applications in tissue engineering, medical implants, etc.
de Vries, Wilke C; Grill, David; Tesch, Matthias; Ricker, Andrea; Nüsse, Harald; Klingauf, Jürgen; Studer, Armido; Gerke, Volker; Ravoo, Bart Jan
2017-08-01
We present the self-assembly of redox-responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host-guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox-responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH-probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus-responsive nanocontainers for cell biological applications requiring a controlled delivery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ryan, Deborah A.; Narrow, Wade C.; Federoff, Howard J.; Bowers, William J.
2010-01-01
Soluble Aβ oligomers are recognized as playing a key role in Alzheimer’s disease (AD) pathophysiology. Despite their significance, many investigators encounter difficulty generating reliable preparations for in vitro and in vivo experiments. Solutions of Aβ are often unstable and soluble conformer profiles inconsistent. In this study we describe detailed methods for preparing Aβ oligomers that are stable for several weeks and are enriched for low and high molecular weight oligomeric forms, including the 56-kDa form, a conformer implicated in AD-related cognitive impairment. We characterize their structural and functional properties using Western blot, dot blot, atomic force microscopy, Thioflavine T fluorescence, and primary neuronal culture toxicity assays. These synthetic preparations should prove valuable to many studying Aβ-mediated mechanisms underlying AD. PMID:20452375
Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation
NASA Astrophysics Data System (ADS)
Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.
2016-10-01
Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.
Reversible and oriented immobilization of ferrocene-modified proteins.
Yang, Lanti; Gomez-Casado, Alberto; Young, Jacqui F; Nguyen, Hoang D; Cabanas-Danés, Jordi; Huskens, Jurriaan; Brunsveld, Luc; Jonkheijm, Pascal
2012-11-21
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias
2013-01-01
Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.
MEAM interatomic force calculation subroutine for LAMMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukowski, A.
2010-10-25
Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
Method of trivalent chromium concentration determination by atomic spectrometry
Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE
2006-12-12
A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, Riccardo; Vasile, Ruggero; Passante, Roberto
2010-12-15
We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.
NASA Astrophysics Data System (ADS)
de Pablo, Pedro J.
The basic architecture of a virus consists of the capsid, a shell made up of repeating protein subunits, which packs, shuttles and delivers their genome at the right place and moment. Viral particles are endorsed with specific physicochemical properties which confer to their structures certain meta-stability whose modulation permits fulfilling each task of the viral cycle. These natural designed capabilities have impelled using viral capsids as protein containers of artificial cargoes (drugs, polymers, enzymes, minerals) with applications in biomedical and materials sciences. Both natural and artificial protein cages have to protect their cargo against a variety of physicochemical aggressive environments, including molecular impacts of highly crowded media, thermal and chemical stresses, and osmotic shocks. Viral cages stability under these ambiences depend not only on the ultimate structure of the external capsid, which rely on the interactions between protein subunits, but also on the nature of the cargo. During the last decade our lab has focused on the study of protein cages with Atomic Force Microscopy (AFM) (figure 1). We are interested in stablishing links of their mechanical properties with their structure and function. In particular, mechanics provide information about the cargo storage strategies of both natural and virus-derived protein cages. Mechanical fatigue has revealed as a nanosurgery tool to unveil the strength of the capisd subunit bonds. We also interrogated the electrostatics of individual protein shells. Our AFM-fluorescence combination provided information about DNA diffusing out cracked-open protein cages in real time.
Interactions of the Human Calcitonin Fragment 9–32 with Phospholipids: A Monolayer Study
Wagner, Kerstin; Van Mau, Nicole; Boichot, Sylvie; Kajava, Andrey V.; Krauss, Ulrike; Le Grimellec, Christian; Beck-Sickinger, Annette; Heitz, Frédéric
2004-01-01
Human calcitonin and its C-terminal fragment 9–32 (hCT(9–32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9–32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9–32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers. A combination of physicochemical methods was applied including surface tension measurements on adsorbed and spread monolayers at the air-water interface, Fourier transform infrared, circular dichroism, and atomic force microscopy on Langmuir-Blodgett monolayers. The results disclose that hCT(9–32) preferentially interacts with negatively charged phospholipids and does not insert spontaneously into lipid monolayers. This supports a nonreceptor-mediated endocytic internalization pathway as previously suggested. Structural studies revealed a random coil conformation of hCT(9–32) in solution, transforming to α-helices when the peptide is localized at lipid-free or lipid-containing air-water interfaces. Atomic force microscopy studies of monolayers of the peptide alone or mixed with dioleoylphosphatidylcholine revealed that hCT(9–32) forms filaments rolled into spirals. In contrast, when interacting with dioleoylphosphatidylglycerol, hCT(9–32) does not adopt filamentous structures. A molecular model and packing is proposed for the spiral-forming hCT(9–32). PMID:15240473
Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste
NASA Astrophysics Data System (ADS)
Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.
2003-08-01
A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.
NASA Astrophysics Data System (ADS)
Marsman, A.; Hessels, E. A.; Horbatsch, M.
2014-04-01
Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23S-to-23P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23P fine structure.
Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap
NASA Technical Reports Server (NTRS)
Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu
1996-01-01
The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.
A universal strategy for the creation of machine learning-based atomistic force fields
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi
2017-09-01
Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.
Wong, Brian A; Friedle, Simone; Lippard, Stephen J
2009-05-27
The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.
The Chemical Structure and Acid Deterioration of Paper.
ERIC Educational Resources Information Center
Hollinger, William K., Jr.
1984-01-01
Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Note: Effect of the parasitic forced vibration in an atom gravimeter
NASA Astrophysics Data System (ADS)
Chen, Le-Le; Luo, Qin; Zhang, Heng; Duan, Xiao-Chun; Zhou, Min-Kang; Hu, Zhong-Kun
2018-06-01
The vibration isolator usually plays an important role in atom interferometry gravimeters to improve their sensitivity. We show that the parasitic forced vibration of the Raman mirror, which is induced by external forces acting on the vibration isolator, can cause a bias in atom gravimeters. The mechanism of how this effect induces an additional phase shift in our interferometer is analyzed. Moreover, modulation experiments are performed to measure the dominant part of this effect, which is caused by the magnetic force between the passive vibration isolator and the coil of the magneto-optic trap. In our current apparatus, this forced vibration contributes a systematic error of -2.3(2) × 10-7 m/s2 when the vibration isolator works in the passive isolation mode. Even suppressed with an active vibration isolator, this effect can still contribute -6(1) × 10-8 m/s2; thus, it should be carefully considered in precision atom gravimeters.
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
NASA Astrophysics Data System (ADS)
Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.
2015-08-01
The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.
Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong
2018-06-05
Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao
2015-02-05
FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb. Copyright © 2014 Elsevier B.V. All rights reserved.
Controlling Casimir force via coherent driving field
NASA Astrophysics Data System (ADS)
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
NASA Astrophysics Data System (ADS)
Nygren, David
2015-10-01
To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.
Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms
NASA Astrophysics Data System (ADS)
Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio
2017-10-01
We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.
Imaging of DNA and Protein by SFM and Combined SFM-TIRF Microscopy.
Grosbart, Małgorzata; Ristić, Dejan; Sánchez, Humberto; Wyman, Claire
2018-01-01
Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nm resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.
Effects of heat/citric acid reprocessing on high-flux polysulfone dialyzers.
Cornelius, Rena M; McClung, W Glenn; Richardson, Robert M A; Estridge, Charles; Plaskos, Nicholas; Yip, Christopher M; Brash, John L
2002-01-01
The surface features, morphology, and tensile properties of fibers obtained from pristine, reprocessed, and reused Fresenius Polysulfone High-Flux (Hemoflow F80A) hemodialyzers have been studied. Scanning electron microscopy of the dialyzer fibers revealed a dense skin layer on the inner surface of the membrane and a relatively thick porous layer on the outer surface. Transmission electron microscopy and atomic force microscopy showed an alteration in membrane morphology due to reprocessing and reuse, or to a deposition of blood-borne material on the membrane that is not removed with reprocessing. Fluorescent microscopy images also showed that a fluorescent material not removed by heat/citric acid reprocessing builds up with continued use of the dialyzers. The tensile properties of the dialyzer fibers were not affected by the heat/citric acid reprocessing procedure. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were also studied using sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. A considerable amount of protein was found on the blood side of single and multiple use dialyzers. Proteins adsorbed on the dialysate side of the membrane were predominantly in the molecular weight region below 30 kDa. Little protein was detected on the membranes of reprocessed hemodialyzers.
Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes.
Ristic, Dejan; Sanchez, Humberto; Wyman, Claire
2011-01-01
Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate, and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nanometer resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA-bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA, and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.
NASA Astrophysics Data System (ADS)
Zhang, Li; Qin, Dezhi; Yang, Guangrui; Du, Xian; Zhang, Qiuxia; Li, Feng
2015-09-01
The toroid-like PbS nanocrystals have been prepared in zein ethanol solution based on self-assembly template of protein molecules. From transmission electron microscopy observation, the obtained samples were monodispersed with an average size of about 47 nm. The chemical composition and crystal structure of nanocomposites were determined by X-ray diffraction and energy-dispersive X-ray spectrum measurements. The interaction between PbS and zein was investigated through Fourier transform infrared, photoluminescence, circular dichroism (CD) spectra, and thermogravimetric analysis. The PbS nanocrystals could react with nitrogen and oxygen atoms of zein molecules through coordination and electrostatic force. The CD spectra results suggested that PbS nanocrystals induced the conformational transition of protein from α-helix to β-sheet and then self-assembled into ring or toroid nanostructure. The quenching of zein fluorescence induced by PbS nanocrystals also showed the change in the chemical microenvironments of the fluorescent amino acid residues in the protein structure. The key step of this facile, biomimetic route was the formation of self-assembly nanostructure of zein, which could regulate the nucleation and growth of toroid-like PbS nanocrystals.
Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide
Ratha, Bhisma N.; Ghosh, Anirban; Brender, Jeffrey R.; Gayen, Nilanjan; Ilyas, Humaira; Neeraja, Chilukoti; Das, Kali P.; Mandal, Atin K.; Bhunia, Anirban
2016-01-01
The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation. PMID:27679488
Do Atoms Really "Emit" Absorption Lines?
ERIC Educational Resources Information Center
Brecher, Kenneth
1991-01-01
Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)
The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School
ERIC Educational Resources Information Center
Goss, Valerie; Brandt, Sharon; Lieberman, Marya
2013-01-01
using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…
Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.
Rossi, G; Omenetto, N
1969-02-01
A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
Optical Thin Film Thickness Measurement for the Single Atom Microscope
NASA Astrophysics Data System (ADS)
Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team
2017-09-01
The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.
Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy
NASA Astrophysics Data System (ADS)
Neupane, Guru P.; Dhakal, Krishna P.; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S.; Hong, Jong-Dal; Kim, Jeongyong
2013-05-01
Study of biological molecule DNA has contributed to developing many breaking thoughts and wide applications in multidisciplinary fields, such as genomic, medical, sensing and forensic fields. Stretching of DNA molecules is an important supportive tool for AFM or spectroscopic studies of DNA in a single molecular level. In this article, we established a simple method of DNA stretching (to its full length) that occurred on a rotating negatively-charged surface of glass substrate. The isolation of a single DNA molecule was attained by the two competitive forces on DNA molecules, that is, the electrostatic attraction developed between the positively charged YOYO-1 stained DNA and the negatively charged substrate, and the centrifugal force of the rotating substrate, which separates the DNA aggregates into the single molecule. Density of stretched DNA molecules was controlled by selecting the specific parameters such as spinning time and rates, loading volume of DNA-dye complex solution etc. The atomic force microscopy image exhibited a single DNA molecule on the negatively-charged substrate in an isolated state. Further, the photoluminescence spectra of a single DNA molecule stained with YOYO-1 were achieved using the method developed in the present study, which is strongly believed to effectively support the spectroscopic analysis of DNA in a single molecular level.
Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouinard, Julie A.; Research Centre on Aging, Sherbrooke Geriatric University Institute, Sherbrooke, Quebec; Grenier, Guillaume
There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidalmore » force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.« less
NASA Astrophysics Data System (ADS)
Incerti, S.; Barberet, Ph.; Dévès, G.; Michelet, C.; Francis, Z.; Ivantchenko, V.; Mantero, A.; El Bitar, Z.; Bernal, M. A.; Tran, H. N.; Karamitros, M.; Seznec, H.
2015-09-01
The general purpose Geant4 Monte Carlo simulation toolkit is able to simulate radiative and non-radiative atomic de-excitation processes such as fluorescence and Auger electron emission, occurring after interaction of incident ionising radiation with target atomic electrons. In this paper, we evaluate the Geant4 modelling capability for the simulation of fluorescence spectra induced by 1.5 MeV proton irradiation of thin high-Z foils (Fe, GdF3, Pt, Au) with potential interest for nanotechnologies and life sciences. Simulation results are compared to measurements performed at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan AIFIRA nanobeam line irradiation facility in France. Simulation and experimental conditions are described and the influence of Geant4 electromagnetic physics models is discussed.
Hao, Yuanqiang; Nguyen, Khac Hong; Zhang, Yintang; Zhang, Guan; Fan, Shengnan; Li, Fen; Guo, Chao; Lu, Yuanyuan; Song, Xiaoqing; Qu, Peng; Liu, You-Nian; Xu, Maotian
2018-01-01
A highly selective and ratiometric fluorescent probe for cyanide was rationally designed and synthesized. The probe comprises a fluorophore unit of naphthalimide and a CN - acceptor of methylated trifluoroacetamide group. For these previous reported trifluoroacetamide derivative-based cyanide chemosensors, the H-atom of amide adjacent to trifluoroacetyl group is susceptible to be attacked by various anions (CN - itself, F - , AcO - , et al.) and even the solvent molecule, which resulted in the bewildered reaction mechanism and poor selectivity of the assay. In this work, the susceptible H-atom of trifluoroacetamide was artfully substituted by alkyl group. Thus a highly specific fluorescent probe was developed for cyanide sensing. Upon the nucleophilic addition of cyanide anion to the carbonyl of trifluoroacetamide moiety of the probe, the ICT process of the probe was significantly enhanced and leading to a remarkable red shift in both absorption and emission spectra of the probe. This fluorescent assay showed a linear range of 1.0-80.0µM and a LOD (limit of detection) of 0.23µM. All the investigated interference have no influence on the sensing behavior of the probe toward cyanide. Moreover, by coating on TLC plate, the probe can be utilized for practical detection of trace cyanide in water samples. Copyright © 2017. Published by Elsevier B.V.
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Ultrafast state detection and 2D ion crystals in a Paul trap
NASA Astrophysics Data System (ADS)
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2016-05-01
Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.
Absorption and emission spectra of Li atoms trapped in rare gas matrices
NASA Astrophysics Data System (ADS)
Wright, J. J.; Balling, L. C.
1980-10-01
Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Destroying activity of magnetoferritin on lysozyme amyloid fibrils
NASA Astrophysics Data System (ADS)
Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana
2015-03-01
Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.
Van der Waals forces in pNRQED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtabovenko, Vladyslav
2016-01-22
We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.
2015-01-01
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2014-10-16
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
The Indeterminate Case of Classical Static Friction When Coupled with Tension
NASA Astrophysics Data System (ADS)
Hahn, Kenneth D.; Russell, Jacob M.
2018-02-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.
Signal processing for molecular and cellular biological physics: an emerging field.
Little, Max A; Jones, Nick S
2013-02-13
Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.
2018-01-01
Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.
Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne
2012-12-01
We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.
Signal processing for molecular and cellular biological physics: an emerging field
Little, Max A.; Jones, Nick S.
2013-01-01
Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603
Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett
2017-01-01
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.
Study of Raft Domains in Model Membrane of DPPC/PE/Cholesterol
NASA Astrophysics Data System (ADS)
Lor, Chai; Hirst, Linda
2010-10-01
Raft domains in bilayer membrane are thought to play an important role in many cell functions such as cell signaling or trans-membrane protein activation. Here we use a model membrane consisting of DPPC/PE/cholesterol to examine the structure of membrane rafts and phase interactions. In particular we are interested in lipids containing the highly polyunsaturated fatty acid DHA. We use both atomic force microscopy (AFM) and fluorescence microscopy to obtain information on the structural properties of raft regions and track cholesterol. As expected, we find phase separation of raft regions between saturated and unsaturated lipids. Moreover, we find that the roughness of the domains change with varying cholesterol concentration possibly due to overpacking. This model study provides further understanding of the role of cholesterol in bilayer membrane leading towards a better knowledge of cell membranes.
Containerless study of metal evaporation by laser induced fluorescence
NASA Technical Reports Server (NTRS)
Schiffman, Robert A.; Nordine, Paul C.
1987-01-01
Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonthuis, Douwe Jan, E-mail: douwe.bonthuis@physics.ox.ac.uk; Mamatkulov, Shavkat I.; Netz, Roland R.
We optimize force fields for H{sub 3}O{sup +} and OH{sup −} that reproduce the experimental solvation free energies and the activities of H{sub 3}O{sup +} Cl{sup −} and Na{sup +} OH{sup −} solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H{sub 3}O{sup +} force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for nonpolarizable water models and H{sub 3}O{sup +} force fields. In contrast,more » the optimal partial charge on the hydrogen atom of OH{sup −} turns out to be zero. Standard combination rules can be used for H{sub 3}O{sup +} Cl{sup −} solutions, while for Na{sup +} OH{sup −} solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.« less
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
NASA Astrophysics Data System (ADS)
Burimov, V. N.; Zherikhin, A. N.; Popkov, V. L.
1995-02-01
Laser-induced fluorescence was used in an investigation of the populations of the ground and excited (6s5d 3D1 and 3D2) states of Ba atoms in a plasma formed by laser ablation of Y—Ba—Cu—O target. A nonequilibrium velocity distribution of the atoms was detected. At large distances from the target about 4% of the atoms were in an excited state.
Antibacterial effect of silver nanofilm modified stainless steel surface
NASA Astrophysics Data System (ADS)
Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.
2015-03-01
Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
NASA Astrophysics Data System (ADS)
Gornushkin, Igor B.
1997-12-01
Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.
Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed
2015-01-01
Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264
High-resolution imaging of silicene on an Ag(111) surface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Onoda, Jo; Yabuoshi, Keisuke; Miyazaki, Hiroki; Sugimoto, Yoshiaki
2017-12-01
Silicene, a two-dimensional (2D) honeycomb arrangement of Si atoms, is expected to have better electronic properties than graphene and has been mostly synthesized on Ag surfaces. Although scanning tunneling microscopy (STM) has been used for visualizing its atomic structure in real space, the interpretation of STM contrast is not straightforward and only the topmost Si atoms were observed on the (4 ×4 ) silicene/Ag(111) surface. Here, we demonstrate that high-resolution atomic force microscopy (AFM) can resolve all constituent Si atoms in the buckled honeycomb arrangement of the (4 ×4 ) silicene. Site-specific force spectroscopy attributes the origin of the high-resolution AFM images to chemical bonds between the AFM probe apex and the individual Si atoms on the (4 ×4 ) silicene. A detailed analysis of the geometric parameters suggests that the pulling up of lower-buckled Si atoms by the AFM tip could be a key for high-resolution AFM, implying a weakening of the Si-Ag interactions at the interface. We expect that high-resolution AFM will also unveil atomic structures of edges and defects of silicene, or other emerging 2D materials.
Gross, Andrew J; Haddad, Raoudha; Travelet, Christophe; Reynaud, Eric; Audebert, Pierre; Borsali, Redouane; Cosnier, Serge
2016-11-15
The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.
A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin
Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less
NASA Astrophysics Data System (ADS)
Lamoureux, Loreen; Adams, Peter; Banisadr, Afsheen; Stromberg, Zachary; Graves, Steven; Montano, Gabriel; Moxley, Rodney; Mukundan, Harshini
2014-03-01
Shiga toxin-producing Escherichia coli (STEC) poses a serious threat to human health through the consumption of contaminated food products, particularly beef and produce. Early detection in the food chain, and discrimination from other non-pathogenic Escherichia coli (E. coli), is critical to preventing human outbreaks, and meeting current agricultural screening standards. These pathogens often present in low concentrations in contaminated samples, making discriminatory detection difficult without the use of costly, time-consuming methods (e.g. culture). Using multiple signal transduction schemes (including novel optical methods designed for amphiphiles), specific recognition antibodies, and a waveguide-based optical biosensor developed at Los Alamos National Laboratory, we have developed ultrasensitive detection methods for lipopolysaccharides (LPS), and protein biomarkers (Shiga toxin) of STEC in complex samples (e.g. beef lysates). Waveguides functionalized with phospholipid bilayers were used to pull down amphiphilic LPS, using methods (membrane insertion) developed by our team. The assay format exploits the amphiphilic biochemistry of lipoglycans, and allows for rapid, sensitive detection with a single fluorescent reporter. We have used a combination of biophysical methods (atomic force and fluorescence microscopy) to characterize the interaction of amphiphiles with lipid bilayers, to efficiently design these assays. Sandwich immunoassays were used for detection of protein toxins. Biomarkers were spiked into homogenated ground beef samples to determine performance and limit of detection. Future work will focus on the development of discriminatory antibodies for STEC serotypes, and using quantum dots as the fluorescence reporter to enable multiplex screening of biomarkers.
Saboo, Sugandha; Taylor, Lynne S
2017-08-30
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.
A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells
NASA Astrophysics Data System (ADS)
Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.
2015-11-01
A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.
Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions
NASA Astrophysics Data System (ADS)
Aradhya, Sriharsha V.
The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level. In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures. The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work.
Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.
Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel
2009-06-22
Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.
Schartner, Jonas; Hoeck, Nina; Güldenhaupt, Jörn; Mavarani, Laven; Nabers, Andreas; Gerwert, Klaus; Kötting, Carsten
2015-07-21
Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.
Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan
2016-03-08
Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.
Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.
2012-01-01
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925
Rogers, T Ryan; Wang, Feng
2017-10-28
An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Yu, Hongwei
2014-09-01
We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.
2018-02-01
For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.
2013-07-11
in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -‐ Jones (LJ) potential energy surface (PES) dictating atomic interaction forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found
Toggling Bistable Atoms via Mechanical Switching of Bond Angle
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.
Will a Decaying Atom Feel a Friction Force?
Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M
2017-02-03
We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.
Liao, Meng-xia; Deng, Tian-long
2006-01-01
It was observed that the atomic fluorescence emission due to As(V) could has a 10% to 40% of fluorescence emission signal during the determination of As(III) in the mixture of As(III) and As(V). Besides, interferes from heavy metals such as Pb(lIl), Cu(ll) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(II), Zn(ll), Mn(II) and Fe(Ill). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(V) emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples of porewaters and sediments in Poyang Lake, China.
NASA Astrophysics Data System (ADS)
Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon
2018-01-01
Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.
Remarks on a Johann spectrometer for exotic-atom research and more
NASA Astrophysics Data System (ADS)
Gotta, Detlev E.; Simons, Leopold M.
2016-06-01
General properties of a Johann-type spectrometer equipped with spherically bent crystals are described leading to simple rules of thumb for practical use. They are verified by comparing with results from Monte-Carlo studies and demonstrated by selected measurements in exotic-atom and X-ray fluorescence research.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Detection of individual atoms in helium buffer gas and observation of their real-time motion
NASA Technical Reports Server (NTRS)
Pan, C. L.; Prodan, J. V.; Fairbank, W. M., Jr.; She, C. Y.
1980-01-01
Single atoms are detected and their motion measured for the first time to our knowledge by the fluorescence photon-burst method in the presence of large quantities of buffer gas. A single-clipped digital correlator records the photon burst in real time and displays the atom's transit time across the laser beam. A comparison is made of the special requirements for single-atom detection in vacuum and in a buffer gas. Finally, the probability distribution of the bursts from many atoms is measured. It further proves that the bursts observed on resonance are due to single atoms and not simply to noise fluctuations.
Electronegativity determination of individual surface atoms by atomic force microscopy.
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-04-26
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.
Electronegativity determination of individual surface atoms by atomic force microscopy
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-01-01
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
NASA Astrophysics Data System (ADS)
Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.
2017-03-01
A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.
Advanced atomic force microscopy: Development and application
NASA Astrophysics Data System (ADS)
Walters, Deron A.
Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.
NASA Astrophysics Data System (ADS)
Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.
2013-02-01
Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.
Direct observation of the actin filament by tip-scan atomic force microscopy
Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro
2016-01-01
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
Development of a collinear laser spectrometer facility at VECC: First test result
NASA Astrophysics Data System (ADS)
Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok
2018-04-01
We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.
NASA Astrophysics Data System (ADS)
Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor
2007-10-01
Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong
2013-04-01
Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.
Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan
2017-06-01
Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.
NASA Astrophysics Data System (ADS)
Retnakumari, Archana; Setua, Sonali; Menon, Deepthy; Ravindran, Prasanth; Muhammed, Habeeb; Pradeep, Thalappil; Nair, Shantikumar; Koyakutty, Manzoor
2010-02-01
Molecular-receptor-targeted imaging of folate receptor positive oral carcinoma cells using folic-acid-conjugated fluorescent Au25 nanoclusters (Au NCs) is reported. Highly fluorescent Au25 clusters were synthesized by controlled reduction of Au+ ions, stabilized in bovine serum albumin (BSA), using a green-chemical reducing agent, ascorbic acid (vitamin-C). For targeted-imaging-based detection of cancer cells, the clusters were conjugated with folic acid (FA) through amide linkage with the BSA shell. The bioconjugated clusters show excellent stability over a wide range of pH from 4 to 14 and fluorescence efficiency of ~5.7% at pH 7.4 in phosphate buffer saline (PBS), indicating effective protection of nanoclusters by serum albumin during the bioconjugation reaction and cell-cluster interaction. The nanoclusters were characterized for their physico-chemical properties, toxicity and cancer targeting efficacy in vitro. X-ray photoelectron spectroscopy (XPS) suggests binding energies correlating to metal Au 4f7/2~83.97 eV and Au 4f5/2~87.768 eV. Transmission electron microscopy and atomic force microscopy revealed the formation of individual nanoclusters of size ~1 nm and protein cluster aggregates of size ~8 nm. Photoluminescence studies show bright fluorescence with peak maximum at ~674 nm with the spectral profile covering the near-infrared (NIR) region, making it possible to image clusters at the 700-800 nm emission window where the tissue absorption of light is minimum. The cell viability and reactive oxygen toxicity studies indicate the non-toxic nature of the Au clusters up to relatively higher concentrations of 500 µg ml-1. Receptor-targeted cancer detection using Au clusters is demonstrated on FR+ve oral squamous cell carcinoma (KB) and breast adenocarcinoma cell MCF-7, where the FA-conjugated Au25 clusters were found internalized in significantly higher concentrations compared to the negative control cell lines. This study demonstrates the potential of using non-toxic fluorescent Au nanoclusters for the targeted imaging of cancer.
Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi
2015-09-03
In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Takayanagi, Toshio; Toki, Yuko; Egawa, Takahiro; Kamiya, Mako; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Yoshida, Kengo; Uchiyama, Masanobu; Nagano, Tetsuo; Urano, Yasuteru
2015-09-01
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
The Effect of Intense Laser Radiation on Atomic Collisions
NASA Astrophysics Data System (ADS)
Young, Stephen Michael Radley
1991-02-01
Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Determination of the implantation dose in silicon wafers by X-ray fluorescence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klockenkaemper, R.; Becker, M.; Bubert, H.
1990-08-01
The ion dose implanted in silicon wafers was determined by X-ray fluorescence analysis after the implantation process. As only near-surface layers below 1-{mu}m thickness were considered, the calibration could be carried out with external standards consisting of thin films of doped gelatine spread on pure wafers. Dose values for Cr and Co were determined between 4 {times} 10{sup 15} and 2 {times} 10{sup 17} atoms/cm{sup 2}, the detection limits being about 3 {times} 10{sup 14} atoms/cm{sup 2}. The results are precise and accurate apart from a residual scatter of less than 7%. This was confirmed by flame atomic absorption spectrometrymore » after volatilization of the silicon matrix as SiF{sub 4}. It was found that ion-current measurements carried out during the implantation process can have considerable systematic errors.« less
H2/O2 three-body rates at high temperatures
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry
1990-01-01
The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T
2015-03-13
Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.
'Single molecule': theory and experiments, an introduction
2013-01-01
At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Vibrational properties of TaW alloy using modified embedded atom method potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
Synthesis and spectral properties of preorganized BODIPYs in solutions and Langmuir-Schaefer films
NASA Astrophysics Data System (ADS)
Marfin, Yuriy S.; Usoltsev, Sergey D.; Kazak, Alexandr V.; Smirnova, Antonina I.; Rumyantsev, Evgeniy V.; Molchanov, Evgeniy E.; Kuznetsov, Vladimir V.; Chumakov, Alexey S.; Glukhovskoy, Evgeny G.
2017-12-01
In order to investigate the influence of molecular structure peculiarities of boron-dipyrrine dyes (BODIPYs) on their properties in solutions and supramolecular organization in Langmuir-Schaefer (LS) films, four new BODIPY dyes with various aliphatic, aromatic or mixed nature meso-subtituents were synthesized and investigated. Spectral characteristics (electronic absorption and fluorescence) of the synthesized compounds in organic solvents and LS-films were studied. Floating monolayers of the BODIPYs were formed from chloroform solutions placed onto water subphase in Langmuir-Blodgett through. Thin films were prepared using the Langmuir-Schaefer technique by the transfer of floating monolayers onto standard polished glass, ITO covered glass or pure silicon substrate. The variation of the dye structure we consider as a preorganization aiming to influence the structure of LS-films. The morphology and structure of the LS-films was examined by fluorescent microscopy, scanning electron microscopy, atomic force microscopy and small angle X-ray diffraction analysis. It was found that the introduced substituents have no substantial influence on the position of the absorption and fluorescence bands in dilute solutions. In contrast, the fluorescent characteristics of the LS-films significantly depend on the substituent nature. Therefore, this strategy could be used for the direct tuning of compounds fluorescent properties in LS-films. Concerning the LS-film surface characteristics it was proved that the films are homogeneous, without disruptions and only some widely-spaced microcrystals could be observed. With respect to the LS-film structure, the change of the substituents introduced to the BODIPY molecule did not influence the average given periodicity of layers (d = 0.3-0.4 nm). This value corresponds to a single-layer arrangement of BODIPY molecules located parallel to the substrate surface. Nevertheless, the diffraction peak intensities depended on the molecular structure of BODIPYs and therefore the structurization in thin films. Moreover, the combination of the rigid phenyl moiety with long alkyl chains in one compound completely suppresses the aggregation of molecules maintaining the intense fluorescence in thin films. On the basis of used range of experimental and calculation methods the intralayer and interlayer structures were proposed. Intermolecular hydrogen bond formation and π-π staking of the BODIPY cores were found to be the structure forming forces during the films manufacturing, resulting the differences in crystallinity of the materials. While the alkyl-substituents prevent the type of interactions and suppress the association of the dyes and formation of excimers. Compounds under investigation show a manifestation of the intense solvatochromic properties which allow their application as sensors, including naked eye sensorics for solution polarity. Besides, the obtained results broaden prospective of functional materials usage based on BODIPY thin films as components of optoelectronics.
Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data
NASA Technical Reports Server (NTRS)
Gorczyca, Thomas W.; Korista, Kirk T.
2005-01-01
Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.
Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope
2017-09-14
dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume
Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence
NASA Astrophysics Data System (ADS)
Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin
2016-09-01
Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.
Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.
Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin
2016-12-01
Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.
Yoshii, Hiroshi; Yanagihara, Kouta; Imaseki, Hitoshi; Hamano, Tsuyoshi; Yamanishi, Hirokuni; Inagaki, Masayo; Sakai, Yasuhiro; Sugiura, Nobuyuki; Kurihara, Osamu; Sakai, Kazuo
2014-01-01
Workers decommissioning the Fukushima-Daiichi nuclear power plant damaged from the Great East Japan Earthquake and resulting tsunami are at risk of injury with possible contamination from radioactive heavy atoms including actinides, such as plutonium. We propose a new methodology for on-site and rapid evaluation of heavy-atom contamination in wounds using a portable X-ray fluorescence (XRF) device. In the present study, stable lead was used as the model contaminant substitute for radioactive heavy atoms. First, the wound model was developed by placing a liquid blood phantom on an epoxy resin wound phantom contaminated with lead. Next, the correlation between the concentration of contaminant and the XRF peak intensity was formulated considering the thickness of blood exiting the wound. Methods to determine the minimum detection limit (MDL) of contaminants at any maximal equivalent dose to the wound by XRF measurement were also established. For example, in this system, at a maximal equivalent dose of 16.5 mSv to the wound and blood thickness of 0.5 mm, the MDL value for lead was 1.2 ppm (3.1 nmol). The radioactivity of 239Pu corresponding to 3.1 nmol is 1.7 kBq, which is lower than the radioactivity of 239Pu contaminating puncture wounds in previous severe accidents. In conclusion, the established methodology could be beneficial for future development of a method to evaluate plutonium contamination in wounds. Highlights: Methodology for evaluation of heavy-atom contamination in a wound was established. A portable X-ray fluorescence device enables on-site, rapid and direct evaluation. This method is expected to be used for evaluation of plutonium contamination in wounds.
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
Poem: A Fast Monte Carlo Code for the Calculation of X-Ray Transition Zone Dose and Current
1975-01-15
stored on the photon interaction data tape. Following the photoelectric ionization the atom will relax emitting either a fluorescent photon or an Auger 50...shell fluorescence yield CL have been obtained from the Storm and Israel1 9 and 25 Bambynek, et al. compilations, with preference given to the...Bambynek compilation, and stored on the photon inter- action data tape. The mean M fluorescence yield wM is approximated by zero. The total electron source
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
Photophysics and catalysis of porphyrinoids
NASA Astrophysics Data System (ADS)
Aggarwal, Amit
Organic nanoparticles (ONP) of metalloporphyrins can be versatile catalysts for the selective oxidation of alkenes and other hydrocarbons. Herein, we report the catalytic activity of ONP of 5,10,15,20-tetrakis-[4-(1'H,1'H,2'H,2'H-heptadecafluorodecane-1-thiol)-2,3,5,6-tetrafluorophenyl] porphyrinato iron(III), Fe(III)TPPF84, and 5,10,15,20-tetakis-(2,3,4,5,6-pentafluorophenyl) porphyrinato manganese(III), Mn(III)TPPF20, for cyclohexene oxidation using molecular oxygen as an oxidant in water under ambient conditions. Sequential dipping of indium-tin-oxide electrodes into solutions of tetra cationic porphyrins and tetra anionic polyoxometalates results in the controlled formation of nm thick films. The potential applications of these robust films on electrodes range from catalysts to sensors. This chapter focuses on the electrochemistry of the multilayered films where it is found that the oxidation and reduction potentials of each species remain largely the same as found in solution. Photophysical properties of Porphyrinoids bearing four rigid hydrogen bonding motifs on the meso positions, self-assembled into a cofacial cage with four complementary bis(decyl)melamine units in dry solvents are presented here. Self-assembly was investigated by NMR spectroscopy, dynamic light scattering, and atomic force microscopy. The phototphysical properties of the cage formation involve the measurement of their absorption and emission spectra and the fluorescence life time in dry THF. The hydrocarbon chains on the bis(decyl)melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A systematic study of the photophysical properties of a series of porphyrinoids is presented. The role of the location of a heavy atom in shunting the excited state from the singlet to the triplet manifolds is compared for three cases. It is well known that Pt(II) metalloporphyrins do not fluoresce. For meso pyridyl porphyrins, the fluorescence quantum yield decreases as the number of coordinatively attached Pt(II) complexes increase from 0-4, but the tetracoordinated species retains about 30% of the fluorescence. Covalently attaching a heavy metal complex e.g. Pt(II) complex to the macrocycle by an organometalic bond at the peripheral meso position causes greater than a 20-fold decrease in fluorescence quantum yield and may enhance some internal conversion to the ground state. For comparison, the fluorescence quantum yield decreases somewhat as the number of pyridyl groups on the meso positions increase 0-4. We also evaluate the photophysical properties of a series of porphyrins with nitro groups on the beta pyrrole position and on the meso phenyl group, which also quenches the fluorescence. These studies bear on the use of metal ions to enhance the photophysical properties of these dyes as photodynamic therapeutics and for supramolecular systems, while the nitrated macrocycles have potential application in non linear optics. The photophysical properties of non-hydrolysable tetra- thioglycosylated conjugates of chlorin (CGlc4), isobacteriochlorin (IGlc4) and bacteriochlorin (BGlc4) and core F20 platforms are reported here. These studies involve the measurement of absorption and emission spectra, fluorescence quantum yield, singlet oxygen quantum yield, and singlet state life time in three different solvents: phosphate buffer saline (PBS), ethanol, and ethylacetate. Compared to the porphyrin in PBS, CGlc4 has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield; whereas IGlc4 has broad Q bands and a 12-fold increase in fluorescence quantum yield. Since IGlc4 CGlc4 very slowly bleach, these properties may enable their use as fluorescent tags to track biological processes. BGlc4 has a similar fluorescence quantum yield to PGlc4, (<10%), but the lowest energy absorption/emission peaks of BGlc4 are considerably red shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. (Abstract shortened by UMI.)
Calculation of K-shell fluorescence yields for low-Z elements
NASA Astrophysics Data System (ADS)
Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.
2015-03-01
The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans.
Vargas-Blanco, Diego; Lynn, Aung; Rosch, Jonah; Noreldin, Rony; Salerni, Anthony; Lambert, Christopher; Rao, Reeta P
2017-05-19
Hospital acquired fungal infections are defined as "never events"-medical errors that should never have happened. Systemic Candida albicans infections results in 30-50% mortality rates. Typically, adhesion to abiotic medical devices and implants initiates such infections. Efficient adhesion initiates formation of aggressive biofilms that are difficult to treat. Therefore, inhibitors of adhesion are important for drug development and likely to have a broad spectrum efficacy against many fungal pathogens. In this study we further the development of a small molecule, Filastatin, capable of preventing C. albicans adhesion. We explored the potential of Filastatin as a pre-therapeutic coating of a diverse range of biomaterials. Filastatin was applied on various biomaterials, specifically bioactive glass (cochlear implants, subcutaneous drug delivery devices and prosthetics); silicone (catheters and other implanted devices) and dental resin (dentures and dental implants). Adhesion to biomaterials was evaluated by direct visualization of wild type C. albicans or a non-adherent mutant edt1 -/- that were stained or fluorescently tagged. Strains grown overnight at 30 °C were harvested, allowed to attach to surfaces for 4 h and washed prior to visualization. The adhesion force of C. albicans cells attached to surfaces treated with Filastatin was measured using Atomic Force Microscopy. Effectiveness of Filastatin was also demonstrated under dynamic conditions using a flow cell bioreactor. The effect of Filastatin under microfluidic flow conditions was quantified using electrochemical impedance spectroscopy. Experiments were typically performed in triplicate. Treatment with Filastatin significantly inhibited the ability of C. albicans to adhere to bioactive glass (by 99.06%), silicone (by 77.27%), and dental resin (by 60.43%). Atomic force microcopy indicated that treatment with Filastatin decreased the adhesion force of C. albicans from 0.23 to 0.017 nN. Electrochemical Impedance Spectroscopy in a microfluidic device that mimic physiological flow conditions in vivo showed lower impedance for C. albicans when treated with Filastatin as compared to untreated control cells, suggesting decreased attachment. The anti-adhesive properties were maintained when Filastatin was included in the preparation of silicone materials. We demonstrate that Filastatin treated medical devices prevented adhesion of Candida, thereby reducing nosocomial infections.
Microwave-induced formation of oligomeric amyloid aggregates.
Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung
2018-08-24
Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.
Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang
2006-01-01
Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.
Ohuchi, Shoji J; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan
2015-10-23
RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique. Copyright © 2015 Elsevier Inc. All rights reserved.
Optical properties of silicon nanocrystals synthesized in supercritical fluids
NASA Astrophysics Data System (ADS)
Pell, Lindsay; Korgel, Brian A.
2002-11-01
We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.
Monitoring single protease activities on triple-helical collagen molecules
NASA Astrophysics Data System (ADS)
Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki
Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.
Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.
Gustafsson, Simon; Mihranyan, Albert
2016-06-08
The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.
Optical characterization of porous silicon microcavities for glucose oxidase biosensing
NASA Astrophysics Data System (ADS)
Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.
2008-04-01
PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Rebollar, Esther; Pérez, Susana; Hernández, Margarita; Domingo, Concepción; Martín, Margarita; Ezquerra, Tiberio A; García-Ruiz, Josefa P; Castillejo, Marta
2014-09-07
This work reports on the formation of different types of structures on the surface of polymer films upon UV laser irradiation. Poly(ethylene terephthalate) was irradiated with nanosecond UV pulses at 193 and 266 nm. The polarization of the laser beam and the irradiation angle of incidence were varied, giving rise to laser induced surface structures with different shapes and periodicities. The irradiated surfaces were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via micro-Raman and fluorescence spectroscopies. Contact angle measurements were performed with different liquids, and the results evaluated in terms of surface free energy components. Finally, in order to test the influence of surface properties for a potential application, the modified surfaces were used for mesenchymal stem cell culture assays and the effect of nanostructure and surface chemistry on cell adhesion was evaluated.
Cell adhesion on nanotextured slippery superhydrophobic substrates.
Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto
2011-04-19
In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society
Fabrication and optical characterization of imaging fiber-based nanoarrays.
Tam, Jenny M; Song, Linan; Walt, David R
2005-09-15
In this paper, we present a technique for fabricating arrays containing a density at least 90 times higher than previously published. Specifically, we discuss the fabrication of two imaging fiber-based nanoarrays, one with 700nm features, another with 300nm features. With arrays containing up to 4.5x10(6) array elements/mm(2), these nanoarrays have an ultra-high packing density. A straightforward etching protocol is used to create nanowells into which beads can be deposited. These beads comprise the sensing elements of the nanoarray. Deposition of the nanobeads into the nanowells using two techniques is described. The surface characteristics of the etched arrays are examined with atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was used to observe the arrays. The 300nm array features and the 500nm center-to-center distance approach the minimum feature sizes viewable using conventional light microscopy.
Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S
2004-01-01
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.
Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.
Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae
2013-11-26
Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.
A new incorporation mechanism for trivalent actinides into bioapatite: a TRLFS and EXAFS study.
Holliday, Kiel; Handley-Sidhu, Stephanie; Dardenne, Kathy; Renshaw, Joanna; Macaskie, Lynne; Walther, Clemens; Stumpf, Thorsten
2012-02-28
One of the most toxic byproducts of nuclear power and weapons production is the transuranics, which have a high radiotoxicity and long biological half-life due to their tendency to accumulate in the skeletal system. This accumulation is inhomogeneous and has been associated with the chemical properties and structure of the bone material rather than its location or function. This suggests a chemical driving force to incorporation and requires an atomic scale mechanistic understanding of the incorporation process. Here we propose a new incorporation mechanism for trivalent actinides and lanthanides into synthetic and biologically produced hydroxyapatite. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure have been used to demonstrate that trivalent actinides and lanthanides incorporate into the amorphous grain boundaries of apatite. This incorporation site can be used to explain patterns in uptake and distribution of radionuclides in the mammalian skeletal system. © 2012 American Chemical Society
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T
2009-04-07
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.
2009-01-01
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-06-15
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.
Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules
NASA Astrophysics Data System (ADS)
Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.
2007-03-01
Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.
2014-01-20
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi
RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. Themore » results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.« less
Vasanth, Karunamoorthy; Ilango, Kaliappan; MohanKumar, Ramasamy; Agrawal, Aruna; Dubey, Govind Prasad
2014-05-01
Silver nanomaterial plays a crucial role in the growing field of nanotechnology as there is an increasing commercial demand for silver nanoparticles (AgNPs) owing to their wide biological applications. The present investigation aims at developing anti-cancerous colloidal silver using Moringa olifera stem bark extract. Electron and atomic force microscopic images were taken to analyze the surface morphology of the synthesized AgNPs. The effects of synthesized AgNPs were tested against human cervical carcinoma cells (HeLa) and cell morphology was further evaluated using 4,6-diamidino-2-phenylindole (DAPI) staining. The efficiency of green synthesized AgNPs was studied with the help of fluorescence activated cell sorting (FACS) and was shown to induce apoptosis through reactive oxygen species (ROS) generation in HeLa cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O
2016-01-01
Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943
Protocols for self-assembly and imaging of DNA nanostructures.
Sobey, Thomas L; Simmel, Friedrich C
2011-01-01
Programed molecular structures allow us to research and make use of physical, chemical, and biological effects at the nanoscale. They are an example of the "bottom-up" approach to nanotechnology, with structures forming through self-assembly. DNA is a particularly useful molecule for this purpose, and some of its advantages include parallel (as opposed to serial) assembly, naturally occurring "tools," such as enzymes and proteins for making modifications and attachments, and structural dependence on base sequence. This allows us to develop one, two, and three dimensional structures that are interesting for their fundamental physical and chemical behavior, and for potential applications such as biosensors, medical diagnostics, molecular electronics, and efficient light-harvesting systems. We describe five techniques that allow one to assemble and image such structures: concentration measurement by ultraviolet absorption, titration gel electrophoresis, thermal annealing, fluorescence microscopy, and atomic force microscopy in fluids.
Tracking the Growth Transitions of A Solvent-Charged Model Globular Protein
NASA Astrophysics Data System (ADS)
Babcock, Jeremiah; Friday, Jacob; Brancaleon, Lorenzo
2011-03-01
Biophysical studies have shown that solutes like proteins undergo aggregation through specific pathways that often lead to long polymeric structures called fibrils. The knowledge of the size of early-stage protein aggregates (oligomers) has an important bearing on the elucidation of the dynamics of the process of protein unit combinations. In this study, bovine serum albumin, a well-characterized model protein known to polymerize in alkaline and acidic conditions in the normal (N) to basic (B) or (N) to (E) transition, was incubated at pH 9.0 and pH 3.1 for longer than eight days. Particle growth in solution was monitored by absorption, fluorescence and circular dichroism spectroscopy and concurrently measured by atomic force microscopy (AFM) methods to yield BSA oligomer size distributions. Results show that the BSA aggregation pathway is concentration-dependent and rapidly forms spherical aggregates, which preferentially come together to form flexible polymers.
Rheology of heterotypic collagen networks.
Piechocka, Izabela K; van Oosten, Anne S G; Breuls, Roel G M; Koenderink, Gijsje H
2011-07-11
Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-07-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-01-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.
2013-01-01
This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.
NASA Astrophysics Data System (ADS)
Hecht, C.; Kronemayer, H.; Dreier, T.; Wiggers, H.; Schulz, C.
2009-01-01
The iron-atom concentration distribution as well as the gas-phase temperature was measured via laser-induced fluorescence (LIF) during iron-oxide nanoparticle synthesis in a low-pressure hydrogen/oxygen/argon flame reactor using ironpentacarbonyl (Fe(CO)5) as precursor. Temperature measurements based on multi-line NO-LIF imaging are used to correct for temperature-dependent ground-state populations. The concentration measurement is calibrated based on line-of-sight absorption measurements. The influence of the precursor on the flame is observed at precursor concentrations larger than 70 ppm as the flame front moves closer to the burner surface with increasing Fe(CO)5 concentration.
2016-01-01
We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642
Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse
NASA Astrophysics Data System (ADS)
Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang
2017-09-01
Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
The Origin of Fluorescence from Graphene Oxide
Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G.
2012-01-01
Time-resolved fluorescence measurements of graphene oxide in water show multiexponential decay kinetics ranging from 1 ps to 2 ns. Electron-hole recombination from the bottom of the conduction band and nearby localized states to wide-range valance band is suggested as origin of the fluorescence. Excitation wavelength dependence of the fluorescence was caused by relative intensity changes of few emission species. By introducing the molecular orbital concept, the dominant fluorescence was found to originate from the electronic transitions among/between the non-oxidized carbon regions and the boundary of oxidized carbon atom regions, where all three kinds of functionalized groups C-O, C = O and O = C-OH were participating. In the visible spectral range, the ultrafast fluorescence of graphene oxide was observed for the first time. PMID:23145316
NASA Astrophysics Data System (ADS)
Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng
2015-03-01
A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.
Prokhorov, Valery V; Pozin, Sergey I; Perelygina, Olga M; Mal'tsev, Eugene I
2018-04-24
The molecular orientation in monolayer J-aggregates of 3,3-di(γ-sulfopropyl)-5,5-dichlorotiamonomethinecyanine dye has been precisely estimated using improved linear polarization measurements in the fluorescence microscope in which a multiangle set of polarization data is obtained using sample rotation. The estimated molecular orientation supplemented with the previously established crystallographic constraints based on the analysis of the well-developed two-dimensional J-aggregate shapes unambiguously indicate the staircase type of molecular arrangement for striplike J-aggregates with the staircases oriented along strips. The molecular transition dipoles are inclined at an angle of ∼25° to the strip direction, whereas the characteristic strip vertex angle ∼45° is formed by the [100] and [1-10] directions of the monoclinic unit cell. Measurements of the geometry of partially unwound tubes and their polarization properties support the model of tube formation by close-packed helical winding of flexible monolayer strips. In the tubes, the long molecular axes are oriented at a small angle in the range of 5-15° to the normal to the tube axis providing low bending energy. At a nanoscale, high-resolution atomic force microscopy imaging of J-aggregate monolayers reveals a complex quasi-one-dimensional organization.
A single molecule study of cellulase hydrolysis of crystalline cellulose
NASA Astrophysics Data System (ADS)
Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You
2010-02-01
Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.
Malucelli, Emil; Procopio, Alessandra; Fratini, Michela; Gianoncelli, Alessandra; Notargiacomo, Andrea; Merolle, Lucia; Sargenti, Azzurra; Castiglioni, Sara; Cappadone, Concettina; Farruggia, Giovanna; Lombardo, Marco; Lagomarsino, Stefano; Maier, Jeanette A; Iotti, Stefano
2018-01-01
The quantification of elemental concentration in cells is usually performed by analytical assays on large populations missing peculiar but important rare cells. The present article aims at comparing the elemental quantification in single cells and cell population in three different cell types using a new approach for single cells elemental analysis performed at sub-micrometer scale combining X-ray fluorescence microscopy and atomic force microscopy. The attention is focused on the light element Mg, exploiting the opportunity to compare the single cell quantification to the cell population analysis carried out by a highly Mg-selective fluorescent chemosensor. The results show that the single cell analysis reveals the same Mg differences found in large population of the different cell strains studied. However, in one of the cell strains, single cell analysis reveals two cells with an exceptionally high intracellular Mg content compared with the other cells of the same strain. The single cell analysis allows mapping Mg and other light elements in whole cells at sub-micrometer scale. A detailed intensity correlation analysis on the two cells with the highest Mg content reveals that Mg subcellular localization correlates with oxygen in a different fashion with respect the other sister cells of the same strain. Graphical abstract Single cells or large population analysis this is the question!
Kaufmann, M; Hupfer, M L; Sachse, T; Herrmann-Westendorf, F; Weiß, D; Dietzek, B; Beckert, R; Presselt, M
2018-04-30
Supramolecular structures determine properties of optoelectronically active materials and can be tailored via the Langmuir-Blodgett (LB) technique. Interactions between dyes can cause high crystallinities of Langmuir monolayers, thus rendering retaining their integrity during the LB-deposition challenging. However, increasing degrees of freedom exclusively at the polar anchoring moieties of dyes might improve processability without perturbing the dye's optoelectronic properties nor the function-determining crystallinity of the layer. (Amphiphilic) thiazole dyes without, with a mono-polar, and with a double-polar anchor were synthesized, whereas the two constituting polar moieties of the latter derivate are separated by a flexible alkyl chain. The supramolecular structures and crystallinities of Langmuir and LB monolayers were characterized by means of LB isotherms, atomic force microscopy and polarization-resolved fluorescence spectroscopy. As compared to the mono-polar reference the introduction of a flexible double-polar head did not deteriorate UV-vis absorption, emission or electrochemical properties of the thiazole but significantly extended the range of constant compressibility modulus, thus indicating improved processability of the Langmuir monolayers. Indeed, AFM studies revealed that the integrity of the monolayers could be retained during LB-deposition. Additionally, also the underlying supramolecular structure of the chromophore moieties is largely identical to those obtained from the mono-polar reference thiazoles. Copyright © 2018. Published by Elsevier Inc.
Next generation ultrasound platforms for theranostics.
Oddo, Letizia; Cerroni, Barbara; Domenici, Fabio; Bedini, Angelico; Bordi, Federico; Chiessi, Ester; Gerbes, Stefan; Paradossi, Gaio
2017-04-01
Microbubbles are a well-established contrast agent which improves diagnostic ultrasound imaging. During the last decade research has focused on expanding their use to include molecular imaging, targeted therapy and imaging modalities other than ultrasound. However, bioadhesion of targeted microbubbles under physiological flow conditions is still difficult to achieve, the main challenge being connected to the poor stability of lipid microbubbles in the body's circulation system. In this article, we investigate the use of polymeric microbubbles based on a poly (vinyl alcohol) shell as an alternative to lipid microbubbles. In particular, we report on the development of microbubble shell modification, using mild reaction conditions, with the aim of designing a multifunctional platform to enable diagnosis and therapy. Superparamagnetic iron oxide nanoparticles and a near infrared fluorescent probe, indocyanine green, are coupled to the bubbles surface in order to support magnetic resonance and fluorescence imaging. Furthermore, anchoring cyclic arginyl-glycyl-aspartic acid (RGD) peptide, and cyclodextrin molecules, allows targeting and drug loading, respectively. Last but not least, shell topography is provided by atomic force microscopy. These applications and features, together with the high echogenicity of poly (vinyl alcohol) microbubbles, may offer a more stable alternative to lipid microbubbles for the development of a multimodal theranostic platform. Copyright © 2016 Elsevier Inc. All rights reserved.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
NASA Astrophysics Data System (ADS)
Murray, Eamonn; Fahy, Stephen
2014-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.