Sample records for fluorescence based molecular

  1. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles.

    PubMed

    Lu, Hongzhi; Xu, Shoufang

    2017-06-15

    Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    PubMed

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  3. Optical fiber-based fluorescent viscosity sensor

    NASA Astrophysics Data System (ADS)

    Haidekker, Mark A.; Akers, Walter J.; Fischer, Derek; Theodorakis, Emmanuel A.

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  4. Optical fiber-based fluorescent viscosity sensor.

    PubMed

    Haidekker, Mark A; Akers, Walter J; Fischer, Derek; Theodorakis, Emmanuel A

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  5. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  6. Fluorescence- and capillary electrophoresis (CE)-based SSR DNA fingerprinting and a molecular identity database for the Louisiana sugarcane industry

    USDA-ARS?s Scientific Manuscript database

    A database of Louisiana sugarcane molecular identity has been constructed and is being updated annually using FAM or HEX or NED fluorescence- and capillary electrophoresis (CE)-based microsatellite (SSR) fingerprinting information. The fingerprints are PCR-amplified from leaf DNA samples of current ...

  7. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    PubMed

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  8. Conformational Control of Ultrafast Molecular Rotor Property: Tuning Viscosity Sensing Efficiency by Twist Angle Variation.

    PubMed

    Ghosh, Rajib; Kushwaha, Archana; Das, Dipanwita

    2017-09-21

    Fluorescent molecular rotors find widespread application in sensing and imaging of microscopic viscosity in complex chemical and biological media. Development of viscosity-sensitive ultrafast molecular rotor (UMR) relies upon the understanding of the excited-state dynamics and their implications for viscosity-dependent fluorescence signaling. Unraveling the structure-property relationship of UMR behavior is of significance toward development of an ultrasensitive fluorescence microviscosity sensor. Herein we show that the ground-state equilibrium conformation has an important role in the ultrafast twisting dynamics of UMRs and consequent viscosity sensing efficiency. Synthesis, photophysics, and ultrafast spectroscopic experiments in conjunction with quantum chemical calculation of a series of UMRs based on dimethylaniline donor and benzimidazolium acceptor with predefined ground-state torsion angle led us to unravel that the ultrafast torsional dynamics around the bond connecting donor and acceptor groups profoundly influences the molecular rotor efficiency. This is the first experimental demonstration of conformational control of small-molecule-based UMR efficiencies which can have wider implication toward development of fluorescence sensors based on the UMR principle. Conformation-controlled UMR efficiency has been shown to exhibit commensurate fluorescence enhancement upon DNA binding.

  9. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.

    PubMed

    Kim, Sally A; Schwille, Petra

    2003-10-01

    Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.

  10. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.

  11. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  12. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  13. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    PubMed

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Fluoride triggered fluorescence "turn on" sensor for Zn2+ ions based on pentaquinone scaffold that works as a molecular keypad lock.

    PubMed

    Bhalla, Vandana; Roopa; Kumar, Manoj

    2012-06-01

    A pentaquinone based compound 3a has been synthesized which exhibits pronounced fluorescence enhancement in the presence of Zn(2+) ions under a F(-) triggered synergistic effect. Derivative 3a also behaves as a molecular keypad lock with sequential chemical inputs of Zn(2+) and F(-) ions.

  15. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    PubMed

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  16. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  17. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances

    PubMed Central

    Suzuki, Yoshio; Yokoyama, Kenji

    2015-01-01

    This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660

  18. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baoqiang; Berti, Romain; Abran, Maxime

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less

  19. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    PubMed

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Iterative Correction Scheme Based on Discrete Cosine Transform and L1 Regularization for Fluorescence Molecular Tomography With Background Fluorescence.

    PubMed

    Zhang, Jiulou; Shi, Junwei; Guang, Huizhi; Zuo, Simin; Liu, Fei; Bai, Jing; Luo, Jianwen

    2016-06-01

    High-intensity background fluorescence is generally encountered in fluorescence molecular tomography (FMT), because of the accumulation of fluorescent probes in nontarget tissues or the existence of autofluorescence in biological tissues. The reconstruction results are affected or even distorted by the background fluorescence, especially when the distribution of fluorescent targets is relatively sparse. The purpose of this paper is to reduce the negative effect of background fluorescence on FMT reconstruction. After each iteration of the Tikhonov regularization algorithm, 3-D discrete cosine transform is adopted to filter the intermediate results. And then, a sparsity constraint step based on L1 regularization is applied to restrain the energy of the objective function. Phantom experiments with different fluorescence intensities of homogeneous and heterogeneous background are carried out to validate the performance of the proposed scheme. The results show that the reconstruction quality can be improved with the proposed iterative correction scheme. The influence of background fluorescence in FMT can be reduced effectively because of the filtering of the intermediate results, the detail preservation, and noise suppression of L1 regularization.

  1. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  2. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  3. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.

    PubMed

    Park, Yoojin; Nim-Anussornkul, Duangrat; Vilaivan, Tirayut; Morii, Takashi; Kim, Byeang Hyean

    2018-01-15

    We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optical/MRI Multimodality Molecular Imaging

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Smith, Charles; Yu, Ping

    2007-03-01

    Multimodality molecular imaging that combines anatomical and functional information has shown promise in development of tumor-targeted pharmaceuticals for cancer detection or therapy. We present a new multimodality imaging technique that combines fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) for in vivo molecular imaging of preclinical tumor models. Unlike other optical/MRI systems, the new molecular imaging system uses parallel phase acquisition based on heterodyne principle. The system has a higher accuracy of phase measurements, reduced noise bandwidth, and an efficient modulation of the fluorescence diffuse density waves. Fluorescent Bombesin probes were developed for targeting breast cancer cells and prostate cancer cells. Tissue phantom and small animal experiments were performed for calibration of the imaging system and validation of the targeting probes.

  5. Enhancing in vivo tumor boundary delineation with structured illumination fluorescence molecular imaging and spatial gradient mapping

    NASA Astrophysics Data System (ADS)

    Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.

    2016-08-01

    Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.

  6. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    PubMed

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  8. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    PubMed

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  9. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  10. Directed molecular evolution to design advanced red fluorescent proteins.

    PubMed

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2011-11-29

    Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.

  11. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study.

    PubMed

    Yi, Huangjian; Chen, Duofang; Li, Wei; Zhu, Shouping; Wang, Xiaorui; Liang, Jimin; Tian, Jie

    2013-05-01

    Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the inverse problem. In past years, various regularization methods have been employed for fluorescence target reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluorescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detection of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs better for the reconstruction of the distribution of fluorescent substance.

  12. Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.

    PubMed

    Xie, Zhiwei; Kim, Jimin P; Cai, Qing; Zhang, Yi; Guo, Jinshan; Dhami, Ranjodh S; Li, Li; Kong, Bin; Su, Yixue; Schug, Kevin A; Yang, Jian

    2017-03-01

    Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Parallel confocal detection of single biomolecules using diffractive optics and integrated detector units.

    PubMed

    Blom, H; Gösch, M

    2004-04-01

    The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.

  14. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  15. Fluorescent nanoparticles based on AIE fluorogens for bioimaging.

    PubMed

    Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing

    2016-02-07

    Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.

  16. BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity.

    PubMed

    Dorh, Nethaniah; Zhu, Shilei; Dhungana, Kamal B; Pati, Ranjit; Luo, Fen-Tair; Liu, Haiying; Tiwari, Ashutosh

    2015-12-18

    Mapping surface hydrophobic interactions in proteins is key to understanding molecular recognition, biological functions, and is central to many protein misfolding diseases. Herein, we report synthesis and application of new BODIPY-based hydrophobic sensors (HPsensors) that are stable and highly fluorescent for pH values ranging from 7.0 to 9.0. Surface hydrophobic measurements of proteins (BSA, apomyoglobin, and myoglobin) by these HPsensors display much stronger signal compared to 8-anilino-1-naphthalene sulfonic acid (ANS), a commonly used hydrophobic probe; HPsensors show a 10- to 60-fold increase in signal strength for the BSA protein with affinity in the nanomolar range. This suggests that these HPsensors can be used as a sensitive indicator of protein surface hydrophobicity. A first principle approach is used to identify the molecular level mechanism for the substantial increase in the fluorescence signal strength. Our results show that conformational change and increased molecular rigidity of the dye due to its hydrophobic interaction with protein lead to fluorescence enhancement.

  17. Molecular Hydrogen Fluorescence in IC 63

    NASA Technical Reports Server (NTRS)

    Andersson, B-G

    2005-01-01

    This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.

  18. Computer Modeling of the Structure and Spectra of Fluorescent Proteins

    PubMed Central

    Grigorenko, B.L.; Savitsky, A.P.

    2009-01-01

    Fluorescent proteins from the family of green fluorescent proteins are intensively used as biomarkers in living systems. The chromophore group based on the hydroxybenzylidene-imidazoline molecule, which is formed in nature from three amino-acid residues inside the protein globule and well shielded from external media, is responsible for light absorption and fluorescence. Along with the intense experimental studies of the properties of fluorescent proteins and their chromophores by biochemical, X-ray, and spectroscopic tools, in recent years, computer modeling has been used to characterize their properties and spectra. We present in this review the most interesting results of the molecular modeling of the structural parameters and optical and vibrational spectra of the chromophorecontaining domains of fluorescent proteins by methods of quantum chemistry, molecular dynamics, and combined quantum-mechanical-molecular-mechanical approaches. The main emphasis is on the correlation of theoretical and experimental data and on the predictive power of modeling, which may be useful for creating new, efficient biomarkers. PMID:22649601

  19. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  20. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    NASA Astrophysics Data System (ADS)

    Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille

    2016-03-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.

  1. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    PubMed

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  2. A novel cyanide-selective colorimetric and fluorescent chemosensor: first molecular security keypad lock based on phosphotungstic acid and CN- inputs.

    PubMed

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2014-02-15

    Rhodamine B (RhB) an available dye has been developed as novel and efficient colorimetric and fluorometric chemosensor for cyanide ions in an absolutely aqueous media. The UV-vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. RhB could act as an efficient "ON-OFF" fluorescent response for phosphotungstic acid (H3PW12O40 or PTA) based on an ion associate process. Also (RhB(+))3 · PTA(3-) could operate as an "OFF-ON" fluorescent sensor for cyanide anions based on a ligand substitution process. It has been identified as highly sensitive probe for CN(-) which responds at 0.3 and 0.04 μmol L(-1) concentration levels by absorption and fluorescent method respectively. Depending upon the sequence of addition of PTA and CN(-) ions into the solution, RhB could be as a molecular security keypad lock with PTA and CN(-) inputs. The ionic inputs to new fluorophore have been mimicked as a superimposed electronic molecular keypad lock. The results were compared successfully (>96%) with the data of a spectrophotometry approved method (EPA 9014-1) for cyanide ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

    NASA Astrophysics Data System (ADS)

    Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.

    2014-11-01

    Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

  4. Fluorescence polarization immunoassays for rapid, accurate and sensitive determination of mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Fluorescence polarization immunoassay (FPIA) is a type of homogeneous assay. For low molecular weight antigens, such as mycotoxins, it is based on the competition between an unlabeled antigen and its fluorescent-labeled derivative (tracer) for an antigen-specific antibody. The antigen content is det...

  5. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling

    NASA Astrophysics Data System (ADS)

    Song, Wei; Yu, Zehua; Hu, Xinxin; Liu, Rutao

    2015-02-01

    Studies on the effects of environmental pollutants to protein in vitro has become a global attention. Hydrogen peroxide (H2O2) is used as an effective food preservative and bleacher in industrial production. The toxicity of H2O2 to trypsin was investigated by multiple spectroscopic techniques and the molecular docking method at the molecular level. The intrinsic fluorescence of trypsin was proved to be quenched in a static process based on the results of fluorescence lifetime experiment. Hydrogen bonds interaction and van der Waals forces were the main force to generate the trypsin-H2O2 complex on account of the negative ΔH0 and ΔS0. The binding of H2O2 changed the conformational structures and internal microenvironment of trypsin illustrated by UV-vis absorption, fluorescence, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) results. However, the binding site was far away from the active site of trypsin and the trypsin activity was only slightly affected by H2O2, which was further explained by molecular docking investigations.

  6. Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations.

    PubMed

    Feliks, Mikolaj; Lafaye, Céline; Shu, Xiaokun; Royant, Antoine; Field, Martin

    2016-08-09

    Using X-ray crystallography, continuum electrostatic calculations, and molecular dynamics simulations, we have studied the structure, protonation behavior, and dynamics of the biliverdin chromophore and its molecular environment in a series of genetically engineered infrared fluorescent proteins (IFPs) based on the chromophore-binding domain of the Deinococcus radiodurans bacteriophytochrome. Our study suggests that the experimentally observed enhancement of fluorescent properties results from the improved rigidity and planarity of the biliverdin chromophore, in particular of the first two pyrrole rings neighboring the covalent linkage to the protein. We propose that the increases in the levels of both motion and bending of the chromophore out of planarity favor the decrease in fluorescence. The chromophore-binding pocket in some of the studied proteins, in particular the weakly fluorescent parent protein, is shown to be readily accessible to water molecules from the solvent. These waters entering the chromophore region form hydrogen bond networks that affect the otherwise planar conformation of the first three rings of the chromophore. On the basis of our simulations, the enhancement of fluorescence in IFPs can be achieved either by reducing the mobility of water molecules in the vicinity of the chromophore or by limiting the interactions of the nearby protein residues with the chromophore. Finally, simulations performed at both low and neutral pH values highlight differences in the dynamics of the chromophore and shed light on the mechanism of fluorescence loss at low pH.

  7. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    PubMed

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  8. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  9. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong

    2014-10-01

    Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03837a

  10. Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2014-03-21

    This study presents a single, resettable, and sensitive molecular beacon (MB) used to operate molecular-scale logic gates. The MB consists of a random DNA sequence, a fluorophore at the 5'-end, and a quencher at the 3'-end. The presence of Hg(2+), Ag(+), and coralyne promoted the formation of stable T-Hg(2+)-T, C-Ag(+)-C, and A2-coralyne-A2 coordination in the MB probe, respectively, thereby driving its conformational change. The metal ion or small molecule-mediated coordination of mismatched DNA brought the fluorophore and the quencher into close proximity, resulting in collisional quenching of fluorescence between the two organic dyes. Because thiol can bind Hg(2+) and remove it from the T-Hg(2+)-T-based MB, adding thiol to a solution of the T-Hg(2+)-T-based MB allowed the fluorophore and the quencher to be widely separated. A similar phenomenon was observed when replacing Hg(2+) with Ag(+). Because Ag(+) strongly binds to iodide, cyanide, and cysteine, they were capable of removing Ag(+) from the C-Ag(+)-C-based MB, restoring the fluorescence of the MB. Moreover, the fluorescence of the A2-coralyne-A2-based MB could be switched on by adding polyadenosine. Using these analytes as inputs and the MB as a signal transducer, we successfully developed a series of two-input, three-input, and set-reset logic gates at the molecular level.

  11. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.

  12. The small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield of cosmic ray shower particles

    NASA Astrophysics Data System (ADS)

    Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime

    2016-10-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.

  13. Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes

    PubMed Central

    Mütze, Jörg; Iyer, Vijay; Macklin, John J.; Colonell, Jennifer; Karsh, Bill; Petrášek, Zdeněk; Schwille, Petra; Looger, Loren L.; Lavis, Luke D.; Harris, Timothy D.

    2012-01-01

    Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced—resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation. PMID:22385865

  14. Digital logic circuit based on two component molecular systems of BSA and salen

    NASA Astrophysics Data System (ADS)

    Hai-Bin, Lin; Feng, Chen; Hong-Xu, Guo

    2018-02-01

    A new fluorescent molecular probe 1 was designed and constructed by combining bovine serum albumin (BSA) and N,N‧-bis(salicylidene)ethylenediamine (salen). Stimulated by Zn2 +, tris, or EDTAH2Na2, the distance between BSA and salen was regulated, which was accompanied by an obvious change in the fluorescence intensity at 350 or 445 nm based on Förster resonance energy transfer. Moreover, based on the encoding binary digits in these inputs and outputs applying positive logic conventions, a monomolecular circuit integrating one OR, three NOT, and three YES gates, was successfully achieved.

  15. Ensemble and Single-Molecule Studies on Fluorescence Quenching in Transition Metal Bipyridine-Complexes

    PubMed Central

    Brox, Dominik; Kiel, Alexander; Wörner, Svenja Johanna; Pernpointner, Markus; Comba, Peter; Martin, Bodo; Herten, Dirk-Peter

    2013-01-01

    Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer. PMID:23483966

  16. Protein recognition by a pattern-generating fluorescent molecular probe.

    PubMed

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  17. Protein recognition by a pattern-generating fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  18. A slippery molecular assembly allows water as a self-erasable security marker

    PubMed Central

    Thirumalai, Rajasekaran; Mukhopadhyay, Rahul Dev; Praveen, Vakayil K.; Ajayaghosh, Ayyappanpillai

    2015-01-01

    Protection of currency and valuable documents from counterfeit continues to be a challenge. While there are many embedded security features available for document safety, they are not immune to forgery. Fluorescence is a sensitive property, which responds to external stimuli such as solvent polarity, temperature or mechanical stress, however practical use in security applications is hampered due to several reasons. Therefore, a simple and specific stimuli responsive security feature that is difficult to duplicate is of great demand. Herein we report the design of a fluorescent molecular assembly on which water behaves as a self-erasable security marker for checking the authenticity of documents at point of care. The underlying principle involves the disciplined self-assembly of a tailor-made fluorescent molecule, which initially form a weak blue fluorescence (λem = 425 nm, Φf = 0.13) and changes to cyan emission (λem = 488 nm,Φf = 0.18) in contact with water due to a reversible molecular slipping motion. This simple chemical tool, based on the principles of molecular self-assembly and fluorescence modulation, allows creation of security labels and optically masked barcodes for multiple documents authentication. PMID:25940779

  19. A slippery molecular assembly allows water as a self-erasable security marker.

    PubMed

    Thirumalai, Rajasekaran; Mukhopadhyay, Rahul Dev; Praveen, Vakayil K; Ajayaghosh, Ayyappanpillai

    2015-05-05

    Protection of currency and valuable documents from counterfeit continues to be a challenge. While there are many embedded security features available for document safety, they are not immune to forgery. Fluorescence is a sensitive property, which responds to external stimuli such as solvent polarity, temperature or mechanical stress, however practical use in security applications is hampered due to several reasons. Therefore, a simple and specific stimuli responsive security feature that is difficult to duplicate is of great demand. Herein we report the design of a fluorescent molecular assembly on which water behaves as a self-erasable security marker for checking the authenticity of documents at point of care. The underlying principle involves the disciplined self-assembly of a tailor-made fluorescent molecule, which initially form a weak blue fluorescence (λem = 425 nm, Φf = 0.13) and changes to cyan emission (λem = 488 nm,Φf = 0.18) in contact with water due to a reversible molecular slipping motion. This simple chemical tool, based on the principles of molecular self-assembly and fluorescence modulation, allows creation of security labels and optically masked barcodes for multiple documents authentication.

  20. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  2. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media.

    PubMed

    Xu, Yongqian; Li, Benhao; Li, Weiwei; Zhao, Jie; Sun, Shiguo; Pang, Yi

    2013-05-25

    The first "off-on" and ratiometric fluorescent method based on ICT mechanism for picric acid (PA) recognition in the near infrared region was constructed. Key advantages of the unique molecular architecture can fulfil the ratiometric response to electron-deficient featured PA which inclines to quench fluorescence of all reported sensors for PA.

  3. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  4. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe.

    PubMed

    Lee, Hyeran; Akers, Walter J; Cheney, Philip P; Edwards, W Barry; Liang, Kexian; Culver, Joseph P; Achilefu, Samuel

    2009-01-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with (64)Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters k(cat) and K(M) of 0.55+/-0.01 s(-1) and 1.12+/-0.06 microM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled (64)Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  5. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    NASA Astrophysics Data System (ADS)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  6. A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.

    PubMed

    Wunderlich, Kirsten A; Wolfrum, Uwe

    2016-01-01

    The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.

  7. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    NASA Astrophysics Data System (ADS)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  8. Triazole-based Zn²⁺-specific molecular marker for fluorescence bioimaging.

    PubMed

    Sinha, Sougata; Mukherjee, Trinetra; Mathew, Jomon; Mukhopadhyay, Subhra K; Ghosh, Subrata

    2014-04-25

    Fluorescence bioimaging potential, both in vitro and in vivo, of a yellow emissive triazole-based molecular marker has been investigated and demonstrated. Three different kinds of cells, viz Bacillus thuringiensis, Candida albicans, and Techoma stans pollen grains were used to investigate the intracellular zinc imaging potential of 1 (in vitro studies). Fluorescence imaging of translocation of zinc through the stem of small herb, Peperomia pellucida, having transparent stem proved in vivo bioimaging capability of 1. This approach will enable in screening cell permeability and biostability of a newly developed probe. Similarly, the current method for detection and localization of zinc in Gram seed sprouts could be an easy and potential alternative of the existing analytical methods to investigate the efficiency of various strategies applied for increasing zinc-content in cereal crops. The probe-zinc ensemble has efficiently been applied for detecting phosphate-based biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dendrimer probes for enhanced photostability and localization in fluorescence imaging.

    PubMed

    Kim, Younghoon; Kim, Sung Hoon; Tanyeri, Melikhan; Katzenellenbogen, John A; Schroeder, Charles M

    2013-04-02

    Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Fluorescence enhancement of fluorescent unnatural streptavidin by binding of a biotin analogue with spacer tail and its application to biotin sensing.

    PubMed

    Zhu, Xianwei; Shinohara, Hiroaki

    2014-01-01

    We designed a novel molecular biosensing system for the detection of biotin, an important vitamin by the combination of fluorescent unnatural streptavidin with a commercialized biotin-(AC5)2-hydrazide. A fluorescent unnatural amino acid, BODIPY-FL-aminophenylalanine (BFLAF), was position-specifically incorporated into Trp120 of streptavidin by four-base codon method. Fluorescence of the Trp120BFLAF mutant streptavidin was enhanced by the addition of biotin-(AC5)2-hydrazide with the concentration dependent, whereas fluorescence enhancement was not observed at all by the addition of natural biotin. It was considered that the spacer tail of biotin-(AC5)2-hydrazide may disturb the fluorescence quenching of the Trp120BFLAF by Trp79 and Trp108 of the neighbor subunit. Therefore, biotin sensing was carried out by the competitive binding reaction of biotin-(AC5)2-hydrazide and natural biotin to the fluorescent mutant streptavidin. The fluorescence intensity decreased by increasing free biotin concentration. The result suggested that molecular biosensor for small ligand could be successfully designed by the pair of fluorescent mutant binding protein and ligand analogue.

  11. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    PubMed Central

    Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.

    2015-01-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  12. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  13. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  14. A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell.

    PubMed

    Ma, Junbao; Li, Wenqi; Li, Juanjuan; Shi, Rongguang; Yin, Gui; Wang, Ruiyong

    2018-05-15

    A novel pH-dependent two-photon fluorescent molecular probe ABMP has been prepared based on the fluorophore of 2, 4, 6-trisubstituted pyridine. The probe has an absorption wavelength at 354 nm and corresponding emission wavelength at 475 nm with the working pH range from 2.20 to 7.00, especially owning a good liner response from pH = 2.40 to pH = 4.00. ABMP also has excellent reversibility, photostability and selectivity which promotes its ability in analytical application. The probe can be excited with a two-photon fluorescence microscopy and the fluorescence cell imaging indicated that the probe can distinguish Hela cancer cells out of normal cells with a two-photon fluorescence microscopy which suggested its potential application in tumor cell detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Chemodosimeter-based fluorescent detection of L-cysteine after extracted by molecularly imprinted polymers.

    PubMed

    Cai, Xiaoqiang; Li, Jinhua; Zhang, Zhong; Wang, Gang; Song, Xingliang; You, Jinmao; Chen, Lingxin

    2014-03-01

    A chemodosimeter-based fluorescent detection method coupled with molecularly imprinted polymers (MIPs) extraction was developed for determination of L-cysteine (L-Cys) by combining molecular imprinting technique with fluorescent chemodosimeter. The MIPs prepared by precipitation polymerization with L-Cys as template, possessed high specific surface area of 145 m(2)/g and good thermal stability without decomposition lower than 300 °C, and were successfully applied as an adsorbent with excellent selectivity for L-Cys over other amino acids, and enantioselectivity was also demonstrated. A novel chemodosimeter, rhodamine B1, was synthesized for discriminating L-Cys from its structurally similar homocysteine and glutathione as well as various possibly co-existing biospecies in aqueous solutions with notable fluorescence enhancement when adding L-Cys. As L-Cys was added with increasing concentrations, an emission band peaked at 580 nm occurred and significantly increased in fluorescence intensity, by which the L-Cys could be sensed optically. High detectability up to 12.5 nM was obtained. An excellent linearity was found within the wide range of 0.05-50 μM (r=0.9996), and reasonable relative standard deviations ranging from 0.3% to 3.5% were attained. Such typical features as high selectivity, high sensitivity, easy operation and low cost enabled this MIPs-fluorometry to be potentially applicable for routine detection of trace L-Cys. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  17. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  18. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The wavelength interval between adjacent pixels (and, thus, the spectral resolution) would typically be chosen by design to be approximately equal to the width of the total fluorescence wavelength range of interest divided by the number of pixels. The unitary structure comprising the photodetector array overlaid with the matching filter array would be denoted a hyperspectral mosaic detector (HMD) array.

  19. A study of MRI-guided diffuse fluorescence molecular tomography for monitoring PDT effects in pancreas cancer

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.

  20. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.

    PubMed

    Shi, Yi-Jun; Chen, Ying-Jung; Hu, Wan-Ping; Chang, Long-Sen

    2017-01-07

    This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5'- and 3'-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A₂-coralyne-A₂ coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.

  2. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    PubMed Central

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the intracellular distribution. In vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) of the hybrid peptide were shown to be similar. Assessment of tracer distribution in excised tissues revealed the location of tracer uptake with both LA-ICP-MS-imaging and fluorescence imaging. Conclusion: Lanthanide-isotope chelation expands the scope of fluorescent/radioactive hybrid tracers to include MS-based analytical tools such as mass-cytometry, ICP-MS and LA-ICP-MS imaging in molecular pathology. In contradiction to common expectations, MS detection using a single chelate imaging agent was shown to be feasible, enabling a direct link between nuclear medicine-based imaging and theranostic methods. PMID:28255355

  3. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li

    2012-01-01

    Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.

  4. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Synthesis and evaluation of new NIR-fluorescent probes for cathepsin B: ICT versus FRET as a turn-ON mode-of-action.

    PubMed

    Kisin-Finfer, Einat; Ferber, Shiran; Blau, Rachel; Satchi-Fainaro, Ronit; Shabat, Doron

    2014-06-01

    Recent years have seen tremendous progress in the design and study of molecular imaging geared towards biological and biomedical applications. The expression or activity of specific enzymes including proteases can be monitored by cutting edge molecular imaging techniques. Cathepsin B plays key roles in tumor progression via controlled degradation of extracellular matrix. Consequently, this protease has been attracting significant attention in cancer research, and many imaging probes targeting its activity have been developed. Here, we describe the design, synthesis and evaluation of two novel near infrared (NIR) fluorescent probes for detection of cathepsin B activity with different turn-ON mechanisms. One probe is based on an ICT activation mechanism of a donor-two-acceptor π-electron dye system, while the other is based on the FRET mechanism obtained by a fluorescent dye and a quencher. The two probes exhibit significant fluorescent turn-ON response upon cleavage by cathepsin B. The NIR fluorescence of the ICT probe in its OFF state was significantly lower than that of the FRET-based probe. This effect results in a higher signal-to-noise ratio and consequently increased sensitivity and better image contrast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Takahiro, E-mail: t-nishimura@ist.osaka-u.ac.jp; Fujii, Ryo; Ogura, Yusuke

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on themore » DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.« less

  7. Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Piletsky, Sergey A.; Karim, Kal; Gascoine, Paul; Lacey, Richard; Sun, Tong; Grattan, Kenneth T. V.

    2014-05-01

    Previously, we have developed chemical sensors using fibre optic-based techniques for the detection of Cocaine, utilising molecularly imprinted polymers (MIPs) containing fluorescein moieties as the signalling groups. Here, we report the computational design of a fluorophore which was incorporated into a MIP for the generation of a novel sensor that offers improved sensitivity for Cocaine with a detection range of 1-100μM. High selectivity for Cocaine over a suite of known Cocaine interferants (25μM) was also demonstrated by measuring changes in the intensity of fluorescence signals received from the sensor.

  8. A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes.

    PubMed

    Han, Dan; Wei, Chunying

    2018-05-01

    In this work, we develop a fluorescent molecular beacon based on the DNA-templated silver nanoclusters (DNA-Ag NCs). The skillfully designed molecular beacon can be conveniently used for detection of diverse virulence genes as long as the corresponding recognition sequences are embedded. Importantly, the constructed detection system allows simultaneous detection of multiple nucleic acids, which is attributed to non-overlapping emission spectra of the as-synthesized silver nanoclusters. Based on the target-induced fluorescence enhancement, three infectious disease-related genes HIV, H1N1, and H5N1 are detected, and the corresponding detection limits are 3.53, 0.12 and 3.95nM, respectively. This design allows specific, versatile and simultaneous detection of diverse targets with easy operation and low cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    PubMed

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  10. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-02-01

    A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.

  11. Recent Progress in Fluorescent Imaging Probes

    PubMed Central

    Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  12. Recent Progress in Fluorescent Imaging Probes.

    PubMed

    Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung

    2015-09-22

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP).

  13. Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine.

    PubMed

    Chantada-Vázquez, María Pilar; Sánchez-González, Juan; Peña-Vázquez, Elena; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-03-01

    A new molecularly imprinted polymer (MIP)-based fluorescent artificial receptor has been prepared by anchoring a selective MIP for cocaine (COC) on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). The prepared material combines the high selectivity attributed to MIPs and the sensitive fluorescent property of the Mn-doped ZnS QDs. Simple and low cost methods have therefore been optimized for assessing cocaine abuse in urine by monitoring the fluorescence quenching when the template (COC) and also metabolites from COC [benzoylecgonine (BZE) and ecgonine methyl ester (EME)] are present. Fluorescence quenching was not observed when performing experiments with other drugs of abuse (and their metabolites) or when using nonimprinted polymer (NIP)-coated QDs. Under optimized operating conditions (1.5 mL of 200 mg L(-1) MIP-coated QDs solution, pH 5.5, and 15 min before fluorescence scanning) two analytical methods were developed/validated. One of the procedures (direct method) consisted of urine sample 1:20 dilution before fluorescence measurements. The method has been found to be fast, precise, and accurate, but the standard addition technique for performing the analysis was required because of the existence of matrix effect. The second procedure performed a solid phase extraction (SPE) first, avoiding matrix effect and allowing external calibration. The limits of detection of the methods were 0.076 mg L(-1) (direct method) and 0.0042 mg L(-1) (SPE based method), which are lower than the cutoff values for confirmative conclusions regarding cocaine abuse.

  14. Identifying potential selective fluorescent probes for cancer-associated protein carbonic anhydrase IX using a computational approach.

    PubMed

    Kamstra, Rhiannon L; Floriano, Wely B

    2014-11-01

    Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Molecular Imaging for Breast Cancer Using Magnetic Resonance-Guided Positron Emission Mammography and Excitation-Resolved Near-Infrared Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu

    The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.

  16. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  17. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  18. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement.

    PubMed

    Zhou, Weijun; Dong, Shaojun

    2017-11-14

    Herein, we report a new fluorescence regulation mechanism of DNA-templated AgNCs caused by coiled DNA. Based on these phenomena, a novel dual fluorescent AgNC-MB with exponential signal enhancement and remarkably low background was developed. The AgNC-MB could effectively facilitate template design and avoid the disturbance caused by undesirable hybridization.

  19. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  3. A reversible metal ion fueled DNA three-way junction molecular device for "turn-on and -off" fluorescence detection of mercury ions (II) and biothiols respectively with high selectivity and sensitivity.

    PubMed

    Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo

    2015-11-21

    We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg(2+) binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel "turn-on and -off" fluorescent sensor for Hg(2+) and biothiol detection with high selectivity and sensitivity.

  4. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    PubMed Central

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  5. Laser-induced fluorescence method for on-line molecular isotopologues of iodine-127, iodine-129, iodine-131 detected in gaseous media using a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.; Sobolevsky, I. V.

    2016-06-01

    The letter reports on the development of a laser-induced fluorescence method for on-line selective measurement of 127I2, 129I2, 131I2, 129I127I, 127I131I, 129I131I isotopologue concentrations in gaseous media. The method is based on the excitation of molecular iodine isotopologues’ fluorescence by tunable diode laser (632-637 nm) radiation at three or four wavelengths corresponding to the 127I2, 131I2, 129I127I, 129I131I absorption line centers. Boundary relations for concentrations of simultaneously measured iodine isotopologues is about 10-5-10-6.

  6. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer.

    PubMed

    Mehrzad-Samarin, Mina; Faridbod, Farnoush; Dezfuli, Amin Shiralizadeh; Ganjali, Mohammad Reza

    2017-06-15

    A novel optical nanosensor for detection of Metronidazole in biological samples was reported. Graphene quantum dots embedded silica molecular imprinted polymer (GQDs-embedded SMIP) was synthesized and used as a selective fluorescent probe for Metronidazole detection. The new synthesized GQDs-embedded SMIP showed strong fluorescent emission at 450nm excited at 365nm which quenched in presence of Metronidazole as a template molecule.. The quenching was proportional to the concentration of Metronidazole in a linear range of at least 0.2μM to 15μM. The limit of detection for metronidazole determination was obtained 0.15μM. The nanosensor successfully worked in plasma matrixes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  8. Joint L1 and Total Variation Regularization for Fluorescence Molecular Tomography

    PubMed Central

    Dutta, Joyita; Ahn, Sangtae; Li, Changqing; Cherry, Simon R.; Leahy, Richard M.

    2012-01-01

    Fluorescence molecular tomography (FMT) is an imaging modality that exploits the specificity of fluorescent biomarkers to enable 3D visualization of molecular targets and pathways in vivo in small animals. Owing to the high degree of absorption and scattering of light through tissue, the FMT inverse problem is inherently illconditioned making image reconstruction highly susceptible to the effects of noise and numerical errors. Appropriate priors or penalties are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, fluorescent probes are locally concentrated within specific areas of interest (e.g., inside tumors). The commonly used L2 norm penalty generates the minimum energy solution, which tends to be spread out in space. Instead, we present here an approach involving a combination of the L1 and total variation norm penalties, the former to suppress spurious background signals and enforce sparsity and the latter to preserve local smoothness and piecewise constancy in the reconstructed images. We have developed a surrogate-based optimization method for minimizing the joint penalties. The method was validated using both simulated and experimental data obtained from a mouse-shaped phantom mimicking tissue optical properties and containing two embedded fluorescent sources. Fluorescence data was collected using a 3D FMT setup that uses an EMCCD camera for image acquisition and a conical mirror for full-surface viewing. A range of performance metrics were utilized to evaluate our simulation results and to compare our method with the L1, L2, and total variation norm penalty based approaches. The experimental results were assessed using Dice similarity coefficients computed after co-registration with a CT image of the phantom. PMID:22390906

  9. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  10. A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging

    PubMed Central

    Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean

    2010-01-01

    Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222

  11. Nontemplated Approach to Tuning the Spectral Propertiesof Cyanine-Based Fluorescent NanoGUMBOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Susmita; Bwambok, David; El-Zahab, Bilal

    2010-01-01

    Template-free controlled aggregation and spectral properties in fluorescent organic nanoparticles (FONs) is highly desirable for various applications.Herein, we report a nontemplated method for controlling the aggregation in near-infrared (NIR) cyanine-based nanoparticles derived from a group of uniformmaterials based on organic salts (GUMBOS). Cationic heptamethine cyanine dye 1,10,3,3,30,30-hexamethylindotricarbocyanine (HMT) was coupled with five different anions, viz., [NTf2 -], [BETI-], [TFPB-], [AOT-], and [TFP4B-], by an ion-exchange method to obtain the respective GUMBOS. The nanoGUMBOS obtained via a reprecipitation method were primarily amorphous and spherical (30-100 nm) as suggested by selected area electron diffraction (SAED) and transmission electron microscopy (TEM). The formationmore » of tunable self-assemblies within the nanoGUMBOS was characterized using absorption and fluorescence spectroscopy in conjunction with molecular dynamics simulations. Counterion-controlled spectral properties observed in the nanoGUMBOS were attributed to variations in J/H ratios with different anions. Association with the [AOT-] anion afforded predominant J aggregation enabling the highest fluorescence intensity, whereas [TFP4B-] disabled the fluorescence due to predominantHaggregation in the nanoparticles. Analyses of the stacking angle of the cations based on molecular dynamic simulation results in [HMT][NTf2], [HMT][BETI], and [HMT][AOT] dispersed in water and a visual analysis of the representative simulation snapshots also imply that the type of aggregation was controlled through the counterion associated with the dye cation.« less

  12. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  13. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  14. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    PubMed

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

  15. Live Cell Imaging of Viscosity in 3D Tumour Cell Models.

    PubMed

    Shirmanova, Marina V; Shimolina, Lubov' E; Lukina, Maria M; Zagaynova, Elena V; Kuimova, Marina K

    2017-01-01

    Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.

  16. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach.

    PubMed

    Moura, S; Cerqueira, L; Almeida, A

    2018-05-13

    The fungus Aspergillus fumigatus is the main pathogenic agent responsible for invasive pulmonary aspergillosis. Immunocompromised patients are more likely to develop this pathology due to a decrease in the immune system's defense capacity. Despite of the low occurrence of invasive pulmonary aspergillosis, this pathology presents high rates of mortality, mostly due to late and unspecific diagnosis. Currently, the diagnostic methods used to detect this fungal infection are conventional mycological examination (direct microscopic examination, histological examination, and culture), imaging, non-culture-based tests for the detection of galactomannan, β(1,3)-glucan and an extracellular glycoprotein, and molecular tests based on PCR. However, most of these methods do not detect the species A. fumigatus; they only allow the identification of genus Aspergillus. The development of more specific detection methods is of extreme importance. Fluorescent in situ hybridization-based molecular methods can be a good alternative to achieve this purpose. In this review, it is intended to point out that most of the methods used for the diagnosis of invasive pulmonary aspergillosis do not allow to detect the fungus at the species level and that fluorescence in situ hybridization-based molecular method will be a promising approach in the A. fumigatus detection.

  17. A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-07-15

    A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. ICT-Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic.

    PubMed

    Bhatta, Sushil Ranjan; Mondal, Bijan; Vijaykumar, Gonela; Thakur, Arunabha

    2017-10-02

    A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg 2+ cation was developed. Upon binding with Hg 2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10 -9 M. Upon Hg 2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE 1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H + and OH - can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H + , OH - , and Hg 2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.

  19. pH-sensitive pHluorins as a molecular sensor for in situ monitoring of enzyme-catalyzed prodrug activation.

    PubMed

    Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan

    2017-07-01

    This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  20. Interaction of three new tetradentates Schiff bases containing N2O2 donor atoms with calf thymus DNA.

    PubMed

    Ajloo, Davood; Shabanpanah, Sajede; Shafaatian, Bita; Ghadamgahi, Maryam; Alipour, Yasin; Lashgarbolouki, Taghi; Saboury, Ali Akbar

    2015-01-01

    Interaction of 1,3-bis(2-hydroxy-benzylidene)-urea (H2L1), 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea (H2L2) and 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea nickel(II) (NiL2) with calf-thymus DNA were investigated by UV-vis absorption, fluorescence emission and circular dichroism (CD) spectroscopy as well as cyclic voltammetry, viscosity measurements, molecular docking and molecular dynamics simulation. Binding constants were determined using UV-vis absorption and fluorescence spectra. The results indicated that studied Schiff-bases bind to DNA in the intercalative mode in which the metal derivative is more effective than non metals. Their interaction trend is further determined by molecular dynamics (MD) simulation. MD results showed that Ni derivative reduces oligonucleotide intermolecular hydrogen bond and increases solvent accessible surface area more than other compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Double-cladding-fiber-based detection system for intravascular mapping of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis

    2011-03-01

    Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on their biological activity, identify the ones that prone to rupture and therefore require more medical attention.

  2. Pyridine Based Fluorescence Probe: Simultaneous Detection and Removal of Arsenate from Real Samples with Living Cell Imaging Properties.

    PubMed

    Nandi, Sandip; Sahana, Animesh; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2015-09-01

    Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently. Graphical Abstract DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.

  3. A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins

    PubMed Central

    Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey

    2015-01-01

    We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696

  4. Direct observation of single flexible polymers using single stranded DNA†

    PubMed Central

    Brockman, Christopher; Kim, Sun Ju

    2012-01-01

    Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981

  5. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  6. Linear Schiff-base fluorescence probe with aggregation-induced emission characteristics for Al3+ detection and its application in live cell imaging.

    PubMed

    Wen, Xiaoye; Fan, Zhefeng

    2016-11-16

    A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al 3+ . The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al 3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al 3+ (1.85 μM) in drinking water. The Job's plot and the results of 1 H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al 3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al 3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al 3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al 3+ detection in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. "Plug and play" logic gates based on fluorescence switching regulated by self-assembly of nucleotide and lanthanide ions.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-06-25

    Molecular logic gates in response to chemical, biological, or optical input signals at a molecular level have received much interest over the past decade. Herein, we construct "plug and play" logic systems based on the fluorescence switching of guest molecules confined in coordination polymer nanoparticles generated from nucleotide and lanthanide ions. In the system, the addition of new modules directly enables new logic functions. PASS 0, YES, PASS 1, NOT, IMP, OR, and AND gates are successfully constructed in sequence. Moreover, different logic gates (AND, INH, and IMP) can be constructed using different guest molecules and the same input combinations. The work will be beneficial to the future logic design and expand the applications of coordination polymers.

  8. Energy Donor Effect on the Sensing Performance for a Series of FRET-Based Two-Photon Fluorescent Hg2+ Probes

    PubMed Central

    Zhang, Yujin; Hu, Wei

    2017-01-01

    Nonlinear optical properties of a series of newly-synthesized molecular fluorescent probes for Hg2+ containing the same acceptor (rhodamine group) are analyzed by using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes’ optical properties in the absence and presence of Hg2+. These compounds show drastic changes in their photoabsorption and photoemission properties when they react with Hg2+, indicating that they are excellent candidates for ratiometric and colorimetric fluorescent chemosensors. Most importantly, the energy donor moiety is found to play a dominant role in sensing performance of these probes. Two-photon absorption cross sections of the compounds are increased with the presence of Hg2+, which theoretically suggests the possibility of the probes to be two-photon fluorescent Hg2+ sensors. Moreover, analysis of molecular orbitals is presented to explore responsive mechanism of the probes, where the fluorescence resonant energy transfer process is theoretically demonstrated. Our results elucidate the available experimental measurements. This work provides guidance for designing efficient two-photon fluorescent probes that are geared towards biological and chemical applications. PMID:28772466

  9. Energy Donor Effect on the Sensing Performance for a Series of FRET-Based Two-Photon Fluorescent Hg2+ Probes.

    PubMed

    Zhang, Yujin; Hu, Wei

    2017-01-25

    Nonlinear optical properties of a series of newly-synthesized molecular fluorescent probes for Hg 2+ containing the same acceptor (rhodamine group) are analyzed by using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the absence and presence of Hg 2+ . These compounds show drastic changes in their photoabsorption and photoemission properties when they react with Hg 2+ , indicating that they are excellent candidates for ratiometric and colorimetric fluorescent chemosensors. Most importantly, the energy donor moiety is found to play a dominant role in sensing performance of these probes. Two-photon absorption cross sections of the compounds are increased with the presence of Hg 2+ , which theoretically suggests the possibility of the probes to be two-photon fluorescent Hg 2+ sensors. Moreover, analysis of molecular orbitals is presented to explore responsive mechanism of the probes, where the fluorescence resonant energy transfer process is theoretically demonstrated. Our results elucidate the available experimental measurements. This work provides guidance for designing efficient two-photon fluorescent probes that are geared towards biological and chemical applications.

  10. Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy.

    PubMed

    Oh, Gyungseok; Yoo, Su Woong; Jung, Yebin; Ryu, Yeon-Mi; Park, Youngrong; Kim, Sang-Yeob; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon

    2014-05-01

    Intravital imaging has provided molecular, cellular and anatomical insight into the study of tumor. Early detection and treatment of gastrointestinal (GI) diseases can be enhanced with specific molecular markers and endoscopic imaging modalities. We present a wide-field multi-channel fluorescence endoscope to screen GI tract for colon cancer using multiple molecular probes targeting matrix metalloproteinases (MMP) conjugated with quantum dots (QD) in AOM/DSS mouse model. MMP9 and MMP14 antibody (Ab)-QD conjugates demonstrate specific binding to colonic adenoma. The average target-to-background (T/B) ratios are 2.10 ± 0.28 and 1.78 ± 0.18 for MMP14 Ab-QD and MMP9 Ab-QD, respectively. The overlap between the two molecular probes is 67.7 ± 8.4%. The presence of false negative indicates that even more number of targeting could increase the sensitivity of overall detection given heterogeneous molecular expression in tumors. Our approach indicates potential for the screening of small or flat lesions that are precancerous.

  11. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  12. QSPR studies on the photoinduced-fluorescence behaviour of pharmaceuticals and pesticides.

    PubMed

    López-Malo, D; Bueso-Bordils, J I; Duart, M J; Alemán-López, P A; Martín-Algarra, R V; Antón-Fos, G M; Lahuerta-Zamora, L; Martínez-Calatayud, J

    2017-07-01

    Fluorimetric analysis is still a growing line of research in the determination of a wide range of organic compounds, including pharmaceuticals and pesticides, which makes necessary the development of new strategies aimed at improving the performance of fluorescence determinations as well as the sensitivity and, especially, the selectivity of the newly developed analytical methods. In this paper are presented applications of a useful and growing tool suitable for fostering and improving research in the analytical field. Experimental screening, molecular connectivity and discriminant analysis are applied to organic compounds to predict their fluorescent behaviour after their photodegradation by UV irradiation in a continuous flow manifold (multicommutation flow assembly). The screening was based on online fluorimetric measurement and comprised pre-selected compounds with different molecular structures (pharmaceuticals and some pesticides with known 'native' fluorescent behaviour) to study their changes in fluorescent behaviour after UV irradiation. Theoretical predictions agree with the results from the experimental screening and could be used to develop selective analytical methods, as well as helping to reduce the need for expensive, time-consuming and trial-and-error screening procedures.

  13. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    PubMed

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  14. Fluorescence Lifetime Imaging Microscopy Using Near-Infrared Contrast Agents

    PubMed Central

    Nothdurft, Ralph; Sarder, Pinaki; Bloch, Sharon; Culver, Joseph; Achilefu, Samuel

    2013-01-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labeled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes’ relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. PMID:22788550

  15. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  16. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    PubMed

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Superresolution Imaging using Single-Molecule Localization

    PubMed Central

    Patterson, George; Davidson, Michael; Manley, Suliana; Lippincott-Schwartz, Jennifer

    2013-01-01

    Superresolution imaging is a rapidly emerging new field of microscopy that dramatically improves the spatial resolution of light microscopy by over an order of magnitude (∼10–20-nm resolution), allowing biological processes to be described at the molecular scale. Here, we discuss a form of superresolution microscopy based on the controlled activation and sampling of sparse subsets of photoconvertible fluorescent molecules. In this single-molecule based imaging approach, a wide variety of probes have proved valuable, ranging from genetically encodable photoactivatable fluorescent proteins to photoswitchable cyanine dyes. These have been used in diverse applications of superresolution imaging: from three-dimensional, multicolor molecule localization to tracking of nanometric structures and molecules in living cells. Single-molecule-based superresolution imaging thus offers exciting possibilities for obtaining molecular-scale information on biological events occurring at variable timescales. PMID:20055680

  18. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2017-08-01

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10  L mol -1  s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5  M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  19. Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia.

    PubMed

    Jiang, Yang; Gong, Yuanzheng; Rubenstein, Joel H; Wang, Thomas D; Seibel, Eric J

    2017-04-01

    Multimodal endoscopy using fluorescence molecular probes is a promising method of surveying the entire esophagus to detect cancer progression. Using the fluorescence ratio of a target compared to a surrounding background, a quantitative value is diagnostic for progression from Barrett's esophagus to high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). However, current quantification of fluorescent images is done only after the endoscopic procedure. We developed a Chan-Vese-based algorithm to segment fluorescence targets, and subsequent morphological operations to generate background, thus calculating target/background (T/B) ratios, potentially to provide real-time guidance for biopsy and endoscopic therapy. With an initial processing speed of 2 fps and by calculating the T/B ratio for each frame, our method provides quasireal-time quantification of the molecular probe labeling to the endoscopist. Furthermore, an automatic computer-aided diagnosis algorithm can be applied to the recorded endoscopic video, and the overall T/B ratio is calculated for each patient. The receiver operating characteristic curve was employed to determine the threshold for classification of HGD/EAC using leave-one-out cross-validation. With 92% sensitivity and 75% specificity to classify HGD/EAC, our automatic algorithm shows promising results for a surveillance procedure to help manage esophageal cancer and other cancers inspected by endoscopy.

  20. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.

    PubMed

    Kerppola, Tom K

    2008-01-01

    A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.

  1. Luminescent probes for optical in vivo imaging

    NASA Astrophysics Data System (ADS)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  2. Molecular Gels as Intermediates in the Synthesis of Porous Materials and Fluorescent Films: Concepts and Applications.

    PubMed

    Miao, Rong; Peng, Junxia; Fang, Yu

    2017-10-10

    Low-molecular-mass organic gelator (LMOG)-based molecular gels are known as one of the most attractive soft materials and have received great attention since the early 1990s. In the last few decades, many LMOGs have been synthesized, and a series of theories have been proposed to better understand molecular gels. However, only limited applications of LMOGs have been realized for a variety of reasons, such as their lack of stability compared to chemical gels. Therefore, efforts to explore the applications of these materials are especially meaningful. As an example, this feature article mainly introduces studies on the application of LMOGs as intermediates in porous materials and fluorescent sensing films. Particular attention will be paid to gelator design, LMOG emulsion preparation, solid surface modification, and the practical application of the obtained materials. Concepts that are related to these studies, such as organic gel-water interface equilibria and molecular gel strategies, will be comprehensively illustrated. Finally, we will conclude with a study of LMOG-based intermediates. Some challenges and future perspectives related to these research areas will also be presented. It is anticipated that this feature article will not only contribute to the further understanding of LMOG-based intermediates but also will help to promote the practical application of molecular gels and facilitate development in related research areas.

  3. Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics

    PubMed Central

    Liang, Feng; Guo, Yuzheng; Hou, Shaocong; Quan, Qimin

    2017-01-01

    Current methods to study molecular interactions require labeling the subject molecules with fluorescent reporters. However, the effect of the fluorescent reporters on molecular dynamics has not been quantified because of a lack of alternative methods. We develop a hybrid photonic-plasmonic antenna-in-a-nanocavity single-molecule biosensor to study DNA-protein dynamics without using fluorescent labels. Our results indicate that the fluorescein and fluorescent protein labels decrease the interaction between a single DNA and a protein due to weakened electrostatic interaction. Although the study is performed on the DNA-XPA system, the conclusion has a general implication that the traditional fluorescent labeling methods might be misestimating the molecular interactions. PMID:28560341

  4. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  5. A chemosensor showing discriminating fluorescent response for highly selective and nanomolar detection of Cu²⁺ and Zn²⁺ and its application in molecular logic gate.

    PubMed

    Fegade, Umesh A; Sahoo, Suban K; Singh, Amanpreet; Singh, Narinder; Attarde, Sanjay B; Kuwar, Anil S

    2015-05-04

    A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu(2+) and Zn(2+) in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn(2+) and Cu(2+) ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu(2+) and Zn(2+) ions, respectively. Further, we have effectively utilized the two metal ions (Cu(2+) and Zn(2+)) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin.

    PubMed

    Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi; Shi, Jie-Hua

    2017-06-01

    The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV-vis absorption spectroscopy (UV-vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady-state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >10 10  L mol -1  sec -1 . This result indicates that the ENPL-BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0 ), enthalpic change (ΔH 0 ) and entropic change (ΔS 0 ). The binding of ENPL with BSA is an enthalpy-driven process due to |ΔH°| > |TΔS°| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub-domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α-helical secondary structure. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Quantum Dot Enabled Molecular Sensing and Diagnostics

    PubMed Central

    Zhang, Yi; Wang, Tza-Huei

    2012-01-01

    Since its emergence, semiconductor nanoparticles known as quantum dots (QDs) have drawn considerable attention and have quickly extended their applicability to numerous fields within the life sciences. This is largely due to their unique optical properties such as high brightness and narrow emission band as well as other advantages over traditional organic fluorophores. New molecular sensing strategies based on QDs have been developed in pursuit of high sensitivity, high throughput, and multiplexing capabilities. For traditional biological applications, QDs have already begun to replace traditional organic fluorophores to serve as simple fluorescent reporters in immunoassays, microarrays, fluorescent imaging applications, and other assay platforms. In addition, smarter, more advanced QD probes such as quantum dot fluorescence resonance energy transfer (QD-FRET) sensors, quenching sensors, and barcoding systems are paving the way for highly-sensitive genetic and epigenetic detection of diseases, multiplexed identification of infectious pathogens, and tracking of intracellular drug and gene delivery. When combined with microfluidics and confocal fluorescence spectroscopy, the detection limit is further enhanced to single molecule level. Recently, investigations have revealed that QDs participate in series of new phenomena and exhibit interesting non-photoluminescent properties. Some of these new findings are now being incorporated into novel assays for gene copy number variation (CNV) studies and DNA methylation analysis with improved quantification resolution. Herein, we provide a comprehensive review on the latest developments of QD based molecular diagnostic platforms in which QD plays a versatile and essential role. PMID:22916072

  8. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    PubMed Central

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-01-01

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256

  9. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.

    PubMed

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-10-31

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  10. A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.

    PubMed

    Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing

    2007-01-01

    Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.

  11. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins

    PubMed Central

    Sharma, Atul; Khan, Reem; Catanante, Gaelle; Sherazi, Tauqir A.; Bhand, Sunil; Hayat, Akhtar; Marty, Jean Louis

    2018-01-01

    Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications. PMID:29751687

  12. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins.

    PubMed

    Sharma, Atul; Khan, Reem; Catanante, Gaelle; Sherazi, Tauqir A; Bhand, Sunil; Hayat, Akhtar; Marty, Jean Louis

    2018-05-11

    Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications.

  13. Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.

    PubMed

    Mukherjee, Arnab; Walker, Joshua; Weyant, Kevin B; Schroeder, Charles M

    2013-01-01

    Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)-namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4-11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10-40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.

  14. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  15. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  16. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  17. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    ERIC Educational Resources Information Center

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  18. Boronic acids for fluorescence imaging of carbohydrates.

    PubMed

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  19. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  20. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications.

    PubMed

    Saha, Manik Lal; Yan, Xuzhou; Stang, Peter J

    2016-11-15

    Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages. As such, well-defined absorption and emission spectra are important for a given SCC to be used for sensing, bioimaging, and other applications with molecular fluorescence being an important component. In this Account, we summarize the photophysical properties of some bis(phosphine)organoplatinum(II) compounds and their discrete SCCs. The platinum(II) based organometallic precursors typically display spectral red-shifts and have low fluorescence quantum yields and short fluorescence lifetimes compared to their organic counterparts because the introduction of metal centers enhances both intersystem crossing (ISC) and intramolecular charge transfer (ICT) processes, which can compete with the fluorescence emissions. Likewise ligands with conjugation can also increase the ICT process; hence the corresponding organoplatinum(II) compounds undergo a further decrease in fluorescence lifetimes. The use of endohedral amine functionalized 120°-bispyridyl ligands can dramatically enhance the emission properties of the resultant organoplatinum(II) based SCCs. As such these SCCs display emissions in the visible region (ca. 400-500 nm) and are significantly red-shifted (ca. 80-100 nm) compared to the ligands. This key feature makes them suitable as supramolecular theranostic agents wherein these unique emission properties provide diagnostic spectroscopic handles and the organoplatinum(II) centers act as potential anticancer agents. Using steady state and time-resolved-spectroscopic techniques and quantum computations in concert, we have determined that the emissive properties stem from the ligand-centered transitions involving π-type molecular orbitals with modest contributions from the metal-based orbitals. The self-assembly and the photophysics of organoplatinum(II) ← 3-substituted pyridyl based SCCs are highly diverse. Subtle changes in the ligands' structures can form molecular congener systems with distinct conformational and photophysical properties. Furthermore, the heterometallic SCCs described herein possess rich photophysical properties and can be used for sensing based applications. Tetraphenylethylene (TPE) based SCCs display emissions in the aggregated state as well as in dilute solutions. This is a unique phenomenon that bridges the aggregation caused quenching (ACQ) and aggregation induced emission (AIE) effects. Moreover, a TPE based metallacage exhibits solvatoluminescence, including white light emission in THF solvent, and can act as a fluorescence-sensor for structurally similar ester compounds.

  1. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dong-Shan; Zhou, Guo-Hua; Luo, Ming; Ji, Xing-Hu; He, Zhi-Ke

    2012-08-21

    We have developed a dual color fluorescence quantitative detection method for specific single-stranded DNA with molecular beacons (MBs) and nucleic acid dye SYBR Green I by synchronous scanning fluorescence spectrometry. It is demonstrated by a reverse-transcription oligonucleotide sequence (target DNA, 33 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of target DNA, the MBs are in the stem-closed state, the fluorescence of 5-carboxy-X-rhodamine (ROX) is quenched by black hole quencher-2 (BHQ-2), and the interaction between SYBR Green I and the MBs is very weak. At this time the fluorescence signals of ROX and SYBR Green I are all very weak. In the presence of target DNA, MBs hybridize with target DNA and form a double-strand structure, the fluorophore ROX is separated from the quencher BHQ-2, and the fluorescence of ROX recovers. At the same time, SYBR Green I binds to hybridized dsDNA, whose fluorescence intensity is significantly enhanced. Thus, dual color fluorescence quantitative detection for the target DNA can be realized by synchronous scanning fluorescence spectrometry. In this strategy, the fluorescence signal of SYBR Green I is far larger than that of ROX, so the quantitative analysis of target DNA with the fluorescence intensity of SYBR Green I can significantly improve the detection sensitivity. In addition, the false-positive signals of MBs do not affect the fluorescence signals of nucleic acid dye SYBR Green I. Thereby, in the analysis of complex samples, quantitative analysis of target DNA with SYBR Green I can avoid the false-positive signals of MBs and improve the detection accuracy.

  2. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection.

    PubMed

    Liu, Yang; Cao, Nan; Gui, Wenying; Ma, Qiang

    2018-06-01

    In this paper, a test strip-based sensor was developed for thiacloprid quantitative detection based on PDA molecularly imprinted polymer (MIP) and nitrogen-doped graphene quantum dots (N-GQDs). Thiacloprid is a new type of nicotine insecticide, which can block the normal neurotransmitter delivery process in insects. In the sensing system, N-GQDs were immersed into filter paper at first. Then, dopamine (DA) with thiacloprid can be self-polymerized on test strip surface to form the uniform PDA film. After removed thiacloprid template, the established poly dopamine (PDA) MIP can selectively recognize thiacloprid. As a result, captured thiacloprid can enhance the fluorescence intensity of N-GQDs into the test strip. As a result, the fluorescence intensity of N-GQDs can be linearly related within a certain range of thiacloprid concentration. Under the optimum conditions, the proposed sensor for thiacloprid detection exhibited a linear ranging from 0.1 mg/L to 10 mg/L with a low detection limit of 0.03 mg/L. The N-GQDs based test strip-based sensor for thiaclopridis reported for the first time. The sensing system has high selectivity to thiacloprid and provides new opportunities in the pesticide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Breast Cancer Treatment in the Era of Molecular Imaging

    PubMed Central

    Edelhauser, Gundula; Funovics, Martin

    2008-01-01

    Summary Molecular imaging employs molecularly targeted probes to visualize and often quantify distinct disease-specific markers and pathways. Modalities like intravital confocal or multiphoton microscopy, near-infrared fluorescence combined with endoscopy, surface reflectance imaging, or fluorescence-mediated tomography, and radionuclide imaging with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are increasingly used for small animal high-throughput screening, drug development and testing, and monitoring gene therapy experiments. In the clinical treatment of breast cancer, PET and SPECT as well as magnetic resonance-based molecular imaging are already established for the staging of distant disease and intrathoracic nodal status, for patient selection regarding receptor-directed treatments, and to gain early information about treatment efficacy. In the near future, reporter gene imaging during gene therapy and further spatial and qualitative characterization of the disease can become clinically possible with radionuclide and optical methods. Ultimately, it may be expected that every level of breast cancer treatment will be affected by molecular imaging, including screening. PMID:21048912

  4. The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs.

    PubMed

    Xiang, Dongshan; Li, Fengquan; Wu, Chenyi; Shi, Boan; Zhai, Kun

    2017-11-01

    We designed two double quenching molecular beacons (MBs) with simple structure based on guanine (G base) and Black Hole Quencher (BHQ), and developed a new analytical method for sensitive simultaneous detection of two DNAs by synchronous fluorescence analysis. In this analytical method, carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were respectively selected as fluorophore of two MBs, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were respectively selected as organic quencher, and three continuous nucleotides with G base were connected to organic quencher (BHQ-1 and BHQ-2). In the presence of target DNAs, the two MBs hybridize with the corresponding target DNAs, the fluorophores are separated from organic quenchers and G bases, leading to recovery of fluorescence of FAM and TAMRA. Under a certain conditions, the fluorescence intensities of FAM and TAMRA all exhibited good linear dependence on their concentration of target DNAs (T1 and T2) in the range from 4 × 10 -10 to 4 × 10 -8 molL -1 (M). The detection limit (3σ, n = 13) of T1 was 3 × 10 -10 M and that of T2 was 2×10 -10 M, respectively. Compared with the existing analysis methods for multiplex DNA with MBs, this proposed method based on double quenching MBs is not only low fluorescence background, short analytical time and low detection cost, but also easy synthesis and good stability of MB probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dual-color two-photon fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Berland, Keith M.

    2001-04-01

    Fluorescence correlation spectroscopy (FCS) is rapidly growing in popularity as a research tool in biological and biophysical research. Under favorable conditions, FCS measurements can produce an accurate characterization of the chemical, physical, and kinetic properties of a biological system. However, interpretation of FCS data quickly becomes complicated as the heterogeneity of a molecular system increases, as well as when there is significant non-stationery fluorescence background (e.g. intracellular autofluorescence). Use of multi-parameter correlation measurements is one promising approach that can improve the fidelity of FCS measurements in complex systems. In particular, the use of dual-color fluorescence assays, in which different interacting molecular species are labeled with unique fluorescent indicators, can "tune" the sensitivity of FCS measurements in favor of particular molecular species of interest, while simultaneously minimizing the contribution of other molecular species to the overall fluorescence correlation signal. Here we introduce the combined application of two-photon fluorescence excitation and dual-color cross-correlation analysis for detecting molecular interactions in solution. The use of two-photon excitation is particularly advantageous for dual-color FCS applications due to the uncomplicated optical alignment and the superior capabilities for intracellular applications. The theory of two-photon dual-color FCS is introduced, and initial results quantifying hybridization reactions between three independent single stranded DNA molecules are presented.

  6. Self-Assembled Molecular Squares Containing Metal-Based Donor: Synthesis and Application in the Sensing of Nitro-aromatics†

    PubMed Central

    Vajpayee, Vaishali; Kim, Hyunuk; Mishra, Anurag; Mukherjee, Partha Sarathi; Lee, Min Hyung; Kim, Hwan Kyu

    2012-01-01

    Self-assemblies between a linear Pt-based donor and ferrocene-chelated metallic acceptors produce novel heterometallic squares 4 and 5, which show fluorescence quenching upon addition of nitro-aromatics. PMID:21321785

  7. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.

  8. A Turn-on Fluorescence Sensor for Heparin Detection Based on a Release of Taiwan Cobra Cardiotoxin from a DNA Aptamer or Adenosine-Based Molecular Beacon.

    PubMed

    Shi, Yi-Jun; Wang, Liang-Jun; Lee, Yuan-Chin; Huang, Chia-Hui; Hu, Wan-Ping; Chang, Long-Sen

    2018-02-19

    This study presents two sensitive fluorescent assays for sensing heparin on the basis of the electrostatic interaction between heparin and Naja naja atra cardiotoxin 3 (CTX3). Owing to CTX3-induced folded structure of an adenosine-based molecular beacon (MB) or a DNA aptamer against CTX3, a reduction in the fluorescent signal of the aptamer or MB 5'-end labeled with carboxyfluorescein (FAM) and 3'-end labeled with 4-([4-(dimethylamino)phenyl]azo)-benzoic acid (DABCYL) was observed upon the addition of CTX3. The presence of heparin and formation of the CTX3-heparin complex caused CTX3 detachment from the MB or aptamer, and restoration of FAM fluorescence of the 5'-FAM-and-3'-DABCYL-labeled MB and aptamer was subsequently noted. Moreover, the detection of heparin with these CTX3-aptamer and CTX3-MB sensors showed high sensitivity and selectivity toward heparin over chondroitin sulfate and hyaluronic acid regardless of the presence of plasma. The limit of detection for heparin in plasma was determined to be 16 ng/mL and 15 ng/mL, respectively, at a signal-to-noise ratio of 3. This study validates the practical utility of the CTX3-aptamer and CTX3-MB systems for determining the concentration of heparin in a biological matrix.

  9. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol-Formaldehyde in Wood Cell Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakes, Joseph E.; Hunt, Chris G.; Yelle, Daniel J.

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenolformaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effectivemore » at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.« less

  10. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System

    PubMed Central

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor–acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs. PMID:28776019

  11. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  12. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  13. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy

    PubMed Central

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.

    2016-01-01

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  14. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  15. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units.

    PubMed

    Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming

    2011-02-01

    High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.

  16. An optical deoxyribonucleic acid-based half-subtractor.

    PubMed

    Yang, Chia-Ning; Chen, Yi-Li; Lin, Hung-Yin; Hsu, Chun-Yu

    2013-10-09

    This study introduces an optical DNA-based logic circuit that mimics a half-subtractor. The system contains an Au-surface immobilized molecular-beacon molecule that serves as a dual-gate molecule and outputs two series of fluorescence signals following Boolean INH and XOR patterns after interacting with one or two single-stranded DNA molecules as input. To the best of our knowledge, the system reported herein is rather concise compared to other molecular logic gate systems.

  17. Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids.

    PubMed

    Engelen, Wouter; van de Wiel, Kayleigh M; Meijer, Lenny H H; Saha, Bedabrata; Merkx, Maarten

    2017-03-02

    Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM concentrations of nucleic acids directly in complex media.

  18. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    NASA Astrophysics Data System (ADS)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  19. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    PubMed

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan

    2017-11-01

    A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.

  1. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method.

    PubMed

    Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie

    2014-02-01

    Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.

  2. Ratiometric fluorescent receptors for both Zn2+ and H2PO4(-) ions based on a pyrenyl-linked triazole-modified homooxacalix[3]arene: a potential molecular traffic signal with an R-S latch logic circuit.

    PubMed

    Ni, Xin-long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko

    2011-07-15

    A ratiometric fluorescent receptor with a C(3) symmetric structure based on a pyrene-linked triazole-modified homooxacalix[3]arene (L) was synthesized and characterized. This system exhibited an interesting ratiometric detection signal output for targeting cations and anions through switching the excimer emission of pyrene from the "on-off" to the "off-on" type in neutral solution. (1)H NMR titration results suggested that the Zn(2+) center of receptor L·Zn(2+) provided an excellent pathway of organizing anion binding groups for optimal host-guest interactions. It is thus believed that this receptor has potential application in sensing, detection, and recognition of both Zn(2+) and H(2)PO(4)(-) ions with different optical signals. In addition, the fluorescence emission changes by the inputs of Zn(2+) and H(2)PO(4)(-) ions can be viewed as a combinational R-S latch logic circuit at the molecular level.

  3. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  4. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  5. Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor

    PubMed Central

    O’Sullivan, Thomas D.; Heitz, Roxana T.; Parashurama, Natesh; Barkin, David B.; Wooley, Bruce A.; Gambhir, Sanjiv S.; Harris, James S.; Levi, Ofer

    2013-01-01

    Performance improvements in instrumentation for optical imaging have contributed greatly to molecular imaging in living subjects. In order to advance molecular imaging in freely moving, untethered subjects, we designed a miniature vertical-cavity surface-emitting laser (VCSEL)-based biosensor measuring 1cm3 and weighing 0.7g that accurately detects both fluorophore and tumor-targeted molecular probes in small animals. We integrated a critical enabling component, a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit, which digitized the fluorescence signal to achieve autofluorescence-limited sensitivity. After surgical implantation of the lightweight sensor for two weeks, we obtained continuous and dynamic fluorophore measurements while the subject was un-anesthetized and mobile. The technology demonstrated here represents a critical step in the path toward untethered optical sensing using an integrated optoelectronic implant. PMID:24009996

  6. Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass.

    PubMed

    Esparza-Soto, M; Westerhoff, P K

    2001-01-01

    Two fractions of extracellular polymer substances (EPSs), soluble and readily extractable (RE), were characterised in terms of their molecular weight distributions (MWD) and 3-D excitation-emission-matrix (EEM) fluorescence spectroscopy signatures. The EPS fractions were different: the soluble EPSs were composed mainly of high molecular weight compounds, while the RE EPSs were composed of small molecular weight compounds. Contrary to previous thought, EPS may not be considered only as macromolecular because most organic matter present in both fractions had low molecular weight. Three different fluorophore peaks were identified in the EEM fluorescence spectra. Two peaks were attributed to protein-like fluorophores, and the third to a humic-like fluorophore. Fluorescence signatures were different from other previously published signatures for marine and riverine environments. EEM spectroscopy proved to be a suitable method that may be used to characterise and trace organic matter of bacterial origin in wastewater treatment operations.

  7. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Moorhouse, Alan; Brand, P. W. J. L.; Roche, Patrick F.; Geballe, T. R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce.

  8. Design of a single-step immunoassay principle based on the combination of an enzyme-labeled antibody release coating and a hydrogel copolymerized with a fluorescent enzyme substrate in a microfluidic capillary device.

    PubMed

    Wakayama, Hideki; Henares, Terence G; Jigawa, Kaede; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-11-21

    A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.

  9. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  10. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  11. Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP).

    PubMed

    Cipolloni, Marco; Kaleta, Jiří; Mašát, Milan; Dron, Paul I; Shen, Yongqiang; Zhao, Ke; Rogers, Charles T; Shoemaker, Richard K; Michl, Josef

    2015-04-23

    We examine the fluorescence anisotropy of rod-shaped guests held inside the channels of tris( o -phenylenedioxy)cyclotriphosphazene (TPP) host nanocrystals, characterized by powder X-ray diffraction and solid state NMR spectroscopy. We address two issues: (i) are light polarization measurements on an aqueous colloidal solution of TPP nanocrystals meaningful, or is depolarization by scattering excessive? (ii) Can measurements of the rotational mobility of the included guests be performed at low enough loading levels to suppress depolarization by intercrystallite energy transfer? We find that meaningful measurements are possible and demonstrate that the long axis of molecular rods included in TPP channels performs negligible vibrational motion.

  12. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity.

    PubMed

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-15

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica.

    PubMed

    Wu, Le; Lin, Zheng-Zhong; Zhong, Hui-Ping; Peng, Ai-Hong; Chen, Xiao-Mei; Huang, Zhi-Yong

    2017-08-15

    A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ ex 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L -1 could be obtained with a detection limit of 12μg·kg -1 . The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein)

    PubMed Central

    Jugder, Bat-Erdene; Welch, Jeffrey; Braidy, Nady

    2016-01-01

    Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression. PMID:27547572

  15. Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.

    PubMed

    Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong

    2015-09-15

    A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    PubMed

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  17. Studies of the interaction between FNC and human hemoglobin: a spectroscopic analysis and molecular docking.

    PubMed

    Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao

    2015-02-05

    FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET.

    PubMed

    Raicu, Valerică

    2018-06-15

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    NASA Astrophysics Data System (ADS)

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  20. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  2. Laser-Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.

    2005-01-01

    OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.

  3. Fluorescence Detection of KRAS2 mRNA Hybridization in Lung Cancer Cells with PNA-Peptides Containing an Internal Thiazole Orange

    PubMed Central

    2015-01-01

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5′ end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5′ terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5–6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA. PMID:25180641

  4. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process

    NASA Astrophysics Data System (ADS)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.

    2016-12-01

    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  5. A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate

    NASA Astrophysics Data System (ADS)

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-01

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu2+ over other metal ions in acetonitrile. Upon addition of Cu2+ ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu2+, the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu2+ can be restored with the introduction of EDTA or S2-. Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu2+ and S2- as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated.

  6. Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations.

    PubMed

    Higashino, Asuka; Mizuno, Misao; Mizutani, Yasuhisa

    2016-04-07

    Dronpa is a novel photochromic fluorescent protein that exhibits fast response to light. The present article is the first report of the resonance and preresonance Raman spectra of Dronpa. We used the intensity and frequency of Raman bands to determine the structure of the Dronpa chromophore in two thermally stable photochromic states. The acid-base equilibrium in one photochromic state was observed by spectroscopic pH titration. The Raman spectra revealed that the chromophore in this state shows a protonation/deprotonation transition with a pKa of 5.2 ± 0.3 and maintains the cis configuration. The observed resonance Raman bands showed that the other photochromic state of the chromophore is in a trans configuration. The results demonstrate that Raman bands selectively enhanced for the chromophore yield valuable information on the molecular structure of the chromophore in photochromic fluorescent proteins after careful elimination of the fluorescence background.

  7. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  8. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    NASA Astrophysics Data System (ADS)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-09-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  9. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    PubMed Central

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  10. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    PubMed Central

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-01-01

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637

  11. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu

    2014-02-15

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less

  12. De facto molecular weight distributions of glucans by size-exclusion chromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.

    PubMed

    Praznik, Werner; Huber, Anton

    2005-09-25

    A major capability of polysaccharides in aqueous media is their tendency for aggregation and dynamic formation of supermolecular structures. Even extended dissolution processes will not eliminate these structures which dominate many analytical approaches, in particular absolute molecular weight determinations referring to light scattering data. An alternative approach for determination of de facto molecular weight for glucans with free terminal hemiacetal functionality (reducing end group) has been adjusted from carbohydrates for midrange and high-dp glucans: quantitative and stabilized labeling as aminopyridyl-derivatives (AP-glucans) and subsequent analysis of SEC-separated elution profiles based on simultaneously monitored mass and molar fractions by refractive index and fluorescence detection. SEC-DRI/FL of AP-glucans proved as an appropriate approach for determination of de facto molecular weight of constituting glucan molecules even in the presence of supermolecular structures for non-branched (pullulan), branched (dextran), narrow distributed and broad distributed and for mixes of compact and loose packed polymer coils (starch glucan hydrolizate).

  13. Label-free functional nucleic acid sensors for detecting target agents

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-01-13

    A general methodology to design label-free fluorescent functional nucleic acid sensors using a vacant site approach and an abasic site approach is described. In one example, a method for designing label-free fluorescent functional nucleic acid sensors (e.g., those that include a DNAzyme, aptamer or aptazyme) that have a tunable dynamic range through the introduction of an abasic site (e.g., dSpacer) or a vacant site into the functional nucleic acids. Also provided is a general method for designing label-free fluorescent aptamer sensors based on the regulation of malachite green (MG) fluorescence. A general method for designing label-free fluorescent catalytic and molecular beacons (CAMBs) is also provided. The methods demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes. Sensors and methods of using the disclosed sensors are also provided.

  14. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

    PubMed Central

    Warner, Katherine Deigan; Chen, Michael C.; Song, Wenjiao; Strack, Rita L.; Thorn, Andrea; Jaffrey, Samie R.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Green fluorescent protein (GFP) and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro evolved RNA mimic of GFP, which as genetically encoded fusions, makes possible live-cell, real-time imaging of biological RNAs, without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we have solved its co-crystal structure bound to its cognate exogenous chromophore, revealing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex, and an unpaired guanine. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs, and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure has guided the design of a miniaturized 'Baby Spinach', and provides the foundation for structure-driven design and tuning of fluorescent RNAs. PMID:25026079

  15. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.

    PubMed

    Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D

    2016-05-18

    A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.

  16. The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong

    2017-01-01

    Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666

  17. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study.

    PubMed

    Harlaar, Niels J; Koller, Marjory; de Jongh, Steven J; van Leeuwen, Barbara L; Hemmer, Patrick H; Kruijff, Schelto; van Ginkel, Robert J; Been, Lukas B; de Jong, Johannes S; Kats-Ugurlu, Gursah; Linssen, Matthijs D; Jorritsma-Smit, Annelies; van Oosten, Marleen; Nagengast, Wouter B; Ntziachristos, Vasilis; van Dam, Gooitzen M

    2016-12-01

    Optimum cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is essential for the curative treatment of peritoneal carcinomatosis of colorectal origin. At present, surgeons depend on visual inspection and palpation for tumour detection. Improved detection of tumour tissue using molecular fluorescence-guided surgery could not only help attain a complete cytoreduction of metastatic lesions, but might also prevent overtreatment by avoiding resection of benign lesions. For this non-randomised, single-centre feasibility study, we enrolled patients with colorectal peritoneal metastases scheduled for cytoreductive surgery and HIPEC. 2 days before surgery, 4·5 mg of the near-infrared fluorescent tracer bevacizumab-IRDye800CW was administered intravenously. The primary objectives were to determine the safety and feasibility of molecular fluorescence-guided surgery using bevacizumab-IRDye800CW. Molecular fluorescence-guided surgery was deemed safe if no allergic or anaphylactic reactions were recorded and no serious adverse events were attributed to bevacizumab-IRDye800CW. The technique was deemed feasible if bevacizumab-IRDye800CW enabled detection of fluorescence signals intraoperatively. Secondary objectives were correlation of fluorescence with histopathology by back-table imaging of the fresh surgical specimen and semi-quantitative ex-vivo analyses of formalin-fixed paraffin embedded (FFPE) tissue on all peritoneal lesions. Additionally, VEGF-α staining and fluorescence microscopy was done. This study is registered with the Netherlands Trial Registry, number NTR4632. Between July 3, 2014, and March 2, 2015, seven patients were enrolled in the study. One patient developed an abdominal sepsis 5 days postoperatively and another died from an asystole 4 days postoperatively, most probably due to a cardiovascular thromboembolic event. However, both serious adverse events were attributed to the surgical cytoreductive surgery and HIPEC procedure. No serious adverse events related to bevacizumab-IRDye800CW occurred in any of the patients. Intraoperatively, fluorescence was seen in all patients. In two patients, additional tumour tissue was detected by molecular fluorescence-guided surgery that was initially missed by the surgeons. During back-table imaging of fresh surgical specimens, a total of 80 areas were imaged, marked, and analysed. All of the 29 non-fluorescent areas were found to contain only benign tissue, whereas tumour tissue was detected in 27 of 51 fluorescent areas (53%). Ex-vivo semi-quantification of 79 FFPE peritoneal lesions showed a tumour-to-normal ratio of 6·92 (SD 2·47). Molecular fluorescence-guided surgery using the near-infrared fluorescent tracer bevacizumab-IRDye800CW is safe and feasible. This technique might be of added value for the treatment of patients with colorectal peritoneal metastases through improved patient selection and optimisation of cytoreductive surgery. A subsequent multicentre phase 2 trial is needed to make a definitive assessment of the diagnostic accuracy and the effect on clinical decision making of molecular fluorescence-guided surgery. FP-7 Framework Programme BetaCure and SurgVision BV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query.

    PubMed

    Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing

    2014-05-06

    The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.

  19. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  20. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  1. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.

    PubMed

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H

    2016-04-20

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Application of molecular imaging technology in evaluating the inhibiting effect of apigenin in vivo on subcutaneous hepatocellular carcinoma.

    PubMed

    Li, Gang; Chi, Chong-Wei; Shao, Xian-Fang; Fang, Chi-Hua

    2017-05-20

    The aim of this study was to evaluate the inhibiting effect of apigenin on liver cancer in vivo based on the optical molecular imaging method. Subcutaneous liver tumor models were established using respective 1 × 10 6 firefly luciferase (fLuc) and green fluorescent protein (GFP) labeled human hepatocellular carcinoma cells (HepG2-fLuc and HepG2-GFP cells) in 20 BALB/c nude mice which were randomly divided into two groups, 10 in each group. After the tumor cells were implanted 15 days, apigenin was administered through intraperitoneal injection in group B, the other ten mice as control group A. Bioluminescence imaging (BLI) and fluorescence molecular imaging (FMI) were carried out for the follow-up of subcutaneous tumor model. As time goes on, intensity and distribution of bioluminescence and fluorescence of tumours increased gradually with the growth of tumours little by little. The whole process of observation was in accordance with known activities of HCC in the human liver. The tumor volume and tumor weight were significant lower in group B than in group A (p < 0.05), Subcutaneous tumours in the apigenin treatment group B based on BLI and FMI were significantly inhibited compared to the control group A (p < 0.05). Apigenin could be expected as a new drug to treat hepatocellular carcinoma. Optical molecular imaging technology enabled the non-invasive and reliable assessment of anti-tumor drug efficacy on liver cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-11-01

    The binding interaction between a typical angiotensin-converting enzyme inhibitor (ACEI), ramipril, and a transport protein, bovine serum albumin (BSA), was studied in vitro using UV-vis absorption spectroscopy, steady-state fluorescence spectroscopic titration, synchronous fluorescence spectroscopy, three dimensional fluorescence spectroscopy, circular dichroism and molecular docking under the imitated physiological conditions (pH=7.4). The experimental results suggested that the intrinsic fluorescence of BSA was quenched by ramipril thought a static quenching mechanism, indicating that the stable ramipril-BSA complex was formed by the intermolecular interaction. The number of binding sites (n) and binding constant of ramipril-BSA complex were about 1 and 3.50×10 4 M -1 at 298K, respectively, suggesting that there was stronger binding interaction of ramipril with BSA. The thermodynamic parameters together with molecular docking study revealed that both van der Waal's forces and hydrogen bonding interaction dominated the formation of the ramipril-BSA complex and the binding interaction of BSA with ramipril is enthalpy-driven processes due to |ΔH°|>|TΔS°| and ΔG°<0. The spatial distance between ramipril and BSA was calculated to be 3.56nm based on Förster's non-radiative energy transfer theory. The results of the competitive displacement experiments and molecular docking confirmed that ramipril inserted into the subdomain IIA (site I) of BSA, resulting in a slight change in the conformation of BSA but BSA still retained its secondary structure α-helicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium).

    PubMed

    Rückriemen, Jana; Hohmann, Christoph; Hellwig, Michael; Henle, Thomas

    2017-09-01

    This study compared the fluorescence properties (λ ex/em =350/450nm) and molecular size of proteins from manuka and non-manuka honey. The fluorescence characteristics of non-manuka and manuka proteins differ markedly, whereby manuka honey protein fluorescence increases with increasing methylglyoxal (MGO) content of the honey. It was concluded that manuka honey proteins are modified due to MGO-derived glycation and crosslinking reactions, thus resulting in fluorescent structures. The molecular size of honey proteins was studied using size exclusion chromatography. Manuka honey proteins contain a significantly higher amount of high molecular weight (HMW) fraction compared to non-manuka honey proteins. Moreover, HMW fraction of manuka honey proteins was stable against reducing agents such as dithiothreitol, whereas HMW fraction of non-manuka honey proteins was significantly decreased. Thus, the chemical nature of manuka honey HMW fraction is probably covalent MGO crosslinking, whereas non-manuka HMW fraction is caused by disulfide bonds. Storage of a non-manuka honey, which was artificially spiked with MGO and DHA, did not induce above mentioned fluorescence properties of proteins during 84days of storage. Hence, MGO-derived fluorescence and crosslinking of honey proteins can be useful parameters to characterize manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  6. Emission behaviors of unsymmetrical 1,3-diaryl-β-diketones: A model perfectly disclosing the effect of molecular conformation on luminescence of organic solids

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao; Li, Feng; Han, Shenghua; Zhang, Yufei; Jiao, Chuanjun; Wei, Jinbei; Ye, Kaiqi; Wang, Yue; Zhang, Hongyu

    2015-03-01

    A series of unsymmetrical 1,3-diaryl-β-diketones 1-6 displaying molecular conformation-dependent fluorescence quantum yields have been synthesized. Crystals with planar molecular conformation such as 1, 2, 3 and 4 are highly fluorescent (φf: 39-53%), and the one holding slightly twisted conformation (5) is moderately luminescent (φf = 17%), while crystal 6 possessing heavily bent structure is completely nonluminous (φf ~ 0). The distinct fluorescence efficiencies are ascribed to their different molecular conformations, since all the crystals hold the same crystal system, space group and crystal packing structures. Additionally, the fluorescent crystals 1-5 display low threshold amplified spontaneous emission (ASE) with small full widths at half-maximum (FWHM: 3-7 nm), indicating their potential as candidates for organic crystal lasing devices.

  7. Emerging Rapid Resistance Testing Methods for Clinical Microbiology Laboratories and Their Potential Impact on Patient Management

    PubMed Central

    Frickmann, Hagen; Zautner, Andreas E.

    2014-01-01

    Atypical and multidrug resistance, especially ESBL and carbapenemase expressing Enterobacteriaceae, is globally spreading. Therefore, it becomes increasingly difficult to achieve therapeutic success by calculated antibiotic therapy. Consequently, rapid antibiotic resistance testing is essential. Various molecular and mass spectrometry-based approaches have been introduced in diagnostic microbiology to speed up the providing of reliable resistance data. PCR- and sequencing-based approaches are the most expensive but the most frequently applied modes of testing, suitable for the detection of resistance genes even from primary material. Next generation sequencing, based either on assessment of allelic single nucleotide polymorphisms or on the detection of nonubiquitous resistance mechanisms might allow for sequence-based bacterial resistance testing comparable to viral resistance testing on the long term. Fluorescence in situ hybridization (FISH), based on specific binding of fluorescence-labeled oligonucleotide probes, provides a less expensive molecular bridging technique. It is particularly useful for detection of resistance mechanisms based on mutations in ribosomal RNA. Approaches based on MALDI-TOF-MS, alone or in combination with molecular techniques, like PCR/electrospray ionization MS or minisequencing provide the fastest resistance results from pure colonies or even primary samples with a growing number of protocols. This review details the various approaches of rapid resistance testing, their pros and cons, and their potential use for the diagnostic laboratory. PMID:25343142

  8. Performance of different reflectance and diffuse optical imaging tomographic approaches in fluorescence molecular imaging of small animals

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Petié, Philippe; da Silva, Anabela; Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Laidevant, Aurélie; Rizo, Philippe

    2006-03-01

    Optical imaging of fluorescent probes is an essential tool for investigation of molecular events in small animals for drug developments. In order to get localization and quantification information of fluorescent labels, CEA-LETI has developed efficient approaches in classical reflectance imaging as well as in diffuse optical tomographic imaging with continuous and temporal signals. This paper presents an overview of the different approaches investigated and their performances. High quality fluorescence reflectance imaging is obtained thanks to the development of an original "multiple wavelengths" system. The uniformity of the excitation light surface area is better than 15%. Combined with the use of adapted fluorescent probes, this system enables an accurate detection of pathological tissues, such as nodules, beneath the animal's observed area. Performances for the detection of ovarian nodules on a nude mouse are shown. In order to investigate deeper inside animals and get 3D localization, diffuse optical tomography systems are being developed for both slab and cylindrical geometries. For these two geometries, our reconstruction algorithms are based on analytical expression of light diffusion. Thanks to an accurate introduction of light/matter interaction process in the algorithms, high quality reconstructions of tumors in mice have been obtained. Reconstruction of lung tumors on mice are presented. By the use of temporal diffuse optical imaging, localization and quantification performances can be improved at the price of a more sophisticated acquisition system and more elaborate information processing methods. Such a system based on a pulsed laser diode and a time correlated single photon counting system has been set up. Performances of this system for localization and quantification of fluorescent probes are presented.

  9. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman

    2017-02-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.

  10. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    PubMed

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  11. Molecular intravascular imaging approaches for atherosclerosis.

    PubMed

    Press, Marcella Calfon; Jaffer, Farouc A

    2014-10-01

    Coronary artery disease (CAD) is an inflammatory process that results in buildup of atherosclerosis, typically lipid-rich plaque in the arterial wall. Progressive narrowing of the vessel wall and subsequent plaque rupture can lead to myocardial infarction and death. Recent advances in intravascular fluorescence imaging techniques have provided exciting coronary artery-targeted platforms to further characterize the molecular changes that occur within the vascular wall as a result of atherosclerosis and following coronary stent-induced vascular injury. This review will summarize exciting recent developments in catheter-based imaging of coronary arterial-sized vessels; focusing on two-dimensional near-infrared fluorescence imaging (NIRF) molecular imaging technology as an approach to specifically identify inflammation and fibrin directly within coronary artery-sized vessels. Intravascular NIRF is anticipated to provide new insights into the in vivo biology underlying high-risk plaques, as well as high-risks stents prone to stent restenosis or stent thrombosis.

  12. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes

    PubMed Central

    Oliinyk, Olena S.; Chernov, Konstantin G.

    2017-01-01

    Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs. PMID:28771184

  13. Playing Tic-Tac-Toe with a Sugar-Based Molecular Computer.

    PubMed

    Elstner, M; Schiller, A

    2015-08-24

    Today, molecules can perform Boolean operations and circuits at a level of higher complexity. However, concatenation of logic gates and inhomogeneous inputs and outputs are still challenging tasks. Novel approaches for logic gate integration are possible when chemical programming and software programming are combined. Here it is shown that a molecular finite automaton based on the concatenated implication function (IMP) of a fluorescent two-component sugar probe via a wiring algorithm is able to play tic-tac-toe.

  14. Analytical Applications Of High-Resolution Molecular Fluorescence Spectroscopy In Low Temperature Solid Matrices

    NASA Astrophysics Data System (ADS)

    Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.

    1989-05-01

    High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.

  15. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields, solvent-polarity- dependent fluorescence behavior, susceptibility to quenching by certain chemical species, and/or two-photon fluorescence, none of them has the combination of all of these attributes. Because the present dyes do have all of these attributes, they have potential utility as molecular probes in a variety of applications. Examples include (1) monitoring curing and deterioration of polymers; (2) monitoring protein expression; (3) high-throughput screening of drugs; (4) monitoring such chemical species as glucose, amines, amino acids, and metal ions; and (5) photodynamic therapy of cancers and other diseases.

  16. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  17. Functionality-Oriented Derivatization of Naphthalene Diimide: A Molecular Gel Strategy-Based Fluorescent Film for Aniline Vapor Detection.

    PubMed

    Fan, Jiayun; Chang, Xingmao; He, Meixia; Shang, Congdi; Wang, Gang; Yin, Shiwei; Peng, Haonan; Fang, Yu

    2016-07-20

    Modification of naphthalene diimide (NDI) resulted in a photochemically stable, fluorescent 3,4,5-tris(dodecyloxy)benzamide derivative of NDI (TDBNDI), and introduction of the long alkyl chains endowed the compound with good compatibility with commonly found organic solvents and in particular superior self-assembly in the solution state. Further studies revealed that TDBNDI forms gels with nine of the 18 solvents tested at a concentration of 2.0% (w/v), and the critical gelation concentrations of five of the eight gels are lower than 1.0% (w/v), indicating the high efficiency of the compound as a low-molecular mass gelator (LMMG). Transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy studies revealed the networked fibrillar structure of the TDBNDI/methylcyclohexane (MCH) gel. On the basis of these findings, a fluorescent film was developed via simple spin-coating of the TDBNDI/MCH gel on a glass substrate surface. Fluorescence behavior and sensing performance studies demonstrated that this film is photochemically stable, and sensitive and selective to the presence of aniline vapor. Notably, the response is instantaneous, and the sensing process is fully and quickly reversible. This case study demonstrates that derivatization of photochemically stable fluorophores into LMMGs is a good strategy for developing high-performance fluorescent sensing films.

  18. Influence of Donor on the Sensing Performance of a Series of Through-Bond Energy Transfer-Based Two-photon Fluorescent Cu(2+) Probes.

    PubMed

    Zhang, Yu-Jin; Wang, Xin; Zhou, Yong; Wang, Chuan-Kui

    2016-07-01

    Optical properties of a series of molecular two-photon fluorescent Cu(2+) probes containing the same acceptor (rhodamine group) are analyzed using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the presence of Cu(2+) . In this study, the compound with naphthalene as the donor is shown to be excellent ratiometric fluorescent chemosensor, whereas the compound with quinoline derivative as the donor shows off/on-typed colorimetric fluorescent response. For the compound with naphthalimide derivative as the donor, changing the connection between the donor and acceptor can efficiently prevent the fluorescent quenching of the probe both in the absence and presence of Cu(2+) . The donor moiety and the connection between donor and acceptor are thus found to play dominant roles on sensing performance of these probes. Moreover, distributions of molecular orbitals involved in the excitation and emission of the probes are analyzed to explore responsive mechanism of the probes. The through-bond energy transfer process is theoretically demonstrated. Our results are used to elucidate the available experimental measurements. This work is helpful to understand the relationships of structure with optical properties for the studied probes. © 2016 The American Society of Photobiology.

  19. A fluorescein-based chemosensor for relay fluorescence recognition of Cu(ii) ions and biothiols in water and its applications to a molecular logic gate and living cell imaging.

    PubMed

    Fu, Zhen-Hai; Yan, Lu-Bin; Zhang, Xiaolong; Zhu, Fan-Fan; Han, Xin-Long; Fang, Jianguo; Wang, Ya-Wen; Peng, Yu

    2017-05-16

    Relay recognition of copper(ii) ions and biothiols via a fluorescence "on-off-on" cascade was designed and realized as a new sequential combination of cations and small molecules. Probe 1 bearing a fluorescein skeleton was thus synthesized, which performed well in 100% HEPES buffer (pH = 7.0) solution, as a highly sensitive, selective fluorescence sensor for Cu 2+ . The limit of detection (LOD, 0.017 ppm) was obtained, and this value is much lower than 1.3 ppm, allowed by US EPA. The 1 : 1 complex generated from fast sensing of Cu 2+ when excited at 491 nm, showed good relay recognition for biothiols (i.e., Cys, Hcy and GSH with low detection limits of 0.12 μM, 0.036 μM and 0.024 μM, respectively) via remarkable fluorescence enhancement. The origin of this relay process was disclosed through ESI-MS and corresponding density functional theory (DFT) computations. Notably, probe 1 can be utilized for the construction of a molecular logic gate with the IMPLICATION function by using the above fluorescence changes. Moreover, this relay recognition was also applied to HepG2 cell imaging successfully.

  20. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors

    PubMed Central

    Dumont, Matthieu F; Yadavilli, Sridevi; Sze, Raymond W; Nazarian, Javad; Fernandes, Rohan

    2014-01-01

    Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using ex vivo fluorescence imaging. PMID:24920896

  1. A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405

    PubMed Central

    Godovikova, Valentina; Goetting-Minesky, M. Paula; Shin, Jae M.; Kapila, Yvonne L.; Rickard, Alexander H.

    2015-01-01

    Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism. PMID:26162875

  2. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    PubMed

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS 4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine ( 3 *ZnPcS 4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS 4 . The fluorescence properties of ZnPcS 4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS 4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  3. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  4. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  5. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis.

    PubMed

    Schulze, Philipp; Ludwig, Martin; Kohler, Frank; Belder, Detlev

    2005-03-01

    Deep UV fluorescence detection at 266-nm excitation wavelength has been realized for sensitive detection in microchip electrophoresis. For this purpose, an epifluorescence setup was developed enabling the coupling of a deep UV laser into a commercial fluorescence microscope. Deep UV laser excitation utilizing a frequency quadrupled pulsed laser operating at 266 nm shows an impressive performance for native fluorescence detection of various compounds in fused-silica microfluidic devices. Aromatic low molecular weight compounds such as serotonin, propranolol, a diol, and tryptophan could be detected at low-micromolar concentrations. Deep UV fluorescence detection was also successfully employed for the detection of unlabeled basic proteins. For this purpose, fused-silica chips dynamically coated with hydroxypropylmethyl cellulose were employed to suppress analyte adsorption. Utilizing fused-silica chips permanently coated with poly(vinyl alcohol), it was also possible to separate and detect egg white chicken proteins. These data show that deep UV fluorescence detection significantly widens the application range of fluorescence detection in chip-based analysis techniques.

  6. The effect of annulation of benzene rings on the photophysics and electronic structure of tetraazachlorin molecules

    NASA Astrophysics Data System (ADS)

    Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.

    2017-10-01

    The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.

  7. Early Detection of Breast Cancer Using Molecular Beacons

    DTIC Science & Technology

    2008-01-01

    a molecular beacon (MB)-based approach for direct examination of gene expression in viable and fixed cells (2, 3). This objective of proposed study ...can be distinguished from normal cells (dark) (Figure 1) (2, 3, 8). Recently, a class of new fluorescent emitting nanoparticles, semiconductor ...morphological classification. This method may offer a simple and fast procedure to detect biomarker gene expression in clinical samples. Our study results

  8. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  9. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV

    PubMed Central

    Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki

    2016-01-01

    Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876

  10. Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques.

    PubMed

    Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh

    2016-06-01

    The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP)

    PubMed Central

    2015-01-01

    We examine the fluorescence anisotropy of rod-shaped guests held inside the channels of tris(o-phenylenedioxy)cyclotriphosphazene (TPP) host nanocrystals, characterized by powder X-ray diffraction and solid state NMR spectroscopy. We address two issues: (i) are light polarization measurements on an aqueous colloidal solution of TPP nanocrystals meaningful, or is depolarization by scattering excessive? (ii) Can measurements of the rotational mobility of the included guests be performed at low enough loading levels to suppress depolarization by intercrystallite energy transfer? We find that meaningful measurements are possible and demonstrate that the long axis of molecular rods included in TPP channels performs negligible vibrational motion. PMID:25937858

  12. Double-excitation fluorescence spectral imaging: eliminating tissue auto-fluorescence from in vivo PPIX measurements

    NASA Astrophysics Data System (ADS)

    Torosean, Sason; Flynn, Brendan; Samkoe, Kimberley S.; Davis, Scott C.; Gunn, Jason; Axelsson, Johan; Pogue, Brian W.

    2012-02-01

    An ultrasound coupled handheld-probe-based optical fluorescence molecular tomography (FMT) system has been in development for the purpose of quantifying the production of Protoporphyrin IX (PPIX) in aminolevulinic acid treated (ALA), Basal Cell Carcinoma (BCC) in vivo. The design couples fiber-based spectral sampling of PPIX fluorescence emission with a high frequency ultrasound imaging system, allowing regionally localized fluorescence intensities to be quantified [1]. The optical data are obtained by sequential excitation of the tissue with a 633nm laser, at four source locations and five parallel detections at each of the five interspersed detection locations. This method of acquisition permits fluorescence detection for both superficial and deep locations in ultrasound field. The optical boundary data, tissue layers segmented from ultrasound image and diffusion theory are used to estimate the fluorescence in tissue layers. To improve the recovery of the fluorescence signal of PPIX, eliminating tissue autofluorescence is of great importance. Here the approach was to utilize measurements which straddled the steep Qband excitation peak of PPIX, via the integration of an additional laser source, exciting at 637 nm; a wavelength with a 2 fold lower PPIX excitation value than 633nm.The auto-fluorescence spectrum acquired from the 637 nm laser is then used to spectrally decouple the fluorescence data and produce an accurate fluorescence emission signal, because the two wavelengths have very similar auto-fluorescence but substantially different PPIX excitation levels. The accuracy of this method, using a single source detector pair setup, is verified through animal tumor model experiments, and the result is compared to different methods of fluorescence signal recovery.

  13. A fluorescent molecular rotor probes the kinetic process of degranulation of mast cells.

    PubMed

    Furuno, T; Isoda, R; Inagaki, K; Iwaki, T; Noji, M; Nakanishi, M

    1992-08-01

    A confocal fluorescence microscope was used to study the exocytotic secretory processes of mast cells in combination with an fluorescent molecular rotor, 9-(dicyanovinyl)julolidine (DCVJ). DCVJ is known to be an unique fluorescent dye which increases its quantum yield with decreasing intramolecular rotation. Here, DCVJ-loaded peritoneal rat mast cells were stimulated with compound 48/80 and their fluorescence images were compared with fluorescence calcium images of fluo-3-loaded mast cells. Subsequent to transient increases in intracellular free calcium ion concentration, DCVJ fluorescence increased dramatically in the cytoplasm and formed a ring-like structure around the nucleus, suggesting the possibility that the dye bound to the proteins composing the cytoskeletal architecture. Furthermore, the increases of DCVJ fluorescence intensities were mostly blocked in the presence of cytochalasin D (10 microM). However, fluo-3 fluorescence intensities still increased after addition of compound 48/80.

  14. Thermal stability of the complex formed between carotenoids from sea buckthorn (Hippophae rhamnoides L.) and bovine β-lactoglobulin

    NASA Astrophysics Data System (ADS)

    Aprodu, Iuliana; Ursache, Florentina-Mihaela; Turturică, Mihaela; Râpeanu, Gabriela; Stănciuc, Nicoleta

    2017-02-01

    Sea buckthorn has gained importance as a versatile nutraceutical, due to its high nutritive value in terms of carotenoids content. β-Lactoglobulin (β-LG) is a natural carrier for various bioactive compounds. In this study, the effect of thermal treatment in the temperature range of 25 to 100 °C for 15 min on the complex formed by β-LG and carotenoids from sea buckthorn was reported, based on fluorescence spectroscopy, molecular docking and molecular dynamics simulation results. Also, the berries extracts were analyzed for their carotenoids content. The chromatographic profile of the sea buckthorn extracts revealed the presence of zeaxanthin and β-carotene, as major compounds. The Stern-Volmer constants and binding parameters between β-LG and β-carotene were estimated based on quenching experiments. When thermally treating the β-LG-carotenoids mixtures, an increase in intrinsic and extrinsic fluorescence intensity up to 90 °C was observed, together with blue-shifts in maximum emission in the lower temperature range and red-shifts at higher temperature. Based on fluorescence spectroscopy results, the unfolding of the protein molecules at high temperature was suggested. Detailed information obtained at atomic level revealed that events taking place in the complex heated at high temperature caused important changes in the β-carotene binding site, therefore leading to a more thermodynamically stable assembly. This study can be used to understand the changes occurring at molecular level that could help food operators to design new ingredients and functional foods, and to optimize the processing methods in order to obtain healthier food products.

  15. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  16. Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.

    PubMed

    Moreno, Andrew; Knee, J L; Mukerji, Ishita

    2016-12-08

    The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.

  17. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies.

    PubMed

    Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan

    2017-05-01

    Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.

  18. PET and NIR Optical Imaging Using Self-Illuminating 64Cu-Doped Chelator-Free Gold Nanoclusters

    PubMed Central

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-01-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster (64Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide 64Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. 64Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, 64Cu-doped AuNCs showed high tumor uptake (14.9%ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. PMID:25224367

  19. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.

    PubMed

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-12-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster ((64)Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide (64)Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. (64)Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, (64)Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. Published by Elsevier Ltd.

  20. Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Gaosong; Song, Jingjing; Zhang, Haoli; Jiang, Yuntian; Liu, Weisheng; Zhang, Wei; Wang, Baodui

    2015-08-01

    Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine.Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine. Electronic supplementary information (ESI) available: VSM, XRD, EDX, ESI-MS spectra, UV-vis and FT-IR spectra, 1H NMR spctra. See DOI: 10.1039/c5nr03421c

  1. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bin

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the singlemore » molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).« less

  2. MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging

    NASA Astrophysics Data System (ADS)

    Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic

    2014-09-01

    Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.

  3. A solution-based single-molecule study of surface-bound PBIs: solvent-mediated environmental effects on molecular flexibility.

    PubMed

    Lee, Ji-Eun; Han, Ye Ri; Ham, Sujin; Jun, Chul-Ho; Kim, Dongho

    2017-11-08

    We have investigated the fundamental photophysical properties of surface-bound perylene bisimide (PBI) molecules in a solution-phase at the single-molecule level. By efficient immobilization of single PBIs on glass, we were able to simultaneously monitor fluorescence intensity trajectories, fluorescence lifetimes, and emission spectra of individual PBIs in organic and aqueous media using confocal microscopy. We showed that the fluorescence dynamics of single PBIs in the solution phase is highly dependent on their local and chemical environments. Furthermore, we visualized different spatial-fluctuations of surface-bound PBIs using defocused wide-field imaging. While PBIs show more steric flexibility in organic media, the flexible motion of PBI molecules in aqueous solution is relatively prohibited due to a cage effect by a hydrogen bonding network, which is previously unobserved. Our method opens up a new possibility to investigate the photophysical properties of multi-chromophoric systems in various solvents at the single-molecule level for developing optimal molecular devices such as water-proof devices.

  4. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  5. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  6. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  7. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.

  8. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    NASA Astrophysics Data System (ADS)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  9. A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın

    2015-02-01

    A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.

  10. Photophysics of a coumarin based Schiff base in solvents of varying polarities

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Roy, Nayan; Singh, T. Sanjoy; Chattopadhyay, Nitin

    2018-01-01

    The present work reports detailed photophysics of a coumarin based Schiff base, namely, (E)-7-(((8-hydroxyquinolin-2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (HMC) in different solvents of varying polarity exploiting steady state absorption, fluorescence and time resolved fluorescence spectroscopy. The dominant photophysical features of HMC are discussed in terms of emission from an intramolecular charge transfer (ICT) excited state. Molecular orbital (MO) diagrams as obtained from DFT based computational analysis confirms the occurrence of charge transfer from 8‧-hydroxy quinoline moiety of the molecule to the coumarin part. The notable difference in the photophysical response of HMC from its analogous coumarin (C480) lies in a lower magnitude of fluorescence quantum yield of the former, particularly in the solvents of low polarity, which is rationalized by considering the higher rate of non-radiative decay of HMC in apolar solvents. Phosphorescence emission as well as phosphorescence lifetime of HMC has also been reported in 77 K frozen matrix.

  11. Interaction of Chelerythrine with Keyhole Limpet Hemocyanin: a Fluorescence Spectroscopy and Molecular Docking Study

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Long, R. Q.; Wang, Y. H.; Chen, C. L.

    2018-05-01

    The quenching mechanism between chelerythrine (CHE) and keyhole limpet hemocyanin (KLH) was investigated using fluorescence spectroscopy and molecular docking. The experiments were conducted at three different temperatures (293, 298, and 303 K). The results revealed that the intrinsic fluorescence of KLH was strongly quenched by CHE through a static quenching mechanism. The thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction were calculated, indicating that the interaction between CHE and KLH was spontaneous and that van der Waals forces and hydrogen bond formation played major roles in the binding process. The intrinsic fluorescence of the tyrosine and tryptophan residues in KLH was studied by synchronous fluorescence, which suggested that CHE changed the conformation of KLH. Finally, molecular docking was used to obtain detailed information on the binding sites and binding affinities between CHE and KLH.

  12. A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots.

    PubMed

    Saberi, Zeinab; Rezaei, Behzad; Faroukhpour, Hossein; Ensafi, Ali Ashghar

    2018-05-17

    Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specific optical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CD binds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zhe MTA concentration. The fluorometric limit of detection is 1 nM with a dynamic range from 5 to 156 nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6 Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS). Graphical abstract Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence of C-Ds is quenched. On addition of MTA, fluorescence is restored.

  13. Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2018-01-01

    4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.

  14. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    PubMed Central

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests. PMID:22539973

  15. Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean; Houwing, A. Frank P.; Fox, Jodie S.; Smith, Daniel R.

    2003-01-01

    We demonstrate a new variation of molecular-tagging velocimetry for hypersonic flows based on laser-induced fluorescence. A thin line of nitric-oxide molecules is excited with a laser beam and then, after a time delay, a fluorescence image of the displaced line is acquired. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National University s T2 free-piston shock tunnel. The single-shot velocity measurement uncertainty in the freestream was found to be 3.5%, based on 90% confidence. The method is also demonstrated in the separated flow region forward of a blunt fin attached to a flat plate in a Mach 7.4 flow produced by the Australian National University s T3 free-piston shock tunnel. The measurement uncertainty in the blunt fin experiment is approximately 30%, owing mainly to low fluorescence intensities, which could be improved significantly in future experiments. This velocimetry method is applicable to very high-speed flows that have low collisional quenching of the fluorescing species. It is particularly convenient in facilities where planar laser-induced fluorescence is already being performed.

  16. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  17. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  18. Quantitative imaging with fluorescent biosensors.

    PubMed

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  19. Light propagation analysis for fluorescence measurements of a molecular probe in the brain

    NASA Astrophysics Data System (ADS)

    Asai, Kota; Togashi, Takuya; Okada, Eiji

    2017-04-01

    Light propagation in the slab head model that consists of five types of tissues was calculated to estimate the fluorescent intensity emerged from a molecular probe in the brain by a Monte Carlo simulation. The thickness of the scalp, skull and cerebrospinal fluid layer was varied to analyze the influence of the thickness of the superficial tissues on the fluorescent intensity detected on the scalp surface. The fluorescent intensity is exponentially reduced with increasing the depth of the brain surface. The thickness of the cerebrospinal fluid layer more significantly affects the fluorescent intensity than that of the scalp and skull.

  20. Fluorescence correlation spectroscopy: principles and applications.

    PubMed

    Bacia, Kirsten; Haustein, Elke; Schwille, Petra

    2014-07-01

    Fluorescence correlation spectroscopy (FCS) is used to study the movements and the interactions of biomolecules at extremely dilute concentrations, yielding results with good spatial and temporal resolutions. Using a number of technical developments, FCS has become a versatile technique that can be used to study a variety of sample types and can be advantageously combined with other methods. Unlike other fluorescence-based techniques, the analysis of FCS data is not based on the average intensity of the fluorescence emission but examines the minute intensity fluctuations caused by spontaneous deviations from the mean at thermal equilibrium. These fluctuations can result from variations in local concentrations owing to molecular mobility or from characteristic intermolecular or intramolecular reactions of fluorescently labeled biomolecules present at low concentrations. Here, we provide a basic introduction to FCS, including its technical development and theoretical basis, experimental setup of an FCS system, adjustment of a setup, data acquisition, and analysis of FCS measurements. Finally, the application of FCS to the study of lipid bilayer membranes and to living cells is discussed. © 2014 Cold Spring Harbor Laboratory Press.

  1. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors.

    PubMed

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias; Stummer, Walter

    2016-03-01

    Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. Age, tumor volume, and F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether fluorescence in grade II gliomas identifies a subtype with worse prognosis remains to be determined.

  2. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Near-Infrared Fluorescence Imaging Guided Therapy: Molecular Beacon-Based Photosensitizers Triggered by Breast Cancer-Specific mRNA

    DTIC Science & Technology

    2007-05-01

    1989) Specific targeting and toxicity of sulphonated aluminium phthalocyanine photosensitised liposomes directed to cells by monoclonal antibody in...fluorescence emission wavelengths (λabs 825nm; λem 840nm)[1]. Since the native BChl is very unstable and undergoes rapid oxidation to the chlorin state...noticeable dark toxicity in experimental condition, the viability of cells incubated with 2μM of P30C, P30 or r- P30C without light being the same as

  4. Fluorescence spectroscopy of trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Wright, Kenneth Charles

    This thesis describes the development of a unique instrument capable of detecting fluorescence emission from large gas phase molecular ions trapped in a three-dimensional quadrupole ion trap. The hypothesis that has formed the basis of this work is the belief that fluorescence spectroscopy can be combined with ion trap mass spectrometry to probe the structure of gas phase molecular ions. The ion trap provides a rarefied environment where fluorescence experiments can be conducted without interference from solvent molecules or impurities. Although fluorescence was not detected during preliminary experiments, two significant experimental challenges associated with detecting the gas phase fluorescence of ions were discovered. First, gas phase ions were vulnerable to photodissociation and low laser powers were necessary to avoid photodissociation. Since fluorescence emission is directly proportional to laser intensity, a lower laser power limits the fluorescence signal. Second, the fluorescence emission was not significantly Stokes shifted from the excitation. The lack of Stokes shift meant the small fluorescence signal must be detected in the presence of a large amount of background scatter generated by the excitation. Initially, this background was seven orders of magnitude higher than the analytical signal ultimately detected. A specially designed fiber optic probe was inserted between the electrodes of the ion trap to stop light scattered off the outside surfaces of the trap from reaching the detector. The inside surfaces of the ion trap were coated black to further reduce the amount of scattered light collected. These innovations helped reduced the background by six orders of magnitude and fluorescence emission from rhodamine-6G was detected. Pulse counting experiments were used to optimize fluorescence detection. The effects of trapping level, laser power, and irradiation time were investigated and optimized. The instrument developed in this work not only allows for the detection of fluorescent photons, but the sensitivity is high enough for the light to be dispersed and an emission spectrum recorded. The emission spectra of rhodamine-6G and 5-carboxyrhodamine-6G ions reported in this thesis represent the first spectra recorded from large molecular ions confined in a quadrupole ion trap. Finally, anti-Stokes fluorescence from rhodamine-6G was also detected.

  5. The Phasor Approach to Fluorescence Lifetime Imaging Analysis

    PubMed Central

    Digman, Michelle A.; Caiolfa, Valeria R.; Zamai, Moreno; Gratton, Enrico

    2008-01-01

    Changing the data representation from the classical time delay histogram to the phasor representation provides a global view of the fluorescence decay at each pixel of an image. In the phasor representation we can easily recognize the presence of different molecular species in a pixel or the occurrence of fluorescence resonance energy transfer. The analysis of the fluorescence lifetime imaging microscopy (FLIM) data in the phasor space is done observing clustering of pixels values in specific regions of the phasor plot rather than by fitting the fluorescence decay using exponentials. The analysis is instantaneous since is not based on calculations or nonlinear fitting. The phasor approach has the potential to simplify the way data are analyzed in FLIM, paving the way for the analysis of large data sets and, in general, making the FLIM technique accessible to the nonexpert in spectroscopy and data analysis. PMID:17981902

  6. Determination of amantadine and rimantadine using a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Quan; Qin, Yan-Fang; Du, Li-Ming; Li, Jun-Fei; Jing, Xu; Chang, Yin-Xia; Wu, Hao

    2012-12-01

    Amantadine hydrochloride (AMA) and rimantadine hydrochloride (RIM) are non-fluorescent in aqueous solutions. This property makes their determination through direct fluorescent method difficult. The competing reactions and the supramolecular interaction mechanisms between the two drugs and coptisine (COP) as they fight for occupancy of the cucurbit[7]uril (CB[7]) cavity, were studied using spectrofluorimetry, 1H NMR, and molecular modeling calculations. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescent probe method of high sensitivity and selectivity was developed to determine AMA or RIM in their pharmaceutical dosage forms and in urine samples with good precision and accuracy. The linear range of the method was from 0.0040 to 1.0 μg mL-1 with a detection limit ranging from 0.0012 to 0.0013 μg mL-1. This shows that the proposed method has promising potential for therapeutic monitoring and pharmacokinetics and for clinical application.

  7. A Dual Modality System for Simultaneous Fluorescence and Positron Emission Tomography Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing

    2011-02-01

    A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.

  8. Surface charge- and space-dependent transport of proteins in crowded environments of nanotailored posts.

    PubMed

    Choi, Chang Kyoung; Fowlkes, Jason D; Retterer, Scott T; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J

    2010-06-22

    The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.

  9. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.

  10. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide.

    PubMed

    Zhao, Yuzhen; Li, Kexuan; He, Zemin; Zhang, Yongming; Zhao, Yang; Zhang, Haiquan; Miao, Zongcheng

    2016-11-30

    Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  11. A Cu²⁺-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate.

    PubMed

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-15

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu(2+) over other metal ions in acetonitrile. Upon addition of Cu(2+) ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu(2+), the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu(2+) can be restored with the introduction of EDTA or S(2-). Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu(2+) and S(2-) as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  13. Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan.

    PubMed

    Chen, Ting-Chien; Hseu, Zeng-Yei; Jean, Jiin-Shuh; Chou, Mon-Lin

    2016-09-01

    The formation of an arsenic (As)-dissolved organic matter (DOM) complex is important in driving the release of arsenic in groundwater. This study collected groundwater samples from a 20 m deep well throughout 2014 and separated each into three subsamples by ultrafiltration: high molecular weight-DOM (HDOM, 0.45 μm-10 kDa), medium molecular weight-DOM (MDOM, 10-1 kDa), and low molecular weight-DOM (LDOM, <1 kDa) solutions. The fractional DOM was measured with a three-dimensional excitation-emission matrix (EEM) via fluorescence spectroscopy. A fluorescence quenching method was used to calculate the apparent stability constant (Ks) between arsenic and the fractional DOM. Based on the EEM records, three fluorescence indicators were further calculated to characterize the DOM sources, including the fluorescence index (FI), the biological index (BI), and the humification index (HI). The experimental results indicated that arsenic in the groundwater was mainly partitioned into the MDOM and LDOM fractions. All fractional DOMs contained humic acid-like substances and were considered as microbial sources. LDOM had the highest humification degree and aromaticity, followed by MDOM and HDOM. The As and DOM association could be formed by a Fe-bridge, which was demonstrated by the Ks values and fourier transform infrared (FTIR) spectra of the DOM. The formation of AsFe-DOM complex was only significant in the MDOM and LDOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Confocal fluorescence techniques in industrial application

    NASA Astrophysics Data System (ADS)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  15. Multimodality molecular imaging and extracellular vesicle release based genetic profiling with porphyrin nanodroplets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Paproski, Robert J.

    2017-03-01

    For emerging tissue-engineering applications, transplants, and cell-based therapies it is important to assess cell viability and function in vivo in deep tissues. Bioluminescence and fluorescence methods are poorly suited to deep monitoring applications with high resolution and require genetically-engineered reporters which are not always feasible. We report on a method for imaging cell viability using deep, high-resolution photoacoustic imaging. We use an exogenous dye, Resazurin, itself weakly fluorescent until it is reduced from blue to a pink color with bright red fluorescence. Upon cell death fluorescence is lost and an absorption shift is observed. The irreversible reaction of resazurin to resorufin is proportional to aerobic respiration. We detect colorimetric absorption shifts using multispectral photoacoustic imaging and quantify the fraction of viable cells. SKOV-3 cells with and without ±80oC heat treatment were imaged after Resazurin treatment. High 575nm:620nm ratiometric absorption and photoacoustic signals in viable cells were observed with a much lower ratio in low-viability populations.

  16. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  17. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    PubMed

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium.

    PubMed

    Kaur, Manjot; Mehta, Surinder K; Kansal, Sushil Kumar

    2017-06-05

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16μM with detection limit (LOD) of 0.92μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  20. DNA-programmed dynamic assembly of quantum dots for molecular computation.

    PubMed

    He, Xuewen; Li, Zhi; Chen, Muzi; Ma, Nan

    2014-12-22

    Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD-based bio-interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA-programmed dynamic assembly of multi-color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)-based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half-adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD-biocomputing-based intelligent molecular diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A highly selective fluorescent chemosensor for Cu2+ : synthesis and properties of a rhodamine B-containing diarylethene.

    PubMed

    Xue, Dandan; Zheng, Chunhong; Qu, Shengzu; Liao, Guanming; Fan, Congbin; Liu, Gang; Pu, Shouzhi

    2017-06-01

    A diarylethene bearing a triazole-linked rhodamine B unit was synthesized. Its fluorescent emission was significantly enhanced in the presence of protons or Cu 2 + due to transformation from the pirocyclic form to open-ring form. The fluorescence was quenched sequentially upon irradiation with 297 nm light based on the intramolecular fluorescence resonance energy transfer mechanism. In an acetonitrile: water binary solvent (1: 1 v/v), the compound showed significant fluorescent enhancement for Cu 2 + compared with a wide range of tested metal ions with a fast response and a limit of detection of 2.86 × 10 -8  mol L -1 . Using Cu 2 + and UV light as the chemical inputs, and fluorescence intensity at 597 nm as the output, a logic gate was developed at the molecular level. Moreover, the compound can be used with a high accuracy to detect Cu 2 + in a natural water sample. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Laser fluorescence fluctuation excesses in molecular immunology experiments

    NASA Astrophysics Data System (ADS)

    Galich, N. E.; Filatov, M. V.

    2007-04-01

    A novel approach to statistical analysis of flow cytometry fluorescence data have been developed and applied for population analysis of blood neutrophils stained with hydroethidine during respiratory burst reaction. The staining based on intracellular oxidation hydroethidine to ethidium bromide, which intercalate into cell DNA. Fluorescence of the resultant product serves as a measure of the neutrophil ability to generate superoxide radicals after induction respiratory burst reaction by phorbol myristate acetate (PMA). It was demonstrated that polymorphonuclear leukocytes of persons with inflammatory diseases showed a considerably changed response. Cytofluorometric histograms obtained have unique information about condition of neutrophil population what might to allow a determination of the pathology processes type connecting with such inflammation. A novel approach to histogram analysis is based on analysis of high-momentum dynamic of distribution. The features of fluctuation excesses of distribution have unique information about disease under consideration.

  3. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.

    PubMed

    Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin

    2017-11-02

    Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.

  4. Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  5. RBAP, a rhodamine B-based derivative: synthesis, crystal structure analysis, molecular simulation, and its application as a selective fluorescent chemical sensor for Sn2+.

    PubMed

    Bao, Xiaofeng; Cao, Xiaowei; Nie, Xuemei; Jin, Yanyan; Zhou, Baojing

    2014-06-11

    A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job's plot suggested the RBAP formed a 1:1 complex with Sn2+.

  6. Toward a Droplet-Based Single-Cell Radiometric Assay.

    PubMed

    Gallina, Maria Elena; Kim, Tae Jin; Shelor, Mark; Vasquez, Jaime; Mongersun, Amy; Kim, Minkyu; Tang, Sindy K Y; Abbyad, Paul; Pratx, Guillem

    2017-06-20

    Radiotracers are widely used to track molecular processes, both in vitro and in vivo, with high sensitivity and specificity. However, most radionuclide detection methods have spatial resolution inadequate for single-cell analysis. A few existing methods can extract single-cell information from radioactive decays, but the stochastic nature of the process precludes high-throughput measurement (and sorting) of single cells. In this work, we introduce a new concept for translating radioactive decays occurring stochastically within radiolabeled single-cells into an integrated, long-lasting fluorescence signal. Single cells are encapsulated in radiofluorogenic droplets containing molecular probes sensitive to byproducts of ionizing radiation (primarily reactive oxygen species, or ROS). Different probes were examined in bulk solutions, and dihydrorhodamine 123 (DHRh 123) was selected as the lead candidate due to its sensitivity and reproducibility. Fluorescence intensity of DHRh 123 in bulk increased at a rate of 54% per Gy of X-ray radiation and 15% per MBq/ml of 2-deoxy-2-[ 18 F]-fluoro-d-glucose ([ 18 F]FDG). Fluorescence imaging of microfluidic droplets showed the same linear response, but droplets were less sensitive overall than the bulk ROS sensor (detection limit of 3 Gy per droplet). Finally, droplets encapsulating radiolabeled cancer cells allowed, for the first time, the detection of [ 18 F]FDG radiotracer uptake in single cells through fluorescence activation. With further improvements, we expect this technology to enable quantitative measurement and selective sorting of single cells based on the uptake of radiolabeled small molecules.

  7. Quantum dot-based molecular beacon to monitor intracellular microRNAs.

    PubMed

    Lee, Jonghwan; Moon, Sung Ung; Lee, Yong Seung; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Ali, Daoud; Ahmed, Javed; Al Salem, Abdullah M; Kim, Soonhag

    2015-06-02

    Fluorescence monitoring of endogenous microRNA (miRNA or miR) activity related to neuronal development using nano-sized materials provides crucial information on miRNA expression patterns in a noninvasive manner. In this study, we report a new method to monitor intracellular miRNA124a using quantum dot-based molecular beacon (R9-QD-miR124a beacon). The R9-QD-miR124a beacon was constructed using QDs and two probes, miR124a-targeting oligomer and arginine rich cell-penetrating peptide (R9 peptide). The miR124a-targeting oligomer contains a miR124a binging sequence and a black hole quencher 1 (BHQ1). In the absence of target miR124a, the R9-QD-miR124a beacon forms a partial duplex beacon and remained in quenched state because the BHQ1 quenches the fluorescence signal of the R9-QD-miR124a beacon. The binding of miR124a to the miR124a binding sequence of the miR124a-targeting oligomer triggered the separation of the BHQ1 quencher and subsequent signal-on of a red fluorescence signal. Moreover, enhanced cellular uptake was achieved by conjugation with the R9 peptide, which resulted in increased fluorescent signal of the R9-QD-miR124a beacons in P19 cells during neurogenesis due to the endogenous expression of miR124a.

  8. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Crystallography and Molecular Arrangement of Polymorphic Monolayer J-Aggregates of a Cyanine Dye: Multiangle Polarized Light Fluorescence Optical Microscopy Study.

    PubMed

    Prokhorov, Valery V; Pozin, Sergey I; Perelygina, Olga M; Mal'tsev, Eugene I

    2018-04-24

    The molecular orientation in monolayer J-aggregates of 3,3-di(γ-sulfopropyl)-5,5-dichlorotiamonomethinecyanine dye has been precisely estimated using improved linear polarization measurements in the fluorescence microscope in which a multiangle set of polarization data is obtained using sample rotation. The estimated molecular orientation supplemented with the previously established crystallographic constraints based on the analysis of the well-developed two-dimensional J-aggregate shapes unambiguously indicate the staircase type of molecular arrangement for striplike J-aggregates with the staircases oriented along strips. The molecular transition dipoles are inclined at an angle of ∼25° to the strip direction, whereas the characteristic strip vertex angle ∼45° is formed by the [100] and [1-10] directions of the monoclinic unit cell. Measurements of the geometry of partially unwound tubes and their polarization properties support the model of tube formation by close-packed helical winding of flexible monolayer strips. In the tubes, the long molecular axes are oriented at a small angle in the range of 5-15° to the normal to the tube axis providing low bending energy. At a nanoscale, high-resolution atomic force microscopy imaging of J-aggregate monolayers reveals a complex quasi-one-dimensional organization.

  10. Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation.

    PubMed

    Kashida, Hiromu; Yamaguchi, Kyohei; Hara, Yuichi; Asanuma, Hiroyuki

    2012-07-15

    In this study, we synthesized a simple but efficient quencher-free molecular beacon tethering 7-hydroxycoumarin on D-threoninol based on its pK(a) change. The pK(a) of 7-hydroxycoumarin in a single strand was determined as 8.8, whereas that intercalated in the duplex was over 10. This large pK(a) shift (more than 1.2) upon hybridization could be attributed to the anionic and hydrophobic microenvironment inside the DNA duplex. Because 7-hydroxycoumarin quenches its fluorescence upon protonation, the emission intensity of the duplex at pH 8.5 was 1/15 that of the single strand. We applied this quenching mechanism to the preparation of a quencher-free molecular beacon by introducing the dye into the middle of the stem part. In the absence of the target, the stem region formed a duplex and fluorescence was quenched. However, when the target was added, the molecular beacon opened and the dye was deprotonated. As a result, the emission intensity of the molecular beacon with the target was 10 times higher than that without the target. Accordingly, a quencher-free molecular beacon utilizing the pK(a) change was successfully developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Thermal stability of the complex formed between carotenoids from sea buckthorn (Hippophae rhamnoides L.) and bovine β-lactoglobulin.

    PubMed

    Aprodu, Iuliana; Ursache, Florentina-Mihaela; Turturică, Mihaela; Râpeanu, Gabriela; Stănciuc, Nicoleta

    2017-02-15

    Sea buckthorn has gained importance as a versatile nutraceutical, due to its high nutritive value in terms of carotenoids content. β-Lactoglobulin (β-LG) is a natural carrier for various bioactive compounds. In this study, the effect of thermal treatment in the temperature range of 25 to 100°C for 15min on the complex formed by β-LG and carotenoids from sea buckthorn was reported, based on fluorescence spectroscopy, molecular docking and molecular dynamics simulation results. Also, the berries extracts were analyzed for their carotenoids content. The chromatographic profile of the sea buckthorn extracts revealed the presence of zeaxanthin and β-carotene, as major compounds. The Stern-Volmer constants and binding parameters between β-LG and β-carotene were estimated based on quenching experiments. When thermally treating the β-LG-carotenoids mixtures, an increase in intrinsic and extrinsic fluorescence intensity up to 90°C was observed, together with blue-shifts in maximum emission in the lower temperature range and red-shifts at higher temperature. Based on fluorescence spectroscopy results, the unfolding of the protein molecules at high temperature was suggested. Detailed information obtained at atomic level revealed that events taking place in the complex heated at high temperature caused important changes in the β-carotene binding site, therefore leading to a more thermodynamically stable assembly. This study can be used to understand the changes occurring at molecular level that could help food operators to design new ingredients and functional foods, and to optimize the processing methods in order to obtain healthier food products. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fluorescent photochromes of diarylethene series: synthesis and properties

    NASA Astrophysics Data System (ADS)

    Shirinian, Valerii Z.; Lonshakov, D. V.; Lvov, A. G.; Krayushkin, Mikhail M.

    2013-06-01

    The research data in the field of fluorescent photochromic di(het)arylethenes published over the last decade are summarized. The characteristics of these compounds significant for their application in the design of molecular optical memory systems and photocontrolled switches are considered. The main types of diarylethenes and methods for their synthesis are described, and the correlations between structure and spectral properties, in particular, fluorescence characteristics are analyzed. Considerable attention is given to the means for endowing diarylethenes with fluorescence properties as one of the most promising methods for data readout from molecular information carriers. The bibliography includes 203 references.

  13. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  14. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    PubMed

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  15. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.

    PubMed

    Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian

    2017-01-01

    Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.

  16. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging

    PubMed Central

    Ai, Hui-wang; Olenych, Scott G; Wong, Peter; Davidson, Michael W; Campbell, Robert E

    2008-01-01

    Background In the 15 years that have passed since the cloning of Aequorea victoria green fluorescent protein (avGFP), the expanding set of fluorescent protein (FP) variants has become entrenched as an indispensable toolkit for cell biology research. One of the latest additions to the toolkit is monomeric teal FP (mTFP1), a bright and photostable FP derived from Clavularia cyan FP. To gain insight into the molecular basis for the blue-shifted fluorescence emission we undertook a mutagenesis-based study of residues in the immediate environment of the chromophore. We also employed site-directed and random mutagenesis in combination with library screening to create new hues of mTFP1-derived variants with wavelength-shifted excitation and emission spectra. Results Our results demonstrate that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure. This conclusion is supported by the observation that the Tyr67Trp and Tyr67His mutants of mTFP1 retain a blue-shifted fluorescence emission relative to their avGFP counterparts (that is, Tyr66Trp and Tyr66His). Based on previous work with close homologs, His197 and His163 are likely to be the residues with the greatest contribution towards blue-shifting the fluorescence emission. Indeed we have identified the substitutions His163Met and Thr73Ala that abolish or disrupt the interactions of these residues with the chromophore. The mTFP1-Thr73Ala/His163Met double mutant has an emission peak that is 23 nm red-shifted from that of mTFP1 itself. Directed evolution of this double mutant resulted in the development of mWasabi, a new green fluorescing protein that offers certain advantages over enhanced avGFP (EGFP). To assess the usefulness of mTFP1 and mWasabi in live cell imaging applications, we constructed and imaged more than 20 different fusion proteins. Conclusion Based on the results of our mutagenesis study, we conclude that the two histidine residues in close proximity to the chromophore are approximately equal determinants of the blue-shifted fluorescence emission of mTFP1. With respect to live cell imaging applications, the mTFP1-derived mWasabi should be particularly useful in two-color imaging in conjunction with a Sapphire-type variant or as a fluorescence resonance energy transfer acceptor with a blue FP donor. In all fusions attempted, both mTFP1 and mWasabi give patterns of fluorescent localization indistinguishable from that of well-established avGFP variants. PMID:18325109

  17. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.

    PubMed

    Rachofsky, E L; Osman, R; Ross, J B

    2001-01-30

    2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.

  18. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA

    NASA Astrophysics Data System (ADS)

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-01

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  19. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA.

    PubMed

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-15

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  1. SELECTIVITY AND SPECIFICITY OF SMALL MOLECULE FLUORESCENT DYES/PROBES USED FOR THE DETECTION OF Zn2+ AND Ca2+ IN CELLS

    PubMed Central

    Landero-Figueroa, Julio A.; Vignesh, Kavitha Subramanian; Deepe, George; Caruso, Joseph

    2014-01-01

    Fluorescent dyes are widely used in the detection of labile (free or exchangeable) Zn2+ and Ca2+ in living cells. However, their specificity over other cations and selectivity for detection of labile vs. protein-bound metal in cells remains unclear. We characterized these important properties for commonly used Zn2+ and Ca2+ dyes in a cellular environment. By tracing the fluorescence emission signal along with UV-Vis and size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) in tandem, we demonstrated that among the dyes used for Zn2+, Zinpyr-1 fluoresces in the low molecular mass (LMM) region containing labile Zn2+, but also fluoresces in different molecular mass regions where zinc ion is detected. However, FluoZin™-3 AM, Newport Green™ DCF and Zinquin ethyl ester display weak fluorescence, lack of metal specificity and respond strongly in the high molecular mass (HMM) region. Four Ca2+ dyes were studied in an unperturbed cellular environment, and two of these were tested for binding behavior under an intracellular Ca2+ release stimulus. A majority of Ca2+ was in the labile form as tested by SEC-ICP-MS, but the fluorescence from Calcium Green-1™ AM, Oregon Green® 488 BAPTA-1, Fura red™ AM and Fluo-4 NW dyes in cells did not correspond to free Ca2+ detection. Instead, the dyes showed non-specific fluorescence in the mid- and high-molecular mass regions containing Zn, Fe and Cu. Proteomic analysis of one of the commonly seen fluorescing regions showed the possibility for some dyes to recognize Zn and Cu bound to metallothionein-2. These studies indicate that Zn2+ and Ca2+ binding dyes manifest fluorescence responses that are not unique to recognition of labile metals and bind other metals, leading to suboptimal specificity and selectivity. PMID:24356796

  2. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe

    NASA Astrophysics Data System (ADS)

    Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez

    2018-02-01

    Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.

  3. Supramolecular interactions of nonsteroidal anti-inflammatory drug in nanochannels of molecular containers: a spectroscopic, thermogravimetric and microscopic investigation.

    PubMed

    Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata

    2014-11-10

    Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

    PubMed

    Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T

    2018-04-24

    Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

  5. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  6. Molecular fluorescence as a monitor of minor stratospheric constituents

    NASA Technical Reports Server (NTRS)

    Schofield, K.

    1975-01-01

    The potential of molecular fluorescence was assessed as a stratospheric monitor of the concentrations of various minor species. Seventeen molecules were considered and all spectral regions from the vacuum ultraviolet through to the infrared are included. The exercise has produced few surprises; however, further confirmation has emerged as to the feasibility of this sensitive technique for monitoring stratospheric OH, NO2, and SO2, sufficient to warrant its development as analytical flight hardware for these species. All the other molecules have been eliminated with the exception of C10 which appears to have promise but requires additional information before its detection limit can be calculated; its fluorescence spectrum is as yet uninvestigated. A handbook for molecular fluorescence is presented, and a compilation of all reported studies for simple molecules using line source excitation is included.

  7. Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule.

    PubMed

    Hayashi, Shotaro; Koizumi, Toshio

    2016-02-18

    An elastic organic crystal of a π-conjugated molecule has been fabricated. A large fluorescent single crystal of 1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene (over 1 cm long) exhibited a fibril lamella morphology based on slip-stacked molecular wires, and it was found to be a remarkably elastic crystalline material. The straight crystal was capable of bending more than 180° under applied stress and then quickly reverted to its original shape upon relaxation. In addition, the fluorescence quantum yield of the crystal was about twice that of the compound in THF solution. Mechanical bending-relaxation resulted in reversible change of the morphology and fluorescence. This research offers a more general approach to flexible crystals as a promising new family of organic semiconducting materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  9. Inflammation Modulates Murine Venous Thrombosis Resolution In Vivo: Assessment by Multimodal Fluorescence Molecular Imaging

    PubMed Central

    Ripplinger, Crystal M.; Kessinger, Chase W.; Li, Chunqiang; Kim, Jin Won; McCarthy, Jason R.; Weissleder, Ralph; Henke, Peter K.; Lin, Charles P.; Jaffer, Farouc A.

    2012-01-01

    Objective Assessment of thrombus inflammation in vivo could provide new insights into deep vein thrombosis (DVT) resolution. Here we develop and evaluate two integrated fluorescence molecular-structural imaging strategies to quantify DVT-related inflammation and architecture, and to assess the effect of thrombus inflammation on subsequent DVT resolution in vivo. Methods and Results Murine DVT were created with topical 5% FeCl3 application to thigh or jugular veins (n=35). On day 3, mice received macrophage and matrix metalloproteinase (MMP) activity fluorescence imaging agents. On day 4, integrated assessment of DVT inflammation and architecture was performed using confocal fluorescence intravital microscopy (IVM). Day 4 analyses showed robust relationships among in vivo thrombus macrophages, MMP activity, and FITC-dextran deposition (r>0.70, p<0.01). In a serial two-timepoint study, mice with DVT underwent IVM at day 4 and at day 6. Analyses revealed that the intensity of thrombus inflammation at day 4 predicted the magnitude of DVT resolution at day 6 (p<0.05). In a second approach, noninvasive fluorescence molecular tomography-computed tomography (FMT-CT) was employed, and detected macrophages within jugular DVT (p<0.05 vs. sham-controls). Conclusions Integrated fluorescence molecular-structural imaging demonstrates that the DVT-induced inflammatory response can be readily assessed in vivo, and can inform the magnitude of thrombus resolution. PMID:22995524

  10. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    PubMed Central

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768

  11. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  12. A single-label phenylpyrrolocytidine provides a molecular beacon-like response reporting HIV-1 RT RNase H activity

    PubMed Central

    Wahba, Alexander S.; Esmaeili, Abbasali; Damha, Masad J.; Hudson, Robert H. E.

    2010-01-01

    6-Phenylpyrrolocytidine (PhpC), a structurally conservative and highly fluorescent cytidine analog, was incorporated into oligoribonucleotides. The PhpC-containing RNA formed native-like duplex structures with complementary DNA or RNA. The PhpC-modification was found to act as a sensitive reporter group being non-disruptive to structure and the enzymatic activity of RNase H. A RNA/DNA hybrid possessing a single PhpC insert was an excellent substrate for HIV-1 RT Ribonuclease H and rapidly reported cleavage of the RNA strand with a 14-fold increase in fluorescence intensity. The PhpC-based assay for RNase H was superior to the traditional molecular beacon approach in terms of responsiveness, rapidity and ease (single label versus dual). Furthermore, the PhpC-based assay is amenable to high-throughput microplate assay format and may form the basis for a new screen for inhibitors of HIV-RT RNase H. PMID:19933258

  13. Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization

    NASA Astrophysics Data System (ADS)

    Shi, Junwei; Liu, Fei; Zhang, Jiulou; Luo, Jianwen; Bai, Jing

    2015-05-01

    Fluorescence molecular tomography (FMT) as a noninvasive imaging modality has been widely used for biomedical preclinical applications. However, FMT reconstruction suffers from severe ill-posedness, especially when a limited number of projections are used. In order to improve the quality of FMT reconstruction results, a discrete cosine transform (DCT) based reweighted L1-norm regularization algorithm is proposed. In each iteration of the reconstruction process, different reweighted regularization parameters are adaptively assigned according to the values of DCT coefficients to suppress the reconstruction noise. In addition, the permission region of the reconstructed fluorophores is adaptively constructed to increase the convergence speed. In order to evaluate the performance of the proposed algorithm, physical phantom and in vivo mouse experiments with a limited number of projections are carried out. For comparison, different L1-norm regularization strategies are employed. By quantifying the signal-to-noise ratio (SNR) of the reconstruction results in the phantom and in vivo mouse experiments with four projections, the proposed DCT-based reweighted L1-norm regularization shows higher SNR than other L1-norm regularizations employed in this work.

  14. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies.

    PubMed

    Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H

    2017-08-16

    Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.

  15. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  16. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-07-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.

  17. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  18. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    NASA Astrophysics Data System (ADS)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  19. New pyridinium-based fluorescent dyes: A comparison of symmetry and side-group effects on G-Quadruplex DNA binding selectivity and application in live cell imaging.

    PubMed

    Lu, Yu-Jing; Hu, Dong-Ping; Zhang, Kun; Wong, Wing-Leung; Chow, Cheuk-Fai

    2016-07-15

    A series of C1-, C2-and C3-symmetric pyridinium conjugates with different styrene-like side groups were synthesized and were utilized as G-quadruplex selective fluorescent probes. The new compounds were well-characterized. Their selectivity, sensitivity, and stability towards G-quadruplex were studied by fluorescence titration, native PAGE experiments, FRET and circular dichroism (CD) analyses. These new compounds investigated in the fluorescence assays were preferentially bound with G-quadruplex DNA compared with other type of nucleic acids and it is fascinating to realize the effects of molecular symmetry and associated side groups showing unexpectedly great influence on the fluorescent signal enhancement for the discrimination of G-quadruplexes DNA from other nucleic acids. This may correlate with the pocket symmetry and shape of the G-quadruplex DNA inherently. Among the compounds, a C2-symmetric dye (2,6-bis-((E)-2-(1H-indol-3-yl)-vinyl)-1-methylpyridin-1-ium iodide) with indolyl-groups substituted was screened out from the series giving the best selectivity and sensitivity towards G-quadruplexes DNA, particularly telo21, due to its high equilibrium binding constant (K=2.17×10(5)M(-1)). In addition, the limit of detection (LOD) of the dye to determine telo21 DNA in bioassays was found as low as 33nM. The results of the study give insight and certain crucial factors, such as molecular symmetry and the associated side groups, on developing of effective fluorescent dyes for G-quadruplex DNA applications including G-quadruplex structure stabilization, biosensing and clinical applications. The compound was also demonstrated as a very selective G-quadruplex fluorescent agent for living cell staining and imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    PubMed

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  1. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection

    PubMed Central

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-01-01

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery. PMID:26507179

  2. Human molecular cytogenetics: From cells to nucleotides

    PubMed Central

    Riegel, Mariluce

    2014-01-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed. PMID:24764754

  3. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides

    PubMed Central

    Crevenna, Alvaro H.; Bomblies, Rainer; Lamb, Don C.

    2017-01-01

    Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET) or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET). The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP). Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the influence on molecular properties when chosing labeling positions for fluorescence experiments. PMID:28542243

  4. Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar[5]arene

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Dong; Shi, Lin; Guo, Li-Hui; Wang, Jun-Wen; Zhang, Xiang

    2017-02-01

    The supramolecular interaction between the water-soluble pillar[5]arene (WP[5]) as host and dopamine hydrochloride (DH) as guest was studied by spectrofluorometry. The fluorescence intensity of DH gradually decreased with increasing WP[5] concentration, and the possible interaction mechanism between WP[5] and DH was confirmed by 1H NMR, 2D NOESY, and molecular modelling. Based on significant DH fluorescence, a highly sensitive and selective method for DH determination was developed for the first time. The fluorescence intensity was measured at 312 nm, with excitation at 285 nm. The effects of pH, temperature, and reaction time on the fluorescence spectra of the WP[5]-DH complex were investigated. A linear relationship between fluorescence intensity and DH concentration in the range of 0.07-6.2 μg mL- 1 was obtained. The corresponding linear regression equation is ΔF = 25.76 C + 13.56 (where C denotes the concentration in μg mL- 1), with the limit of detection equal to 0.03 μg mL- 1 and the correlation coefficient equal to 0.9996. This method can be used for the determination of dopamine in injection and urine samples. In addition, the WP[5]-DH complex has potential applications in fluorescent sensing and pharmacokinetics studies of DH.

  5. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue

    NASA Astrophysics Data System (ADS)

    Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.

    2016-12-01

    Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.

  6. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  7. A Simple and Selective Fluorescent Sensor Chip for Indole-3-Butyric Acid in Mung Bean Sprouts Based on Molecularly Imprinted Polymer Coatings

    PubMed Central

    Chang, Jiahua; Bahethan, Bota; Muhammad, Turghun; Yakup, Burabiye; Abbas, Mamatimin

    2017-01-01

    In this paper, we report the preparation of molecularly imprinted polymer coatings on quartz chips for selective solid-phase microextraction and fluorescence sensing of the auxin, indole-3-butyric acid. The multiple copolymerization method was used to prepare polymer coatings on silylated quartz chips. The polymer preparation conditions (e.g., the solvent, monomer, and cross-linker) were investigated systemically to enhance the binding performance of the imprinted coatings. Direct solid-phase fluorescence measurements on the chips facilitated monitoring changes in coating performance. The average binding capacity of an imprinted polymer coated chip was approximately 152.9 µg, which was higher than that of a non-imprinted polymer coated chip (60.8 µg); the imprinted coatings showed the highest binding to IBA among the structural analogues, indicating that the coatings possess high selectivity toward the template molecule. The developed method was used for the determination of the auxin in mung bean extraction, and the recovery was found to be in the range of 91.5% to 97.5%, with an RSD (n = 3) of less than 7.4%. Thus, the present study provides a simple method for fabricating a fluorescent sensor chip for selective analysis. PMID:28837081

  8. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    NASA Astrophysics Data System (ADS)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  9. Real-time single cell analysis of molecular mechanism of apoptosis and proliferation using FRET technique

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-09-01

    Bcl-2 family proteins (such as Bid and Bak/Bax) and 14-3-3 proteins play a key role in the mitochondria-mediated cell apoptosis induced by cell death factors such as TNF-α and lower power laser irradiation (LPLI). In this report, fluorescence resonance energy transfer (FRET) has been used to study the molecular mechanism of apoptosis in living cells on a fluorescence scanning confocal microscope. Based on the genetic code technique and the green fluorescent proteins (GFPs), single-cell dynamic analysis of caspase3 activation, caspase8 activation, and PKCs activation are performed during apoptosis induced by laser irradiation in real-time. To investigate the cellular effect and mechanism of laser irradiation, human lung adenocarcinoma cells (ASTC-a-1) transfected with plasmid SCAT3 (pSCAT3)/ CKAR FRET reporter, were irradiated and monitored noninvasively with both FRET imaging. Our results show that high fluence lower power laser irradiation (HFLPLI) can induce an increase of caspase3 activation and a decrease of PKCs activation, and that LPLI induces the ASTC-a-1 cell proliferation by specifically activating PKCs.

  10. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    PubMed

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  11. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

    PubMed

    Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong

    2013-03-21

    Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.

  12. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method.

    PubMed

    Zhang, Xuanxuan; Cao, Xu; Zhu, Shouping

    2017-06-27

    Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

  14. Evaluation of slide based cytometry (SBC) for concentration measurements of fluorescent dyes in solution

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Marecka, Monika; Müller, Hans-Willy; Bocsi, József; Tárnok, Attila

    2009-02-01

    Flow cytometers (FCM) are built for particle measurements. In principle, concentration measurement of a homogeneous solution is not possible with FCM due to the lack of a trigger signal. In contrast to FCM slide based cytometry systems could act as tools for the measurement of concentrations using volume defined cell counting chambers. These chambers enable to analyze a well defined volume. Sensovation AG (Stockach, Germany) introduced an automated imaging system that combines imaging with cytometric features analysis. Aim of this study was to apply this imaging system to quantify the fluorescent molecule concentrations. The Lumisens (Sensovation AG) slide-based technology based on fluorescence digital imaging microscopy was used. The instrument is equipped with an inverted microscope, blue and red LEDs, double band-pass filters and a high-resolution cooled 16-bit digital camera. The instrument was focussed on the bottom of 400μm deep 6 chamber slides (IBIDI GmbH, Martinsried, Germany) or flat bottom 96 well plates (Greiner Bio One GmbH, Frickenhausen, Germany). Fluorescent solutions were imaged under 90% pixel saturation in a broad concentration range (FITC: 0.0002-250 μg/ml, methylene blue (MethB): 0.0002-250 μg/ml). Exposition times were recorded. Images were analysed by the iCys (CompuCyte Corp., Cambridge, MA, USA) image analysis software with the phantom contour function. Relative fluorescence intensities were calculated from mean fluorescence intensities per phantom contours divided by the exposition time. Solution concentrations could be distinguished over a broad dynamic range of 3.5 to 5.5 decades log (range FITC: 0.0002-31.25μg/ml, MethB: 0.0076-31.25μg/ml) with a good linear relationship between dye concentration and relative fluorescence intensity. The minimal number of fluorescent molecules per pixel as determined by the mean fluorescence intensity and the molecular weight of the fluorochrome were about 800 molecules FITC and ~2.000 MethB. The novel slide-based imaging system is suitable for detection of fluorescence differences over a broad range of concentrations. This approach may lead to novel assays for measuring concentration differences in cell free solutions and cell cultures e.g. in secretion assays.

  15. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  16. Pretreatment evaluation of fluorescence resonance energy transfer-based drug sensitivity test for patients with chronic myelogenous leukemia treated with dasatinib.

    PubMed

    Kondo, Takeshi; Fujioka, Mari; Tsuda, Masumi; Murai, Kazunori; Yamaguchi, Kohei; Miyagishima, Takuto; Shindo, Motohiro; Nagashima, Takahiro; Wakasa, Kentaro; Fujimoto, Nozomu; Yamamoto, Satoshi; Yonezumi, Masakatsu; Saito, Souichi; Sato, Shinji; Ogawa, Kazuei; Chou, Takaaki; Watanabe, Reiko; Kato, Yuichi; Takahashi, Shuichiro; Okano, Yoshiaki; Yamamoto, Joji; Ohta, Masatsugu; Iijima, Hiroaki; Oba, Koji; Kishino, Satoshi; Sakamoto, Junichi; Ishida, Yoji; Ohba, Yusuke; Teshima, Takanori

    2018-05-02

    Tyrosine kinase inhibitors (TKI) are used for primary therapy in patients with newly diagnosed CML. However, a reliable method for optimal selection of a TKI from the viewpoint of drug sensitivity of CML cells has not been established. We have developed a FRET-based drug sensitivity test in which a CrkL-derived fluorescent biosensor efficiently quantifies the kinase activity of BCR-ABL of living cells and sensitively evaluates the inhibitory activity of a TKI against BCR-ABL. Here, we validated the utility of the FRET-based drug sensitivity test carried out at diagnosis for predicting the molecular efficacy. Sixty-two patients with newly diagnosed chronic phase CML were enrolled in this study and treated with dasatinib. Bone marrow cells at diagnosis were subjected to FRET analysis. The ΔFRET value was calculated by subtraction of FRET efficiency in the presence of dasatinib from that in the absence of dasatinib. Treatment response was evaluated every 3 months by the BCR-ABL1 International Scale. Based on the ΔFRET value and molecular response, a threshold of the ΔFRET value in the top 10% of FRET efficiency was set to 0.31. Patients with ΔFRET value ≥0.31 had significantly superior molecular responses (MMR at 6 and 9 months and both MR4 and MR4.5 at 6, 9, and 12 months) compared with the responses in patients with ΔFRET value <0.31. These results suggest that the FRET-based drug sensitivity test at diagnosis can predict early and deep molecular responses. This study is registered with UMIN Clinical Trials Registry (UMIN000006358). © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Example-Based Super-Resolution Fluorescence Microscopy.

    PubMed

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  18. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence. Time-resolved spectroscopic measurements show that Ag32(SG)19 and Ag15(SG)11 have a common emissive state, with the same emission wavelength and dynamic, which can be assigned to the metal-ligand state. As hybrid materials whose properties meet at the confluence of hard and soft matter, the structures of molecular silver nanoparticles also have interesting mechanical properties. High-pressure powder x-ray diffraction has been used to investigate the mechanical response to compression by a superlattice of Na4Ag44(p-MBA)30 molecular nanoparticles. Two unique pressure-induced phase transformations have been identified. The bulk modulus and axial compressibility of the material has also been determined. These measurements were also compared to a quantum mechanical simulation of the material under compression.

  19. Can we trust intraoperative culture results in nonunions?

    PubMed

    Palmer, Michael P; Altman, Daniel T; Altman, Gregory T; Sewecke, Jeffrey J; Ehrlich, Garth D; Hu, Fen Z; Nistico, Laura; Melton-Kreft, Rachel; Gause, Trent M; Costerton, John W

    2014-07-01

    To identify the presence of bacterial biofilms in nonunions comparing molecular techniques (multiplex polymerase chain reaction and mass spectrometry, fluorescent in situ hybridization) with routine intraoperative cultures. Thirty-four patients with nonunions were scheduled for surgery and enrolled in this ongoing prospective study. Intraoperative specimens were collected from removed implants, surrounding tissue membrane, and local soft tissue followed by standard culture analysis, Ibis's second generation molecular diagnostics (Ibis Biosystems), and bacterial 16S rRNA-based fluorescence in situ hybridization (FISH). Confocal microscopy was used to visualize the tissue specimens reacted with the FISH probes, which were chosen based on the Ibis analysis. Thirty-four patient encounters were analyzed. Eight were diagnosed as infected nonunions by positive intraoperative culture results. Ibis confirmed the presence of bacteria in all 8 samples. Ibis identified bacteria in a total of 30 of 34 encounters, and these data were confirmed by FISH. Twenty-two of 30 Ibis-positive samples were culture-negative. Four samples were negative by all methods of analysis. No samples were positive by culture, but negative by molecular techniques. Our preliminary data indicate that molecular diagnostics are more sensitive for identifying bacteria than cultures in cases of bony nonunion. This is likely because of the inability of cultures to detect biofilms and bacteria previously exposed to antibiotic therapy. Diagnostic Level I. See Instructions for Authors for a complete description of levels of evidence.

  20. A novel small molecule mediate 18F-FDG excited fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Guo, Hongbo; Hu, Zhenhua; Tian, Jie

    2018-02-01

    Fluorescence molecular imaging (FMI) has been widely used in many medical fields with small molecule indocyanine green (ICG). However, low signal-background ratio and limited specificity to tumor remain big challenges for FMI. In this study, a novel excitation strategy is proposed on the basis of clinical approved ICG and 18F-FDG. A series of in vitro experiments are designed to reveal the mechanism and results show obvious decreasing of ICG fluorescence intensity with the increasing distance to excitation source. Meanwhile, the ICG fluorescence intensity is proportional to the activity of radiopharmaceutical. Results from different respects illustrate the promising of this proposed excitation strategy.

  1. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  2. Fluorescent imaging of cancerous tissues for targeted surgery

    PubMed Central

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  3. Multiprobe Spectroscopic Inverstigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Abhra; Ali, Maroof; Baker, Gary A

    2009-01-01

    In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogenmore » bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].« less

  4. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  5. Fluorescence of molecular hydrogen excited by solar extreme-ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Fastie, W. G.

    1973-01-01

    During trans-earth coast, the Apollo 17 ultraviolet spectrometer was scheduled to make observations of the far ultraviolet background in selected regions of the sky. In the course of one of these observations, the spacecraft fuel cells were routinely purged of excess hydrogen and water vapor. The ultraviolet fluorescence spectrum of the purged molecular hydrogen excited by solar extreme ultraviolet radiation is interpreted by absorption of solar L-beta and L-gamma radiation in the nearly resonant (6, 0) and (11, 0) Lyman bands. The results are deemed significant for ultraviolet spectroscopic investigations of the atmospheres of the moon and planets since Lyman-band fluorescence provides an unambiguous means of identification of molecular hydrogen in upper atmospheres.

  6. Spectroscopic and molecular modeling studies of the interaction between cytidine and human serum albumin and its analytical application.

    PubMed

    Cui, Fengling; Wang, Junli; Yao, Xiaojun; Wang, Li; Zhang, Qiangzhai; Qu, Guirong

    In this study, the interaction between cytidine and human serum albumin (HSA) was investigated for the first time by fluorescence spectroscopy in combination with UV absorption spectrum and molecular modeling under simulative physiological conditions. Experimental results indicated that cytidine had a strong ability to quench the intrinsic fluorescence of human serum albumin. The binding constants (K) at different temperatures, thermodynamic parameter enthalpy changes (DeltaH) and entropy changes (DeltaS) of HSA-cytidine had been calculated according to the relevant fluorescence data, which indicated that the hydrophobic and electrostatic interactions played a major role, which was in agreement with the results of molecular modeling study. In addition, the effects of other ions on the binding constants were also studied. Furthermore, synchronous fluorescence technology was successfully applied to the determination of human serum albumin added into the cytidine solution.

  7. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).

    PubMed

    Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A

    2015-02-16

    To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Ionic calcium determination in skim milk with molecular probes and front-face fluorescence spectroscopy: simple linear regression.

    PubMed

    Gangidi, R R; Metzger, L E

    2006-11-01

    The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.

  9. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.

    PubMed Central

    Atkinson, G H; Blanchard, D; Lemaire, H; Brack, T L; Hayashi, H

    1989-01-01

    The fluorescence spectrum of a distinct isometric and conformational intermediate formed on the 10(-11) s time scale during the bacteriorhodopsin (BR) photocycle is observed at room temperature using a two laser, pump-probe technique with picosecond time resolution. The BR photocycle is initiated by pulsed (8 ps) excitation at 565 nm, whereas the fluorescence is generated by 4-ps laser pulses at 590 nm. The unstructured fluorescence extends from 650 to 880 nm and appears in the same general spectral region as the fluorescence spectrum assigned to BR-570. The transient fluorescence spectrum can be distinguished from that assigned to BR-570 by a larger emission quantum yield (approximately twice that of BR-570) and by a maximum intensity near 731 nm (shifted 17 nm to higher energy from the maximum of the BR-570 fluorescence spectrum). The fluorescence spectrum of BR-570 only is measured with low energy, picosecond pulsed excitation at 590 nm and is in good agreement with recent data in the literature. The assignment of the transient fluorescence spectrum to the K-590 intermediate is based on its appearance at time delays longer than 40 ps. The K-590 fluorescence spectrum remains unchanged over the entire 40-100-ps interval. The relevance of these fluorescence data with respect to the molecular mechanism used to model the primary processes in the BR photocycle also is discussed. PMID:2713439

  10. Probing the behavior of bovine serum albumin upon binding to atenolol: insights from spectroscopic and molecular docking approaches.

    PubMed

    Jiang, Tuo-Ying; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi; Shi, Jie-Hua

    2018-04-01

    Molecular interaction of atenolol, a selective β 1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (K b ) were determined by the UV-vis absorption titration, and were found to be in the order of 10 3  M -1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH 0 ), entropy change (ΔS 0 ). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.

  11. Sensitive determination of endogenous hydroxyl radical in live cell by a BODIPY based fluorescent probe.

    PubMed

    Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed

    2017-08-01

    The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes.

    PubMed

    Qi, Ji; Chen, Chao; Zhang, Xiaoyan; Hu, Xianglong; Ji, Shenglu; Kwok, Ryan T K; Lam, Jacky W Y; Ding, Dan; Tang, Ben Zhong

    2018-05-10

    Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles' photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.

  13. Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications

    NASA Astrophysics Data System (ADS)

    Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris

    2016-11-01

    DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.

  14. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining wasmore » determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.« less

  15. Fluorescence diffuse tomography of small animals with DsRed2 fluorescent protein

    NASA Astrophysics Data System (ADS)

    Turchin, I. V.; Plehanov, V. I.; Orlova, A. G.; Kamenskiy, V. A.; Kleshnin, M. S.; Shirmanova, M. V.; Shakhova, N. M.; Balalaeva, I. V.; Savitskiy, A. P.

    2006-05-01

    Fluorescent compounds are used as markers to diagnose oncological diseases, to study molecular processes typical for carcinogenesis, and to investigate metastasis formation and tumor regress under the influence of therapeutics. Different types of tomography, such as continuous wave (CW), frequency-domain (FD), and time-domain (TD) tomography, allow fluorescence imaging of tumors located deep in human or animal tissue. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments, we utilized low-frequency amplitude modulation (1 kHz) of second harmonic of Nd: YAG (532 nm). The transilluminative configuration was used in the setup. The results of post mortem experiments with capsules containing DsRed2 inserted inside the esophagus of a 3-day-old hairless rat to simulate tumor are shown. An algorithm of processing fluorescent images based on calculating the zero of maximum curvature has been applied to detect fluorescent inclusion boundaries in the image. This work demonstrates the potential capability of the FDT method for imaging deep fluorescent tumors in human tissue or animal models of human cancer. Improvement of the setup can be accomplished by using high-frequency modulation (using a 110-MHz acoustooptical modulator).

  16. Selective interactions of trivalent cations Fe³⁺, Al³⁺ and Cr³⁺ turn on fluorescence in a naphthalimide based single molecular probe.

    PubMed

    Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran

    2016-01-15

    Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe(3+), Al(3+) or Cr(3+) with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu(3+), Gd(3+) and Nb(3+)) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comprehensive structure-selective characterization of dissolved organic matter by reducing molecular complexity and increasing analytical dimensions.

    PubMed

    Li, Yan; Harir, Mourad; Lucio, Marianna; Gonsior, Michael; Koch, Boris P; Schmitt-Kopplin, Philippe; Hertkorn, Norbert

    2016-12-01

    Deciphering the molecular codes of dissolved organic matter (DOM) improves our understanding of its role in the global element cycles and its active involvement in ecosystem services. This study demonstrates comprehensive characterization of DOM by an initial polarity-based stepwise solid phase extraction (SPE) with single methanol elution of the cartridges, but separate collection of equal aliquots of eluate. The reduction of molecular complexity in the individual DOM fractions attenuates intermolecular interactions and substantially increases the disposable resolution of any structure selective characterization. Suwannee River DOM (SR DOM) was used to collect five distinct SPE fractions with overall 91% DOC recovery. Optical spectroscopy (UV and fluorescence spectroscopy), high-field Fourier transform ion cyclotron mass spectrometry (FTICR MS) and nuclear magnetic resonance (NMR) spectroscopy showed analogous hierarchical clustering among the five eluates corroborating the robustness of this approach. Two abundant moderately hydrophobic fractions contained most of the SR DOM compounds, with substantial proportions of aliphatics, carboxylic-rich alicyclic molecules, carbohydrates and aromatics. A minor early eluting hydrophilic fraction was highly aliphatic and presented a large diversity of alicyclic carboxylic acids, whereas the two late eluting, minor hydrophobic fractions appeared as a largely defunctionalized mixture of aliphatic molecules. Comparative mass analysis showed that fractionation of SR DOM was governed by multiple molecular interactions depending on O/C ratio, molecular weight and aromaticity. The traditional optical indices SUVA 254 and fluorescence index (FI) indicated the relative aromaticity in agreement with FTICR mass and NMR spectra; the classical fluorescent peaks A and C were observed in all four latter eluates. This versatile approach can be easily expanded to preparative scale under field conditions, and transferred to different DOM sources and SPE conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Interaction of the minocycline with extracelluar protein and intracellular protein by multi-spectral techniques and molecular docking

    NASA Astrophysics Data System (ADS)

    Fang, Qing; Wang, Yirun; Hu, Taoying; Liu, Ying

    2017-02-01

    The interaction of minocyeline (MNC) with extracelluar protein (lysozyme, LYSO) or intracellular protein (bovine hemoglobin, BHb) was investigated using multi-spectral techniques and molecular docking in vitro. Fluorescence studies suggested that MNC quenched LYSO/BHb fluorescence in a static mode with binding constants of 2.01 and 0.26 × 104 L•mol-1 at 298 K, respectively. The LYZO-MNC system was more easily influenced by temperature (298 and 310 K) than the BHb-MNC system. The thermodynamic parameters demonstrated that hydrogen bonds and van der Waals forces played the major role in the binding process. Based on the Förster theory of nonradiative energy transfer, the binding distances between MNC and the inner tryptophan residues of LYSO and BHb were calculated to be 4.34 and 3.49 nm, respectively. Furthermore, circular dichroism spectra (CD), Fourier transforms infrared (FTIR), UV-vis, and three-dimensional fluorescence spectra results indicated the secondary structures of LYSO and BHb were partially destroyed by MNC with the α-helix percentage of LYZO-MNC increased (17.8-28.6%) while that of BHb-MNC was decreased (41.6-39.6%). UV-vis spectral results showed these binding interactions could cause conformational and some micro-environmental changes of LYSO and BHb. In accordance with the results of molecular docking, In LYZO-MNC system, MNC was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located, and in MNC-BHb system, MNC was close to the subunit α 1 of BHb, molecular docking analysis supported the thermodynamic results well. The work contributes to clarify the mechanism of MNC with two proteins at molecular level.

  19. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  20. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  1. ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore

    NASA Astrophysics Data System (ADS)

    Cummins, Brian; Simpson, Jonathan; Gryczynski, Zygmunt; Sørensen, Thomas Just; Laursen, Bo W.; Graham, Duncan; Birch, David; Coté, Gerard

    2014-02-01

    Fluorescent glucose sensing technologies have been identified as possible alternatives to current continuous glucose monitoring approaches. We have recently introduced a new, smart fluorescent ligand to overcome the traditional problems of ConA-based glucose sensors. For this assay to be translated into a continuous glucose monitoring device where both components are free in solution, the molecular weight of the smart fluorescent ligand must be increased. We have identified ovalbumin as a naturally-occurring glycoprotein that could serve as the core-component of a 2nd generation smart fluorescent ligand. It has a single asparagine residue that is capable of displaying an N-linked glycan and a similar isoelectric point to ConA. Thus, binding between ConA and ovalbumin can potentially be monovalent and sugar specific. This work is the preliminary implementation of fluorescently-labeled ovalbumin in the ConA-based assay. We conjugate the red-emitting, long-lifetime azadioxatriangulenium (ADOTA+) dye to ovalbumin, as ADOTA have many advantageous properties to track the equilibrium binding of the assay. The ADOTA-labeled ovalbumin is paired with Alexa Fluor 647-labeled ConA to create a Förster Resonance Energy Transfer (FRET) assay that is glucose dependent. The assay responds across the physiologically relevant glucose range (0-500 mg/dL) with increasing intensity from the ADOTA-ovalbumin, showing that the strategy may allow for the translation of the smart fluorescent ligand concept into a continuous glucose monitoring device.

  2. Co-registered photoacoustic and fluorescent imaging of a switchable nanoprobe based on J-aggregates of indocyanine green

    NASA Astrophysics Data System (ADS)

    Dumani, Diego S.; Brecht, Hans-Peter; Ivanov, Vassili; Deschner, Ryan; Harris, Justin T.; Homan, Kimberly A.; Cook, Jason R.; Emelianov, Stanislav Y.; Ermilov, Sergey A.

    2018-02-01

    We introduce a preclinical imaging platform - a 3D photoacoustic/fluorescence tomography (PAFT) instrument augmented with an environmentally responsive dual-contrast biocompatible nanoprobe. The PAFT instrument was designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct co-registration of the two imaging modalities. The nanoprobe was based on liposomes loaded with J-aggregates of indocyanine green (PAtrace). Once PAtrace interacts with the environment, a transition from J-aggregate to monomeric ICG is induced. The subsequent recovery of monomeric ICG is characterized by dramatic changes in the optical absorption spectrum and reinstated fluorescence. In the activated state, PAtrace can be simultaneously detected by both imaging modes of the PAFT instrument using 780 nm excitation and fluorescence detection at 810 nm. The fluorescence imaging component is used to boost detection sensitivity by providing lowresolution map of activated nanoprobes, which are then more precisely mapped in 3D by the photoacoustic imaging component. Activated vs non-activated particles can be distinguished based on their different optical absorption peaks, removing the requirements for complex image registration between reference and detection scans. Preliminary phantom and in vivo animal imaging results showed successful activation and visualization of PAtrace with high sensitivity and resolution. The proposed PAFT-PAtrace imaging platform could be used in various functional and molecular imaging applications including multi-point in vivo assessment of early metastasis.

  3. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay.

    PubMed

    Tian, Jianniao; Zhou, Liujin; Zhao, Yanchun; Wang, Yuan; Peng, Yan; Zhao, Shulin

    2012-04-15

    A multicolor quantum dot (QD)-based nanosensor for multiplex detection of two tumor markers in a homogeneous format based on fluorescence polarization immunoassay was proposed. QDs520 and QDs620 were labeled alpha-fetoprotein(α-AFP) and carcinoembryonic antigen (CEA), respectively. After separated and purified by ultrafiltration, they were used in fluorescence polarization immunoassay for the simultaneous detection of human serum alpha-fetoprotein and carcinoembryonic antigen. Under the optimal conditions, the multi-analyte immunosensor had a wide linear range (from 0.5 ng mL(-1) to 500 ng mL(-1)) for both two tumor markers and good correlation (0.996 for α-AFP and 0.993 for CEA). The detection limits (LOD) were 0.36 ng mL(-1) for CEA and 0.28 ng mL(-1) for α-AFP (S/N=3). The carcinoembryonic antigen and fetoprotein in clinical serum samples were simultaneously detected. The results from 28 serum samples had a good agreement with enzyme-linked immunosorbent assay (ELISA). The relative standard deviation and the recovery suggested that the precision and the accuracy of this analytical method were satisfactory. This strategy with high sensitivity, good specificity, easy procedures and short analysis time shows great promise for clinical diagnoses and basic discovery. The application of QDs with longer fluorescence lifetime and small fluorescence polarization can be used for the determination of high molecular-weight substances which cannot be analyzed using dye fluorescence polarization immunoassay. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  5. "siRNA traffic lights": arabino-configured 2'-anchors for fluorescent dyes are key for dual color readout in cell imaging.

    PubMed

    Steinmeyer, Jeannine; Walter, Heidi-Kristin; Bichelberger, Mathilde A; Schneider, Violetta; Kubař, Tomáš; Rönicke, Franziska; Olshausen, Bettina; Nienhaus, Karin; Nienhaus, Gerd Ulrich; Schepers, Ute; Elstner, Marcus; Wagenknecht, Hans-Achim

    2018-05-23

    Two fluorescent dyes covalently attached in diagonal interstrand orientation to siRNA undergo energy transfer and thereby enable a dual color fluorescence readout (red/green) for hybridization. Three different structural variations were carried out and compared by their optical properties, including (i) the base surrogate approach with an acyclic linker as a substitute of the 2-deoxyriboside between the phosphodiester bridges, (ii) the 2'-modification of conventional ribofuranosides and (iii) the arabino-configured 2'-modification. The double stranded siRNA with the latter type of modification delivered the best energy transfer efficiency, which was explained by molecular dynamics simulations that showed that the two dyes are more flexible at the arabino-configured sugars compared to the completely stacked situation at the ribo-configured ones. Single molecule fluorescence lifetime measurements indicate their application in fluorescence cell imaging, which reveals a red/green fluorescence contrast in particular for the arabino-configured 2'-modification by the two dyes, which is key for tracking of siRNA transport into HeLa cells.

  6. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4- N, N, N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  7. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.

    PubMed

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4-N,N,N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  8. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.

    PubMed

    Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S

    2016-12-01

    Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τ m ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τ m than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  10. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    PubMed

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  11. Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions

    NASA Astrophysics Data System (ADS)

    Zhu, Mei-Yu; Zhao, Ke; Song, Jun; Wang, Chuan-Kui

    2018-02-01

    Not Available Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM026), the National Natural Science Foundation of China (Grant Nos. 11374195 and 11404193), and the Taishan Scholar Project of Shandong Province, China.

  12. DEVELOPMENT OF BIO-BASED MOLECULAR TECHNOLOGIES FOR REMOVAL AND REAL-TIME MONITORING OF TOXIC METALS

    EPA Science Inventory

    Transformation of heavy-metal related genes from a hyper-accumulator to a high-biomass species is expected to promote a zinc hyper-accumulating phenotype in the normally non-hyper-accumulating poplar. Coupling fluorescence with heavy metal proteins is anticipated to allow ...

  13. TDDFT study on the sensing mechanism of a fluorescent sensor for fluoride anion: Inhibition of the ESPT process.

    PubMed

    Li, Guang-Yue; Liu, Dong; Zhang, Hang; Li, Wei-Wei; Wang, Feng; Liang, Ying-Hua

    2015-01-01

    The fluoride-sensing mechanism of a reported salicylaldehyde-based sensor (J. Photochem. Photobiol. B 2014, 138, 75) has been investigated by the TDDFT method. The present theoretical study indicates that there is an excited-state proton transfer (ESPT) process from the phenolic O-H moiety to the neighbor N atom in the sensor. The added fluoride anion could capture the proton in the O-H moiety and the corresponding phenolic anion is formed, which could inhibit the ESPT process. The experimental UV/Vis and fluorescence spectra are well reproduced by the calculated vertical excitation energies. Frontier molecular orbital analysis indicates that the local excited state of phenolic anion is responsible for its enhanced fluorescence. Due to this reason, the sensor can be used to sense fluoride anion by monitoring the fluorescent change. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells.

    PubMed

    Kerppola, Tom K

    2008-01-01

    Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two nonfluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer.

  15. A coumarin-based "turn-on" fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties.

    PubMed

    Guha, Subarna; Lohar, Sisir; Sahana, Animesh; Banerjee, Arnab; Safin, Damir A; Babashkina, Maria G; Mitoraj, Mariusz P; Bolte, Michael; Garcia, Yann; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2013-07-28

    An efficient Al(3+) receptor, 6-(2-hydroxybenzylideneamino)-2H-chromen-2-one (HBC), has been synthesized by condensing salicylaldehyde with 6-aminocoumarin. The molecular structure of HBC has been determined by a single crystal X-ray analysis. It was established that in the presence of Al(3+), HBC shows 25 fold enhancement of fluorescence intensity which might be attributed to the chelation-enhanced fluorescence (CHEF) process. HBC binds Al(NO3)3 in a 1 : 1 stoichiometry with a binding constant (K) of 7.9 × 10(4) M(-1). Fe(3+) and Mn(2+) quench the emission intensity of the [HBC + Al(3+)] system to an insignificant extent at a concentration 10 times higher compared to that of Al(3+). HBC is highly efficient in the detection of intracellular Al(3+) under a fluorescence microscope.

  16. Magnetic Field Effects on Triplet-Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence.

    PubMed

    Mani, Tomoyasu; Vinogradov, Sergei A

    2013-08-06

    Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p -type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.

  17. Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx.

    PubMed

    Bharatham, Nagakumar; Finch, Kristin E; Min, Jaeki; Mayasundari, Anand; Dyer, Michael A; Guy, R Kiplin; Bashford, Donald

    2017-06-01

    A virtual screening protocol involving docking and molecular dynamics has been tested against the results of fluorescence polarization assays testing the potency of a series of compounds of the nutlin class for inhibition of the interaction between p53 and Mdmx, an interaction identified as a driver of certain cancers. The protocol uses a standard docking method (AutoDock) with a cutoff based on the AutoDock score (ADscore), followed by molecular dynamics simulation with a cutoff based on root-mean-square-deviation (RMSD) from the docked pose. An analysis of the experimental and computational results shows modest performance of ADscore alone, but dramatically improved performance when RMSD is also used. Published by Elsevier Inc.

  18. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.

    PubMed

    Xia, Hongyan; Xie, Kang; Zou, Gang

    2017-12-18

    Studies on the following were reviewed: (1) the structure of spiropyrans and spirooxazines (two kinds of spiro compounds) under external stimuli and (2) the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET) with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on), spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP), the ring-opened merocyanine (MC) form, and the protonated ring-opened form (MCH). This is due to the breakage of the spiro C-O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules) during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1) the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2) composite systems based on spiropyrans and spirooxazines, and (3) fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

  19. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  20. NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing

    NASA Astrophysics Data System (ADS)

    Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.

    2016-04-01

    Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.

  1. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)

    PubMed Central

    Bui, Thanh-Tuân; Goubard, Fabrice; Ibrahim-Ouali, Malika; Gigmes, Didier

    2018-01-01

    The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. PMID:29507635

  2. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes

    PubMed Central

    Jurchenko, Carol

    2015-01-01

    The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes. PMID:26031334

  3. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    PubMed

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  4. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  5. Optical imaging probes in oncology

    PubMed Central

    Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-01-01

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373

  6. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  7. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    PubMed Central

    Stuker, Florian; Ripoll, Jorge; Rudin, Markus

    2011-01-01

    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495

  8. Active substrates improving sensitivity in biomedical fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2005-08-01

    Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.

  9. Mechanism and applications of new fluorescent compounds produced by femtosecond laser surgery in biological tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Sun, Qiqi

    2017-02-01

    The single or multi-photon microscopy based on fluorescent labelling and staining is a sensitive and quantitative method that is widely used in molecular biology and medical research for a variety of experimental, analytical, and quality control applications. However, label-free method is highly desirable in biology and medicine when performing long term live imaging of biological system and obtaining instant tissue examination during surgery procedures. Recently, our group found that femtosecond laser surgery turned a variety of biological tissues and protein samples into highly fluorescent substances. The newly formed fluorescent compounds produced during the laser surgery can be excited via single- and two-photon processes over broad wavelength ranges. We developed a combined confocal and two-photon spectroscopic microscope to characterize the fluorescence from the new compound systematically. The structures of the femtosecond laser treated tissue were studied using Raman spectroscopy and transmission electron microscopy. Our study revealed the mechanisms of the fluorescence emission form the new compound. Furthermore, we demonstrated the applications of the fluorescent compounds for instant evaluation of femtosecond laser microsurgery, study of stem cell responses to muscle injury and neuro-regeneration after spinal cord injury.

  10. Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the Surgical Margins

    PubMed Central

    Keating, Jane J.; Okusanya, Olugbenga T.; De Jesus, Elizabeth; Judy, Ryan; Jiang, Jack; Deshpande, Charuhas; Nie, Shuming; Low, Philip; Singhal, Sunil

    2017-01-01

    Purpose During lung surgery, identification of surgical margins is challenging. We hypothesized that molecular imaging with a fluorescent probe to pulmonary adenocarcinomas could enhance residual tumor during resection. Procedures Mice with flank tumors received a contrast agent targeting folate receptor alpha. Optimal dose and time of injection was established. Margin detection was compared using traditional methods versus molecular imaging. A pilot study was then performed in 3 humans with lung adenocarcinoma. Results The peak tumor-to background ratio (TBR) of murine tumors was 3.9. Fluorescence peaked at 2 hours and was not improved beyond 0.1 mg/kg. Traditional inspection identified 30% of mice with positive margins. Molecular imaging identified an additional 50% of residual tumor deposits (P<0.05). The fluorescent probe visually enhanced all human tumors with a mean TBR of 3.5. Conclusions Molecular imaging is an important adjunct to traditional inspection to identify surgical margins after tumor resection. PMID:26228697

  11. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    PubMed

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  12. Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift.

    PubMed

    Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen

    2015-01-01

    A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is improved slightly, SAFIRe yields up to 100-fold improved signal visibility by essentially removing obscuring, unmodulated background (Richards, C. I.; J. Am. Chem. Soc. 2009, 131, 4619). While SAFIRe exhibits a wide, linear dynamic range, we have demonstrated single-molecule signal recovery buried within 200 nM obscuring dye. In addition to enabling signal recovery through background reduction, each dye exhibits a characteristic modulation frequency indicative of its photophysical dynamics. Thus, these characteristic time scales offer opportunities not only to expand the dimensionality of fluorescence imaging by using dark-state lifetimes but also to distinguish the dynamics of subpopulations on the basis of photophysical versus diffusional time scales, even within modulatable populations. The continued development of modulation for signal recovery and observation of biological dynamics holds great promise for studying a range of transient biological phenomena in natural environments. Through the development of a wide range of fluorescent proteins, organic dyes, and inorganic emitters that exhibit significant dark-state populations under steady-state illumination, we can drastically expand the applicability of fluorescence imaging to probe lower-abundance complexes and their dynamics.

  14. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    NASA Astrophysics Data System (ADS)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  15. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  16. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin.

    PubMed

    Mayavan, Sundar; Dutta, Naba K; Choudhury, Namita R; Kim, Misook; Elvin, Christopher M; Hill, Anita J

    2011-04-01

    In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates. The calculation of the bimolecular quenching constant using the Stern-Volmer equation confirms that the dominant mechanism involved in quenching of fluorescence of rec1-resilin in the presence of AuNP is static. Photoacoustic infrared spectroscopy was employed to understand the nature of the interfacial interaction between the AuNP and rec1-resilin and its evolution with pH. In such bioconjugates the quenched emission of fluorescence by AuNP on the fluorophore moiety of rec1-resilin in the immediate vicinity of the AuNP has significant potential for fluorescence-based detection schemes, sensors and also can be incorporated into nanoparticle-based devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Polarized fluorescence in NADH under two-photon excitation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vasyutinskii, O. S.; Smolin, A. G.; Oswald, C.; Gericke, K. H.

    2017-04-01

    Polarized fluorescence decay in NADH molecules in aqueous solution under two-photon excitation by femtosecond laser pulses has been studied. The excitation was carried out by linear and circularly polarized radiation at four wavelengths: 720, 730, 740, and 750 nm. Time-dependent polarized fluorescence signals were recorded as a function of the excitation light polarization and used for determination of a set of molecular parameters, two lifetimes characterizing the molecular excited states, and the rotation correlation time τrot. The results obtained can be used to create and prove theoretical models describing the intensity and polarization of fluorescence in NADH involved in the regulation of the redox reactions in cells and tissues of living organisms.

  18. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells.

    PubMed

    Homma, Mitsumasa; Takei, Yoshiaki; Murata, Atsushi; Inoue, Takafumi; Takeoka, Shinji

    2015-04-11

    Mitochondrial thermodynamics is the key to understand cellular activities related to homeostasis and energy balance. Here, we report the first ratiometric fluorescent molecular probe (Mito-RTP) that is selectively localized in the mitochondria and visualize the temperature. We confirmed that Mito-RTP could work as a ratiometric thermometer in a cuvette and living cells.

  19. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water.

    PubMed

    Nie, Kaixuan; Dong, Bo; Shi, Huanhuan; Liu, Zhengchun; Liang, Bo

    2017-03-07

    A technique for encapsulating fluorescent organic probes in a micelle system offers an important alternative method to manufacture water-soluble organic nanoparticles (ONPs) for use in sensing Hg 2+ . This article reports on a study of a surfactant-free micelle-like ONPs based on a 3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) amphiphile, (2-(2-(2-methoxyethoxy)ethyl)-3,6-di(2-thiophyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (NDPP) fabricated to monitor Hg 2+ in water. NDPP was synthesized through a simple one-step modification of a commercially available dye TDPP with a flexible and hydrophilic alkoxy. This study reports, for the first time, that TDPP dyes can respond reversibly, sensitively, and selectively to Hg 2+ through TDPP-Hg-TDPP complexation, similar to the well-known thymine(T)-Hg-thymine(T) model and the accompanying molecular aggregation. Interestingly, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed that, in water, NDPP forms loose micelle-like fluorescent ONPs with a hydrohobic TDPP portion encapsulated inside. These micelle-like nanoparticles offer an ideal location for TDPP-Hg complexation with a modest molecular aggregation, thereby providing both clear visual and spectroscopic signals for Hg 2+ sensing. An estimated detection limit of 11 nM for Hg 2+ sensing with this NDPP nanoparticle was obtained. In addition, NDPP ONPs show good water solubility and high selectivity to Hg 2+ in neutral or alkalescent water. It was superior to most micelle-based nanosensors, which require a complicated process in the selection or synthesis of suitable surfactants. The determinations in real samples (river water) were made and satisfactory results were achieved. This study provides a low-cost strategy for fabricating small molecule-based fluorescent nanomaterials for use in sensing Hg 2+ . Moreover, the NDPP nanoparticles show potential ability in Hg 2+ ion adsorption and recognization of cysteine using NDPP-Hg composite particle.

  20. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  1. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.

    PubMed

    Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao

    2016-01-01

    In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The market trend analysis and prospects of cancer molecular diagnostics kits.

    PubMed

    Seo, Ju Hwan; Lee, Joon Woo; Cho, Daemyeong

    2018-01-01

    The molecular diagnostics market can be broadly divided into PCR (rt-PCR, d-PCR), NGS(Next Generation Sequencing), Microarray, FISH(Fluorescent in situ-hybridization) and other categories, based on the diagnostic technique. Also, depending on the disease being diagnosed, the market can also be divided into cancer, infectious diseases, HIV/STDs (herpes, syphilis), and women's health issues such as breast cancer, cervical cancer, ovarian cancer, HPV(human papillomavirus), and vaginitis.Chromosome analysis (including Fluorescent In-situ Hybridization) is one type of blood cancer diagnostic method, which involves the direct detection of individual cells with chromosomal translocation, but there have been problems of sensitivity when using this method. PCR targeting individual genes or the RT (reverse transcription)-PCR method offers outstanding sensitivity, but one drawback is the risk of false-positive reaction caused by contamination of samples, etc. Blood cancer molecular diagnostics kits allow us to overcome these shortcomings, and related products have been under development, with a focus on improving detection sensitivity, enabling multiple tests, and reducing the cost and diagnostic time. Blood cancer molecular diagnostics is usually performed based on platforms such as PCR. The global market for blood cancer molecular diagnostics kits is $ 335.9 million as of 2016 and is expected to reach $ 6980 million in 2026 with an average annual growth rate of 32.9%. The market in South Korea is anticipated to grow at an average annual rate of 28.9%, from $ 3.75 million as of 2016 to $ 60.89 million in 2026. The Market for blood cancer molecular diagnostics kits is judged to be higher in growth possibility due to the increase in the number of cancer patients.

  3. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    PubMed

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (P<0.01). Ex vivo peak plaque target-to-background ratios were significantly higher in ICG-injected rabbits than in controls (P<0.01) on fluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (P<0.01; r=0.85) without significant bias (0.41). Cellular ICG uptake, correlative fluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  4. Fluorescence Quenching of CdSe/ZnS Quantum Dots by Using Black Hole Quencher Molecules Intermediated With Peptide for Biosensing Application.

    PubMed

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2015-12-17

    Quantum dots (QDs) have recently been investigated as fluorescent probes for detecting a very small number of biomolecules and live cells; however, the establishment of molecular imaging technology with on-off control of QD fluorescence remains to be established. Here we have achieved the fluorescence off state of QDs with the conjugation of black hole quencher (BHQ) molecules intermediated with peptide by using streptavidin-QDs585 and biotin-pep-BHQ-1. The fluorescence of streptavidin-QDs585 was decreased by the addition of biotin-pep-BHQ-1 in a dose-dependent manner. It has been suggested that the decrease in QDs585 fluorescence occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of fluorescence intensity and lifetime of streptavidin-QDs585 and QDs585-pep-BHQ-1. QDs585 fluorescence could be quenched by more than 60% efficiency in this system. The sequence of intermediate peptide (pep) was GPLGVRGK, which can be cleaved by matrix metalloproteinases (MMPs) produced by cancer cells. QDs585-pep-BHQ-1 is thus expected to detect the MMP production by the recovery of QDs585 fluorescence as a new bioanalytical agent for molecular imaging.

  5. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing

    PubMed Central

    Zhang, Xiao-an; Lovejoy, Katherine S.; Jasanoff, Alan; Lippard, Stephen J.

    2007-01-01

    We report a molecular platform for dual-function fluorescence/MRI sensing of mobile zinc. Zinc-selective binding units were strategically attached to a water-soluble porphyrin template. The synthetic strategy for achieving the designed target ligand is flexible and convenient, and the key intermediates can be applied as general building blocks for the construction of other metal sensors based on a similar mechanism. The metal-free form, (DPA-C2)2-TPPS3 (1), where DPA is dipicolylamine and TPPS3 is 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphine, is an excellent fluorescent sensor for zinc. It has certain superior physical properties compared with earlier-generation zinc sensors including emission in the red and near-IR regions [λem = 645 nm (s) and 715 nm (m)], with a large Stokes shift of >230 nm. The fluorescence intensity of 1 increases by >10-fold upon zinc binding. The fluorescence “turn-on” is highly selective for zinc versus other divalent metal ions and is relatively pH-insensitive within the biologically relevant pH window. The manganese derivative, [(DPA-C2)2-TPPS3Mn(III)] (2), switches the function of the molecule to generate an MRI contrast agent. In the presence of zinc, the relaxivity of 2 in aqueous solution is significantly altered, which makes it a promising zinc MRI sensor. Both metal-free and Mn(III)-inserted forms are efficiently taken up by live cells, and the intracellular zinc can be imaged by either fluorescence or MR, respectively. We anticipate that in vivo applications of the probes will facilitate a deeper understanding of the physiological roles of zinc and allow detection of abnormal zinc homeostasis for pathological diagnoses. PMID:17578918

  6. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    NASA Astrophysics Data System (ADS)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  7. Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup

    NASA Astrophysics Data System (ADS)

    Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.

  8. The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique

    2013-04-01

    Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less

  9. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  10. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  11. RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon.

    PubMed

    Tang, Hongxing; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Huimin; He, Lifang; Liu, Bin

    2008-06-15

    A novel RNA-templated single-base mutation detection method based on T4 DNA ligase and reverse molecular beacon (rMB) has been developed and successfully applied to identification of single-base mutation in codon 273 of the p53 gene. The discrimination was carried out using allele-specific primers, which flanked the variable position in the target RNA and was ligated using T4 DNA ligase only when the primers perfectly matched the RNA template. The allele-specific primers also carried complementary stem structures with end-labels (fluorophore TAMRA, quencher DABCYL), which formed a molecular beacon after RNase H digestion. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as direct discrimination of single-base mismatch of the RNA extracted from cell; no requirement of PCR amplification; performance of homogeneous detection; and easily design of detection probes.

  12. Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations.

    PubMed

    Mochida, Ai; Ogata, Fusa; Nagaya, Tadanobu; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-15

    Fluorescence-guided imaging during surgery is a promising technique that is increasingly used to aid surgeons in identifying sites of tumor and surgical margins. Of the two types of fluorescent probes, always-on and activatable, activatable probes are preferred because they produce higher target-to-background ratios, thus improving sensitivity compared with always-on probes that must contend with considerable background signal. There are two types of activatable probes: 1) enzyme-reactive probes that are normally quenched but can be activated after cleavage by cancer-specific enzymes (activity-based probes) and 2) molecular-binding probes which use cancer targeting moieties such as monoclonal antibodies to target receptors found in abundance on cancers and are activated after internalization and lysosomal processing (binding-based probes). For fluorescence-guided intraoperative surgery, enzyme-reactive probes are superior because they can react quickly, require smaller dosages especially for topical applications, have limited side effects, and have favorable pharmacokinetics. Enzyme-reactive probes are easier to use, fit better into existing work flows in the operating room and have minimal toxicity. Although difficult to prove, it is assumed that the guidance provided to surgeons by these probes results in more effective surgeries with better outcomes for patients. In this review, we compare these two types of activatable fluorescent probes for their ease of use and efficacy. Published by Elsevier Ltd.

  13. Development of a homogeneous assay format for p53 antibodies using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Neuweiler, Hannes; Scheffler, Silvia; Sauer, Markus

    2005-08-01

    The development of reliable methods for the detection of minute amounts of antibodies directly in homogeneous solution represents one of the major tasks in the current research field of molecular diagnostics. We demonstrate the potential of fluorescence correlation spectroscopy (FCS) in combination with quenched peptide-based fluorescence probes for sensitive detection of p53 antibodies directly in homogeneous solution. Single tryptophan (Trp) residues in the sequences of short, synthetic peptide epitopes of the human p53 protein efficiently quench the fluorescence of an oxazine fluorophore attached to the amino terminal ends of the peptides. The fluorescence quenching mechanism is thought to be a photoinduced electron transfer reaction from Trp to the dye enabled by the formation of intramolecular complexes between dye and Trp. Specific recognition of the epitope by the antibody confines the conformational flexibility of the peptide. Consequently, complex formation between dye and Trp is abolished and fluorescence is recovered. Using fluorescence correlation spectroscopy (FCS), antibody binding can be monitored observing two parameters simultaneously: the diffusional mobility of the peptide as well as the quenching amplitude induced by the conformational flexibility of the peptide change significantly upon antibody binding. Our data demonstrate that FCS in combination with fluorescence-quenched peptide epitopes opens new possibilities for the reliable detection of antibody binding events in homogeneous solution.

  14. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.

    PubMed

    Lopez, Alvaro J; Martínez, Leandro

    2018-02-26

    Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. A pH-responsive molecular switch with tricolor luminescence.

    PubMed

    Ahn, Hyungmin; Hong, Jaewan; Kim, Sung Yeon; Choi, Ilyoung; Park, Moon Jeong

    2015-01-14

    We developed a new ratiometric pH sensor based on poly(N-phenylmaleimide) (PPMI)-containing block copolymer that emits three different fluorescent colors depending on the pH. The strong solvatochromism and tautomerism of the PPMI derivatives enabled precise pH sensing for almost the entire range of the pH scale. Theoretical calculations have predicted largely dissimilar band gaps for the keto, enol, and enolate tautomers of PPMI owing to low-dimensional conjugation effects. The tunable emission wavelength and intensity of our sensors, as well as the reversible color switching with high-luminescent contrast, were achieved using rational molecular design of PPMI analogues as an innovative platform for accurate H(+) detection. The self-assembly of block copolymers on the nanometer length scale was particularly highlighted as a novel prospective means of regulating fluorescence properties while avoiding the self-quenching phenomenon, and this system can be used as a fast responsive pH sensor in versatile device forms.

  16. Development of molecular based optical techniques for thermometry and velocimetry for fluorocarbon media

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Blanchard, Gary; Koochesfahani, Manoochehr

    2016-11-01

    Fluorocarbon solvents are very stable inert fluids with unique physical properties that make them attractive compounds as refrigerant and several medical applications such as contrast enhanced ultrasound imaging. Since they do not mix with typical organic solvents or water, most luminescent (fluorescent or phosphorescent) probes cannot be used as tracers for optical diagnostic techniques. Perfluoropentane, a compound from this family, is used as a simulant fluid by NASA for two-phase heat transfer/mixing experiments under micro-gravity condition due to its low boiling temperature. Here we study the feasibility of employing non-intrusive optical methods for measurements of temperature and/or velocity within Perfluoropentane as the working fluid. Preliminary results of temperature and velocity measurement using Laser Induced Fluorescence and Molecular Tagging Velocimetry are presented. This work was supported by NASA Grant Number NNX16AD52A.

  17. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less

  18. Four-color single molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes

    PubMed Central

    DeRocco, Vanessa C.; Anderson, Trevor; Piehler, Jacob; Erie, Dorothy A.; Weninger, Keith

    2010-01-01

    To allow studies of conformational changes within multi-molecular complexes, we present a simultaneous, 4-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera based, wide-field detection. We further demonstrate labeling histidine-tagged proteins non-covalently with tris-Nitrilotriacetic acid (tris-NTA) conjugated dyes to achieve single molecule detection. We combine these methods to co-localize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes. PMID:21091445

  19. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  20. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  1. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    PubMed

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis.

    PubMed

    Pawar, Suma K; Jaldappagari, Seetharamappa

    2017-09-01

    In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  4. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  6. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  7. Interactions of beta-blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations.

    PubMed

    Först, Gesche; Cwiklik, Lukasz; Jurkiewicz, Piotr; Schubert, Rolf; Hof, Martin

    2014-08-01

    Since pharmacokinetic and pharmacodynamic activities of drugs are often related to their interactions with biomembranes, it is of high interest to establish an approach for the characterization of these interactions at the molecular level. For the present study, beta-blockers (oxprenolol, propranolol, and acebutolol) were selected due to their well described nonspecific membrane effects (NME). Their interactions with model lipid membranes composed of palmitoyloleoylphosphatidylcholine (POPC) were studied using Time-Dependent Fluorescence Shift (TDFS) and Generalized Polarization (GP) as well as molecular dynamics (MD) simulations. Liposomal vesicles were labeled with fluorescent membrane polarity probes (Laurdan, Prodan, and Dtmac). Increasing beta-blocker concentrations (0-10 mM for acebutolol and oxprenolol, and 0-1.5 mM for propranolol) significantly rigidifies the lipid bilayer at the glycerol and headgroup level, which was detected in the steady-state and in the time-resolved fluorescence data. The effects of propranolol were considerably stronger than those of the two other beta-blockers. The addition of fluorescent probes precisely located at different levels within the lipid bilayer revealed the insertion of the beta-blockers into the POPC bilayer at the glycerol backbone level, which was further confirmed by MD simulations in the case of propranolol. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    PubMed

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this effect is used for quantification of this food-borne pathogen.

  9. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  10. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    PubMed

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

  11. Investigating dye performance and crosstalk in fluorescence enabled bioimaging using a model system

    PubMed Central

    Arppe, Riikka; Carro-Temboury, Miguel R.; Hempel, Casper; Vosch, Tom

    2017-01-01

    Detailed imaging of biological structures, often smaller than the diffraction limit, is possible in fluorescence microscopy due to the molecular size and photophysical properties of fluorescent probes. Advances in hardware and multiple providers of high-end bioimaging makes comparing images between studies and between research groups very difficult. Therefore, we suggest a model system to benchmark instrumentation, methods and staining procedures. The system we introduce is based on doped zeolites in stained polyvinyl alcohol (PVA) films: a highly accessible model system which has the properties needed to act as a benchmark in bioimaging experiments. Rather than comparing molecular probes and imaging methods in complicated biological systems, we demonstrate that the model system can emulate this complexity and can be used to probe the effect of concentration, brightness, and cross-talk of fluorophores on the detected fluorescence signal. The described model system comprises of lanthanide (III) ion doped Linde Type A zeolites dispersed in a PVA film stained with fluorophores. We tested: F18, MitoTracker Red and ATTO647N. This model system allowed comparing performance of the fluorophores in experimental conditions. Importantly, we here report considerable cross-talk of the dyes when exchanging excitation and emission settings. Additionally, bleaching was quantified. The proposed model makes it possible to test and benchmark staining procedures before these dyes are applied to more complex biological systems. PMID:29176775

  12. Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers.

    PubMed

    Jiang, Chao; Yuan, Yuan; Liu, Libing; Hou, Jingyi; Jin, Yan; Huang, Luqi

    2015-11-05

    A label-free, homogenous and sensitive one-step method for the molecular authentication of medicinal snakes has been developed by combining a rapid PCR technique with water-soluble cationic conjugated polyelectrolytes (CCPs). Three medicinal snake materials (Deinagkistrodon acutus, Zaocys dhumnades and Bungarus multicinctus; a total of 35 specimens) and 48 snake specimens with similar morphologies and textures were clearly distinguished by the naked eye by utilizing a CCP-based assay in a high-throughput manner. The identification of medicinal snakes in patented Chinese drugs was successfully performed using this detection system. In contrast to previous fluorescence-labeled oligonucleotide detection and direct DNA stain hybridization assays, this method does not require designing dye-labeled primers, and unfavorable dimer fluorescence is avoided in this homogenous method.

  13. Efficient HOMO-LUMO separation by multiple resonance effect toward ultrapure blue thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Takuji; Ikuta, Toshiaki; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Ni, Jingping

    2016-09-01

    Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet-triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of 62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach 100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70-100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of 100%, which represent record-setting performance for blue OLED devices.

  14. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.

    PubMed

    Park, Jae Woo; Rhee, Young Min

    2016-02-07

    For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.

  15. A Metal-Polydopamine Framework (MPDA) as an Effective Fluorescent Quencher for Highly Sensitive Detection of Hg (II) And Ag (I) ions Through Exonuclease III Activity.

    PubMed

    Ravikumar, Ayyanu; Panneerselvam, Perumal; Morad, Norhashimah

    2018-05-24

    In this paper, we propose a metal-polydopamine framework (MPDA) with specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability towards various organic fluorophore such as aminoethylcomarin acetate (AMCA), 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine (TAMRA) and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ion. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM labelled ssDNA was adsorbed onto MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor highly sensitive and selective determination of Hg2+and Ag+ ions is achieved through Exonuclease III signal amplification activity. The detection limits of Hg2+and Ag+ achieved to be 1.2 pM and 34 pM respectively, were compared to co-existing metal ions and GO based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.

  16. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  17. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High spectral resolution observations of fluorescent molecular hydrogen in molecular clouds

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Geballe, T. R.; Brand, P. W. J. L.; Moorhouse, A.

    1990-01-01

    The 1-0 S(1) line of molecular hydrogen has been observed at high spectral resolution in several sources where the emission was suspected of being fluorescent. In NGC 2023, the Orion Bar, and Parsamyan 18, the S(1) line is unresolved, and the line center close to the rest velocity of the ambient molecular cloud. Such behavior is expected for UV-excited line emission. The H2 line widths in molecular clouds thus can serve as diagnostic for shocked and UV-excitation mechanisms. If the lines are broader than several km/s or velocity shifts are observed across a source it is likely that shocks are responsible for the excitation of the gas.

  19. Time-resolved fluorescent properties of 8-vinyl-deoxyadenosine and 2-amino-deoxyribosylpurine exhibit different sensitivity to their opposite base in duplexes.

    PubMed

    Kenfack, Cyril A; Piémont, Etienne; Ben Gaied, Nouha; Burger, Alain; Mély, Yves

    2008-08-14

    8-Vinyl-deoxyadenosine (8VA) has been recently introduced as a fluorescent analogue of adenosine that is less perturbing and less quenched than the well-established 2-amino-deoxyribosylpurine (2AP) probe when inserted in oligonucleotides. To further validate 8VA as a fluorescent substitute of A, we compared the ability of 8VA and 2AP in sequences of the type d(CGT TTT XNX TTT TGC) (with N=8VA or 2AP and X=T and C) to discriminate the nature of the opposite base (Y) in duplexes. For both probes, systematic variations in the amplitudes of the short- and long-lived lifetimes of the fluorescence intensity decays as well as in the amplitude of the fast rotational correlation time of the fluorescence anisotropy decays were observed as a function of the nature of Y. From these parameters, we inferred a stability order 8VA-T > 8VA-G > 8VA-A > 8VA-C, similar to the stability order with the native A base, but different from the stability order with 2AP. Using a combination of molecular mechanics and ab initio calculations, we found that the time-resolved parameters of 8VA, but not the 2AP ones, correlate well with the geometry and the strength of the A-Y base-pairing interaction. This may be rationalized by the smaller structural and electronic perturbations induced by the vinyl group in position 8 as compared to the amino group at position 2. As a consequence, substitution of A by 8VA in a base pair was found to only minimally modify the structure and interaction energy of the base pair. Thus, 8VA can be used as a fluorescent substitute of the natural A, to straightforwardly discriminate the nature of the opposite base. This may find interesting applications notably in the elucidation of the mechanisms and dynamics of the DNA mismatch repair system.

  20. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  1. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    PubMed

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: the effect of the molecular structure revealed by a photophysical study.

    PubMed

    Zhang, Xian-Fu; Liu, Su-Ping; Shao, Xiao-Na

    2013-09-01

    The fluorescence and absorption properties of several xanthene and phthalocyanine dyes were measured in the presence and absence of chemically derived graphene (CDG) sheets. The interaction of pyronine Y (PYY) with graphene sheets was compared with that of rhodamine 6G (R6G) to reveal the effect of the molecular structure. Although the presence of the perpendicular benzene moiety in a R6G or phthalocyanine molecule does cause the difficulty for forming dye-CDG complex and make CDG less efficient in quenching the fluorescence intensity and shortening the fluorescence lifetime, it does not affect the band position of charge transfer absorption, suggesting that no molecular shape change occurred in a dye molecule caused by the interaction with CDG sheets. The spectroscopic and thermodynamic data indicated that the dye-CDG binding is of charge transfer nature, while the dynamic fluorescence quenching is due to photoinduced energy and electron transfer. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ultrafast fluorescent decay induced by metal-mediated dipole–dipole interaction in two-dimensional molecular aggregates

    DOE PAGES

    Hu, Qing; Jin, Dafei; Xiao, Jun; ...

    2017-09-05

    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. Here, in this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice–dipole calculation reveal that the metal-mediated dipole–dipole interaction shortens the fluorescent lifetime to about one-halfmore » and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. In conclusion, our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.« less

  4. Synthesis, characterization, crystal structure and HSA binding of two new N,O,O-donor Schiff-base ligands derived from dihydroxybenzaldehyde and tert-butylamine

    NASA Astrophysics Data System (ADS)

    Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri

    2016-09-01

    Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.

  5. Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP).

    PubMed

    Kochman, Michał A; Bil, Andrzej; Miller, R J Dwayne

    2017-11-02

    Benzopyridopyrimidine (BPP) is a fluorescent nucleobase analogue capable of forming base pairs with adenine (A) and guanine (G) at different sites. When incorporated into oligodeoxynucleotides, it is capable of differentiating between the two purine nucleobases by virtue of the fact that its fluorescence is largely quenched when it is base-paired to guanine, whereas base-pairing to adenine causes only a slight reduction of the fluorescence quantum yield. In the present article, the photophysics of BPP is investigated through computer simulations. BPP is found to be a good charge acceptor, as demonstrated by its positive and appreciably large electron affinity. The selective quenching process is attributed to charge transfer (CT) from the purine nucleobase, which is predicted to be efficient in the BPP-G base pair, but essentially inoperative in the BPP-A base pair. The CT process owes its high selectivity to a combination of two factors: the ionization potential of guanine is lower than that of adenine, and less obviously, the site occupied by guanine enables a greater stabilization of the CT state through electrostatic interactions than the one occupied by adenine. The case of BPP illustrates that molecular recognition via hydrogen bonding can enhance the selectivity of photoinduced CT processes.

  6. Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Chow, Philip C. Y.

    2014-06-19

    7-(Diethylamino)-coumarin-3-carboxylic acid (1) has been used as a laser dye, fluorescent label, and biomedical inhibitor in many different applications. Although this dye is typically used in the solution phase, it is prone to molecular aggregation, resulting in many inconsistent optoelectronic properties being reported in the literature. In this paper, the UV—vis absorption and fluorescence spectra of 1 are investigated in three representative solvents: cyclohexane [nonpolar and non-hydrogen bonding (NHB)], ethanol (moderately polar and hydrogen-bond accepting/donating), and DMSO (strongly polar and hydrogen-bond accepting). These experimental results, in conjunction with (time-dependent) density functional theory (DFT/TDDFT) based quantum calculations, have led to themore » identification of the J-aggregates of 1, and rationalized its different aggregation characteristic in cyclohexane in contrast to that of another similar compound, coumarin 343. We show here that these aggregates are largely responsible for the anomalous optoelectronic properties of this compound. In addition, DFT calculations and 1H NMR spectroscopy measurements suggest that the intramolecular hydrogen bond in 1 could be "opened up" in hydrogen-bond accepting solvents, affording significant molecular conformational changes and complex formation effects. The comprehensive understanding of the molecular aggregation and complex formation mechanisms of 1 acquired through this work forms a foundation for the knowledge-based molecular design of organic dyes with tailored aggregation tendencies or anti-aggregation characteristics to cater for different opapplications.« less

  7. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether fluorescence in grade II gliomas identifies a subtype with worse prognosis remains to be determined. ABBREVIATIONS: 5-ALA, 5-aminolevulinic acid CRT, classification and regression tree 18F-FET PET, 18F-fluoroethyl tyrosine positron emission tomography FLAIR, fluid-attenuated inversion recovery GBM, glioblastoma multiforme O6-MGMT, methylguanine DNA methyltransferase ROC, receiver-operating characteristic SUV, standardized uptake value WHO, World Health Organization PMID:26366972

  8. Evaluation of a Centyrin-Based Near-Infrared Probe for Fluorescence-Guided Surgery of Epidermal Growth Factor Receptor Positive Tumors.

    PubMed

    Mahalingam, Sakkarapalayam M; Dudkin, Vadim Y; Goldberg, Shalom; Klein, Donna; Yi, Fang; Singhal, Sunil; O'Neil, Karyn T; Low, Philip S

    2017-11-15

    Tumor-targeted near-infrared fluorescent dyes have the potential to improve cancer surgery by enabling surgeons to locate and resect more malignant lesions where good visualization tools are required to ensure complete removal of malignant tissue. Although the tumor-targeted fluorescent dyes used in humans to date have been either small organic molecules or high molecular weight antibodies, low molecular weight protein scaffolds have attracted significant attention because they penetrate solid tumors almost as efficiently as small molecules, but can be infinitely mutated to bind almost any antigen. Here we describe the use of a 10 kDa protein scaffold, a Centyrin, to target a near-infrared fluorescent dye to tumors that overexpress the epidermal growth factor receptor (EGFR) for fluorescence-guided surgery (FGS). We have developed and optimized the dose and time required for imaging small tumor burdens with minimal background fluorescence in real-time fluorescence-guided surgery of EGFR-expressing tumor xenografts in murine models. We demonstrate that the Centyrin-near-infrared dye conjugate (CNDC) binds selectively to human EGFR + cancer cells with an EC 50 of 2 nM, localizes to EGFR + tumor xenografts in athymic nude mice and that uptake of the dye in xenografts is significantly reduced when EGFR are blocked by preinjection of excess unlabeled Centyrin. Taken together, these data suggest that CNDCs can be used for intraoperative identification and surgical removal of EGFR-expressing lesions and that Centyrins targeted to other tumor-specific antigens should prove similarly useful in fluorescence guided surgery of cancer. In addition, we demonstrate that the CNDC is detected in the NIR region of the spectrum and can be utilized for fluorescence-guided surgery (FGS). In addition, we propose that with its eventual complete clearance from EGFR-negative tissues and its quantitative retention in the tumor mass for >24 h, a Centyrin-targeted NIR dye should provide excellent tumor contrast when injected at least 6-8 h before initiation of cancer surgery in human patients.

  9. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  10. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    PubMed

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  11. Biophysical and computational characterization of vandetanib-lysozyme interaction

    NASA Astrophysics Data System (ADS)

    Kabir, Md. Zahirul; Hamzah, Nur Aziean Binti; Ghani, Hamidah; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad

    2018-01-01

    Interaction of an anticancer drug, vandetanib (VDB) with a ligand transporter, lysozyme (LYZ) was explored using multispectroscopic techniques, such as fluorescence, absorption and circular dichroism along with computational analysis. Fluorescence data and absorption results confirmed VDB-LYZ complexation. VDB-induced quenching was characterized as static quenching based on inverse correlation of KSV with temperature as well as kq values. The complex was characterized by the weak binding constant (Ka = 4.96-3.14 × 103 M-1). Thermodynamic data (ΔS = + 12.82 J mol-1 K-1; ΔH = - 16.73 kJ mol-1) of VDB-LYZ interaction revealed participation of hydrophobic and van der Waals forces along with hydrogen bonds in VDB-LYZ complexation. Microenvironmental perturbations around tryptophan and tyrosine residues as well as secondary and tertiary structural alterations in LYZ upon addition of VDB were evident from the 3-D fluorescence, far- and near-UV CD spectral analyses, respectively. Interestingly, addition of VDB to LYZ significantly increased protein's thermostability. Molecular docking results suggested the location of VDB binding site near the LYZ active site while molecular dynamics simulation results suggested stability of VDB-LYZ complex. Presence of Mg2+, Ba2+ and Zn2+ was found to interfere with VDB-LYZ interaction.

  12. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Tumor margin detection using optical biopsy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  14. Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface

    PubMed Central

    Faccio, Greta; Kämpf, Michael M.; Piatti, Chiara; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Enzymatic crosslinking of proteins is often limited by the steric availability of the target residues, as of tyrosyl side chains in the case of tyrosinase. Carrying an N-terminal peptide-tag containing two tyrosine residues, the fluorescent protein C-phycocyanin HisCPC from Synechocystis sp. PCC6803 was crosslinked to fluorescent high-molecular weight forms with tyrosinase. Crosslinking with tyrosinase in the presence of L-tyrosine produced non fluorescent high-molecular weight products. Incubated in the presence of tyrosinase, HisCPC could also be immobilized to amino-modified polystyrene beads thus conferring a blue fluorescence. Crosslinking and immobilization were site-specific as both processes required the presence of the N-terminal peptide in HisCPC. PMID:24947668

  15. Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Patel, Manish R.; Storrie-Lombardi, Michael C.; Ward, John M.; Muller, Jan-Peter

    2012-05-01

    Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.

  16. Single-molecule spectroscopic methods.

    PubMed

    Haustein, Elke; Schwille, Petra

    2004-10-01

    Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular parameters (e.g. diffusion coefficients, concentration and molecular interactions). As a result of various recent advances, this technique shows promise even for intracellular applications. Fluorescence imaging can reveal the spatial localization of fluorophores on nanometer length scales, whereas fluorescence resonance energy transfer supports a wide range of different applications, including real-time monitoring of conformational rearrangements (as in protein folding). Still in their infancy, single-molecule spectroscopic methods thus provide unprecedented insights into basic molecular mechanisms. Copyright 2004 Elsevier Ltd.

  17. A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats.

    PubMed

    Miao, Junfeng; Huo, Yingying; Liu, Qian; Li, Zhe; Shi, Heping; Shi, Yawei; Guo, Wei

    2016-11-01

    Peroxynitrite (ONOO(-)) is an extremely powerful oxidant in biological systems, and can react with a wide variety of molecular targets including proteins, lipids, and nucleic acids, eventually resulting in a series of disease states such as diabetes, Alzheimer's disease, cancer, arthritis, autoimmune, and other disorders. In this work, we present a new class of ONOO(-) fluorescent probes by exploiting the ONOO(-)-triggered N-oxidation and N-nitrosation reactions of aromatic tertiary amine for the first time. The as-obtained fluorescent probe A2 could detect ONOO(-) with quite fast fluorescence off-on response (within seconds), ultrasensitivity (detection limit: <2 nM), and excellent selectivity over a series of biologically relevant reactive oxygen species as well as metal cations. With the probe, the endogenous ONOO(-) in activated RAW264.7 murine macrophage, EA.hy926 endothelial cells after oxygen glucose deprivation and reoxygenation (OGD/RO), and kidney tissue of diabetic rats has been successfully visualized. Based on the molecular platform of A2, we further develop its mitochondria- and lysosome-targetable fluorescent probes Mito-A2 and Lyso-A2 by installing the corresponding targeting groups to alkoxy unit of A2, and confirm their abilities to image ONOO(-) in mitochondria and lysosomes, respectively, by co-localization assays. It is greatly expected that these probes can serve as useful imaging tools for clarifying the distribution and pathophysiological functions of ONOO(-) in cells, subcellular organelles, and animal tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging.

    PubMed

    Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc

    2017-08-01

    Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).

  19. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  20. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  1. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.

    PubMed

    Haustein, Elke; Schwille, Petra

    2003-02-01

    Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.

  2. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    NASA Astrophysics Data System (ADS)

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-12-01

    Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.

  3. Development and application of molecularly imprinted polymer - Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum.

    PubMed

    Chantada-Vázquez, María Pilar; de-Becerra-Sánchez, Carolina; Fernández-Del-Río, Alba; Sánchez-González, Juan; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-05-01

    A molecularly imprinted polymer - Mn-doped ZnS quantum dot-based fluorescence probe for cocaine abuse screening has been prepared and applied to complex samples such as serum and oral fluid. The fluorescent sensing material was prepared by anchoring a selective MIP for COC on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). Simple and low cost methods have thus been optimized for assessing cocaine abuse in serum and oral fluid by monitoring fluorescence quenching when cocaine (COC) is present (optimized operating conditions with 1.5mL of 200mgL -1 MIP-coated QDs solution, pH 5.5, and 15min before fluorescence scanning). The matrix effect was found to be important when analyzing oral fluid and serum, and several strategies based on centrifugation for oral fluid and solid phase extraction (SPE) for serum were explored. Two analytical methods were developed for oral fluid. The first one (direct method) requires a centrifugation step (6°C, 4000rpm, 20min) to avoid the matrix effect, and allows for cocaine determination by using an aqueous calibration (1:20 dilution). The second method was developed for oral fluid sampled by Salivette devices, and also requires a further centrifugation (6°C, 4000rpm, 20min) of the recovered oral fluid. This method, however, requires the standard addition technique (1:20 dilution) because of the existence of the matrix effect. Regarding serum samples, a direct method (serum dilution) was not possible, and an SPE procedure was needed to avoid the matrix effect (use of aqueous calibration). The limits of detection and quantification when using the Salivette method were 0.035mgL -1 and 0.117mgL -1, respectively; whereas, 0.015mgL -1 (LOD) and 0.050mgL -1 (LOQ) were obtained for serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen.

    PubMed

    Huang, Rongrong; Xi, Zhijiang; Deng, Yan; He, Nongyue

    2016-08-08

    This research is aimed at selecting specific aptamer of hepatitis B e antigen by SELEX and its applications. Hepatitis B e antigen (HBeAg) seroconversion is used as an indicator of virological response when treating patients suffering from chronic hepatitis B. HBeAg also indicates a high viremia and high infectivity in untreated patients. With HBeAg modified magnetic beads as targets, three groups of aptamers are successfully selected. These are the first reported DNA aptamers that can specifically bind to HBeAg. Based on the property that the conformation changes upon binding to its target, aptamer has emerged as ideal candidate in a variety of sensing applications. In this study, we present a simple strategy for aptamer-based fluorescence biosensors for the quantitative detection of HBeAg, in which a fluorescence labeled HBeAg aptamer serves as the molecular recognition element and a short DNA molecule that is complementary to the aptamer serves as the competitor. The LOD for HBeAg is 609 ng/mL. Later, the fluorescence system is deployed in HBeAg positive and negative blood serum (p < 0.05). The total detection assay could be completed in 2 min. These newly isolated aptamers could assist the diagnosis of chronic hepatitis B.

  5. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen

    PubMed Central

    Huang, Rongrong; Xi, Zhijiang; Deng, Yan; He, Nongyue

    2016-01-01

    This research is aimed at selecting specific aptamer of hepatitis B e antigen by SELEX and its applications. Hepatitis B e antigen (HBeAg) seroconversion is used as an indicator of virological response when treating patients suffering from chronic hepatitis B. HBeAg also indicates a high viremia and high infectivity in untreated patients. With HBeAg modified magnetic beads as targets, three groups of aptamers are successfully selected. These are the first reported DNA aptamers that can specifically bind to HBeAg. Based on the property that the conformation changes upon binding to its target, aptamer has emerged as ideal candidate in a variety of sensing applications. In this study, we present a simple strategy for aptamer-based fluorescence biosensors for the quantitative detection of HBeAg, in which a fluorescence labeled HBeAg aptamer serves as the molecular recognition element and a short DNA molecule that is complementary to the aptamer serves as the competitor. The LOD for HBeAg is 609 ng/mL. Later, the fluorescence system is deployed in HBeAg positive and negative blood serum (p < 0.05). The total detection assay could be completed in 2 min. These newly isolated aptamers could assist the diagnosis of chronic hepatitis B. PMID:27499342

  6. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA.

    PubMed

    Adegoke, Oluwasesan; Kato, Tatsuya; Park, Enoch Y

    2016-06-15

    Conventional techniques used to diagnose influenza virus face several challenges, such as low sensitivity, slow detection, false positive results and misinterpreted data. Hence, diagnostic probes that can offer robust detection qualities, such as high sensitivity, rapid detection, elimination of false positive data, and specificity for influenza virus, are urgently needed. The near-infrared (NIR) range is an attractive spectral window due to low photon absorption by biological tissues, hence well-constructed fluorescent biosensors that emit within the NIR window can offer an improved limit of detection (LOD). Here, we demonstrate the use of a newly synthesized NIR quinternary alloyed CdZnSeTeS quantum dots (QDs) as an ultrasensitive fluorescence reporter in a conjugated molecular beacon (MB) assay to detect extremely low concentrations of influenza virus H1N1 RNA. Under optimum conditions, two different strains of influenza virus H1N1 RNA were detected based on fluorescence enhancement signal transduction. We successfully discriminated between two different strains of influenza virus H1N1 RNA based on the number of complementary nucleotide base pairs of the MB to the target RNA sequence. The merits of our bioprobe system are rapid detection, high sensitivity (detects H1N1 viral RNA down to 2 copies/mL), specificity and versatility (detects H1N1 viral RNA in human serum). For comparison, a conventional CdSe/ZnS-MB probe could not detect the extremely low concentrations of H1N1 viral RNA detected by our NIR alloyed CdZnSeTeS-MB probe. Our bioprobe detection system produced a LOD as low as ~1 copy/mL and is more sensitive than conventional molecular tests and rapid influenza detection tests (RIDTS) probes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki

    2014-03-01

    Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.

  8. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    NASA Astrophysics Data System (ADS)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  9. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.

    PubMed

    Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh

    2015-01-01

    A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.

  10. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    PubMed Central

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  11. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    PubMed

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  12. Reconsideration of the Detection and Fluorescence Mechanism of a Pyrene-Based Chemosensor for TNT.

    PubMed

    Lu, Meiheng; Zhou, Panwang; Ma, Yinhua; Tang, Zhe; Yang, Yanqiang; Han, Keli

    2018-02-08

    The rapid detection of chemical explosives is crucial for national security and public safety, and the investigation of sensing mechanisms is important for designing highly efficient chemosensors. This study theoretically investigates the detection and fluorescence mechanism of a newly synthesized pyrene-based chemosensor for the detection of trinitrotoluene (TNT) through density-functional-theory (DFT) and time-dependent density-functional-theory (TDDFT) methods and suggests a different interaction product of the probe and TNT from previously reported ones [ Mosca et al. J. Am. Chem. Soc. 2015 , 137 , 7967 ]. Instead of forming Meisenheimer complexes, the energies of which are beyond those of the reactants, a low-energy product generated by a π-π-stacking interaction is more rational and favorable. The fluorescence-quenching property further confirms that the π-π-stacking product is the predicted one rather than luminescent Meisenheimer complexes. Frontier-molecular-orbital (FMO)-analysis results show that photoinduced electron transfer (PET) is the mechanism underlying the luminescence quenching of the probe upon exposure to TNT.

  13. Single Benzene Green Fluorophore: Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts.

    PubMed

    Beppu, Teruo; Tomiguchi, Kosuke; Masuhara, Akito; Pu, Yong-Jin; Katagiri, Hiroshi

    2015-06-15

    Benzene is the simplest aromatic hydrocarbon with a six-membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5-bis(methylsulfonyl)-1,4-diaminobenzene as a novel architecture for green fluorophores, established based on an effective push-pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid-state emissive, water-soluble, and solvent- and pH-independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π-conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Detection of protein-protein interactions by FRET and BRET methods].

    PubMed

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  15. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.

    PubMed

    Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M

    2017-05-01

    In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.

  16. Thermal characterization of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles based on pyrene excimer formation.

    PubMed

    Jule, Eduardo; Yamamoto, Yuji; Thouvenin, Muriel; Nagasaki, Yukio; Kataoka, Kazunori

    2004-07-07

    Poly(ethylene glycol)--poly(D,L-lactide) (PEG-PDLLA) block copolymers were prepared by anionic ring-opening polymerization, resulting in block sizes effectively controlled by initial monomer/initiator ratios and low molecular weight distributions (<1.12). A pyrene derivative (1-pyrenyl carbonyl cyanide--Py) was conjugated to the end of the hydrophobic block (PDLLA) in a quantitative manner, with coupling efficiencies >95%. The so-obtained PEG-PDLLA-Py copolymers displayed fluorescent properties that were associated with the pyrene monomers, when placed in good solvents for both the hydrophilic and hydrophobic blocks. When placed in selective solvents, these copolymers self-assembled into micelles in the 30-nm range, also with low particle size distributions (<0.09), within which Py could be readily entrapped in the hydrophobic PDLLA core. Py entrapment resulted in the formation of excimers, as evident from fluorescence measurements. Observation of excimer formation/dissociation further conveyed information on the physicochemical properties of the core. Thermal characterization of these systems showed that an increase in the temperature resulted in changes in the properties of excimer fluorescence, an occurrence attributed to a higher mobility of the otherwise glassy PDLLA. This, in turn, greatly affected the inter-molecular distance between pyrene molecules, a crucial factor for excimer formation. The glass transition of the PDLLA block, approximately 38 degrees C, defined the onset for increasing chain mobility and whence excimer dissociation. Excimer fluorescence appeared to be time-dependent. Based on these observations, chain exchange processes were clearly evidenced through the time-dependent dissociation of excimers into unimers, a process that was influenced by changes in temperature.

  17. A hydrazone based probe for selective sensing of Al(iii) and Al(iii)-probe complex mediated secondary sensing of PPi: framing of molecular logic circuit and memory device and computational studies.

    PubMed

    Mohammad, Hasan; Islam, Abu Saleh Musha; Prodhan, Chandraday; Chaudhuri, Keya; Ali, Mahammad

    2018-02-14

    A hydrazone-based conjugate Nap-hyz-pyz (H 3 L3) with potential N 2 O 2 donor atoms was found to act as a dual channel (colori- and fluori-metric) sensor towards Al 3+ and PPi in H 2 O-MeOH (6 : 4, v/v) at pH 7.2 (40 mM HEPES buffer) at 25 °C. The formation constants, K f = (3.49 ± 1.77) × 10 4 and (3.78 ± 0.1) × 10 4 M -1 , of the sensor towards Al 3+ were determined by absorption and fluorescence titrations, respectively. The 1 : 1 stoichiometry of the reaction was determined by Job's method and confirmed by ESI-MS + (m/z) studies. The LOD for Al 3+ , as determined by the 3σ method, was found to be 114.54 nM. Most strikingly, the addition of ∼115 μM PPi to the Nap-hyz-pyz-Al 3+ ensemble (20 μM ligand and 74 μM Al 3+ ) leads to complete quenching of fluorescence. The fluorescence response of Nap-hyz-pyz towards Al 3+ was not perturbed by the presence of 5 equivalents or more of other ions and inorganic anions. The structure of the [Al(L 3 )(H 2 O)] complex was delineated by DFT calculations. TD-DFT studies were performed to investigate various spectral transitions. Based on changes in the fluorescence intensities of Nap-hyz-pyz in the presence of Al 3+ and PPi at 487 nm, INHIBIT and molecular logic gates were constructed and interpreted. The probe was found to be bio-compatible and cell permeable with no or negligible cytotoxicity; thus, it provides a good opportunity for in vitro cell imaging studies of these ions. The presence of ATP or Pi did not interfere with the fluorescent detection of PPi. Thus, these evident and excellent sensing capabilities of Nap-hyz-pyz towards Al 3+ and PPi were further scrutinized in HepG2 cell lines.

  18. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  19. Combining Optical Coherence Tomography with Fluorescence Molecular Imaging: Towards Simultaneous Morphology and Molecular Imaging

    PubMed Central

    Yuan, Shuai; Roney, Celeste A.; Wierwille, Jerry; Chen, Chao-Wei; Xu, Biying; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-01-01

    Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both ~10 μm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. PMID:20009192

  20. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence.

    PubMed

    He, Feng; Phan, Duke H; Hogan, Sabine; Bailey, Robert; Becker, Gerald W; Narhi, Linda O; Razinkov, Vladimir I

    2010-06-01

    The utility of extrinsic fluorescence as a tool for high throughput detection of monoclonal antibody aggregates was explored. Several IgG molecules were thermally stressed and the high molecular weight species were fractionated using size-exclusion chromatography (SEC). The isolated aggregates and monomers were studied by following the fluorescence of an extrinsic probe, SYPRO Orange. The dye displayed high sensitivity to structurally altered, aggregated IgG structures compared to the native form, which resulted in very low fluorescence in the presence of the dye. An example of the application is presented here to demonstrate the properties of this detection method. The fluorescence assay was shown to correlate with the SEC method in quantifying IgG aggregates. The fluorescent probe method appears to have potential to detect protein particles that could not be analyzed by SEC. This method may become a powerful high throughput tool to detect IgG aggregates in pharmaceutical solutions and to study other protein properties involving aggregation. It can also be used to study the kinetics of antibody particle formation, and perhaps allow identification of the species, which are the early building blocks of protein particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

Top