Science.gov

Sample records for fluorescence correlation spectroscopic

  1. The spectroscopic basis of Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2012-01-01

    We have developed Fluorescence Triple Correlation Spectroscopy (F3CS) as an extension of the widely-used fluorescence microscopy technique Fluorescence Correlation Spectroscopy. F3CS correlates three signals at once and provides additional capabilities for the study of systems with complex stoichiometry, kinetic processes and irreversible reactions. A general theory of F3CS was developed to describe the interplay of molecular dynamics and microscope optics, leading to an analytical function to predict experimental triple correlations of molecules that freely diffuse through the tight focus of the microscope. Experimental correlations were calculated from raw fluorescence data using triple correlation integrals that extend multiple-tau correlation theory to delay times in two dimensions. The quality of experimental data was improved by tuning specific spectroscopic parameters and employing multiple independent detectors to minimize optoelectronic artifacts. Experiments with the reversible system of freely-diffusing 16S rRNA revealed that triple correlation functions contain symmetries predicted from time-reversal arguments. Irreversible systems are shown to break these symmetries and correlation strategies were developed to detect time-reversal asymmetries in a comprehensive way with respect to two delay times, each spanning many orders of magnitude in time. The correlation strategies, experimental approaches and theory developed here enable studies of the composition and dynamics of complex systems using F3CS. PMID:22229664

  2. Fluorophore conjugated silver nanoparticles: a time-resolved fluorescence correlation spectroscopic study

    NASA Astrophysics Data System (ADS)

    Ray, Krishanu; Zhang, Jian; Lakowicz, Joseph R.

    2009-02-01

    Fluorescence detection is a central component in biological research. In recent years there has been a growing interest in the interactions of fluorophores with metallic surfaces or particles. A single-stranded oligonucleotide was chemically bound to a single 50 nm diameter silver particle and a Cy5-labeled complementary single-stranded oligonucleotide was hybridized with the particle-bound oligonucleotide. The bound Cy5 molecules on the silver particles were spatially separated from the silver surface by the hybridized DNA duplex chains, which were about 8 nm in length, to reduce the competitive quenching. We use fluorescence lifetime correlation spectroscopy (FLCS) with picosecond time-resolved detection to separate the fluorescence correlation spectroscopy (FCS) contributions from fluorophores and metal-conjugated fluorophores. The single Cy5-labeled 50 nm silver particles displayed a factor of 15-fold increase in emission signal and 5-fold decrease in emission lifetimes in solution relative to the Cy5-DNA in the absence of metal. Lifetime measurements support the near-field interaction mechanism between the fluorophore and silver nanoparticle. In this study, FLCS is being applied to a system where the brightness and the fluorescent lifetime of the emitting species are significantly different. Our measurements suggest that FLCS is a powerful method for investigating the metal-fluorophore interaction at the single molecule level and to separate two different species from a mixture solution emitting at the same wavelength. Additionally, the highly bright Cy5-DNA-Ag molecules offer to be excellent probes in high background biological samples.

  3. Fluorescence spectroscopic detection of early injury-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Lucas, Alexandra; Perk, Masis; Wen, Yue; Smith, Carol

    1992-08-01

    Laser-induced fluorescence spectroscopy has been used for the detection of advanced atherosclerotic lesions. Angioplasty balloon-mediated injury was examined spectroscopically in order to assess the sensitivity of fluorescence spectroscopy for detection of early atherosclerosis. Abdominal aortic balloon angioplasty was performed via femoral artery cutdown in nine White Leghorn roosters (five normal, four atherogenic diet). Roosters were sacrificed at 1, 2, 4, 8, and 12 week intervals. Fluorescence emission spectra (n equals 114) were recorded from each aortic section (XeCl excimer laser, 308 nm, 1.5 - 2.0 mJ/pulse, 5 Hz). Changes in normalized fluorescence emission intensity were correlated with selected sections of histology. All balloon-injured segments showed intimal fibrous proliferation. For intimal thickness measuring > 70 (mu) , fluorescence emission intensity was decreased at 440 - 460 nm (p < 0.0005). Lesions complicated by thrombus also had lower fluorescence emission at 425 - 450 nm when compared to histologically normal aorta (p < 0.009). In injured segments high cholesterol diet resulted in lower recorded fluorescence emission at 440 - 460 nm (p < 0.001) associated with the increase in intimal thickness. Spectra from uninjured elastic aorta (aortic arch and thoracic aorta) had greater fluorescence intensity at 380 - 445 nm than muscular (abdominal) aorta (p < 0.01), therefore, only spectra from injured and uninjured segments of corresponding areas of the aorta were compared. The conclusion is: (1) Early intimal proliferative changes after angioplasty can be detected by fluorescence spectroscopy. (2) Spectra from elastic thoracic aorta differ significantly from the spectra of muscular abdominal aorta.

  4. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  5. Spectroscopic Imaging of Strongly Correlated Electronic States

    NASA Astrophysics Data System (ADS)

    Yazdani, Ali; da Silva Neto, Eduardo H.; Aynajian, Pegor

    2016-03-01

    The study of correlated electronic systems from high-Tc cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.

  6. Supercritical Angle Fluorescence Correlation Spectroscopy

    PubMed Central

    Ries, Jonas; Ruckstuhl, Thomas; Verdes, Dorinel; Schwille, Petra

    2008-01-01

    We explore the potential of a supercritical angle (SA) objective for fluorescence correlation spectroscopy (FCS). This novel microscope objective combines tight focusing by an aspheric lens with strong axial confinement of supercritical angle fluorescence collection by a parabolic mirror lens, resulting in a small detection volume. The tiny axial extent of the detection volume features an excellent surface sensitivity, as is demonstrated by diffusion measurements in model membranes with an excess of free dye in solution. All SA-FCS measurements are directly compared to standard confocal FCS, demonstrating a clear advantage of SA-FCS, especially for diffusion measurements in membranes. We present an extensive theoretical framework that allows for accurate and quantitative evaluation of the SA-FCS correlation curves. PMID:17827221

  7. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  8. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  9. Correlation fluorescence method of amine detection

    NASA Astrophysics Data System (ADS)

    Myslitsky, Valentin F.; Tkachuk, Svetlana S.; Rudeichuk, Volodimir M.; Strinadko, Miroslav T.; Slyotov, Mikhail M.; Strinadko, Marina M.

    1997-12-01

    The amines fluorescence spectra stimulated by UV laser radiation are investigated in this paper. The fluorescence is stimulated by the coherent laser beam with the wavelength 0.337 micrometers . At the sufficient energy of laser stimulation the narrow peaks of the fluorescence spectra are detected besides the wide maximum. The relationship between the fluorescence intensity and the concentration of amines solutions are investigated. The fluorescence intensity temporal dependence on wavelength 0.363 micrometers of the norepinephrine solution preliminarily radiated by UV laser with wavelength 0.337 micrometers was found. The computer stimulated and experimental investigations of adrenaline and norepinephrine mixtures fluorescence spectra were done. The correlation fluorescent method of amines detection is proposed.

  10. Photon correlation system for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Murray, J. G.; Mitchell, A. C.

    1995-07-01

    The construction and testing of a dual-channel photon correlator is reported for the frequency domain imaging of fluorescence lifetimes using photon-counting detection. A light source modulated at radio frequency excites fluorescence, which is detected using an imaging single-photon detector. After discrimination, single-photon events are processed in parallel by the correlation circuit, the purpose of which is to allow both the mean phase delay and the demodulation of fluorescence to be calculated relative to a reference signal derived from the modulated excitation source. Outputs from the correlator are integrated in a computer, resulting in accumulation of images which have been statistically filtered by sine and cosine transforms, and which can be manipulated within the computer to generate a resultant image where contrast depends on fluorescence lifetime rather than fluorescence intensity.

  11. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  12. Fluorescent-Spectroscopic Research of in Vivo Tissues Pathological Conditions

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    The steady-state spectra of autofluorescence and the reflection coefficient on the excitation wavelength of some stomach tissues in vivo with various pathological conditions (surface gastritis, displasia, cancer) are measured under excitation by the nitrogen laser irradiation (λex=337.1 nm). The contour expansion of obtained fluorescence spectra into contributions of components is conducted by the Gaussian-Lorentzian curves method. It is shown that at least 7 groups of fluorophores forming a total luminescence spectrum can be distinguished during the development of displasia and tumor processes. The correlation of intensities of flavins and NAD(P)·H fluorescence is determined and the degree of respiratory activity of cells for the functional condition considered is estimated. The evaluations of the fluorescence quantum yield of the tissue's researched are given.

  13. Dual-focus fluorescence correlation spectroscopy.

    PubMed

    Pieper, Christoph; Weiß, Kerstin; Gregor, Ingo; Enderlein, Jörg

    2013-01-01

    This chapter introduces into the technique of dual-focus fluorescence correlation spectroscopy or 2fFCS. In 2fFCS, the fluorescence signals generated in two laterally shifted but overlapping focal regions are auto- and crosscorrelated. The resulting correlation curves are then used to determine diffusion coefficients of fluorescent molecules or particles in solutions or membranes. Moreover, the technique can also be used for noninvasively measuring flow-velocity profiles in three dimensions. Because the distance between the focal regions is precisely known and not changed by most optical aberrations, this provides an accurate and immutable external length scale for determining diffusivities and velocities, making 2fFCS the method of choice for accurately measuring absolute values of these quantities at pico- to nanomolar concentration.

  14. Fluorescence Correlation Spectroscopy: The Case of Subdiffusion

    PubMed Central

    Lubelski, Ariel; Klafter, Joseph

    2009-01-01

    The theory of fluorescence correlation spectroscopy is revisited here for the case of subdiffusing molecules. Subdiffusion is assumed to stem from a continuous-time random walk process with a fat-tailed distribution of waiting times and can therefore be formulated in terms of a fractional diffusion equation (FDE). The FDE plays the central role in developing the fluorescence correlation spectroscopy expressions, analogous to the role played by the simple diffusion equation for regular systems. Due to the nonstationary nature of the continuous-time random walk/FDE, some interesting properties emerge that are amenable to experimental verification and may help in discriminating among subdiffusion mechanisms. In particular, the current approach predicts 1), a strong dependence of correlation functions on the initial time (aging); 2), sensitivity of correlation functions to the averaging procedure, ensemble versus time averaging (ergodicity breaking); and 3), that the basic mean-squared displacement observable depends on how the mean is taken. PMID:19289033

  15. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  16. Spectroscopic characterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins.

    PubMed

    Battisti, Antonella; Morici, Paola; Ghetti, Francesco; Sgarbossa, Antonella

    2017-10-01

    Conventional antimicrobial strategies have become increasingly ineffective due to the rapid emergence of antibiotic resistance among pathogenic bacteria. In order to overcome this problem, antimicrobial PhotoDynamic Therapy (PDT) is considered a promising alternative therapy. PDT has a broad spectrum of action and low mutagenic potential. It is particularly effective when microorganisms present endogenous photosensitizing pigments. Helicobacter pylori (Hp), a pathogen notoriously responsible of severe gastric infections (chronic gastritis, peptic ulcer, MALT lymphoma and gastric adenocarcinoma), produces and accumulates the photosensitizers protoporphyrin IX and coproporphyrin, thus it might be a suitable target of antimicrobial PDT. With the aim to design and develop an ingestible LED-based robotic pill for intragastric phototherapy, so that irradiation can be performed in situ without the use of invasive endoscopic light, photophysical studies on the Hp endogenous photosensitizers were carried out. These studies represent an important prerequisite in order to select the most effective irradiation conditions for Hp eradication. The photophysical characterization of Hp porphyrins, including their spectroscopic features in terms of absorption, steady-state and time-resolved fluorescence, was performed on bacterial extracts as well as within planktonic and biofilm growing Hp cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  18. Dual-wavelength excitation to reduce background fluorescence for fluorescence spectroscopic quantitation of erythrocyte zinc protoporphyrin-IX and protoporphyrin-IX from whole blood and oral mucosa

    NASA Astrophysics Data System (ADS)

    Hennig, Georg; Vogeser, Michael; Holdt, Lesca M.; Homann, Christian; Großmann, Michael; Stepp, Herbert; Gruber, Christian; Erdogan, Ilknur; Hasmüller, Stephan; Hasbargen, Uwe; Brittenham, Gary M.

    2014-02-01

    Erythrocyte zinc protoporphyrin-IX (ZnPP) and protoporphyrin-IX (PPIX) accumulate in a variety of disorders that restrict or disrupt the biosynthesis of heme, including iron deficiency and various porphyrias. We describe a reagent-free spectroscopic method based on dual-wavelength excitation that can measure simultaneously both ZnPP and PPIX fluorescence from unwashed whole blood while virtually eliminating background fluorescence. We further aim to quantify ZnPP and PPIX non-invasively from the intact oral mucosa using dual-wavelength excitation to reduce the strong tissue background fluorescence while retaining the faint porphyrin fluorescence signal originating from erythrocytes. Fluorescence spectroscopic measurements were made on 35 diluted EDTA blood samples using a custom front-face fluorometer. The difference spectrum between fluorescence at 425 nm and 407 nm excitation effectively eliminated background autofluorescence while retaining the characteristic porphyrin peaks. These peaks were evaluated quantitatively and the results compared to a reference HPLC-kit method. A modified instrument using a single 1000 μm fiber for light delivery and detection was used to record fluorescence spectra from oral mucosa. For blood measurements, the ZnPP and PPIX fluorescence intensities from the difference spectra correlated well with the reference method (ZnPP: Spearman's rho rs = 0.943, p < 0.0001; PPIX: rs = 0.959, p < 0.0001). In difference spectra from oral mucosa, background fluorescence was reduced significantly, while porphyrin signals remained observable. The dual-wavelength excitation method evaluates quantitatively the ZnPP/heme and PPIX/heme ratios from unwashed whole blood, simplifying clinical laboratory measurements. The difference technique reduces the background fluorescence from measurements on oral mucosa, allowing for future non-invasive quantitation of erythrocyte ZnPP and PPIX.

  19. Fluorescence correlation spectroscopy in semiadhesive wall proximity.

    PubMed

    Sanguigno, Luigi; De Santo, Ilaria; Causa, Filippo; Netti, Paolo A

    2011-11-01

    With examination of diffusion in heterogeneous media through fluorescence correlation spectroscopy, the temporal correlation of the intensity signal shows a long correlation tail and the characteristic diffusion time results are no longer easy to determine. Excluded volume and sticking effects have been proposed to justify such deviations from the standard behavior since all contribute and lead to anomalous diffusion mechanisms . Usually, the anomalous coefficient embodies all the effects of environmental heterogeneity providing too general explanations for the exotic diffusion recorded. Here, we investigated whether the reason of anomalies could be related to a lack of an adequate interpretative model for heterogeneous systems and how the presence of obstacles on the detection volume length scale could affect fluorescence correlation spectroscopy experiments. We report an original modeling of the autocorrelation function where fluorophores experience reflection or adsorption at a wall placed at distances comparable with the detection volume size. We successfully discriminate between steric and adhesion effects through the analysis of long time correlations and evaluate the adhesion strength through the evaluation of probability of being adsorbed and persistence time at the wall on reference data. The proposed model can be readily adopted to gain a better understanding of intracellular and nanoconfined diffusion opening the way for a more rational analysis of the diffusion mechanism in heterogeneous systems and further developing biological and biomedical applications.

  20. [Studies on laticifers and milk of greater celandine (Chelidonium majus L.) with fluorescence imaging and fluorescence spectroscopic methods].

    PubMed

    Póczi, Dorottya; Böddi, Béla

    2010-01-01

    Using fluorescence imaging and fluorescence spectroscopic methods, the localisation of the laticifers and the native spectral properties of the milk were studied in various organs of greater celandine (Chelidonium majus L.). Direct measurements on tissue pieces (without the extraction and the separation of the components) provided information about the complexity of the milk and the various ratios of the alkaloid contents in the tissues. Whole plant were studied in a gel documentation system using ultraviolet light source, while the localisation of the laticifers was observed along the leaf veins in fluorescence microscope, using blue excitation light. Measuring different tissue pieces, fluorescence spectroscopic studies showed that the greater celandine alkaloids have emission bands at 469, 530-531, 553, 572-575 and 592 nm and excitation bands at 365, 370, 386 is 400 nm. These results give a possibility for conclusions about the alkaloid contents and composition or ratios of the alkaloid components in various tissue pieces directly, via comparisons with alkaloid standards.

  1. Spectroscopic characterization of 2-amino-N-hexadecyl-benzamide (AHBA), a new fluorescence probe for membranes.

    PubMed

    Marquezin, Cássia Alessandra; Hirata, Izaura Yoshico; Juliano, Luiz; Ito, Amando Siuiti

    2006-11-20

    We report the results of investigation on the spectroscopic properties of a new fluorescent lipophylic probe. The fluorophore o-aminobenzoic acid was covalently bound to the acyl chain hexadecylamine, producing the compound 2-amino-N-hexadecyl-benzamide. The behavior of the probe was dependent on the polarity of the medium: absorption and emission spectral position, quantum yield and lifetime decay indicate distinct behavior in water compared to ethanol and cyclohexane. The probe dissolves in the organic solvents, as indicated by the very low value of steady state fluorescence anisotropy and the short rotational correlation times obtained from fluorescence anisotropy decay measurements. On the other hand, the probe has low solubility in water, leading to the formation of aggregates in aqueous medium. The complex absorption spectrum in water was interpreted as originating from different forms of aggregation, as deduced from the wavelength dependence of anisotropy parameters. The probe interacts with surfactants in pre-micellar and micellar forms, as observed in experiments in the presence of sodium n-dodecylsulphate (SDS), n-cetyltrimethylammonium bromide (CTAB); 3-(dodecyl-dimethylammonium) propane-1-sulphonate (DPS) and 3-(hexadecyl-dimethylammonium) propane-1-sulphonate (HPS), and with vesicles of the phospholipid dimiristoyl-phosphatidylcholine (DMPC). The results demonstrate that AHBA is able to monitor properties like surface electric potential and phase transition of micelles and vesicles.

  2. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  3. Two-Photon Fluorescence Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Fischer, David G.

    2002-01-01

    We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.

  4. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy

    PubMed Central

    Sánchez, Susana A.; Brunet, Juan E.; Jameson, David M.; Lagos, Rosalba; Monasterio, Octavio

    2004-01-01

    The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5–1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems. PMID:14691224

  5. Theoretical methods in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Torres, Tedman Anthony

    2009-12-01

    Fluorescence correlation spectroscopy (FCS) is a valuable tool in the study of reaction kinetics, diffusion, and photo-physics of bio-molecules. FCS utilizes correlation-function analysis of fluorescence intensity fluctuations from a small number of laser-excited molecules in a confocal optical system. The theoretical foundation of FCS was established in 1974 by Madge and Elson (ME). From this foundation, equations necessary to fit experimental correlations and extract parameters of interest are obtained. It can be shown that ME theory does not yield steady-state solutions, contradicting observed continuous intensity fluctuations from solutions in thermodynamic equilibrium. In this work, the contradiction is corrected through the application of stochastic process theory (SPT). To accomplish this, the master equation for a chemical reaction can be written; manipulations permit derivation of all equations necessary for FCS analysis and solve the contradiction. This new approach dispenses with the assumptions required in ME theory to write the reaction/diffusion equations and conditions on correlations at zero lag-time. These can be derived through SPT whereas ME methodology requires their assumption. It can be shown for non-linear reactions (at least for the types of non-linear, non-reversible reactions presented in this work) that the zero-time correlation conditions and correlation-functions from ME theory and SPT yield divergent results, converging for vanishing non-linearity. The SPT technique furnishes other possibilities not available in the ME technique. First, the SPT approach yields an efficient means of calculating spatial correlation-functions. While such functions have been derived previously, the approach in this work provides a means to obtain them in a direct and logical manner. Second, a power spectrum can be written in terms of the white noise driving the system. This allows one to easily derive the integrals for the FCS power spectrum for use in

  6. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  7. Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin.

    PubMed

    Lian, Shuqin; Wang, Guirong; Zhou, Liping; Yang, Dongzhi

    2013-01-01

    The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three-dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non-radiation energy transfer. The quenching constants KSV , binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non-radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX-pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study.

  8. Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa

    NASA Astrophysics Data System (ADS)

    Cotlet, Mircea; Habuchi, Satoshi; Whitier, Jennifer E.; Werner, James H.; De Schryver, Frans C.; Hofkens, Johan; Goodwin, Peter M.

    2006-02-01

    We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all

  9. Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase

    NASA Astrophysics Data System (ADS)

    Pinto, María del Carmen; Duque, Antonio Luis; Macías, Pedro

    2010-09-01

    The interaction of lipoxygenase with (E)-resveratrol was investigated by fluorescence spectroscopy. The data obtained revealed that the quenching of intrinsic fluorescence of lipoxygenase is produced by the formation of a complex lipoxygenase-(E)-resveratrol. From the value obtained for the binding constant, according to the Stern-Volmer modified equation, was deduced the existence of static quenching mechanism and, as consequence, the existence of a strong interaction between (E)-resveratrol and lipoxygenase. The values obtained for the thermodynamic parameter Δ H (-3.58 kJ mol -1) and Δ S (87.97 J mol -1K -1) suggested the participation of hydrophobic interactions and hydrogen bonds in the stabilization of the complex ligand-protein. From the static quenching we determined that only exist one independent binding site. Based on the Förster energy transfer theory, the distance between the acceptor ((E)-resveratrol) and the donor (Trp residues of lipoxygenase) was calculated to be 3.42 nm. Finally, based on the information obtained from the evaluation of synchronous and three-dimensional fluorescence spectroscopy, we deduced that the interaction of (E)-resveratrol with lipoxygenase produces micro-environmental and conformational alterations of protein in the binding region.

  10. Fluorescence Correlation Spectroscopy: A Review of Biochemical and Microfluidic Applications

    PubMed Central

    Tian, Yu; Martinez, Michelle M.

    2011-01-01

    Over the years fluorescence correlation spectroscopy (FCS) has proven to be a useful technique that has been utilized in several fields of study. Although FCS initially suffered from poor signal to noise ratios, the incorporation of confocal microscopy has overcome this drawback and transformed FCS into a sensitive technique with high figures of merit. In addition, tandem methods have evolved to include dual-color cross-correlation, total internal reflection fluorescence correlation, and fluorescence lifetime correlation spectroscopy combined with time-correlated single photon counting. In this review, we discuss several applications of FSC for biochemical, microfluidic, and cellular investigations. PMID:21396180

  11. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  12. Space-resolved fluorescence spectroscopic measurements with an optical fiber probe

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Qiu, Hialin

    2008-12-01

    By monitoring of the emitted signal from a sample while varying the excitation wavelength, emission wavelength or both of them, fluorescence spectroscopy has become a powerful diagnostic technology. Fluorescence spectrometers can be used to measure and record the fluorescence spectra of a given sample, and have been successfully applied in different areas including biology, biochemistry, chemistry, medicine, environmental science, material science, food industry, and pharmaceutical industry. In order to increase the flexibility and applicability of conventional fluorescence spectrometers, we design an optic fiber probe for conducting the UV/Vis excitation light to a sample under study, and for collecting the fluorescence produced by the sample. Different excitation/emission fiber bundle arrangements have been fabricated and their performances have been evaluated and compared. Fiber adaptors which can be used for different commercial fluorescence spectrometers are also developed. In order to achieve space-resolved fluorescence spectroscopic measurements, we connect the fiber probe to a microscope which is mounted on a 3D traverse stage. Experiments and measurement results using the space-resolved fiber optic fluorescence spectrometer are presented in this paper.

  13. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.

    PubMed

    Batista, Ana Paula S; Teixeira, Antonio Carlos S C; Cooper, William J; Cottrell, Barbara A

    2016-04-15

    The role of aquatic natural organic matter (NOM) in the removal of contaminants of emerging concern has been widely studied. Sulfamerazine (SMR), a sulfonamide antibiotic detected in aquatic environments, is implicated in environmental toxicity and may contribute to the resistance of bacteria to antibiotics. In aquatic systems sulfonamides may undergo direct photodegradation, and, indirect photodegradation through the generation of reactive species. Because some forms of NOM inhibit the photodegradation there is an increasing interest in correlating the spectroscopic parameters of NOM as potential indicators of its degradation in natural waters. Under the conditions used in this study, SMR hydrolysis was shown to be negligible; however, direct photolysis is a significant in most of the solutions studied. Photodegradation was investigated using standard solutions of NOM: Suwannee River natural organic matter (SRNOM), Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and Aldrich humic acid (AHA). The steady-state concentrations and formation rates of the reactive species and the SMR degradation rate constants (k1) were correlated with NOM spectroscopic parameters determined using UV-vis absorption, excitation-emission matrix (EEM) fluorescence spectroscopy, and proton nuclear magnetic resonance ((1)H NMR). SMR degradation rate constants (k1) were correlated with steady-state concentrations of NOM triplet-excited state ([(3)NOM(∗)]ss) and the corresponding formation rates ((3)NOM*) for SRNOM, SRHA, and AHA. The efficiency of SMR degradation was highest in AHA solution and was inhibited in solutions of SRFA. The steady-state concentrations of singlet oxygen ([(1)O2]ss) and the SMR degradation rate constants with singlet oxygen (k1O2) were linearly correlated with the total fluorescence and inversely correlated with the carbohydrate/protein content ((1)H NMR) for all forms of NOM. The total fluorescence and EEMs Peak A were confirmed as indicators

  14. Fluorescence spectroscopic evidence for hydrogen bonding and deprotonation equilibrium between fluoride and a thiourea derivative.

    PubMed

    Ashokkumar, Pichandi; Ramakrishnan, Vayalakkavoor T; Ramamurthy, Perumal

    2010-11-22

    Interaction of anions with thiourea-linked acridinedione fluorophore was studied by absorption, (1)H NMR, steady-state and time-resolved fluorescence techniques. Addition of AcO(-) and H(2)PO(4)(-) shows a genuine H-bonded complex with thiourea receptor; whereas, F(-) shows stepwise H-bonding and deprotonation of thiourea NH as confirmed by (1)H NMR titration. Free receptor 1 shows emission maximum at 418 nm; whereas, H-bonded complex of 1·F(-) shows a new redshifted emission maximum at 473 nm and the deprotonated 1 exhibits an emission peak at 502 nm. Presence of these three different emitting species was probed by 3D emission spectroscopic studies. Equilibrium between the free receptor 1, 1·F(-) H-bonded complex and deprotonated 1 was confirmed by time-resolved fluorescence studies. Time-resolved area normalised emission spectra (TRANES) of 1 in the presence of F(-) shows two isoemissive points at 456 and 479 nm between time delays of 0-0.5 ns and 1-20 ns, respectively, due to the existence of three emitting species in equilibrium. Observation of such an equilibrium based on fluorescence spectroscopic studies further proves the earlier reported absorption and (1)H NMR spectroscopic studies of H-bonding and deprotonation processes and also illustrates the dynamics of anion-receptor interactions.

  15. New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes

    SciTech Connect

    Del Castillo, P.; Llorente, A.R.; Gomez, A.; Gosalvez, J.; Goyanes, V.J.; Stockert, J.C. )

    1990-02-01

    Metal-dye complexes are widely applied in light microscopic techniques for chromatin staining (e.g., hematoxylin and carmine), but fluorescent complexes between phosphate-binding cations and suitable ligands have been little used. Preformed and postformed Al complexes with different anionic dyes induced strong and selective fluorescence reactions in nuclei from chicken blood smears, frozen sections, paraffin-embedded sections and Epon-embedded sections of mouse and rat tissues, mitotic chromosomes, meiotic chromosomes and kinetoplasts of Trypanosoma cruzi epimastigotes. The DNA-dependent fluorescence of these structures showed a very low fading rate. The emission colors were related to the ligand. The most suitable compounds for forming fluorescent Al chelates were 8-hydroxyquinoline, morin, nuclear fast red and purpurin. Staining with diluted carmine solutions and InCl3 mordanting, followed by 8-hydroxyquinoline, also induced chromatin fluorescence. After treating isolated mouse chromosomes with the preformed complex Al-nuclear fast red, x-ray microanalysis indicated a P:Al:dye binding ratio of about 40:15:1. The selectivity, stability and easy formation of these fluorescent Al complexes are obvious advantages for their use as new cytochemical probes in cytologic studies.

  16. Spectroscopic characterization of antibodies adsorbed to aluminium adjuvants: correlation with antibody vaccine immunogenicity.

    PubMed

    Capelle, Martinus A H; Brügger, Peter; Arvinte, Tudor

    2005-02-25

    MMA383 is an anti-idiotypic antibody designed as an immunogenic surrogate for the cancer specific Lewis Y antigen. Lewis Y is expressed in 70-90% of tumours of epithelial origin with limited expression in normal tissue. Five different MMA383 vaccines were prepared by mixing a MMA383 antibody solution with an Alhydrogel aluminium hydroxide adjuvant and tested on the biological activity in a rat model. The immunogenicity increased when: (i) the adjuvant was sterilized at 121 degrees C compared to no sterilization, (ii) the adjuvant was suspended in a phosphate buffer compared to water and (iii) the MMA383 solution was at a pH of 7.2. The immunogenicity of a ready-to-use MMA383 aluminium hydroxide suspension was the lowest. The in vivo data show that small differences in vaccine formulations before injection can generate significant changes in immunogenicity. Prior to mixing with the adjuvant, the physical and chemical characteristics of MMA383 antibodies were the same in all vaccines. Fluorescence and light scattering methods were developed to characterize antibodies in the presence of the adjuvant. Compared to the least active vaccines, the two most biologically active vaccines showed an increase in the antibody Trp fluorescence intensity, anisotropy, fluorescence lifetime, 90 degrees light-scatter, sedimentation velocity and rotational correlation time. Analysis of the 90 degrees light-scatter sedimentation kinetics indicates that stronger immune responses of vaccines can be related to the stronger binding of the antibodies to the adjuvants and the formation of more compact and condensed particles. Taken together, these results show a correlation between the in vitro fluorescence and light-scatter data and the in vivo immune response of the five MMA383 vaccines. The spectroscopic techniques described offer a new in vitro approach for the prediction of immune responses of different vaccine formulations.

  17. Sucrose Monoester Micelles Size Determined by Fluorescence Correlation Spectroscopy (FCS)

    PubMed Central

    Sanchez, Susana A.; Gratton, Enrico; Zanocco, Antonio L.; Lemp, Else; Gunther, German

    2011-01-01

    One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS) and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, Rh. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene), a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured. PMID:22216230

  18. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.

    PubMed

    Persichetti, G; Grimaldi, I A; Testa, G; Bernini, R

    2017-07-25

    A multifunctional lab-on-a-chip platform for spectroscopic analysis of liquid samples based on an optofluidic jet waveguide is reported. The optofluidic detection scheme is achieved through the total internal reflection arising in a liquid jet of only 150 μm diameter, leading to highly efficient signal excitation and collection. This results in an optofluidic chip with an alignment-free spectroscopic detection scheme, which avoids any background from the sample container. This platform has been designed for multiwavelength fluorescence and Raman spectroscopy. The chip integrates a recirculation system that reduces the required sample volume. The evaluation of the device performance has been accomplished by means of fluorescence measurements performed on eosin Y in water solutions, achieving a limit of detection of 33 pM. The sensor has been applied in Raman spectroscopy of water-ethanol solutions, leading to a limit of detection of 0.18%. As additional application, analysis of riboflavin using fluorescence detection demonstrates the possibility of detecting this vitamin at the 560 pM level (0.21 ng l(-1)). Although measurements have been performed by means of a compact and low-cost spectrometer, in both cases the micro-jet optofluidic chip achieved similar performances if not better than high-end benchtop based laboratory equipment. This approach paves the way towards portable lab-on-a-chip devices for high sensitivity environmental and biochemical sensing, using optical spectroscopy.

  19. Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy.

    PubMed

    Oakley, Lindsay H; Dinehart, Stephen A; Svoboda, Shelley A; Wustholz, Kristin L

    2011-06-01

    A novel spectroscopic approach, correlated surface-enhanced Raman scattering (SERS) and fluorescence microscopy, is used to identify organic materials in two 18th century oil paintings. The vibrational fingerprint of analyte molecules is revealed using SERS, and corresponding fluorescence measurements provide a probe of local environment as well as an inherent capability to verify material identification. Correlated SERS and fluorescence measurements are performed directly on single pigment particles obtained from historic oil paintings with Ag colloids as the enhancing substrate. We demonstrate the first extractionless nonhydrolysis SERS study of oil paint as well as the potential of correlated SERS and fluorescence microscopy studies for the simultaneous identification of organic colorants and binding media in historic oil paintings.

  20. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.

    PubMed

    Heuff, Romey F; Swift, Jody L; Cramb, David T

    2007-04-28

    Semiconductor nanocrystals (quantum dots) have been increasingly employed in measuring the dynamic behavior of biomacromolecules using fluorescence correlation spectroscopy. This poses a challenge, because quantum dots display their own dynamic behavior in the form of intermittent photoluminescence, also known as blinking. In this review, the manifestation of blinking in correlation spectroscopy will be explored, preceded by an examination of quantum dot blinking in general.

  1. Nonlinear spectroscopic theory of displaced harmonic oscillators with differing curvatures: a correlation function approach.

    PubMed

    Fidler, Andrew F; Engel, Gregory S

    2013-10-03

    We present a theory for a bath model in which we approximate the adiabatic nuclear potential surfaces on the ground and excited electronic states by displaced harmonic oscillators that differ in curvature. Calculations of the linear and third-order optical response functions employ an effective short-time approximation coupled with the cumulant expansion. In general, all orders of correlation contribute to the optical response, indicating that the solvation process cannot be described as Gaussian within the model. Calculations of the linear absorption and fluorescence spectra resulting from the theory reveal a stronger temperature dependence of the Stokes shift along with a general asymmetry between absorption and fluorescence line shapes, resulting purely from the difference in the phonon side band. We discuss strategies for controlling spectral tuning and energy-transfer dynamics through the manipulation of the excited-state and ground-state curvature. Calculations of the nonlinear response also provide insights into the dynamics of the system-bath interactions and reveal that multidimensional spectroscopies are sensitive to a difference in curvature between the ground- and excited-state adiabatic surfaces. This extension allows for the elucidation of short-time dynamics of dephasing that are accessible in nonlinear spectroscopic methods.

  2. Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy

    PubMed Central

    Paredes, Jose M.; Casares, Salvador; Ruedas-Rama, Maria J.; Fernandez, Elena; Castello, Fabio; Varela, Lorena; Orte, Angel

    2012-01-01

    Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies. PMID:22949804

  3. Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-11-01

    Natural, purely biological deoxyribonucleic acid (DNA)-green tea extract (GTE) complexes at different concentrations were prepared and characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties. The complexes can be processed into good optical quality thin films by solution casting. They fluoresce when excited in UV absorption band, with a significantly larger quantum yield for the DNA-GTE complex than for a pure GTE solution. The thin film refractive indices were determined by Fabry-Perot (FP) interference patterns. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1064.2 nm fundamental wavelength. The phase of THG susceptibility was determined from the concentration variation of THG susceptibility. It reveals presence of a two-photon resonance with a band lying in the optical gap.

  4. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  5. Correlated blinking of fluorescent emitters mediated by single plasmons

    NASA Astrophysics Data System (ADS)

    Bouchet, D.; Lhuillier, E.; Ithurria, S.; Gulinatti, A.; Rech, I.; Carminati, R.; De Wilde, Y.; Krachmalnicoff, V.

    2017-03-01

    We observe time-correlated emission between a single CdSe/CdS/ZnS quantum dot exhibiting single-photon statistics and a fluorescent nanobead located micrometers apart. This is accomplished by coupling both emitters to a silver nanowire. Single plasmons are created on the latter from the quantum dot, and transfer energy to excite in turn the fluorescent nanobead. We demonstrate that the molecules inside the bead show the same blinking behavior as the quantum dot.

  6. [Studies on the oxidation of tyrosine induced by hydroxyl radical with fluorescence spectroscopic method].

    PubMed

    Sun, Yan-hui; Wang, Wei-long; Wu, Lin-sheng; Jia, Xiao-li

    2011-07-01

    Dityrosine is a marker of tyrosine oxidation. To study effecting factors of hydroxyl radical on tyrosine oxidation, synchronous fluorescence spectra with two dimensional correlation was used. The results showed that the peak position and intensity of dityrosine changed while pH value varied. In the system of tyrosine oxidation, with the increment of tyrosine concentration, the concentration of dityrosine decreased. With the increment of hydrogen peroxide concentration, the concentration of dityrosine increased. The oxidation reaction was prone to taking place in acid conditions while difficult to develop in basic conditions. With the development of oxidation reaction, the fluorescence intensity of dityrosine increased and then decreased. Two dimentional correlation synchronous fluorescence spectra showed that the variation in the intensity at 292 nm preceded that of 281, 300 and 374 nm. Thus, fluorescence spectroscopy was simple and easy for studying tyrosine oxidation induced by hydroxyl radical.

  7. EMCCD-based spectrally resolved fluorescence correlation spectroscopy.

    PubMed

    Bestvater, Felix; Seghiri, Zahir; Kang, Moon Sik; Gröner, Nadine; Lee, Ji Young; Im, Kang-Bin; Wachsmuth, Malte

    2010-11-08

    We present an implementation of fluorescence correlation spectroscopy with spectrally resolved detection based on a combined commercial confocal laser scanning/fluorescence correlation spectroscopy microscope. We have replaced the conventional detection scheme by a prism-based spectrometer and an electron-multiplying charge-coupled device camera used to record the photons. This allows us to read out more than 80,000 full spectra per second with a signal-to-noise ratio and a quantum efficiency high enough to allow single photon counting. We can identify up to four spectrally different quantum dots in vitro and demonstrate that spectrally resolved detection can be used to characterize photophysical properties of fluorophores by measuring the spectral dependence of quantum dot fluorescence emission intermittence. Moreover, we can confirm intracellular cross-correlation results as acquired with a conventional setup and show that spectral flexibility can help to optimize the choice of the detection windows.

  8. A combined Raman-fluorescence spectroscopic probe for tissue diagnostics applications

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2013-06-01

    We designed and developed two different optical fibre probes for combined Raman and fluorescence spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multimodal approach. Two laser diodes, respectively emitting in the UV (378 nm) and in the visible (445 nm), were used for fluorescence spectroscopy. An additional laser diode emitting in the NIR (785 nm) was used for Raman spectroscopy. Laser light was delivered to the tissue under examination through a multimode optical fibre located in the centre of the fibre bundle probe. The surrounding 24 optical fibres were used for collection of the signal of interest and for delivering light to a common detection unit. Both fluorescence and Raman spectra were acquired on a cooled CCD camera, connected to a spectrograph. The device was successfully used for diagnosing melanocytic lesions in a good agreement with common routine histology. Additional measurements were performed on other human tissue samples, such as colon tissue and brain tissue in order to test the capability of the device for diagnosing a broader range of tissue lesions and malignancies. The system has the potential to improve diagnostic capabilities on a broad range of tissues and to be used for endoscopic inspections in the near future.

  9. Dipodal quinoline-tethered fluorescent probe synthesis and investigation of spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Obalı, Aslıhan Yılmaz; Yilmaz, Menzeher Serkan; Uçan, Halil İsmet

    2017-10-01

    Novel quinoline-tethered fluorescent probe was designed and synthesized as multidentate ligand. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of perchlorate salts of Co2+, Li+, Fe2+, K+, Pb2+, Cu2+, Zn2+, Ni2+, Hg2+, Ag+ cations in acetonitrile (1 × 10-5 M for absorption studies, 1 × 10-7 M for fluorescence studies). It was found that the dipodal compounds can selectively bind to Cu2+ and Ag+ metal ions with a significant quenching in their emissions. The capture of Cu2+ and Ag+ by the probe resulted in deprotonation of the secondary amine conjugated to the quinoline-tethered probe, so that the electron-donation ability of the 'N' atom would be greatly enhanced and the probe (2) showed blue-shift in emission and exhibited an on-off fluorescent response. The binding study was explored by using fluorescence spectroscopy with Job plot method.

  10. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies.

    PubMed

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-05

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λem(max)) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-01

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λemmax) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems.

  12. Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition.

    PubMed

    Ryder, Alan G

    2004-05-01

    The fluorescence of crude petroleum oils is sensitive to changes in chemical composition and many different fluorescence methods have been used to characterize crude oils. The use of fluorescence lifetimes to quantitatively characterize oil composition has practical advantages over steady-state measurements, but there have been comparatively few studies in which the lifetime behavior is correlated with gross chemical compositional data. In this study, the fluorescence lifetimes for a series of 23 crude petroleum oils with American Petroleum Institute (API) gravities of between 10 and 50 were measured at several emission wavelengths (450-785 nm) using a 380 nm light emitting diode (LED) excitation source. It was found that the intensity average fluorescence lifetime (tau) at any emission wave-length does not correlate well with either API gravity or aromatic concentration. However, it was found that tau is strongly negatively correlated with both the polar and sulfur concentrations and positively correlated with the corrected alkane concentration. This indicates that the fluorescence behavior of crude petroleum oils is governed primarily by the concentration of quenching species. All the strong lifetime-concentration correlations are nonlinear and show a high degree of scatter, especially for medium to light oils with API gravities of between 25 and 40. The degree of scatter is greatest for oils where the concentrations (wt %) of the polar fraction is approximately 10 +/- 4%, the asphaltene component is approximately 1 +/- 0.5%, and sulfur is 0.5 +/- 0.4%. This large degree of scatter precludes the use of average fluorescence lifetime data obtained with 380 nm excitation for the accurate prediction of the common chemical compositional parameters of crude petroleum oils.

  13. Fluorescence correlation spectroscopy of repulsive systems: theory, simulation, and experiment.

    PubMed

    Feng, Ligang; Yang, Jingfa; Zhao, Jiang; Wang, Dapeng; Koynov, Kaloian; Butt, Hans-Jürgen

    2013-06-07

    The theoretical basis of fluorescence correlation spectroscopy (FCS) for repulsive systems, such as charged colloids or macromolecules, has been further expanded and developed. It is established that the collective correlation function can no longer be fitted using the theoretical model of non-interacting systems. Also, it is discovered that the collective correlation function can be divided into two parts: a self-part and a distinct-part, named as the self-correlation and cross-correlation function, respectively. The former indicates the self-diffusion of objects, while the latter describes mutual interactions. Dual-color fluorescence cross-correlation spectroscopy provides the direct measurements of the two parts. The particle concentration and mean squared displacement of single particles can be deduced from the self-correlation function, while the correlation volume between particles can be approximated from the cross-correlation function. In the case of charged colloids, the Debye length of the solution and particle surface charge number can be fitted from the cross-correlation function. These theoretical results are successfully proven using Brownian dynamics simulations and preliminary FCS experiments for model charged colloidal systems.

  14. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  15. Chapter 1: In vivo applications of fluorescence correlation spectroscopy.

    PubMed

    Chen, Huimin; Farkas, Elaine R; Webb, Watt W

    2008-01-01

    Fluorescence correlation spectroscopy provides a sensitive optical probe of the molecular dynamics of life in vivo and in vitro. The kinetics of chemical binding, transport, and changes in molecular conformations are detected by measurement of fluctuations of fluorescence emission by sensitive marker fluorophores. The fluorophores within a defined volume are illuminated by laser light that excites their fluorescence. While conventional confocal illumination by short-wavelength laser light is sufficient for two-dimensional targets, multiphoton fluorescence excitation by simultaneous quantum absorption of two or more long-wavelength photons of approximately 100 fs laser pulses provides the more precise submicron three-dimensional spatial resolution required in cells and tissues. Chemical kinetics, molecular aggregation, molecular diffusion, fluid flows, photophysical interactions, conformational fluctuations, concentration fluctuations, and other dynamics of biological processes can be measured and monitored in volumes approximately 1 mum(3) at timescales from <1 mus and upward for many orders of magnitude. Theory, motivations, methods, in vivo applications, and future directions for improvement and new applications for fluorescence correlation spectroscopy are summarized in this chapter.

  16. Fast and Reversible Photoswitching of the Fluorescent Protein Dronpa as Evidenced by Fluorescence Correlation Spectroscopy

    PubMed Central

    Dedecker, Peter; Hotta, Jun-ichi; Ando, Ryoko; Miyawaki, Atsushi; Engelborghs, Yves; Hofkens, Johan

    2006-01-01

    Controlling molecular properties through photoirradiation holds great promise for its potential for noninvasive and selective manipulation of matter. Photochromism has been observed for several different molecules, including green fluorescent proteins, and recently the discovery of a novel photoswitchable green fluorescent protein called Dronpa was reported. Dronpa displays reversible and highly efficient on/off photoswitching of its fluorescence emission, and reversible switching of immobilized single molecules of Dronpa with response times faster than 20 ms was demonstrated. In this Letter, we expand these observations to freely diffusing molecules by using fluorescence correlation spectroscopy with simultaneous excitation at 488 and 405 nm. By varying the intensity of irradiation at 405 nm, we demonstrate the reversible photoswitching of Dronpa under these conditions, and from the obtained autocorrelation functions we conclude that this photoswitching can occur within tens of microseconds. PMID:16798811

  17. A fast, flexible algorithm for calculating correlations in Fluorescence Correlation Spectroscopy

    SciTech Connect

    Laurence, T; Fore, S; Huser, T

    2005-10-13

    A new algorithm is introduced for computing correlations of photon arrival time data acquired in single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy (FCS). The correlation is first rewritten as a counting operation on photon pairs. For each photon, the contribution to the correlation function for each subsequent photon is calculated for arbitrary bin spacings of the correlation time lag. By retaining the bin positions in the photon sequence after each photon, the correlation can be performed efficiently. Example correlations for simulations of FCS experiments are shown, with comparable execution speed to the commonly used multiple-tau correlation technique. Also, wide bin spacings are possible that allow for real-time software calculation of correlations even for high count rates ({approx}350 kHz). The flexibility and broad applicability of the algorithm is demonstrated using results from single molecule photon antibunching experiments.

  18. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes.

    PubMed

    Barcellona, Maria Luisa; Gammon, Seth; Hazlett, Theodore; Digman, Michelle A; Gratton, Enrico

    2004-11-01

    We discuss the use of fluorescence correlation spectroscopy for the measurement of relatively slow rotations of large macromolecules in solution or attached to other macromolecular structures. We present simulations and experimental results to illustrate the range of rotational correlation times and diffusion times that the technique can analyze. In particular, we examine various methods to analyze the polarization fluctuation data. We have found that by first constructing the polarization function and then calculating the autocorrelation function, we can obtain the rotational motion of the molecule with very little interference from the lateral diffusion of the macromolecule, as long as the rotational diffusion is significantly faster than the lateral diffusion. Surprisingly, for common fluorophores the autocorrelation of the polarization function is relatively unaffected by the photon statistics. In our instrument, two-photon excitation is used to define a small volume of illumination where a few molecules are present at any instant of time. The measurements of long DNA molecules labeled with the fluorescent probe DAPI show local rotational motions of the polymers in addition to translation motions of the entire polymer. For smaller molecules such as EGFP, the viscosity of the solution must be increased to bring the relaxation due to rotational motion into the measurable range. Overall, our results show that polarized fluorescence correlation spectroscopy can be used to detect fast and slow rotational motion in the time scale from microsecond to second, a range that cannot be easily reached by conventional fluorescence anisotropy decay methods.

  19. Optical-fiber-microsphere for remote fluorescence correlation spectroscopy.

    PubMed

    Aouani, Heykel; Deiss, Frédérique; Wenger, Jérôme; Ferrand, Patrick; Sojic, Neso; Rigneault, Hervé

    2009-10-12

    Fluorescence correlation spectroscopy (FCS) is a versatile method that would greatly benefit to remote optical-fiber fluorescence sensors. However, the current state-of-the-art struggles with high background and low detection sensitivities that prevent the extension of fiber-based FCS down to the single-molecule level. Here we report the use of an optical fiber combined with a latex microsphere to perform FCS analysis. The sensitivity of the technique is demonstrated at the single molecule level thanks to a photonic nanojet effect. This offers new opportunities for reducing the bulky microscope setup and extending FCS to remote or in vivo applications.

  20. Fluorescence correlation spectroscopy: Diagnostics for sparse molecules

    PubMed Central

    Maiti, Sudipta; Haupts, Ulrich; Webb, Watt W.

    1997-01-01

    The robust glow of molecular fluorescence renders even sparse molecules detectable and susceptible to analysis for concentration, mobility, chemistry, and photophysics. Correlation spectroscopy, a statistical-physics-based tool, gleans quantitative information from the spontaneously fluctuating fluorescence signals obtained from small molecular ensembles. This analytical power is available for studying molecules present at minuscule concentrations in liquid solutions (less than one nanomolar), or even on the surfaces of living cells at less than one macromolecule per square micrometer. Indeed, routines are becoming common to detect, locate, and examine individual molecules under favorable conditions. PMID:9342306

  1. Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy.

    PubMed

    Andrews, A Ballard; Guerra, Rodrigo E; Mullins, Oliver C; Sen, Pabitra N

    2006-07-06

    Using fluorescence correlation spectroscopy (FCS) we measure the translational diffusion coefficient of asphaltene molecules in toluene at extremely low concentrations (0.03-3.0 mg/L): where aggregation does not occur. We find that the translational diffusion coefficient of asphaltene molecules in toluene is about 0.35 x 10(-5) cm(2)/s at room temperature. This diffusion coefficient corresponds to a hydrodynamic radius of approximately 1 nm. These data confirm previously estimated size from rotational diffusion studied using fluorescence depolarization. The implication of this concurrence is that asphaltene molecular structures are monomeric, not polymeric.

  2. Correlated quadratures of resonance fluorescence and the generalized uncertainty relation

    NASA Technical Reports Server (NTRS)

    Arnoldus, Henk F.; George, Thomas F.; Gross, Rolf W. F.

    1994-01-01

    Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an unrealistic lower bound. A generalized uncertainty relation, due to Schroedinger, takes into account the possible correlation between the quadrature components of the radiation, and it suggests a modified definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is responsible for the correlation between the quadrature components of the emitted fluorescence, and that the Schrodinger uncertainty limit increases monotonically with the coherence. On the other hand, the fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely when the coherence reaches 1/2, provided that certain phase relations hold.

  3. Simultaneous Surface-Near and Solution Fluorescence Correlation Spectroscopy.

    PubMed

    Winterflood, Christian M; Seeger, Stefan

    2016-05-01

    We report the first simultaneous measurement of surface-confined and solution fluorescence correlation spectroscopy (FCS). We use an optical configuration for tightly focused excitation and separate detection of light emitted below (undercritical angle fluorescence, UAF) and above (supercritical angle fluorescence, SAF) the critical angle of total internal reflection of the coverslip/sample interface. This creates two laterally coincident detection volumes which differ in their axial extent. While detection of far-field UAF emission producesa standard confocal volume, near-field-mediated SAF produces a highly surface-confined detection volume at the coverslip/sample interface which extends only ~200 nm into the sample. A characterization of the two detection volumes by FCS of free diffusion is presented and compared with analytical models and simulations. The presented FCS technique allows to determine bulk solution concentrations and surface-near concentrations at the same time.

  4. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  5. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  6. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid

    NASA Astrophysics Data System (ADS)

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO 4) and room temperature. The fluorescence lifetimes were determined to be 23.2 ± 2.2 ns for Am 3+(aq) and 27.2 ± 1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D 1- 7F 1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be log β110 = 5.42 ± 0.16.

  7. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid.

    PubMed

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO4) and room temperature. The fluorescence lifetimes were determined to be 23.2±2.2 ns for Am3+(aq) and 27.2±1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D1-(7)F1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be logβ110=5.42±0.16.

  8. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Felmy, Andrew R.; Clark, Sue B.

    2008-11-03

    In this work we have applied liquid-helium temperature (LHeT) time-resolved laser-induced fluorescence spectroscopy (TRLIF) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, bequerelite, clarkeite, curite, schoepite and compregnacite, and compared their spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra depend on the stoichiometry of the mineral. For the phosphate minerals the fluorescence spectra closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared with those of the uranium carbonates and phosphates and their vibronic bands are broadened and less resolved. The much enhanced spectra resolution at LHeT allows more accurate calculation of the O=U=O symmetrical stretch frequency, ν1, corresponding to the average spacing of the vibronic peaks of the fluorescence spectra and the spectral origin as reflected by the position of the first vibronic band. It was found that both the average ν1 and λ1 values correlate well with the average basicity of the inorganic anion.

  9. Fluorescence spectroscopic studies of tyrosine environment and ligand binding of plant calmodulin

    NASA Astrophysics Data System (ADS)

    Sanyal, Gautam; Thompson, Faith; Puett, David

    1990-05-01

    Recent studies in our laboratories have focused on using tyrosine (Tyr) fluorescence of calmodulin (CaM) and tryptophan (Trp) fluorescence of CaM-bound peptdies as intrinsic probes of structure and interactions of this Ca2+ regulatory protein. Plant CaM contains a single Tyr (Tyr.-l38) and vertebrate CaM contains two (Tyr-99 and Tyr-.l38). Neither protein contains Trp. The fluorescence properties of Tyr-138 of wheat-germ CaM is sensitive to conformational changes induced by perturbations such as Ca2+ ligation or depletion, and pH changes. Effects of these perturbations on quantum yield, lifetime and dynamic quenching of Tyr-l38 fluorescence are reported. We have also studied binding of amphiphilic peptides to wheat-germ CaM. A comparison of wheat CaM induced changes in the fluorescence properties of a single Trp of these peptides with those induced by bovine testes CaM indicate general similarities of the peptide binding surfaces of plant and mammalian CaMs. Frequency domain measurements of decay of intensity and anisotropy have suggested some orientational freedom and local motion of the Trp residue of CaM-bound peptide, independent of the overall protein motion, even when the Trp is expected to be buried in the doubly apolar protein-peptide interface. Calmodulin (CaM) is a ubiquitous calcium binding protein which is believed to regulate several different enzymes in diverse cells (Klee et al., 1982). Much of the structural work to date has been carried out on mammalian CaM. However, CaM has also been isolated from plant and invertebrate sources, and a high degree of sequence homology with vertebrate CaM has been found. The amino acid sequence of wheat germ CaM shows eleven substitutions, two insertions and one deletion compared with the 148.-residue bovine brain CaM (Toda et al., 1985). Specific differences with mammalian CaM at two sites make plant CaM attractive for fluorescence spectroscopic studies. These are: (1) The presence of a single tyrosine residue (Tyr

  10. Cross Talk Free Fluorescence Cross Correlation Spectroscopy in Live Cells

    PubMed Central

    Thews, Elmar; Gerken, Margarita; Eckert, Reiner; Zäpfel, Johannes; Tietz, Carsten; Wrachtrup, Jörg

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is now a widely used technique to measure small ensembles of labeled biomolecules with single molecule detection sensitivity (e.g., low endogenous concentrations). Fluorescence cross correlation spectroscopy (FCCS) is a derivative of this technique that detects the synchronous movement of two biomolecules with different fluorescence labels. Both methods can be applied to live cells and, therefore, can be used to address a variety of unsolved questions in cell biology. Applications of FCCS with autofluorescent proteins (AFPs) have been hampered so far by cross talk between the detector channels due to the large spectral overlap of the fluorophores. Here we present a new method that combines advantages of these techniques to analyze binding behavior of proteins in live cells. To achieve this, we have used dual color excitation of a common pair of AFPs, ECFP and EYFP, being discriminated in excitation rather than in emission. This is made possible by pulsed excitation and detection on a shorter timescale compared to the average residence time of particles in the FCS volume element. By this technique we were able to eliminate cross talk in the detector channels and obtain an undisturbed cross correlation signal. The setup was tested with ECFP/EYFP lysates as well as chimeras as negative and positive controls and demonstrated to work in live HeLa cells coexpressing the two fusion proteins ECFP-connexin and EYFP-connexin. PMID:15951373

  11. Principles and applications of fluorescence lifetime correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Beranová, Lenka; Humpolícková, Jana; Hof, Martin

    2009-05-01

    Two fluorescence spectroscopy concepts, fluorescence correlation spectroscopy and time correlated single photon counting (TCSPC) are employed in fluorescence lifetime correlation spectroscopy (FLCS) - a relatively new technique with several experimental benefits. In FLCS experiments, pulsed excitation is used and data are stored in a special time-tagged time-resolved mode. Mathematical treatment of TCSPC decay patterns of distinct fluorophores and their mixture enables to calculate autocorrelation functions of each of the fluorophores and thus their diffusion properties and concentrations can be determined separately. Moreover, crosscorrelation of the two signals can be performed and information on interaction of the species can be obtained. This technique is particularly helpful for distinguishing different states of the same fluorophore in different microenvironments. The first application of that concept represents the simultaneous determination of two-dimensional diffusion in planar lipid layers and three-dimensional vesicle diffusion in bulk above the lipid layers. The lifetime in both investigated systems differed because the lifetime of the dye is considerably quenched in the layer near the light-absorbing surface. This concept was also used in other applications: a) investigation of a conformational change of a labeled protein, b) detection of small amounts of labeled oligonucleotides bound to metal particles or c) elucidation of the compaction mechanism of different sized labeled DNA molecules. Moreover, it was demonstrated that FLCS can help to overcome some FCS experimental drawbacks.

  12. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  13. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  14. Fluorescing the electron: strategies in correlative experimental design.

    PubMed

    Gibson, Kimberley H; Vorkel, Daniela; Meissner, Jana; Verbavatz, Jean-Marc

    2014-01-01

    Correlative light and electron microscopy (CLEM) encompasses a growing number of imaging techniques aiming to combine the benefits of light microscopy, which allows routine labeling of molecules and live-cell imaging of fluorescently tagged proteins with the resolution and ultrastructural detail provided by electron microscopy (EM). Here we review three different strategies that are commonly used in CLEM and we illustrate each approach with one detailed example of their application. The focus is on different options for sample preparation with their respective benefits as well as on the imaging workflows that can be used. The three strategies cover: (1) the combination of live-cell imaging with the high resolution of EM (time-resolved CLEM), (2) the need to identify a fluorescent cell of interest for further exploration by EM (cell sorting), and (3) the subcellular correlation of a fluorescent feature in a cell with its associated ultrastructural features (spatial CLEM). Finally, we discuss future directions for CLEM exploring the possibilities for combining super-resolution microscopy with EM. © 2014 Elsevier Inc. All rights reserved.

  15. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  16. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  17. Diffusion-relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure.

    PubMed

    Kim, Daeun; Doyle, Eamon K; Wisnowski, Jessica L; Kim, Joong Hee; Haldar, Justin P

    2017-03-19

    To propose and evaluate a novel multidimensional approach for imaging subvoxel tissue compartments called Diffusion-Relaxation Correlation Spectroscopic Imaging. Multiexponential modeling of MR diffusion or relaxation data is commonly used to infer the many different microscopic tissue compartments that contribute signal to macroscopic MR imaging voxels. However, multiexponential estimation is known to be difficult and ill-posed. Observing that this ill-posedness is theoretically reduced in higher dimensions, diffusion-relaxation correlation spectroscopic imaging uses a novel multidimensional imaging experiment that jointly encodes diffusion and relaxation information, and then uses a novel constrained reconstruction technique to generate a multidimensional diffusion-relaxation correlation spectrum for every voxel. The peaks of the multidimensional spectrum are expected to correspond to the distinct tissue microenvironments that are present within each macroscopic imaging voxel. Using numerical simulations, experiment data from a custom-built phantom, and experiment data from a mouse model of traumatic spinal cord injury, diffusion-relaxation correlation spectroscopic imaging is demonstrated to provide substantially better multicompartment resolving power compared to conventional diffusion- and relaxation-based methods. The diffusion-relaxation correlation spectroscopic imaging approach provides powerful new capabilities for resolving the different components of multicompartment tissue models, and can be leveraged to significantly expand the insights provided by MRI in studies of tissue microstructure. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy.

    PubMed

    Xi, Xu Guang; Deprez, Eric

    2010-07-01

    In order to elucidate molecular mechanism of helicases, we have developed two new rapid and sensitive fluorescence assays to measure helicase-mediated DNA unwinding. The fluorescence anisotropy (FA) assay takes the advantage of the substantial change in fluorescence polarization upon helicase binding to DNA and DNA unwinding. The extent of depolarization depends on the rate of tumbling of the fluorescently labeled DNA molecule, which decreases with increasing size. This assay therefore can simultaneously monitor the DNA binding of helicase and the subsequent helicase-catalyzed DNA unwinding in real-time. For size limitation reasons, the FA approach is more suitable for single-turnover kinetic studies. A fluorescence cross-correlation spectroscopy method (FCCS) is also described for measuring DNA unwinding. This assay is based on the degree of concomitant diffusion of the two complementary DNA strands in a small excitation volume, each labeled by a different color. The decrease in the amplitude of the cross-correlation signal is then directly related to the unwinding activity. By contrast with FA, the FCCS-based assay can be used to measure the unwinding activity under both single- and multiple-turnover conditions, with no limitation related to the size of the DNA strands constituting the DNA substrate. These methods used together have proven to be useful for studying molecular mechanism underlying efficient motor function of helicases. Here, we describe the theoretical basis and framework of FA and FCCS and some practical implications for measuring DNA binding and unwinding. We discuss sample preparation and potential troubleshooting. Special attention is paid to instrumentation, data acquisition and analysis.

  19. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Xu, Weigao; Liu, Weiwei; Schmidt, Jan F.; Zhao, Weijie; Lu, Xin; Raab, Timo; Diederichs, Carole; Gao, Weibo; Seletskiy, Denis V.; Xiong, Qihua

    2016-12-01

    ‘Blinking’, or ‘fluorescence intermittency’, refers to a random switching between ‘ON’ (bright) and ‘OFF’ (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

  20. Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein

    PubMed Central

    Guan, Yinghua; Meurer, Matthias; Raghavan, Sarada; Rebane, Aleksander; Lindquist, Jake R.; Santos, Sofia; Kats, Ilia; Davidson, Michael W.; Mazitschek, Ralph; Hughes, Thomas E.; Drobizhev, Mikhail; Knop, Michael; Shah, Jagesh V.

    2015-01-01

    We report an improved variant of mKeima, a monomeric long Stokes shift red fluorescent protein, hmKeima8.5. The increased intracellular brightness and large Stokes shift (∼180 nm) make it an excellent partner with teal fluorescent protein (mTFP1) for multiphoton, multicolor applications. Excitation of this pair by a single multiphoton excitation wavelength (MPE, 850 nm) yields well-separable emission peaks (∼120-nm separation). Using this pair, we measure homo- and hetero-oligomerization interactions in living cells via multiphoton excitation fluorescence correlation spectroscopy (MPE-FCS). Using tandem dimer proteins and small-molecule inducible dimerization domains, we demonstrate robust and quantitative detection of intracellular protein–protein interactions. We also use MPE-FCCS to detect drug–protein interactions in the intracellular environment using a Coumarin 343 (C343)-conjugated drug and hmKeima8.5 as a fluorescence pair. The mTFP1/hmKeima8.5 and C343/hmKeima8.5 combinations, together with our calibration constructs, provide a practical and broadly applicable toolbox for the investigation of molecular interactions in the cytoplasm of living cells. PMID:25877871

  1. Fluorescence correlation spectroscopy: Statistical analysis and biological applications

    NASA Astrophysics Data System (ADS)

    Saffarian, Saveez

    2002-01-01

    The experimental design and realization of an apparatus which can be used both for single molecule fluorescence detection and also fluorescence correlation and cross correlation spectroscopy is presented. A thorough statistical analysis of the fluorescence correlation functions including the analysis of bias and errors based on analytical derivations has been carried out. Using the methods developed here, the mechanism of binding and cleavage site recognition of matrix metalloproteinases (MMP) for their substrates has been studied. We demonstrate that two of the MMP family members, Collagenase (MMP-1) and Gelatinase A (MMP-2) exhibit diffusion along their substrates, the importance of this diffusion process and its biological implications are discussed. We show through truncation mutants that the hemopexin domain of the MMP-2 plays and important role in the substrate diffusion of this enzyme. Single molecule diffusion of the collagenase MMP-1 has been observed on collagen fibrils and shown to be biased. The discovered biased diffusion would make the MMP-1 molecule an active motor, thus making it the first active motor that is not coupled to ATP hydrolysis. The possible sources of energy for this enzyme and their implications are discussed. We propose that a possible source of energy for the enzyme can be in the rearrangement of the structure of collagen fibrils. In a separate application, using the methods developed here, we have observed an intermediate in the intestinal fatty acid binding protein folding process through the changes in its hydrodynamic radius also the fluctuations in the structure of the IFABP in solution were measured using FCS.

  2. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    PubMed

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10(6)M(-1). Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen.

  3. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    NASA Astrophysics Data System (ADS)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  4. Momentum distributions and spectroscopic factors of doubly closed shell nuclei in correlated basis function theory

    NASA Astrophysics Data System (ADS)

    Bisconti, C.; Saavedra, F. Arias De; Co', G.

    2007-05-01

    The momentum distributions, natural orbits, spectroscopic factors, and quasihole wave functions of the C12, O16, Ca40, Ca48, and Pb208 doubly closed shell nuclei have been calculated in the framework of the correlated basis function theory, by using the Fermi hypernetted chain resummation techniques. The calculations have been done by using the realistic Argonne v8' nucleon-nucleon potential, together with the Urbana IX three-body interaction. Operator dependent correlations, which consider channels up to the tensor ones, have been used. We found noticeable effects produced by the correlations. For high momentum values, the momentum distributions show large enhancements with respect to the independent particle model results. Natural orbit occupation numbers are depleted by about 10% with respect to the independent particle model values. The effects of the correlations on the spectroscopic factors are larger on the most deeply bound states.

  5. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. J.; Shental, Victor V.; Komov, D. V.; Vacoulovskaia, E. G.; Tabolinovskaia, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikchine, V. H.; Loschenov, Victor B.; Meerovich, Gennadii A.; Stratonnikov, Alexander A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, Eugeny A.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  6. Structured illumination fluorescence correlation spectroscopy for velocimetry in Zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Rossetti, Leone; Sironi, Laura; Freddi, Stefano; D'Alfonso, Laura; Caccia, Michele; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe

    2013-02-01

    The vascular system of Zebrafish embryos is studied by means of Fluorescence Correlation and Image Correlation Spectroscopy. The long term project addresses biologically relevant issues concerning vasculogenesis and cardiogenesis and in particular mechanical interaction between blood flow and endothelial cells. To this purpose we use Zebrafish as a model system since the transparency of its embryos facilitates morphological observation of internal organs in-vivo. The correlation analysis provides quantitative characterization of fluxes in blood vessels in vivo. We have pursued and compared two complementary routes. In a first one we developed a two-spots two-photon setup in which the spots are spaced at adjustable micron-size distances (1-40 μm) along a vessel and the endogenous (autofluorescence) or exogenous (dsRed transgenic erythrocytes) signal is captured with an EM-CCD and cross-correlated. In this way we are able to follow the morphology of the Zebrafish embryo, simultaneously measure the heart pulsation, the velocity of red cells and of small plasma proteins. These data are compared to those obtained by image correlations on Zebrafish vessels. The two methods allows to characterize the motion of plasma fluids and erythrocytes in healthy Zebrafish embryos to be compared in the future to pathogenic ones.

  7. A universal model of restricted diffusion for fluorescence correlation spectroscopy.

    PubMed

    Piskorz, Tomasz K; Ochab-Marcinek, Anna

    2014-05-08

    Fluorescence correlation spectroscopy (FCS) is frequently used to study the processes of restricted diffusion. The most important quantity to determine is the size of the structures that hinder the Brownian motion of the molecules. We study three qualitatively different models of restricted diffusion, widely applied in biophysics and material science: Diffusion constrained by elastic force (i), walking confined diffusion (ii), and hop diffusion (iii). They cover the diversity of statistical behaviors, from purely Gaussian (i) to sharply non-Gaussian on intermediate time scales (ii) and, additionally, discrete (iii). We test whether one can use the Gaussian approximation of the FCS autocorrelation function to interpret the non-Gaussian data. We show that (i-iii) have approximately the same mean square displacements. Using simulations, we show that the FCS data suspected of restricted diffusion can be reliably interpreted using one archetypal model (i). Even if the underlying mechanism of the restriction is different or unknown, the accuracy of fitting the confinement size is excellent, and diffusion coefficients are also estimated with a good accuracy. This study gives a physical insight into the statistical behavior of different types of restricted diffusion and into the ability of fluorescence correlation spectroscopy to distinguish between them.

  8. [Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy].

    PubMed

    Liang, Li-Fang; Da, Xing; Chen, Tong-Sheng; Pei, Yi-Hui

    2009-02-01

    In order to non-invasively investigate nucleoplasmic viscosity in real time with good temporal resolution, the present study firstly introduced a new method based on fluorescence correlation spectroscopy (FCS). FCS is a kind of single-molecule technique with high temporal and spatial resolution to analyze the dynamics of fluorescent molecules in nanomolar concentration. Through a time correlation analysis of spontaneous intensity fluctuations, this technique in conjunction with EGFP as a probe is capable of determining nucleoplasmic viscosity in terms of Stokes-Einstein equation as well as its corresponding analysis of the diffusion coefficient for EGFP in the nucleus. The results showed that nucleoplasmic viscosity of ASTC-a-1 cells and HeLa cells were respectively (2.55 +/- 0.61) cP and (2.04 +/- 0.49) cP at pH 7.4 and 37 degrees C, consistent with the results by traditional methods, and nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity. Meanwhile, the real-time analysis of nucleoplasmic viscosity in living cells exposed to hypotonic media proved that FCS could be used to track the changing rheological characteristics of the nucleoplasm in living cells. Taken together, this study suggests that FCS provides an accurate and non-invasive method to investigate the microenvironment in living cells on the femtoliter scale and it can be used as a powerful tool in researches on the dynamical processes of intracellular molecules.

  9. Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui

    2007-11-01

    Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.

  10. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy.

    PubMed Central

    Thompson, N L; Axelrod, D

    1983-01-01

    An experimental application of total internal reflection with fluorescence correlation spectroscopy (TIR/FCS) is presented. TIR/FCS is a new technique for measuring the binding and unbinding rates and surface diffusion coefficient of fluorescent-labeled solute molecules in equilibrium at a surface. A laser beam totally internally reflects at the solid-liquid interface, selectively exciting surface-adsorbed molecules. Fluorescence collected by a microscope from a small, well-defined surface area approximately 5 micron2 spontaneously fluctuates as solute molecules randomly bind to, unbind from, and/or diffuse along the surface in chemical equilibrium. The fluorescence is detected by a photomultiplier and autocorrelated on-line by a minicomputer. The shape of the autocorrelation function depends on the bulk and surface diffusion coefficients, the binding rate constants, and the shape of the illuminated and observed region. The normalized amplitude of the autocorrelation function depends on the average number of molecules bound within the observed area. TIR/FCS requires no spectroscopic or thermodynamic change between dissociated and complexed states and no extrinsic perturbation from equilibrium. Using TIR/FCS, we determine that rhodamine-labeled immunoglobulin and insulin each nonspecifically adsorb to serum albumin-coated fused silica with both reversible and irreversible components. The characteristic time of the most rapidly reversible component measured is approximately 5 ms and is limited by the rate of bulk diffusion. Rhodamine-labeled bivalent antibodies to dinitrophenyl (DNP) bind to DNP-coated fused silica virtually irreversibly. Univalent Fab fragments of these same antibodies appear to specifically bind to DNP-coated fused silica, accompanied by a large amount of nonspecific binding. TIR/FCS is shown to be a feasible technique for measuring absorption/desorption kinetic rates at equilibrium. In suitable systems where nonspecific binding is low, TIR

  11. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy.

    PubMed

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes.

  12. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-01-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193

  13. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  14. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  15. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms.

    PubMed

    Krieger, Jan W; Singh, Anand P; Bag, Nirmalya; Garbe, Christoph S; Saunders, Timothy E; Langowski, Jörg; Wohland, Thorsten

    2015-12-01

    Single-plane illumination (SPIM) or total internal reflection fluorescence (TIRF) microscopes can be combined with fast and single-molecule-sensitive cameras to allow spatially resolved fluorescence (cross-) correlation spectroscopy (FCS or FCCS, hereafter referred to FCS/FCCS). This creates a powerful quantitative bioimaging tool that can generate spatially resolved mobility and interaction maps with hundreds to thousands of pixels per sample. These massively parallel imaging schemes also cause less photodamage than conventional single-point confocal microscopy-based FCS/FCCS. Here we provide guidelines for imaging FCS/FCCS measurements on commercial and custom-built microscopes (including sample preparation, setup calibration, data acquisition and evaluation), as well as anticipated results for a variety of in vitro and in vivo samples. For a skilled user of an available SPIM or TIRF setup, sample preparation, microscope alignment, data acquisition and data fitting, as described in this protocol, will take ∼1 d, depending on the sample and the mode of imaging.

  16. Fluorescence correlation spectroscopy in biology, chemistry, and medicine.

    PubMed

    Perevoshchikova, I V; Kotova, E A; Antonenko, Y N

    2011-05-01

    This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.

  17. Continuous Fluorescence Microphotolysis and Correlation Spectroscopy Using 4Pi Microscopy

    PubMed Central

    Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus

    2007-01-01

    Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. PMID:17704168

  18. Interpretation of fluorescence correlation spectra of biopolymer solutions.

    PubMed

    Phillies, George D J

    2016-05-01

    Fluorescence correlation spectroscopy (FCS) is regularly used to study diffusion in non-dilute "crowded" biopolymer solutions, including the interior of living cells. For fluorophores in dilute solution, the relationship between the FCS spectrum G(t) and the diffusion coefficient D is well-established. However, the dilute-solution relationship between G(t) and D has sometimes been used to interpret FCS spectra of fluorophores in non-dilute solutions. Unfortunately, the relationship used to interpret FCS spectra in dilute solutions relies on an assumption that is not always correct in non-dilute solutions. This paper obtains the correct form for interpreting FCS spectra of non-dilute solutions, writing G(t) in terms of the statistical properties of the fluorophore motions. Approaches for applying this form are discussed.

  19. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    SciTech Connect

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; Fischer, Nicholas O.; Coleman, Matthew A.

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase the concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.

  20. Fluorescence correlation spectroscopy evidence for structural heterogeneity in ionic liquids

    SciTech Connect

    Guo, J C; Baker, G. A.; Hillesheim, P. C.; Dai, S.; Shaw, R. W.; Mahurin, S., M.

    2011-01-01

    In this work, we provide new experimental evidence for chain length-dependent self-aggregation in room temperature ionic liquids (RTILs) using fluorescence correlation spectroscopy (FCS). In studying a homologous series of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, [C{sub n}MPy][Tf{sub 2}N] RTILs of varying alkyl chain length (n = 3, 4, 6, 8, and 10), biphasic rhodamine 6G solute diffusion dynamics were observed; both the fast and slow diffusion coefficients decreased with increasing alkyl chain length, with the relative contribution from slower diffusion increasing for longer-chain [C{sub n}MPy][Tf{sub 2}N]. We propose that the biphasic diffusion dynamics originate from self-aggregation of the nonpolar alkyl chains in the cationic [CnMPy]{sup +}.

  1. Electrically induced microflows probed by fluorescence correlation spectroscopy.

    PubMed

    Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L

    2005-03-01

    We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.

  2. Parameter estimation and analysis model selections in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; Zhou, Jie; Ding, Xuemei; Wang, Yuhua; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique that could provide high temporal resolution and detection for the diffusions of biomolecules at extremely low concentrations. The accuracy of this approach primarily depends on experimental condition requirements and the data analysis model. In this study, we have set up a confocal-based FCS system. And then we used a Rhodamine6G solution to calibrate the system and get the related parameters. An experimental measurement was carried out on one-component solution to evaluate the relationship between a certain number of molecules and concentrations. The results showed FCS system we built was stable and valid. Finally, a two-component solution experiment was carried out to show the importance of analysis model selection. It is a promising method for single molecular diffusion study in living cells.

  3. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  4. Quick tour of fluorescence correlation spectroscopy from its inception.

    PubMed

    Elson, Elliot L

    2004-01-01

    Fluorescence correlation spectroscopy (FCS) was originally developed in the early 1970s as a way to measure the kinetics of chemical reactions under zero perturbation conditions. At its inception, the measurement was difficult due to experimental limitations and was primarily used during the 1970s and 1980s to characterize diffusion. More recently, as a result of technological advances, FCS measurements have become easier and more versatile. In addition to measurements of diffusion both in solution and in cells, FCS is now also used to measure not only chemical reaction kinetics but also extents of molecular aggregation, the dynamics of photophysical processes, conformational fluctuations, molecular interactions in solution and in cells, and has even found application as a pharmaceutical screening method. From its inception to the present, the contributions of Webb and his coworkers have had a central and defining role in the development and applications of FCS.

  5. Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins.

    PubMed Central

    Ren, J; Goss, D J

    1996-01-01

    In the initiation of protein synthesis, the mRNA 5'-terminal 7-methylguanosine cap structure and several recognition proteins play a pivotal role. For the study of this cap binding reaction, one approach is to use fluorescence spectroscopy. A ribose diol-modified fluorescent cap analog, anthraniloyl-m7GTP (Ant-m7GTP), was designed and synthesized for this purpose. This fluorescent cap analog was found to have a high quantum yield, resistance to photobleaching and avoided overlap of excitation and emission wavelengths with those of proteins. The binding of Ant-m7GTP with wheatgerm initiation factors elF-4F and elF-(iso)4F was determined. The fluorescent cap analog and m7GTP had similar interactions with both cap binding proteins. Fluorescence quenching experiments showed that the microenvironment of Ant-m7GTP when bound to protein was hydrophobic. PMID:8836193

  6. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  7. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    PubMed

    Saha, Dipika; Negi, Devendra P S

    2017-08-18

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10(5)M(-1). Infrared spectroscopic measurements indicated the participation of the NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    SciTech Connect

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong; Lin, Guang

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.

  9. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Widengren, Jerker; Mets, Ülo; Rigler, Rudolf

    1999-12-01

    GFPs are upon excitation influenced by many different photophysical and photochemical processes effective over a very broad time scale. Much effort has been spent to investigate these processes. However, in the microsecond to millisecond time-range many processes still remain to be further characterized. This time-range can be conveniently covered by FCS, and is used here to study the photodynamical behaviour of wild-type (WT) and a F64L S65T mutant (BioST) of GFP. In addition to intersystem crossing to the triplet state, additional photophysical processes are seen, showing identical fluctuations in fluorescence to those found for a reversible photo-induced isomerization process, as well as fluctuations, not influenced by the electronic state of the chromophore unit. In the nanosecond time-range a contribution to the fluorescence correlation function is observed which can be attributed to rotational diffusion, suggesting a convenient way to measure rotational diffusion of proteins expressed with GFP on a microscopic scale.

  10. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  11. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  13. Echo planar correlated spectroscopic imaging: implementation and pilot evaluation in human calf in vivo.

    PubMed

    Lipnick, Scott; Verma, Gaurav; Ramadan, Saadallah; Furuyama, Jon; Thomas, M Albert

    2010-10-01

    Exploiting the speed benefits of echo-planar imaging (EPI), the echo-planar spectroscopic imaging (EPSI) sequence facilitates recording of one spectral and two to three spatial dimensions faster than the conventional magnetic resonance spectroscopic imaging (MRSI). A novel four dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) was implemented on a whole body 3 T MRI scanner combining two spectral with two spatial encodings. Similar to EPSI, the EP-COSI sequence used a bipolar spatial read-out train facilitating simultaneous spatial and spectral encoding, and the conventional phase and spectral encodings for the other spatial and indirect spectral dimensions, respectively. Multiple 2D correlated spectroscopy (COSY) spectra were recorded over the spatially resolved volume of interest (VOI) localized by a train of three slice-selective radiofrequency (RF) pulses (90°-180°-90°). After the initial optimization using phantom solutions, the EP-COSI data were recorded from the lower leg of eight healthy volunteers including one endurance trained volunteer. Pilot results showed acceptable spatial and spectral quality achievable using the EP-COSI sequence. There was a detectable separation of cross peaks arising from the skeletal muscle intramyocellular lipids (IMCLs) and extramyocellular lipids (EMCLs) saturated and unsaturated pools. Residual dipolar interaction between the N-methylene and N-methyl protons of creatine/phosphocreatine (Cr/PCr) was also observed in the tibialis anterior region.

  14. Fast and single solid phase fluorescence spectroscopic batch procedure for (acetyl) salicylic acid determination in drug formulations.

    PubMed

    Ortega Algar, S; Ramos Martos, N; Molina Díaz, A

    2003-03-10

    A solid phase fluorescence spectroscopic batch procedure for (acetyl) salicylic acid in drug formulations have been developed. The procedure is based on the sorption of salicylic acid (SA) on Sephadex DEAE A-25 anion exchanger gel (100 mg) by equilibration from an aqueous solution (10 or 25 ml) for 5 min; the equilibrated gel is transferred into an 1 mm quartz cell and the native fluorescence of SA sorbed on it is directly measured (lambda(ex)=297 nm; lambda(em)=405 nm). Good linearity was found in the 10-200 and 5-100 microg l(-1) ranges (for 10 and 25 ml sample volume, respectively) with R.S.D. (%) of 2.8 and 1.1. The procedure was successfully applied to the determination of acetyl salicylic acid (ASA) in drug formulations after alkaline hydrolysis to yield SA.

  15. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; ...

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less

  16. Fluorescence Correlation Spectroscopy Evidence for Structural Heterogeneity in Ionic Liquids

    SciTech Connect

    Guo, Jianchang; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W; Mahurin, Shannon Mark

    2011-01-01

    Self-aggregation in room temperature ionic liquids (RTILs) has been a subject of intense interest in recent years. In this work, we provide new experimental evidence for chain length-dependent self-aggregation in RTILs using fluorescence correlation spectroscopy (FCS). In studying a homologous series of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, [CnMPy][Tf2N] RTILs of varying alkyl chain length (n = 3, 4, 6, 8, and 10), biphasic rhodamine 6G solute diffusion dynamics were observed; both the fast and slow diffusion coefficients decrease with increasing alkyl chain length, with the relative contribution from slower diffusion increasing for longer-chained [CnMPy][Tf2N]. We propose that the biphasic diffusion dynamics originate from self-aggregation of the nonpolar alkyl chains in the cationic [CnMPy]+. The presence of this local liquid structuring provides important insight into the behavior of RTILs relevant to their application in photovoltaics, fuel cells, and batteries.

  17. The Intermediate Scattering Function in Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Andrews, Ballard; Sen, Pabitra

    2006-03-01

    We formulate the autocorrelation function for Fluorescence Correlation Spectroscopy (FCS) GD(τ) in reciprocal space in terms of the of the Intermediate Scattering Function ISF(k,t) and the fourier transform of the Optical Response Function ORF(k). In this way we may extend the use of FCS to processes that have been studied using NMR, DLS, and neutron scattering. This formalism is useful for the complicated propagators involved in confined systems and in the study of diffusion in cells: where diffusion is either restricted or permeation through membrane is important. Calculations in k-space produce approximate expressions for the ORF using cumulant expansions that are accurate for small wavevectors. This provides descriptions for longer timescales better suited for studying time-dependent diffusion ISF(k,t)->exp[-tD(t)k^2] and provides a natural separation of contributions from system dynamics and from optical artifacts and aberrations. We will show an explicit derivation of a semi-analytical fit function for free diffusion based on standard electromagnetic analysis of a confocal optical apparatus. This fit function is then used to analyze a representative data set and has no free fit parameters other than the diffusion constant.

  18. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  19. Subdiffusive molecular motion in nanochannels observed by fluorescence correlation spectroscopy.

    PubMed

    De Santo, Ilaria; Causa, Filippo; Netti, Paolo A

    2010-02-01

    The influence of confinement on biomolecule motion in glass channels of nanometric height has been investigated with fluorescence correlation spectroscopy (FCS). We measured intrachannel molecule diffusion time and concentration based on a single-component diffusion model as a function of molecule size to channel height (r(g)/h). Poly(ethylene glycol) (PEG) of 20 kDa and dextran of 40 kDa showed a reduction of their diffusion coefficients of almost 1 order of magnitude when nanochannel height approached probe diameter, whereas rhodamine 6G (Rh6G) was shown to be almost unaffected from confinement. Subdiffusive motion has been proven for flexible molecules in nanochannels, and deviations toward a square root dependence of mobility with time for confinement up to molecule size r(g)/h approximately 0.5 were registered. Diffusion coefficient time dependence has been evaluated and described with a model that accounts for diffusion time increase due to molecule rearrangements related to molecule flexibility and surface interactions dynamics. The evaluation of the subdiffusive mode and the key parameters extracted at the single-molecule level of partitioning, intrachannel diffusion time, desorption time, and binding probability at surfaces can be exploited for the engineering of bioanalytic nanodevices.

  20. Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Wang, Xichao; Xing, Da; Chen, Tongsheng; Chen, Wei R.

    2009-03-01

    Noninvasive and reliable quantification of rheological characteristics in the nucleus is extremely useful for fundamental research and practical applications in medicine and biology. This study examines the use of fluorescence correlation spectroscopy (FCS) to noninvasively determine nucleoplasmic viscosity (ɛnu), an important parameter of nucleoplasmic rheology. Our FCS analyses show that ɛnu of lung adenocarcinoma (ASTC-a-1) and HeLa cells are 1.77+/-0.42 cP and 1.40+/-0.27 cP, respectively, about three to four times larger than the water viscosity at 37 °C. ɛnu was reduced by 31 to 36% upon hypotonic exposure and increased by 28 to 52% from 37 to 24 °C. In addition, we found that ɛnu of HeLa cells reached the lowest value in the S phase and that there was no significant difference of ɛnu between in the G1 and G2 phases. Last, nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity in both HeLa and ASTC-a-1 cells. These results indicate that FCS can be used as a noninvasive tool to investigate the microenvironment of living cells. This is the first report on the measurement of ɛnu in living cells synchronized in the G1, S, and G2 phases.

  1. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence

    PubMed Central

    Schuler, Benjamin; Lipman, Everett A.; Steinbach, Peter J.; Kumke, Michael; Eaton, William A.

    2005-01-01

    To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. PMID:15699337

  2. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabudean, A. M.; Biro, D.; Astilean, S.

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p‧-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications.

  3. Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe Ç

    PubMed Central

    Cekan, Pavol; Jonsson, Elvar Örn; Sigurdsson, Snorri Th.

    2009-01-01

    The cocaine aptamer is a DNA molecule that binds cocaine at the junction of three helices. The bifunctional spectroscopic probe Ç was incorporated independently into three different positions of the aptamer and changes in structure and dynamics upon addition of the cocaine ligand were studied. Nucleoside Ç contains a rigid nitroxide spin label and can be studied directly by electron paramagnetic resonance (EPR) spectroscopy and fluorescence spectroscopy after reduction of the nitroxide to yield the fluoroside Çf. Both the EPR and the fluorescence data for aptamer 2 indicate that helix III is formed before cocaine binding. Upon addition of cocaine, increased fluorescence of a fully base-paired Çf, placed at the three-way junction in helix III, was observed and is consistent with a helical tilt from a coaxial stack of helices II and III. EPR and fluorescence data clearly show that helix I is formed upon addition of cocaine, concomitant with the formation of the Y-shaped three-way helical junction. The EPR data indicate that nucleotides in helix I are more mobile than nucleotides in regular duplex regions and may reflect increased dynamics due to the short length of helix I. PMID:19406921

  4. A fluorescence spectroscopic study of a coagulating protein extracted from Moringa oleifera seeds.

    PubMed

    Kwaambwa, H M; Maikokera, R

    2007-11-15

    The fluorescence studies of coagulating protein extracted from Moringa oleifera seeds have been studied using steady-state intrinsic fluorescence. The fluorescence spectra are dominated by tryptophan emission and the emission peak maximum (lambda(max)=343+ or -2nm) indicated that the tryptophan residue is not located in the hydrophobic core of the protein. Changes in solution pH affected the protein conformation as indicated by changes in the tryptophan fluorescence above pH 9 whereas the ionic strength had minimal effect. The exposure and environments of the tryptophan residue were determined using collisional quenchers.

  5. A Fluorescence Spectroscopic Study of Cytochromes P450 1A2 and 3A4.

    NASA Astrophysics Data System (ADS)

    Marsch, Glenn; Guengerich, F. P.; Inks, Joshua

    2006-03-01

    Fluorescence spectroscopy was used to study cytochromes P450 1A2 and 3A4. Spectra of P450s were acquired in the presence and absence of acrylamide quencher. In both P450s, quenching revealed three distinguishable species of amino acid fluorescence, with maxima at 297, 323, and 345 nm. The 345 nm tryptophan fluorescence was quenched by low levels of acrylamide; the 297 nm tyrosine fluorescence was resistant to quenching. The 323 nm fluorescence was observed at intermediate concentrations of quencher. Stern-Volmer plots of P450 quenching were non-linear, but were well-fitted to a superposition of linear plots for each fluorophore species. The effect of P450 1A2 binding on pyrene fluorescence was also examined. Upon binding to P450 1A2, the intensity of the 383 nm pyrene vibronic band was decreased relative to the intensities of the 372 and 393 nm bands. Fluorescence quenching of pyrene and other ligands upon binding to P450s will be used to evaluate distances between ligands and the P450 heme moiety by fluorescence resonance energy transfer. Fluorescence quantum yields of ligands, overlap integrals, and Förster distances of many ligand-heme donor-acceptor pairs were calculated. Steady-state spectra and time-resolved data of bound ligand will be used to calculate substrate-heme distances in the P450 enzymes.

  6. Fluorescence spectroscopic studies of (acetamide + sodium/potassium thiocyanates) molten mixtures: composition and temperature dependence.

    PubMed

    Guchhait, Biswajit; Gazi, Harun Al Rasid; Kashyap, Hemant K; Biswas, Ranjit

    2010-04-22

    Steady state and time-resolved fluorescence spectroscopic techniques have been used to explore the Stokes' shift dynamics and rotational relaxation of a dipolar solute probe in molten mixtures of acetamide (CH(3)CONH(2)) with sodium and potassium thiocyanates (Na /KSCN) at T approximately 318 K and several other higher temperatures. The dipolar solute probe employed for this study is coumarin 153 (C153). Six different fractions (f) of KSCN of the following ternary mixture composition, 0.75 CH(3)CONH(2) + 0.25[(1 - f)NaSCN + fKSCN], have been considered. The estimated experimental dynamic Stokes' shift for these systems ranges between 1800 and 2200 cm(-1) (+/-250 cm(-1)), which is similar to what has been observed with the same solute probe in several imidazolium cation based room temperature ionic liquids (RTIL) and in pure amide solvents. Interestingly, this range of estimated Stokes' shift, even though not corresponding to the megavalue of static dielectric constant reported in the literature for a binary mixture of molten CH(3)CONH(2) and NaSCN, exhibits a nonmonotonic KSCN concentration dependence. The magnitudes of the dynamic Stokes' shift detected in the present experiments are significantly less than the estimated ones, as nearly 40-60% of the total shift is missed due to the limited time resolution employed (full-width at half-maximum of the instrument response function approximately 70 ps). The solvation response function, constructed from the detected shifts in these systems, exhibits triexponential decay with the fastest time constant (tau(1)) in the 10-20 ps range, which might be much shorter if measured with a better time resolution. The second time constant (tau(2)) lies in the 70-100 ps range, and the third one (tau(3)) ranges between 300 and 800 ps. Both these time constants (tau(2) and tau(3)) show alkali metal ion concentration dependence and exhibit viscosity decoupling at higher viscosity in the NaSCN-enriched region. Time dependent rotational

  7. Fixation-resistant photoactivatable fluorescent proteins for correlative light and electron microscopy

    PubMed Central

    Paez Segala, Maria G.; Sun, Mei G.; Shtengel, Gleb; Viswanathan, Sarada; Baird, Michelle A.; Macklin, John J.; Patel, Ronak; Allen, John R.; Howe, Elizabeth S.; Piszczek, Grzegorz; Hess, Harald F.; Davidson, Michael W.; Wang, Yalin; Looger, Loren L.

    2014-01-01

    Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they cease to function following heavy fixation, hindering advanced applications such as correlative light and electron microscopy. Here we report engineered variants of the photoconvertible Eos fluorescent protein that function normally in heavily fixed (0.5–1% OsO4), plastic resin-embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy. PMID:25581799

  8. Two-dimensional fluorescence correlation spectroscopy IV: Resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme

    NASA Astrophysics Data System (ADS)

    Fukuma, Hiroaki; Nakashima, Kenichi; Ozaki, Yukihiro; Noda, Isao

    2006-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.

  9. A combined fluorescence spectroscopic and electrochemical approach for the study of thioredoxins.

    PubMed

    Voicescu, Mariana; Rother, Dagmar; Bardischewsky, Frank; Friedrich, Cornelius G; Hellwig, Petra

    2011-01-11

    A new way to study the electrochemical properties of proteins by coupling front-face fluorescence spectroscopy with an optically transparent thin-layer electrochemical cell is presented. First, the approach was examined on the basis of the redox-dependent conformational changes in tryptophans in cytochrome c, and its redox potential was successfully determined. Second, an electrochemically induced fluorescence analysis of periplasmic thiol-disulfide oxidoreductases SoxS and SoxW was performed. SoxS is essential for maintaining chemotrophic sulfur oxidation of Paracoccus pantotrophus active in vivo, while SoxW is not essential. According to the potentiometric redox titration of tryptophan fluorescence, the midpoint potential of SoxS was -342 ± 8 mV versus the standard hydrogen electrode (SHE') and that of SoxW was -256 ± 10 mV versus the SHE'. The fluorescence properties of the thioredoxins are presented and discussed together with the intrinsic fluorescence contribution of the tyrosines.

  10. Identification of cholesterol gallstones using in vitro low-fluence laser-induced fluorescence spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Wrobel, R.; Niay, P.; Bernage, P.; Blondeau, J. M.; Ledee, J. J.; Brunetaud, J. M.

    1990-12-01

    Identifying the chemical composition of gallstones may be important in certain cases of calculus biliary disease when planning a dissolution therapy or a fragmentation of the calculi using pulsed lasers. The present study was conducted in vitro to evaluate the feasibility of distinguishing cholesterol gallstones from pigment stones. We propose an identification method in which the stone fluorescence spectrum, induced by a low fluence laser, is recorded using an optical multichannel analyser. Fluorescence spectra of twenty-two stones were recorded together with the fluorescence spectra of various pure compounds likely to compose the gallstones, using successively four different pump lasers (λp=308 nm, 337 nm, 423 nm, 469 nm). The fluorescence spectra of cholesterol gallstones are quite different from the pigment ones. Ratios of fluorescence intensities taken at three different wavelengths enable one to distinguish easily between cholesterol and pigment stones.

  11. Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application.

    PubMed

    Doddi, Siva; Narayanaswamy, K; Ramakrishna, Bheerappagari; Singh, Surya Prakash; Bangal, Prakriti Ranjan

    2016-11-01

    We report the synthesis and characterization of a new fluorescent dyad SP-DPP-SP(9) via efficient palladium-catalyzed Sonogashira coupling of prop-2-yn-1-yl 3-(3',3'dimethyl-6-nitrospiro[chromene-2,2'-indolin]-1'-yl)propanoatespiropyran, SP(8), a well known photochromic accepter, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis((R)-2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, DPP(4), a highly fluorescent donor. Under visible light exposure the SP unit is in a closed hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named Merocyanine (MC), which is responsible for functioning of photo-switch application. The photochemistry pertaining to fluorescence switch, 'on/off' behaviour, of model dyad SP-DPP-SP(9) is experimentally analyzed in solution as well as in solid state in polymer matrices by photoluminescence(PL) and absorption spectroscopy. After absorption of UV light the spiropyran unit of the dyad under goes the rupture of the spiro C-O bond leading to the formation of MC. The absorption band of MC fairly overlaps to the fluorescence of DPP unit resulting quenching of fluorescence via fluorescence resonance energy transfer from exited DPP unit to ground state MC. In contrary, the fluorescence of DPP is fully regained upon transformation of MC to SP by exposure to visible light or thermal stimuli. Hence, the fluorescence intensity of dyad 9 is regulated by reversible conversion among the two states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the MC form of SP and the DPP unit. Conversely, these scrutiny of the experiment express that the design of dyad 9 is viable as efficient fluorescent switch molecule in many probable commercial applications, such as, logic gates and photonic and optical communications.

  12. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.

    PubMed

    Bujalowski, Wlodzimierz; Jezewska, Maria J

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined.

  13. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    PubMed Central

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  14. Synthesis, spectroscopic properties, and biological applications of eight novel chlorinated fluorescent proteins-labeling probes.

    PubMed

    Wu, Xianglong; Tian, Min; Fan, Wutu; Pan, Yalei; Zhai, Yuankun; Niu, Yinbo; Li, Chenrui; Lu, Tingli; Mei, Qibing

    2014-05-01

    Eight novel chlorinated fluorescent proteins-labeling probes with a linker and reactive group were prepared in 7 steps by the reaction of chlorinated resorcinols with 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. Structures of target compounds and intermediates were determined via IR, MS, (1)H NMR and element analysis. The spectral properties of the chlorinated fluoresceins were studied. These fluorescent probes showed absorbance peaks at 508-536 nm and fluorescence peaks at 524-550 nm. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. The probes were used for fluorescence imaging of cells in order to investigate whether they can conjugate to cells. The fluorescence imaging of living cells showed that they were localized in cell nucleus. However, they were localized in cytosol of chemically fixed cells. These probes will be useful reagents for the preparation of stable fluorescent conjugates.

  15. Dark State-Modulated Fluorescence Correlation Spectroscopy for Quantitative Signal Recovery.

    PubMed

    Hsiang, Jung-Cheng; Fleischer, Blake C; Dickson, Robert M

    2016-07-07

    Excitation of few-atom Ag cluster fluorescence produces significant steady-state dark state populations that can be dynamically optically depopulated with long wavelength coillumination. Modulating this secondary illumination dynamically repopulates the ground state, thereby directly modulating nanodot fluorescence without modulating background. Both fast and slow modulation enable unmodulated background to be quantitatively removed in fluorescence correlation spectroscopy (FCS) through simple correlation-based averaging. Such modulated dual-laser FCS enables recovery of pure Ag nanodot fluorescence correlations even in the presence of strong, spectrally overlapping background emission. Fluorescence recovery is linear with Fourier amplitude of the modulated fluorescence, providing a complementary approach to background-free quantitation of modulatable emitter concentration in high background environments. Using the expanding range of modulatable fluorophores, such methodologies should facilitate biologically relevant studies in both complex autofluorescent environments and multiplexed assays.

  16. A spectroscopic study of the fluorescence quenching interactions between biomedically important salts and the fluorescent probe merocyanine 540.

    PubMed

    Adenier, A; Aaron, J J

    2002-02-01

    The effects of several biologically important inorganic salts, including NaCl, NaI, NaBr, KCl, MgCl2, MgSO4 and CaCl2 on the electronic absorption and fluorescence spectra of Merocyanine 540 (MC-540) have been investigated in aqueous media at 25 degrees C. Depending on both the MC-540 concentration and the nature of salt, a new absorption band appears at about 515 nm, above the critical salt concentration (CSC), corresponding to salt-induced MC-540 aggregation. Several types of MC-540 fluorescence quenching by the salts are observed, according to their cationic charge and the nature of anion: in the case of monovalent ions (Na+, K+), a non-linear Stern-Volmer behaviour is observed, indicating variable contributions of dynamic and static quenching mechanisms, whereas for divalent alkaline-earth (Mg2+, Ca2+) ions, linear Stern-Volmer relationships are obtained. Using these results, an analytical quenchofluorimetric approach is proposed for the determination of magnesium ions.

  17. Spectroscopic Ellipsometry and Fluorescence Study of Thermochromism in an Ultrathin Poly(diacetylene) Film: Reversibility and Transition Kinetics

    SciTech Connect

    CARPICK,R.W.; MAYER,THOMAS M.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-01-18

    We have investigated the thermochromic transition of an ultrathin poly(diacetylene) film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [CH{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in-situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate ''purple'' form that exists only at elevated temperature (between 303-333 K), followed by an irreversible transition to the red form after annealing above 320 K. We propose that the purple form is thermally distorted blue poly-PCDA, and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form, and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements we deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup -1} between the blue and red forms.

  18. Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment.

    PubMed

    Xue, Shuang; Zhao, Qingliang; Wei, Liangliang; Song, Youtao; Tie, Mei

    2013-06-01

    This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0-12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation-emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75-150 cm). Total Φ T, n values, which were calculated as [Formula: see text], suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.

  19. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  20. Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Punj, Deep; Rigneault, Hervé; Wenger, Jérôme

    2014-05-01

    Single nanoparticles made of noble metals are strongly appealing to develop practical applications to detect fluorescent molecules in solution. Here, we detail the use of a single gold nanoparticle of 100 nm diameter to enhance the detection of single Alex Fluor 647 fluorescent molecules at high concentrations of several micromolar. We discuss the implementation of fluorescence correlation spectroscopy, and provide a new method to reliably extract the enhanced fluorescence signal stemming from the nanoparticle near-field from the background generated in the confocal volume. The applicability of our method is checked by reporting the invariance of the single molecule results as function of the molecular concentration, and the experimental data is found in good agreement with numerical simulations.

  1. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues.

    PubMed Central

    Reshetnyak, Y K; Koshevnik, Y; Burstein, E A

    2001-01-01

    In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins. The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes. PMID:11509384

  2. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  3. NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT.

    SciTech Connect

    ABLETT, J.M.; WOICIK, J.C.; KAO, C.C.

    2004-08-02

    X-ray fluorescence spectroscopy is a widely used method for determining the electronic configuration and local structure of dilute species with high sensitivity. In the dilute limit, and for thin films, the X-ray fluorescence signal is directly proportional to the atomic sub-shell absorption coefficient. However, for concentrated samples, the well-documented self-absorption effect often leads to the severe suppression of XANES (X-ray Absorption Near-Edge Structure) and EXAFS (Extended X-ray Absorption Fine-Structure) amplitudes. Thus to recover the real value of the sub-shell absorption coefficient, it is important to apply correction procedures to the measured fluorescence spectra. In this paper, we describe a new straightforward method to correct for self-absorption effects (the difference in the measured fluorescence signal compared to that of the true sub-shell photoabsorption coefficient) in XANES and EXAFS fluorescence measurements. Using a variety of sample and detector configurations, this method is used to extract the sub-shell absorption coefficient on elemental nickel and thick single-crystals of Gd{sub 3}Ga{sub 5}O{sub 12} and LaAlO{sub 3}.

  4. New Correction Procedure For X-ray Spectroscopic Fluorescence Data: Simulations and Experiment

    SciTech Connect

    Ablett,J.; Woicik, J.; Kao, C.

    2005-01-01

    X-ray fluorescence spectroscopy is a widely used method for determining the electronic configuration and local structure of dilute species with high sensitivity. In the dilute limit, and for thin films, the X-ray fluorescence signal is directly proportional to the atomic sub-shell absorption coefficient. However, for concentrated samples, the well-documented self-absorption effect often leads to the severe suppression of XANES (X-ray Absorption Near-Edge Structure) and EXAFS (Extended X-ray Absorption Fine-Structure) amplitudes. Thus to recover the real value of the sub-shell absorption coefficient, it is important to apply correction procedures to the measured fluorescence spectra. In this paper, we describe a new straightforward method to correct for self-absorption effects (the difference in the measured fluorescence signal compared to that of the true sub-shell photoabsorption coefficient) in XANES and EXAFS fluorescence measurements. Using a variety of sample and detector configurations, this method is used to extract the sub-shell absorption coefficient on elemental nickel and thick single-crystals of Gd{sub 3}Ga{sub 5}O{sub 12} and LaAlO{sub 3}.

  5. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    PubMed

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Spectroscopic ellipsometry and fluorescence study of thermochromism in an ultrathin poly(diacetylene) film: Reversibility and transition kinetics

    SciTech Connect

    Carpick, R.W.; Mayer, T.M.; Sasaki, D.Y.; Burns, A.R.

    2000-05-16

    The authors have investigated the thermochromic transition of an ultrathin poly(diacetylene)film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [Ch{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate purple form that exists only at elevated temperature (between 303 and 333 K), followed by an irreversible transition to the red form after annealing above 320 K. The authors propose that the purple form is thermally distorted blue poly-PCDA and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements, the authors deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup {minus}1} between the blue and red forms.

  7. Native fluorescence spectroscopic evaluation of chemotherapeutic effects on malignant cells using nonnegative matrix factorization analysis.

    PubMed

    Pu, Y; Tang, G C; Wang, W B; Savage, H E; Schantz, S P; Alfano, R R

    2011-04-01

    The native fluorescence spectra of retinoic acid (RA)-treated and untreated human breast cancerous cells excited with the selective wavelengths of 300 nm and 340 nm were measured and analyzed using a blind source separation method namely Nonnegative Matrix Factorization (NMF). The results show that the fluorophores of human malignant breast cells change their compositions when they are treated with RA. The reduced contribution from tryptophan, NADH and flavin to the fluorescence of the treated breast cancerous cells was observed in comparison with that of the untreated cells. The results indicate that the decrease of adenosine triphosphate (ATP) in the RA-treated cells. The possible clinical applications of this native fluorescence study are discussed.

  8. Fluorescence spectroscopic and viscosity studies of hydrogen bonding in Chinese Fenjiu.

    PubMed

    Qiao, Hua; Zhang, Shengwan; Wang, Wei

    2013-04-01

    The associative behavior of ethanol with water and total hydrogen bonding property in Chinese Fenjiu were examined on the basis of fluorescence and viscosity measurements, respectively. Ethyl esters and acetic acid initially strengthened and then weakened ethanol-water hydrogen-bonding structure, while sodium chloride exhibited its enhanced effect. The fluorescence intensities and viscosities were measured for 12 Fenjiu samples of a distillery, aged for 0-20 years in two different types of containers. The ethanol-water fluorescence intensities and viscosities of Fenjiu samples are proportional to their contents of sodium ion and opposite to their contents of total esters. It can be concluded that the strength of the ethanol-water hydrogen bonding as well as the total hydrogen bonding in aged Fenjiu are directly predominated by total esters lost and sodium ion gained in ceramic containers and not dependent on just the aging time.

  9. Study of diffusion in polymer solutions and networks by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chehreghanianzabi, Yasaman

    Diffusion in polymer solutions and networks is a topic of vast importance in many fields related to medical devices, tissue engineering, and drug delivery. Understanding diffusion in such environments is also essential for describing molecular transport through biological systems such as cells and tissues. Fluorescence correlation spectroscopy (FCS) is single molecule spectroscopic technique that measures the fluctuations of fluorescent probes in a defined confocal volume and correlates them in time to give information on diffusion times, concentrations, and interactions as well as indirectly, on macromolecular structure or conformation. In the first project we used diffusivity data obtained by FCS to develop a novel homogenization theory model to accurately predict solute diffusivity in polymer solutions. We focused on a setting where diffusivity was hindered by obstruction only. By choosing experimental conditions that satisfied the model assumptions, we were able to validate the homogenization theory model. While testing diffusivity in various polymer solutions, we also observed an unexpected phenomenon--a dramatic decrease in diffusivity of small fluorophores in dilute solutions of polyethylene glycol (PEG), which led to the second project. Here, we determined that the rapid drop was due to a complexation between the PEG and the fluorophore. We also determined that this complexation was highly specific and could be attributed to hydrogel bonding between the ether oxygen of PEG and the carboxylic hydrogen of the fluorophore. We then transitioned to a more complex hydrogel network environment, namely fluorophore diffusivity in various alginate hydrogels--varied by concentration and modifications with a cell adhesive ligand. Importantly, we were able to determine that while the fluorophore diffusivity was hindered due to electrostatic interactions, it was the same irrespective of the alginate concentration or modifications. The last part of this thesis was focused

  10. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  11. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  12. Raman and fluorescence spectroscopic evaluation of NIR laser-welded human and porcine aorta tissues

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Alimova, Alexandra; Minko, Glenn; Liu, C. H.; Gayen, Tapan K.; Savage, Howard E.; Halder, Rabindra K.; McCormick, Steven A.; Alfano, Robert R.

    2003-06-01

    Laser tissue welding involves the partial denaturing and renaturing of the collagen triple helical structure. Although the mechanisms of laser tissue welding are not well understood, water in tissues plays an important role in the process. High quality welding of human and porcine aorta tissue have been achieved using NIR lasers tuned to the water absorption band around 1450 nm. Fluorescence and Raman spectra from welded and non-welded regions are compared for ex vivo human and porcine aorta tissues. The fluorescence from the outer surface of welded aorta was substantially weaker than the fluorescence from the non-welded region. The Raman spectra from the welded and non-welded tissue regions appeared similar in the energies of the observed vibrational levels but the intensity of the fluorescence wing was considerably greater from the outer surface of the welded region as compared to the non-welded region. For the outer surface of the aorta, the emission intensity from the welded region was larger than for the non-welded region.

  13. Dynamics-function correlation in Cu, Zn superoxide dismutase: a spectroscopic and molecular dynamics simulation study.

    PubMed Central

    Falconi, M; Stroppolo, M E; Cioni, P; Strambini, G; Sergi, A; Ferrario, M; Desideri, A

    2001-01-01

    A single mutation (Val29-->Gly) at the subunit interface of a Cu, Zn superoxide dismutase dimer leads to a twofold increase in the second order catalytic rate, when compared to the native enzyme, without causing any modification of the structure or the electric field distribution. To check the role of dynamic processes in this catalytic enhancement, the flexibility of the dimeric protein at the subunit interface region has been probed by the phosphorescence and fluorescence properties of the unique tryptophan residue. Multiple spectroscopic data indicate that Trp83 experiences a very similar, and relatively hydrophobic, environment in both wild-type and mutant protein, whereas its mobility is distinctly more restrained in the latter. Molecular dynamics simulation confirms this result, and provides, at the molecular level, details of the dynamic change felt by tryptophan. Moreover, the simulation shows that the loops surrounding the active site are more flexible in the mutant than in the native enzyme, making the copper more accessible to the incoming substrate, and being thus responsible for the catalytic rate enhancement. Evidence for increased, dynamic copper accessibility also comes from faster copper removal in the mutant by a metal chelator. These results indicate that differences in dynamic, rather than structural, features of the two enzymes are responsible for the observed functional change. PMID:11371434

  14. Correlation of spectroscopic parameters with ligand basicity for uranyl bis(hexafluoroacetylacetonate) adducts

    SciTech Connect

    Bray, R.G.; Kramer, G.M.

    1983-06-22

    The infrared transition frequencies (vapor and solution phases) of the uranyl and hexafluoroacetylacetonate (hfacac) moieties, as well as /sup 13/C and /sup 1/H NMR shifts, correlate linearly with the relative basicity of the neutral bases (B) for 15 UO/sub 2/(hfacac)/sub 2/ adducts. Solvation effects and relative entropy changes appear to be minimal for the base-exchange equilibrium, suggesting that the observed shifts in thes easily measurable spectroscopic properties predominantly reflect the Lewis acid-base relative bond strengths. We interpret the observed shifts in terms of electronic structure perturbations of both the uranyl and hfacac moieties arising from changes in neutral base (L-M) bonding. 6 figures, 2 tables.

  15. Correlation of spectroscopic and biochemical assays post-ionising radiation exposure in human skin cell analogues

    NASA Astrophysics Data System (ADS)

    Meade, A. D.; Byrne, H. J.; Lyng, F. M.

    2005-06-01

    Raman spectroscopy, as an evaluation of the products of ionising radiation exposure in biological systems, has been utilised mainly in the evaluation of the impact of exposure in tissue, cellular constituents and live animals. It has also been recently demonstrated that Raman spectroscopy can demonstrate key spectroscopic changes in the live cell associated with significant apoptotic and necrotic chemical damage. The present preliminary work utilises Raman spectroscopy at 514.5 nm to evaluate the results of exposure to γ-rays in HaCaT cells from a Co-60 therapy source, in tandem with other biological assays. The results demonstrate that Raman spectral changes may be correlated with changes in the cell also identified in parallel biochemical assays.

  16. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics.

    PubMed

    Pollard, Benjamin; Muller, Eric A; Hinrichs, Karsten; Raschke, Markus B

    2014-04-11

    Molecular self-assembly, the function of biomembranes and the performance of organic solar cells rely on nanoscale molecular interactions. Understanding and control of such materials have been impeded by difficulties in imaging their properties with the desired nanometre spatial resolution, attomolar sensitivity and intermolecular spectroscopic specificity. Here we implement vibrational scattering-scanning near-field optical microscopy with high spectral precision to investigate the structure-function relationship in nano-phase separated block copolymers. A vibrational resonance is used as a sensitive reporter of the local chemical environment and we image, with few nanometre spatial resolution and 0.2 cm(-1) spectral precision, solvatochromic Stark shifts and line broadening correlated with molecular-scale morphologies. We discriminate local variations in electric fields between nano-domains with quantitative agreement with dielectric continuum models. This ability to directly resolve nanoscale morphology and associated intermolecular interactions can form a basis for the systematic control of functionality in multicomponent soft matter systems.

  17. Energy calibration and gain correction of pixelated spectroscopic x-ray detectors using correlation optimised warping

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Scuffham, J. W.; Veale, M. C.; Wilson, M. D.; Seller, P.; Cernik, R. J.

    2017-01-01

    We describe the implementation of a reliable, robust and flexible gain correction and energy calibration algorithm for pixelated spectroscopic x-ray detectors. This algorithm uses a data processing method known as correlation optimised warping which aligns shifted datasets by means of a segmental linear stretching and compression of the spectral data in order to best correlate with a reference spectrum. We found the algorithm to be very robust against low-count spectroscopy, and was reliable in a range of different spectroscopic applications. Analysis of the integrated spectrum over all pixels for a Cerium K-alpha x-ray emission (at 34.72 keV) yielded a peak width of 2.45 keV before alignment and 1.11 keV after alignment. This compares favourably with the best in class pixel peak width of 0.76 keV and the mean peak width for all pixels of 1.00 keV. We also found the algorithm to be more user friendly than other peak-search algorithms because there is less external input. A key advantage of this algorithm is that it requires no prior knowledge of the input spectral characteristics, shape or quality of the data. This therefore lends itself to being useful for in-line processing and potentially removes the need for a separate calibration standard (e.g. a radioactive source). This algorithm can be used for any system that simultaneously collects large numbers of spectral data—including multi-element detectors.

  18. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    SciTech Connect

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  19. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-10-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  20. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    PubMed Central

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds. PMID:25362365

  1. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  2. Steady state and time-resolved fluorescence spectroscopic characterization of normal and cancerous urine

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Aruna, Prakasa Rao; Balu David, Munusamy; Koteeswaran, Dornadula; Muthuvelu, Kulandaivel; Rai, R.; Ganesan, Singaravelu

    2013-03-01

    Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.

  3. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2010-06-01

    Serotonin is a physiologically important biogenic amine, deficiency of which leads to mental disorders such as Alzheimer's disease, schizophrenia, infantile autism, and depression. Both β-cyclodextrin (β-CD) and its chemically substituted synthetic varieties (often possessing enhanced aqueous solubility and improved drug complexing abilities) are finding wide applications as drug delivery vehicles. Here we have studied the encapsulation of serotonin in β-CD and succinyl-2-hydroxypropyl β-cyclodextrin (SHP-β-CD) by exploiting the intrinsic serotonin fluorescence. Enhanced fluorescence emission intensity (which increases by ˜18% and 34% in β-CD and SHPβ-CD respectively) and anisotropy ( r) ( r = 0.075 and 0.1 in β-CD and SHPβ-CD respectively) are observed in presence of the cyclodextrins. From the fluorescence data host-guest interaction with 1:1 stoichiometry is evident, the association constants ( K) being 126.06 M -1 and 461.62 M -1 for β-CD and SHPβ-CD respectively. Additionally, molecular docking and semiempirical calculations have been carried out which provide, for the first time, detailed insights regarding the encapsulation process. In particular, it is evident that the indole ring is inserted within the β-CD cavity with the aliphatic amine side chain protruding towards the primary rim of the β-CD cavity. Docking calculations reveal that hydrogen bonding interactions are involved in the formation of the inclusion complex. Semiempirical calculations indicate that formation of the 1:1 inclusion complex is energetically favorable which is consistent with the fluorescence data.

  4. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  5. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  6. Interaction of Sulfadiazine with Model Water Soluble Proteins: A Combined Fluorescence Spectroscopic and Molecular Modeling Approach.

    PubMed

    Islam, Mullah Muhaiminul; Moyon, N Shaemningwar; Gashnga, Pynsakhiat Miki; Mitra, Sivaprasad

    2014-03-01

    The binding behavior of antibacterial drug sulfadiazine (SDZ) with water soluble globular proteins like bovine as well as human serum albumin (BSA and HSA, respectively) and lysozyme (LYS) was monitored by fluorescence titration and molecular docking calculations. The experimental data reveal that the quenching of the intrinsic protein fluorescence in presence of SDZ is due to the strong interaction in the drug binding site of the respective proteins. The Stern-Volmer plot shows positive deviation at higher quencher concentration for all the proteins and was explained in terms of a sphere of action model. The calculated fluorophore-quencher distances vary within 4 ~ 11 Å in different cases. Fluorescence experiments at different temperature indicate thermodynamically favorable binding of SDZ with the proteins with apparently strong association constant (~10(4)-10(5) M(-1)) and negative free energy of interaction within the range of -26.0 ~ -36.8 kJ mol(-1). The experimental findings are in good agreement with the respective parameters obtained from best energy ranked molecular docking calculation results of SDZ with all the three proteins.

  7. Identification of hematic cells by spectroscopic analysis of the intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Bernabei, Pietro A.; Caporale, Roberto; Ferrini, Pierluigi R.; Croce, Anna C.; Bottiroli, Giovanni F.; Cioncolini, Stefano; Innocenti, Alberto; Pratesi, Riccardo

    1994-12-01

    The determination of blood cell composition has been a valuable tool in diagnoses. In particular, both total and differential counts are considered the basic parameters that characterize the leukocyte population. Since 100 years ago, manual techniques were introduced that allow a morphological examination of blood smears. At present, the automated analysis has been proved to be particularly difficult to standardize. In fact, the identification and count of the five leukocyte populations are not completely solved problems in routine methods for hematological analysis. Optoelectronics could have a decisive role in the development of new techniques that can ensure characteristics of automation, reliability, accuracy and rapidity of execution. Fluorescence spectroscopy techniques could represent a valid approach. Recently, the evaluation of tissue and cell autofluorescence has been applied to the diagnosis of solid tissue neoplasies. In this work, we have considered the possibility to develop a reliable method of leukocyte analysis based on their intrinsic fluorescence emission properties. The study has been performed by applying both spectrofluorometric techniques to enriched suspensions of cells and microspectrofluorometric techniques to single leukocytes. The results obtained have shown the possibility to recognize some cell populations on the grounds of the intrinsic fluorescence characteristics.

  8. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  9. The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors.

    PubMed

    Kilpatrick, Laura E; Hill, Stephen J

    2016-04-15

    The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand-receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.

  10. The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors

    PubMed Central

    Kilpatrick, Laura E.; Hill, Stephen J.

    2016-01-01

    The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand–receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties. PMID:27068980

  11. Correlated Cryo-fluorescence and Cryo-electron Microscopy with High Spatial Precision and Improved Sensitivity

    PubMed Central

    Schorb, Martin; Briggs, John A. G.

    2017-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. PMID:24275379

  12. Constraining the ionized gas evolution with CMB-spectroscopic survey cross-correlation

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe

    2017-07-01

    We forecast the prospective constraints on the ionized gas model fgas (z) at different evolutionary epochs via the tomographic cross-correlation between kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed momentum field at different redshifts. The experiments we consider are the Planck and CMB Stage-4 survey for CMB and the SDSS-III for the galaxy spectroscopic survey. We calculate the tomographic cross-correlation power spectrum, and use the Fisher matrix to forecast the detectability of different fgas (z) models. We find that for constant fgas model, Planck can constrain the error of fgas (σfgas) at each redshift bin to ∼0.2, whereas four cases of CMB-S4 can achieve σfgas ∼10-3. For fgas (z) =fgas,0 / (1 + z) model the error budget will be slightly broadened. We also investigate the model fgas (z) =fgas,0 /(1 + z) α. Planck is unable to constrain the index of redshift evolution, but the CMB-S4 experiments can constrain the index α to the level of σα ∼ 0.01-0.1. The tomographic cross-correlation method will provide an accurate measurement of the ionized gas evolution at different epochs of the Universe.

  13. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy

    PubMed Central

    Begemann, Isabell; Viplav, Abhiyan; Rasch, Christiane; Galic, Milos

    2015-01-01

    Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence – scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital. PMID:26647824

  14. Synthesis and spectroscopic study of highly fluorescent β-enaminone based boron complexes

    NASA Astrophysics Data System (ADS)

    Kumbhar, Haribhau S.; Gadilohar, Balu L.; Shankarling, Ganapati S.

    2015-07-01

    The newly synthesized 1, 1, 2-trimethyl-1H benzo[e]indoline based β-enaminone boron complexes exhibited the intense fluorescence (Fmax = 522-547 nm) in solution as well as in solid state (Fmax = 570-586 nm). These complexes exhibited large stoke shift, excellent thermal and photo stability when compared to the boron dipyrromethene (BODIPY) colorants. Optimized geometry and orbital distribution in ground states were computed by employing density functional theory (DFT). The cyclic voltammetry study revealed the better electron transport ability of these molecules than current electroluminescent materials like tris(8-hydroxyquinoli-nato)-aluminium (Alq3) and BODIPY, which can find application in electroluminescent devices.

  15. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution.

    PubMed Central

    Schwille, P; Meyer-Almes, F J; Rigler, R

    1997-01-01

    The present paper describes a new experimental scheme for following diffusion and chemical reaction systems of fluorescently labeled molecules in the nanomolar concentration range by fluorescence correlation analysis. In the dual-color fluorescence cross-correlation spectroscopy provided here, the concentration and diffusion characteristics of two fluorescent species in solution as well as their reaction product can be followed in parallel. By using two differently labeled reaction partners, the selectivity to investigate the temporal evolution of reaction product is significantly increased compared to ordinary one-color fluorescence autocorrelation systems. Here we develop the theoretical and experimental basis for carrying out measurements in a confocal dual-beam fluorescence correlation spectroscopy setup and discuss conditions that are favorable for cross-correlation analysis. The measurement principle is explained for carrying out DNA-DNA renaturation kinetics with two differently labeled complementary strands. The concentration of the reaction product can be directly determined from the cross-correlation amplitude. Images FIGURE 2 FIGURE 3 PMID:9083691

  16. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    2011-10-01

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  17. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes.

    PubMed

    Refat, Moamen S; el-Metwaly, Nashwa M

    2011-10-15

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  18. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    PubMed

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation.

  19. A Spectroscopic Analysis of a High Fluorescent Mutant of Chlamydomonas Reinhardi

    PubMed Central

    Epel, B. L.; Butler, W. L.

    1972-01-01

    Chloroplast fragments of a high fluorescent mutant of Chlamydomonas reinhardi, hfd 91, were compared against those of Acl+, a low chlorophyll variant of the wild type. The chloroplast fragments of the mutant which have a high invariant fluorescence yield lacked photochemical activities associated with photosystem II (PSII) but retained normal photosystem I (PSI) activities. The mutant fragments also lacked the low temperature (-196°C) light-induced absorbance changes due to the photoreduction of C-550 and the photooxidation of cytochrome (cyt) b-559 which are PSII-mediated reactions. A fourth-derivative analysis of the absolute spectra of the chloroplast fragments at different stages of reduction (obtained with ferricyanide, ascorbate, and dithionite) showed both the oxidized and reduced forms of C-550 and the reduced forms of cyt c-553, b-559, and b-564 in wild-type fragments. The mutant fragments lacked C-550 and an ascorbate-reducible cyt b-559 but contained cyt c-553, a dithionite-reducible cyt b-559, and cyt b-564. PMID:5037344

  20. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  1. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    PubMed Central

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  2. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  3. Correlation between preoperative magnetic resonance spectroscopic data on high grade gliomas and morphology of Ki-67-positive tumor cell nuclei.

    PubMed

    Nafe, Reinhold; Herminghaus, Sebastian; Raab, Peter; Wagner, Sabine; Pilatus, Ulrich; Schlote, Wolfgang; Zanella, Friedhelm; Lanfermann, Heinrich

    2003-06-01

    To investigate possible statistical correlations between metabolic data from preoperative proton magnetic resonance spectroscopy (1HMRS) and morphology of proliferating tumor cell nuclei in anaplastic gliomas and glioblastomas. Ki-67-positive tumor cell nuclei in paraffin sections of surgical specimens from 36 patients (7 anaplastic gliomas, World Health Organization grade 3; 29 glioblastomas, World Health Organization grade 4) were investigated by means of a digital image analysis system. Stringent inclusion criteria were formulated for all cases with respect to histologic quality and spectroscopic examination. As morphometric variables, nuclear area, shape variables (roundness factor, size-invariate Fourier amplitudes) and density of Ki-67-positive tumor cell nuclei per reference area were determined. Correlation analysis according to Spearman revealed a significant positive correlation between the total creatine (TCR) peak and nuclear area (P = .005). This correlation was also found within the glioblastoma group (P = .019). There was also a significant negative correlation of nuclear area with the ratio between choline and TCR in all cases (P = .014) and within the glioblastoma group (P = .046). No significant correlation of spectroscopic data was found with nuclear shape or density of Ki-67-positive tumor cell nuclei. The results demonstrate a correlation between spectroscopic data and morphology of proliferating tumor cell nuclei (nuclear size) in high grade gliomas. This study is part of a detailed investigation of the interrelationship between preoperative 1HMRS and quantitative histomorphology of gliomas.

  4. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    PubMed

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  5. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆

    PubMed Central

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  6. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    PubMed

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH4/air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  7. Noninvasive fluorescence and Raman spectroscopic analysis of laser welded aorta and skin tissue

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Gayen, Tapan K.; Minko, Glenn; Alimova, Alexandra; Savage, Howard E.; McCormick, Steven A.; Alfano, Robert R.

    2002-05-01

    Laser tissue welding involves the denaturing and partial renaturing of collagen and elastin. Tissues welded with NIR lasers tuned to the 1455 nm water absorption band have demonstrated high tensile strength with minimal collateral damage. To better understand the welding process, welded tissue samples were investigated using fluorescence imaging and Raman spectroscopy. As part of this study, human aorta, and porcine aorta and skin, specimens were investigated. Emission and excitation/emission wavelengths corresponding to tryptophan and collagen emission and slightly weaker emission for wavelengths corresponding to elastin emission. The inner surface an cross-section images of the aortic specimens exhibited a very high degree of uniformity with no indication of the presence of a weld. The Raman spectra from the aortic specimens at the weld site and a few mm away form the weld were very similar. This work indicates the emission and Raman properties of the collagen helix after welding are very similar to native collagen tissue.

  8. Fluorescence spectroscopic study of the interaction of adenine and nucleotide with trichosanthin.

    PubMed

    Hao, Q; Zhang, Y; Yang, H; Liu, G; Huang, Z; Liu, B; Yao, Q; Li, Q

    1995-07-01

    Trichosanthin (TCS) is an N-glycosidase that can attack the 28s rRNA of the ribosome at a highly conserved adenine residue. The interactions of adenine and its derivative nucleotides with TCS are reported. The fluorescence of Trp 192 of TCS is sensitive to the proximity of adenine, and produces a marked red shift indicative of trytophan in a more hydrophilic environment. By contrast AMP and ATP quench the maximal emission at 328nm. The binding of the adenine and ATP with TCS result in lower tryptophan accessibility to the quencher acrylamide, but higher tryptophan accessibility to the quencher iodide, while AMP caused higher tryptophan accessibility to acrylamide, and lower tryptophan accessibility to iodide. Also, the binding of nucleotides induces tryptophan heterogeneity in the protein. These findings lead us to propose that binding of nucleotides and adenine base cause different microenvironmental changes of the tryptophan residue, and Trp 192 may be involved in the active site of TCS.

  9. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique.

    PubMed

    Zhang, Chunling; Zhang, Liying; Yang, Ru; Liang, Kun; Han, Dejun

    2013-02-01

    We report a time-correlated Raman spectroscopy technique based on a silicon photomultiplier (SiPM) and a time-correlated single photon counting (TCSPC) technique to exploit the natural temporal separation between Raman and fluorescence phenomena to alleviate the high fluorescence background with conventional Raman detection. The TCSPC technique employed can greatly reduce the effect of high dark count rate (DCR) and crosstalk of SiPM that seriously hinder its application in low light level detection. The operating principle and performance of the 400 ps time resolution system are discussed along with the improvement of the peak-to-background ratio (PBR) for bulk trinitrotoluene (TNT) Raman spectrum relative to a commercial Raman spectrometer with charge coupled device (CCD). The fluorescence lifetime for solid TNT and Surface Enhanced Raman Scattering (SERS) spectrum for 10(-6) mol/L trace TNT have also been obtained by this system, showing excellent versatility and convenience in spectroscopy measurement.

  10. Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Boon, Jean Pierre; Lutsko, James F.

    2015-12-01

    The nonlinear theory of anomalous diffusion is based on particle interactions giving an explicit microscopic description of diffusive processes leading to sub-, normal, or super-diffusion as a result of competitive effects between attractive and repulsive interactions. We present the explicit analytical solution to the nonlinear diffusion equation which we then use to compute the correlation function which is experimentally measured by correlation spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence correlation spectroscopy of marked molecules in biological systems. More specifically we consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that the nonlinear correlation spectra reproduce very well the experimental data indicating sub-diffusive molecular motion.

  11. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  12. Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy.

    PubMed

    Ries, Jonas; Bayer, Mathias; Csúcs, Gábor; Dirkx, Ronald; Solimena, Michele; Ewers, Helge; Schwille, Petra

    2010-05-24

    Fluorescence Correlation Spectroscopy (FCS) in cells often suffers from artifacts caused by bright aggregates or vesicles, depletion of fluorophores or bleaching of a fluorescent background. The common practice of manually discarding distorted curves is time consuming and subjective. Here we demonstrate the feasibility of automated FCS data analysis with efficient rejection of corrupted parts of the signal. As test systems we use a solution of fluorescent molecules, contaminated with bright fluorescent beads, as well as cells expressing a fluorescent protein (ICA512-EGFP), which partitions into bright secretory granules. This approach improves the accuracy of FCS measurements in biological samples, extends its applicability to especially challenging systems and greatly simplifies and accelerates the data analysis.

  13. Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells.

    PubMed

    Johnson, Errin; Kaufmann, Rainer

    2017-01-01

    Correlative super-resolution light and electron microscopy (super-resolution CLEM) is a powerful and emerging tool in biological research. The practical realization of these two very different microscopy techniques with their individual requirements remains a challenging task. There is a broad range of approaches to choose from, each with their own advantages and limitations. Here, we present a detailed protocol for in-resin super-resolution CLEM of high-pressure frozen and freeze substituted cultured cells. The protocol makes use of a strategy to preserve the fluorescence and photo-switching capabilities of standard fluorescent proteins, such as GFP and YFP, to enable single-molecule localization microscopy (SMLM) in-resin sections followed by transmission electron microscopy (TEM) imaging. This results in a fivefold improvement in resolution in the fluorescence image and a more precise correlation of the distribution of fluorescently labeled molecules with EM ultrastructure compared with conventional CLEM.

  14. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  15. Fluorescence Spectroscopic Studies on the Complexation of Antidiabetic Drugs with Glycosylated Serum Albumin

    NASA Astrophysics Data System (ADS)

    Seedher, N.; Kanojia, M.

    2013-11-01

    Glycosylation decreases the association constant values and hence the binding affinity of human serum albumin (HSA) for the antidiabetic drugs under study. The percentage of HAS-bound drug at physiological temperature was only about 21-38 % as compared to 46-74 % for non-glycosylated HSA. Thus the percentage of free drug available for an antihyperglycemic effect was about double (62-79 %) compared to the values for non-glycosylated HSA. Much higher free drug concentrations available for pharmacological effect can lead to the risk of hypoglycemia. Hydrophobic interactions were predominantly involved in the binding. In the binding of gliclazide, hydrogen bonding and electrostatic interactions were involved. Site specificity for glycosylated HSA was the same as that for non-glycosylated HSA; gliclazide and repaglinide bind only at site II whereas glimepiride and glipizide bind at both sites I and II. Glycosylation, however, caused conformational changes in albumin, and the binding region within site II was different for glycosylated and non-glycosylated albumin. Stern-Volmer analysis also indicated the conformational changes in albumin as a result of glycosylation and showed that the dynamic quenching mechanism was valid for fluorescence of both glycosylated and non-glycosylated HSA.

  16. Biodistribution, pharmacokinetic, and in-vivo fluorescence spectroscopic studies of photosensitizers

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Peng, Qian; Iani, Vladimir; Ma, Li Wei; Horobin, Richard W.; Berg, Kristian; Kongshaug, Magne; Nesland, Jahn M.

    1996-01-01

    Some key data concerning the pharmacokinetics of PCT photosensitizers are reviewed. The following topics are discussed: The binding of photosensitizers to serum proteins, and the significance of LDL binding for tumor localization, the distribution of sensitizers among different tissue compartments and the significance of extracellular proteins and other stromal elements, such as macrophages, low tumor pH, leaky vasculature and poor lymphatic drainage for tumor selectivity of drugs, the retention and excretion of sensitizers, and intracellular pharmacokinetics. Furthermore, the usefulness of fluorescence measurements in the study of sensitizer pharmacokinetics is briefly discussed. A key observation is that 1O2 has a short radius of action. Since practically all PCT sensitizers act via the 1O2 pathway, only targets with significant sensitizer concentrations can be damaged. A given number of 1O2 entities generated in different organelles (mitochondria, lysosomes, plasma membrane, etc.) may lead to widely different effects with respect to cell inactivation. Similarly, sensitizers localizing in different compartments of tissues may have different photosensitizing efficiencies even under conditions of a similar 1O2 yield.

  17. A total internal reflection-fluorescence correlation spectroscopy setup with pulsed diode laser excitation

    NASA Astrophysics Data System (ADS)

    Weger, Lukas; Hoffmann-Jacobsen, Kerstin

    2017-09-01

    Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.

  18. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics

    PubMed Central

    Pollard, Benjamin; Muller, Eric A.; Hinrichs, Karsten; Raschke, Markus B.

    2014-01-01

    Molecular self-assembly, the function of biomembranes and the performance of organic solar cells rely on nanoscale molecular interactions. Understanding and control of such materials have been impeded by difficulties in imaging their properties with the desired nanometre spatial resolution, attomolar sensitivity and intermolecular spectroscopic specificity. Here we implement vibrational scattering-scanning near-field optical microscopy with high spectral precision to investigate the structure–function relationship in nano-phase separated block copolymers. A vibrational resonance is used as a sensitive reporter of the local chemical environment and we image, with few nanometre spatial resolution and 0.2 cm−1 spectral precision, solvatochromic Stark shifts and line broadening correlated with molecular-scale morphologies. We discriminate local variations in electric fields between nano-domains with quantitative agreement with dielectric continuum models. This ability to directly resolve nanoscale morphology and associated intermolecular interactions can form a basis for the systematic control of functionality in multicomponent soft matter systems. PMID:24721995

  19. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.

    PubMed

    Crowell, Ed; Wang, Gufeng; Cox, Jason; Platz, Charles P; Geng, Lei

    2005-03-01

    Correlation coefficient mapping has been applied to intrinsic fluorescence spectra of colonic tissue for the purpose of cancer diagnosis. Fluorescence emission spectra were collected of 57 colonic tissue sites in a range of 4 physiological conditions: normal (29), hyperplastic (2), adenomatous (5), and cancerous tissues (21). The sample-sample correlation was used to examine the ability of correlation coefficient mapping to determine tissue disease state. The correlation coefficient map indicates two main categories of samples. These categories were found to relate to disease states of the tissue. Sensitivity, selectivity, predictive value positive, and predictive value negative for differentiation between normal tissue and all other categories were all above 92%. This was found to be similar to, or higher than, tissue classification using existing methods of data reduction. Wavelength-wavelength correlation among the samples highlights areas of importance for tissue classification. The two-dimensional correlation map reveals absorption by NADH and hemoglobin in the samples as negative correlation, an effect not obvious from the one-dimensional fluorescence spectra alone. The integrity of tissue was examined in a time series of spectra of a single tissue sample taken after tissue resection. The wavelength-wavelength correlation coefficient map shows the areas of significance for each fluorophore and their relation to each other. NADH displays negative correlation to collagen and FAD, from the absorption of emission or fluorescence resonance energy transfer. The wavelength-wavelength correlation map for the decay set also clearly shows that there are only three fluorophores of importance in the samples, by the well-defined pattern of the map. The sample-sample correlation coefficient map reveals the changes over time and their impact on tissue classification. Correlation coefficient mapping proves to be an effective method for sample classification and cancer

  20. Near-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes

    PubMed Central

    2015-01-01

    The organization and dynamics of plasma membrane components at the nanometer scale are essential for biological functions such as transmembrane signaling and endocytosis. Planarized nanoscale apertures in a metallic film are demonstrated as a means of confining the excitation light for multicolor fluorescence spectroscopy to a 55 ± 10 nm beam waist. This technique provides simultaneous two-color, subdiffraction-limited fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy on planar membranes. The fabrication and implementation of this technique are demonstrated for both model membranes and live cells. Membrane-bound proteins were observed to cluster upon the addition of a multivalent cross-linker: On supported lipid bilayers, clusters of cholera toxin subunit B were formed upon cross-linking by an antibody specific for this protein; on living cells, immunoglobulin E bound to its receptor (FcεRI) on the plasma membranes of RBL mast cells was observed to form clusters upon exposure to a trivalent antigen. The formation of membrane clusters was quantified via fluorescence intensity vs time and changes in the temporal auto- and cross-correlations above a single nanoscale aperture. The illumination profile from a single aperture is analyzed experimentally and computationally with a rim-dominated illumination profile, yielding no change in the autocorrelation dwell time with changes in aperture diameter from 60 to 250 nm. This near-field fluorescence cross-correlation methodology provides access to nanoscale details of dynamic membrane interactions and motivates further development of near-field optical methods. PMID:25004429

  1. BH2 revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-01

    The spectroscopy of gas phase BH2 has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A ˜ 2 B 1 ( Π u ) - X ˜ 2A1 band system of 11BH2, 10BH2, 11BD2, and 10BD2 have been observed for the first time. The free radicals were "synthesized" by an electric discharge through a precursor mixture of 0.5% diborane (B2H6 or B2D6) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH2 were calculated for energies up to 22 000 cm-1 above the X ˜ (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm-1) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  2. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  3. Detection of rheumatoid arthritis by evaluation of normalized variances of fluorescence time correlation functions

    NASA Astrophysics Data System (ADS)

    Dziekan, Thomas; Weissbach, Carmen; Voigt, Jan; Ebert, Bernd; MacDonald, Rainer; Bahner, Malte L.; Mahler, Marianne; Schirner, Michael; Berliner, Michael; Berliner, Birgitt; Osel, Jens; Osel, Ilka

    2011-07-01

    Fluorescence imaging using the dye indocyanine green as a contrast agent was investigated in a prospective clinical study for the detection of rheumatoid arthritis. Normalized variances of correlated time series of fluorescence intensities describing the bolus kinetics of the contrast agent in certain regions of interest were analyzed to differentiate healthy from inflamed finger joints. These values are determined using a robust, parameter-free algorithm. We found that the normalized variance of correlation functions improves the differentiation between healthy joints of volunteers and joints with rheumatoid arthritis of patients by about 10% compared to, e.g., ratios of areas under the curves of raw data.

  4. Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes.

    PubMed Central

    Huang, Z; Thompson, N L

    1996-01-01

    Fluorescence correlation spectroscopy is useful for detecting and characterizing molecular clusters that are smaller than or approximately equal to optical resolution in size. Here, we report the development of an approach in which the pixel-to-pixel fluorescence fluctuations from a single fluorescence image are spatially autocorrelated. In these measurements, tetramethylrhodamine-labeled, anti-trinitrophenyl IgE antibodies were specifically bound to substrate-supported planar membranes composed of trinitrophenyl-aminocaproyldipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine. The antibody-coated membranes were illuminated with the evanescent field from a totally internally reflected laser beam, and the fluorescence arising from the IgE-coated membranes was recorded with a cooled CCD camera. The image was corrected for the elliptical Gaussian shape of the evanescent illumination after background subtraction. The spatial autocorrelation functions of the resulting images generated two useful parameters: the extrapolated initial values, which were related to the average cluster intensity and density; and the correlation distances, which were related to the average cluster size. These parameters varied with the IgE density, and unlabeled polyclonal anti-IgE enhanced the nonuniform IgE distributions. The autocorrelation functions calculated from images of planar membranes containing fluorescently labeled lipids rather than bound, labeled IgE demonstrated that the spatial nonuniformities were prominent only in the presence of IgE. Fluorescent beads were used to demonstrate the principles and the methods. Images FIGURE 3 PMID:8785359

  5. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins.

    PubMed

    Johnson, Errin; Seiradake, Elena; Jones, E Yvonne; Davis, Ilan; Grünewald, Kay; Kaufmann, Rainer

    2015-03-31

    We introduce a method for correlative in-resin super-resolution fluorescence and electron microscopy (EM) of biological structures in mammalian culture cells. Cryo-fixed resin embedded samples offer superior structural preservation, performing in-resin super-resolution, however, remains a challenge. We identified key aspects of the sample preparation procedure of high pressure freezing, freeze substitution and resin embedding that are critical for preserving fluorescence and photo-switching of standard fluorescent proteins, such as mGFP, mVenus and mRuby2. This enabled us to combine single molecule localization microscopy with transmission electron microscopy imaging of standard fluorescent proteins in cryo-fixed resin embedded cells. We achieved a structural resolution of 40-50 nm (~17 nm average single molecule localization accuracy) in the fluorescence images without the use of chemical fixation or special fluorophores. Using this approach enabled the correlation of fluorescently labeled structures to the ultrastructure in the same cell at the nanometer level and superior structural preservation.

  6. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins

    PubMed Central

    Johnson, Errin; Seiradake, Elena; Jones, E. Yvonne; Davis, Ilan; Grünewald, Kay; Kaufmann, Rainer

    2015-01-01

    We introduce a method for correlative in-resin super-resolution fluorescence and electron microscopy (EM) of biological structures in mammalian culture cells. Cryo-fixed resin embedded samples offer superior structural preservation, performing in-resin super-resolution, however, remains a challenge. We identified key aspects of the sample preparation procedure of high pressure freezing, freeze substitution and resin embedding that are critical for preserving fluorescence and photo-switching of standard fluorescent proteins, such as mGFP, mVenus and mRuby2. This enabled us to combine single molecule localization microscopy with transmission electron microscopy imaging of standard fluorescent proteins in cryo-fixed resin embedded cells. We achieved a structural resolution of 40–50 nm (~17 nm average single molecule localization accuracy) in the fluorescence images without the use of chemical fixation or special fluorophores. Using this approach enabled the correlation of fluorescently labeled structures to the ultrastructure in the same cell at the nanometer level and superior structural preservation. PMID:25823571

  7. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    PubMed

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    NASA Astrophysics Data System (ADS)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  9. [Analysis of Three Polycyclic Aromatic Hydrocarbons in Solution Based on Two-Dimensional Fluorescence Correlation Spectroscopy].

    PubMed

    Zhou, Chang-hong; Zhao, Mei-rong; Yang, Ren-jie; Zhu, Wen-bi; Dong, Gui-mei

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are listed as the priority pollutants. It is difficult to resolve effectively the peaks of PAHs by conventional one-dimensional fluorescence spectroscopy due to its low content and the overlapping fluorescence three mixed ystems and a total of 27 samples, are to be prepared with different concentrations of three PAHs. Concentrations of three PAHS are monotonically increasing or decreasing in each mixed system. Then the 2D fluorescence correlation spectrum of each mixed systems will be calculated under the perturbation of the concentration of anthracene, phenanthrene and pyrene in solution. There are seven strong autopeaks at 425, 402, 381, 373, 365, 393 and 347 nm in synchronous 2D correlation spectrum. The fluorescence peak of phenanthrene at 347 nm is uncovered in three mixed systems, so the band at 347 nm is to be used as clues for further assignment. According to positive or negative cross peaks at 347 nm in synchronous 2D correlation spectrum, we can know that the peaks at 402, 381, 425 and 452 nm are assigned to anthracene, the peaks at 373 and 393 nm are assigned to pyrene, and the peaks at 365, 356 and 347 nm are assigned to phenanthrene. The fluorescence peak of phenanthrene at 385 nm is shown in asynchronous 2D correlation spectrum; it means the spectral resolution of asynchronous spectrum is better than the synchronous spectrum. The results are that it is feasible to analyze serious overlapping multi-component PAHs using two-dimensional fluorescence correlation spectroscopy, which can be extended to the detection of other pollutants in the air.

  10. Cellular characterization of adenylate kinase and its isoform: two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy.

    PubMed

    Ruan, Qiaoqiao; Chen, Yan; Gratton, Enrico; Glaser, Michael; Mantulin, William W

    2002-12-01

    Adenylate kinase (AK) is a ubiquitous enzyme that regulates the homeostasis of adenine nucleotides in the cell. AK1beta (long form) from murine cells shares the same protein sequence as AK1 (short form) except for the addition of 18 amino acid residues at its N-terminus. It is hypothesized that these residues serve as a signal for protein lipid modification and targeting of the protein to the plasma membrane. To better understand the cellular function of these AK isoforms, we have used several modern fluorescence techniques to characterize these two isoforms of AK enzyme. We fused cytosolic adenylate kinase (AK1) and its isoform (AK1beta) with enhanced green fluorescence protein (EGFP) and expressed the chimera proteins in HeLa cells. Using two-photon excitation scanning fluorescence imaging, we were able to directly visualize the localization of AK1-EGFP and AK1beta-EGFP in live cells. AK1beta-EGFP mainly localized on the plasma membrane, whereas AK1-EGFP distributed throughout the cell except for trace amounts in the nuclear membrane and some vesicles. We performed fluorescence correlation spectroscopy measurements and photon-counting histogram analysis in specific domains of live cells. For AK1-EGFP, we observed only one diffusion component in the cytoplasm. For AK1beta-EGFP, we observed two distinct diffusion components on the plasma membrane. One corresponded to the free diffusing protein, whereas the other represented the membrane-bound AK1beta-EGFP. The diffusion rate of AK1-EGFP was slowed by a factor of 1.8 with respect to that of EGFP, which was 50% more than what we would expect for a free diffusing AK1-EGFP. To rule out the possibility of oligomer formation, we performed photon-counting histogram analysis to direct analyze the brightness difference between AK1-EGFP and EGFP. From our analysis, we concluded that cytoplasmic AK1-EGFP is monomeric. fluorescence correlation spectroscopy proved to be a powerful technique for quantitatively studying the

  11. Spectroscopic studies of the internal modes of aminoaromatics by fluorescence excitation and dispersed emission in supersonic jet

    SciTech Connect

    Yan, S.

    1992-01-01

    A systematic study for the NH[sub 2] inversional mode in aniline and para substituted anilines has been performed using the techniques of fluorescence excitation and dispersed emission in supersonic jet. The transitions of the nitrogen inversion mode in aniline and para substituted anilines have been assigned in both the fluorescence excitation and dispersed emission spectra, which are strongly supported by the evidence of a large deuterium shift, the presence of a strong hot band, and the intense second overtone transition of the amino inversion in the excitation spectra of all the aniline molecules. The potential surface of each aniline has been fit using the observed inversional levels in both the ground and excited states. The molecular structure of each aniline has been investigated based on the experimental results. The NH[sub 2] torsional transition is assigned in the excitation spectrum of each aniline molecule for the first time. The absence of a torsional hot band and no observable tunneling splitting in the NH[sub 2] torsional mode indicates that the NH[sub 2] torsion mode in the anilines must have a very high first quanta in the ground state. The mechanism of I[sup 2][sub 0] and T[sup 2][sub 0] splittings in the excitation spectrum of p-toluidine has been explained by using molecular symmetry. The splittings are caused by the torsion-torsion coupling between the NH[sub 2] and CH[sub 3] groups. The structure of p-amino-p[prime]-methyl-trans-stilbene (PPTS) has been studied by spectroscopic methods and X-ray diffraction. The nearly planar geometry of the proton donor in the PPTS crystal dimer provides important evidence that the structure of gas phase PPTS is planar in the ground state. The absence of the hot band and I[sup 2][sub 0] in the excitation spectrum of PPTS indicates that the potential surface of PPTS must be a single well in both states, which is consistent with the X-ray result.

  12. Dynamics of Nanoconfined Fluids measured by combined Force Microscopy and Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Subba Rao, Venkatesh; Pantea, Mircea; Grabowski, Christopher; Mukhopadhyay, Ashis; Hoffmann, Peter

    2009-03-01

    We present work performed on a model liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), using Atomic Force microscopy (AFM) and Fluorescence Correlation Spectroscopy (FCS) to study its dynamical structure at the nanoscale. A novel homebuilt interferometer-based small amplitude AFM was used to measure directly the stiffness and damping coefficient of TEHOS film. Oscillations in stiffness and damping coefficient with period ˜1 nm (TEHOS molecular size) were observed. Translational diffusion in spin-coated TEHOS films was measured using Fluorescence Correlation Spectroscopy (FCS). Diffusion was found to be heterogeneous. Finally we present the ongoing work on an integrated platform of AFM and FCS to perform simultaneous measurements of nanoconfined fluids. Recent results using this new setup on a fluorescently labelled nanoparticle solution in confinement will be discussed.

  13. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    PubMed Central

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  14. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient.

    PubMed

    Barlow, Andrew L; Macleod, Alasdair; Noppen, Samuel; Sanderson, Jeremy; Guérin, Christopher J

    2010-12-01

    One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy.

  15. Acetylene-substituted two-photon absorbing molecules with rigid elongated pi-conjugation: synthesis, spectroscopic properties and two-photon fluorescence cell imaging applications.

    PubMed

    Liu, Bo; Zhang, Hai-Li; Liu, Jun; Huang, Zhen-Li; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-09-01

    Two asymmetrical molecules with substituted acetylene as central rigid elongated conjugation are reported as potential chromophores for two-photon microscopic imaging. These molecules consist of a typical D-pi-A structure, have different donors (D), the same pi-conjugated center (pi) and the same acceptor (A). Structural characterization and spectroscopic properties, including single-photon (linear) absorption, quantum yields, single-photon fluorescence, and two-photon absorption spectra, were studied in solvents with different polarity. These acetylene-substituted molecules were found to have high two-photon absorption cross-sections (for example, 690 GM for molecule 1 in toluene), which were determined by a two-photon induced fluorescence method using a femtosecond Ti: sapphire laser as excitation source. Single- and two-photon cellular imaging experiments demonstrate that the substituted acetylene derivatives could be one kind of promising two-photon fluorescence probes for cellular imaging.

  16. Revealing single emitter spectral dynamics from intensity correlations in an ensemble fluorescence spectrum.

    PubMed

    Brokmann, Xavier; Marshall, Lisa; Bawendi, Moungi

    2009-03-16

    We show that the single emitter linewidth underlying a broadened ensemble emission spectrum can be extracted from correlations among the stochastic intensity fluctuations in the ensemble spectrum. Spectral correlations can be observed at high temporal and spectral resolutions with a cross-correlated pair of avalanche photodiodes placed at the outputs of a scanning Michelson interferometer. As illustrated with simulations in conjunction with Fluorescence Correlation Spectroscopy, our approach overcomes ensemble and temporal inhomogeneous broadening to provide single emitter linewidths, even for emitters under weak, continuous, broadband excitation. (c) 2009 Optical Society of America

  17. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Cells and Tissue

    DTIC Science & Technology

    2016-05-25

    Concomitant improvements in sample processing and preservation were additionally developed to maximize utility for biological specimens. The invention of...separate modalities, each with distinct staining, sample processing , and imaging methods utilized. The discovery and optimization of fluorescent...dynamic processes , but is ideal for combination with EM, another fixed-sample technique. The ability to capture and correlate complementary datasets

  18. Magnetic resonance spectroscopic imaging 3T and prostate cancer: correlation with transperineal ultrasound guided prostate biopsy.

    PubMed

    Castellucci, Roberto; Altieri, Vincenzo Maria; Marchioni, Michele; Castellan, Pietro; Pellegrini, Maurizio; Álvarez-Maestro, Mario; Sánchez-Gómez, Javier; De Francesco, Piergustavo; Ingrosso, Manuela; Tartaro, Armando; Tenaglia, Raffaele Lanfranco

    2015-06-01

    The aim of our study was to correlate the results obtained by 3T Magnetic Resonance Spectroscopic Imaging (MRSI3T) with those obtained by histological examination of samples of the trans-perineal ultrasound-guided prostate biopsy (TPUS-B). 34 patients were enrolled in the study. All patients had a clinical suspicion of cancer due to increased PSA and/or positive digital rectal examination. Patients were subjected to an MRSI 3T examination and subsequently to TPUS-B. Of the 22 (22/34) patients who presented abnormalities MRSI at 3T, 9 had a histological diagnosis of Prostate adenocarcinoma. Of the remaining 13 patients, 6 were found to be histologically positive for Benign Prostatic Hypertrophy and 7 Chronic Interstitial Inflammation or High Grade Prostatic Intraepithelial Neoplasia. 12 (12/34) patients found to have no peripheral alterations in their prostate on 3T MRSI, none were positive for ADK or inflammation on histology. The sensitivity, specificity, positive predictive value and negative predictive value were 100%, 48%, 40% and 100% respectively. In this study, we correlated the values obtained from 3T MRSI with the results of histologically examined prostate biopsies. Our work shows that 72.8% of the voxels in which there was a change in ratio of Cit/(Cho + Cr), corresponded to areas of prostate tissue disease. Of these, 73.2% were positive for ADK and 26.8% for CII or HG PIN. In literature, it is noted that PCa can be distinguished from areas of benign tissue, in the peripheral zone, on the basis of the values of the ratio Cit/(Cho + Cr) (17), although some benign conditions, such as prostatitis or PINHG, can alter these values (18-19). In conclusion, the use of MRSI 3T before performing prostate biopsies may represent a valid aid for the urologist in the diagnosis of PCa, allowing them to avoid unnecessary prostate biopsies that may be negative. Furthermore, it would also be possible to reduce the total number of biopsies, thus decreasing patient exposure

  19. Correlation Spectroscopy of Minor Fluorescent Species: Signal Purification and Distribution Analysis

    PubMed Central

    Laurence, Ted A.; Kwon, Youngeun; Yin, Eric; Hollars, Christopher W.; Camarero, Julio A.; Barsky, Daniel

    2007-01-01

    We are performing experiments that use fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) to monitor the movement of an individual donor-labeled sliding clamp protein molecule along acceptor-labeled DNA. In addition to the FRET signal sought from the sliding clamp-DNA complexes, the detection channel for FRET contains undesirable signal from free sliding clamp and free DNA. When multiple fluorescent species contribute to a correlation signal, it is difficult or impossible to distinguish between contributions from individual species. As a remedy, we introduce “purified FCS”, which uses single molecule burst analysis to select a species of interest and extract the correlation signal for further analysis. We show that by expanding the correlation region around a burst, the correlated signal is retained and the functional forms of FCS fitting equations remain valid. We demonstrate the use of purified FCS in experiments with DNA sliding clamps. We also introduce “single-molecule FCS”, which obtains diffusion time estimates for each burst using expanded correlation regions. By monitoring the detachment of weakly-bound 30-mer DNA oligomers from a single-stranded DNA plasmid, we show that single-molecule FCS can distinguish between bursts from species that differ by a factor of 5 in diffusion constant. PMID:17189306

  20. Determination of Equilibrium Constant and Relative Brightness in Fluorescence Correlation Spectroscopy by Considering Third-Order Correlations.

    PubMed

    Wu, Zhenqin; Bi, Huimin; Pan, Sichen; Meng, Lingyi; Zhao, Xin Sheng

    2016-11-17

    Fluorescence correlation spectroscopy (FCS) is a powerful tool to investigate molecular diffusion and relaxations, which may be utilized to study many problems such as molecular size and aggregation, chemical reaction, molecular transportation and motion, and various kinds of physical and chemical relaxations. This article focuses on a problem related to using the relaxation term to study a reaction. If two species with different fluorescence photon emission efficiencies are connected by a reaction, the kinetic and equilibrium properties will be manifested in the relaxation term of the FCS curve. However, the conventional FCS alone cannot simultaneously determine the equilibrium constant (K) and the relative fluorescence brightness (Q), both of which are indispensable in the extraction of thermodynamic and kinetic information from the experimental data. To circumvent the problem, an assumption of Q = 0 is often made for the weak fluorescent species, which may lead to numerous errors when the actual situation is not the case. We propose to combine the third-order FCS with the conventional second-order FCS to determine K and Q without invoking other resources. The strategy and formalism are verified by computer simulations and demonstrated in a classical example of the hairpin DNA-folding process.

  1. Cy3 in AOT reverse micelles II. Probing intermicellar interactions using fluorescence correlation spectroscopy.

    PubMed

    McPhee, Jeffrey T; Scott, Eric; Levinger, Nancy E; Van Orden, Alan

    2011-08-11

    Cyanine-3 (Cy3) fluorescent dye molecules confined in sodium di-2-ethylhexyl sulfosuccinate (AOT) reverse micelles were examined using dynamic light scattering and fluorescence correlation spectroscopy to probe the kinetics of Cy3 dye and reverse micelle aggregation. This study explored a range of reverse micelle sizes, defined as w(0) = [H(2)O]/[AOT], in which the occupation number ranged from one Cy3 molecule per ∼10(5) to ∼10(6) reverse micelles. These measurements reveal that in the smallest reverse micelle, w(0) = 1, the Cy3 molecules aggregate to form H-aggregate dimers, and the Cy3 dimerization is accompanied by the formation of a transient dimer between reverse micelles. Transient reverse micelle dimer particles are only observed in the small fraction of Cy3-labeled reverse micelles probed by fluorescence correlation spectroscopy and are not observed in the bulk solution probed by dynamic light scattering. Furthermore, fluorescence correlation spectroscopy makes it possible to probe the size and shape of these dimers, revealing prolate ellipsoid-shaped particles with twice the volume and surface area of a single reverse micelle.

  2. Accounting for misalignments and thermal fluctuations in fluorescence correlation spectroscopy experiments on membranes.

    PubMed

    Sanguigno, Luigi; Cosenza, Chiara; Causa, Filippo; Netti, Paolo Antonio

    2013-03-21

    Several authors have exploited the ability of the fluorescence correlation spectroscopy to probe motion at the molecular level. In a couple of decades, all their efforts have allowed the application of this technique even to the diffusion measurement of cellular components. Nowadays, the fluorescence correlation spectroscopy is considered a standard tool to measure diffusion in cells both in vivo and in vitro. Unfortunately, while the interpretation and the set-up have been consolidated for 3D diffusion measurements (i.e. diffusion in an aqueous solution), the experiments carried out on flat elements, such as membranes, show unusually high relative errors. Furthermore, long tail correlations are generally detected and ascribed to diffusion anomalies. The 2D fluorescence correlation measurements have been interpreted under certain hypotheses, whereby the membrane is assumed to be perfectly flat, motionless and aligned with the optical axes. Here, we investigated the robustness of these hypotheses, trying to understand, in an elementary but not trivial way, how misalignments and thermal fluctuations affect the temporal correlation of the intensity fluctuation collected during measurements on membranes.

  3. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Disassembly of structurally modified viral nanoparticles: characterization by fluorescence correlation spectroscopy.

    PubMed

    Toivola, Jouni; Gilbert, Leona; Michel, Patrik; White, Daniel; Vuento, Matti; Oker-Blom, Christian

    2005-12-01

    Analysis of the breakdown products of engineered viral particles can give useful information on the particle structure. We used various methods to breakdown both a recombinant enveloped virus and virus-like particles (VLPs) from two non-enveloped viruses and analysed the resulting subunits by fluorescence correlation spectroscopy (FCS). Analysis of the enveloped baculovirus, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), displaying the green fluorescent protein (GFP) fused to its envelope protein gp64 was performed in the presence and absence of 5 mM SDS and 25 mM DTT. Without treatment, the viral particle showed a diffusion time of 3.3 ms. In the presence of SDS, fluorescent subunits with diffusion times of 0.2 ms were observed. Additional treatment with DTT caused a drop in the diffusion time to 0.1 ms. Changes in the amplitude of the autocorrelation function suggested a 3-fold increase in fluorescent particle number when viral particles were treated with SDS, and a further 1.5-fold increase with additional treatment with DTT. Thus, the data showed that an average of 4.5 molecules of gp64-GFP was incorporated in the membrane of the modified baculovirus. Further, this suggests that each fluorescent gp64 trimer carries on average 1.5 fluorescent units. Similar experiments were carried out with two non-enveloped fluorescent virus-like particles (fVLPs) that displayed enhanced green fluorescent protein (EGFP). These, fVLPs of canine and human B19 parvoviruses were treated with 6 M urea and 5 mM SDS, respectively. Correspondingly, the original hydrodynamic radii of 17 and 14 nm were reduced to 9 and 5 nm after treatment. Here, the change in the amplitude of the autocorrelation curve suggested a 10-fold increase in particle number when viral particles of CPV were treated with 6 M urea at 50 degrees C for 10 min. For EGFP-B19, there was a decrease in the amplitude, accompanied by a 9-fold increase in the number of fluorescent units with SDS treatment

  5. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  6. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy.

    PubMed

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ∼10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ∼1.8 MHz and ∼1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ∼750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  7. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy.

    PubMed Central

    Klingler, J; Friedrich, T

    1997-01-01

    We report on the application of fluorescence correlation spectroscopy (FCS) to observe the interaction between thrombin and thrombin inhibitors. Two site-specific fluorescent labels were used to distinguish between inhibitors directed to the active site, the exosite, or both binding sites of thrombin. For several well-known inhibitors of thrombin, the binding sites observed by FCS correspond to previous studies. The interaction of the recently discovered thrombin inhibitor ornithodorin from the tick Ornithodorus moubata with thrombin was investigated. It was found that this inhibitor, like hirudin and rhodniin, binds to both the active site and exosite of thrombin simultaneously. This study shows the feasibility of FCS as a sensitive and selective method for observing protein-ligand interactions. As an additional technique, simultaneous labeling with both fluorescent labels was successfully demonstrated. Images FIGURE 1 PMID:9336216

  8. Correlation Between Scattering Properties of Silver Particle Arrays and Fluorescence Enhancement

    PubMed Central

    SZMACINSKI, HENRYK; LAKOWICZ, JOSEPH R.; CATCHMARK, JEFFREY M.; EID, KHALID; ANDERSON, JON P.; MIDDENDORF, LYLE

    2009-01-01

    We report on the nanofabrication of patterned silver particle arrays using electron-beam lithography and the evaluation of their optical properties using backscattering and fluorescence spectroscopy. The silver particles varied in size from 100 to 250 nm and were in the shape of circles, squares, and triangles. Three inter-particle separations, 40, 65, and 90 nm as measured from the side of one particle to the side of the next particle, were used. We observed distinctive patterns of backscattering and fluorescence intensity depending on the particle size, inter-particle spacing, and excitation/emission wavelength used. Our approach allows for a study of the correlation between the backscattering intensities and fluorescence enhancement of silver particle arrays, which can be used to optimize the arrays for multi-fluorophore configuration for advanced sensing designs. PMID:18935821

  9. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell

    PubMed Central

    Oura, Makoto; Yamamoto, Johtaro; Ishikawa, Hideto; Mikuni, Shintaro; Fukushima, Ryousuke; Kinjo, Masataka

    2016-01-01

    Rotational diffusion measurement is predicted as an important method in cell biology because the rotational properties directly reflect molecular interactions and environment in the cell. To prove this concept, polarization-dependent fluorescence correlation spectroscopy (pol-FCS) measurements of purified fluorescent proteins were conducted in viscous solution. With the comparison between the translational and rotational diffusion coefficients obtained from pol-FCS measurements, the hydrodynamic radius of an enhanced green fluorescent protein (EGFP) was estimated as a control measurement. The orientation of oligomer EGFP in living cells was also estimated by pol-FCS and compared with Monte Carlo simulations. The results of this pol-FCS experiment indicate that this method allows an estimation of the molecular orientation using the characteristics of rotational diffusion. Further, it can be applied to analyze the degree of molecular orientation and multimerization or detection of tiny aggregation of aggregate-prone proteins. PMID:27489044

  10. Investigation of pH-dependent photophysical properties of quantum nanocrystals by fluorescence correlation spectroscopy.

    PubMed

    Oura, Makoto; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2017-01-23

    Quantum dot (QD) and quantum rod (QR) nanocrystals are widely used non-organic nanocrystals. Their strong fluorescence and photostability make them suitable for biomedical imaging applications. However, their pH-dependence and antibunching properties have not been studied much, especially in aqueous conditions. In this report, we used fluorescence correlation spectroscopy (FCS) with high temporal resolution to demonstrate that the fluorescent blinking and antibunching of QDs/QRs can be changed by varying the pH of their solutions. Furthermore, herein, we reported the relationship between the aggregation and antibunching relaxation time of QDs/QRs for the first time. The findings of this study suggest that FCS can be used to discover novel environmental indicators via observing nanosecond and microsecond phenomena.

  11. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.

    PubMed

    Kristensen, Kasper; Henriksen, Jonas R; Andresen, Thomas L

    2017-01-01

    There is considerable interest in understanding the interactions of antimicrobial peptides with phospholipid membranes. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that can be used to gain insight into these interactions. Specifically, FCS can be used to quantify leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles, thereby providing a tool for estimating the size of peptide-induced membrane disruptions. If fluorescently labeled lipids are incorporated into the membranes of the vesicles, FCS can also be used to obtain information about whether leakage occurs due to localized membrane perturbations or global membrane destabilization. Here, we outline a detailed step-by-step protocol on how to optimally implement an FCS-based leakage assay. To make the protocol easily accessible to other researchers, it has been supplemented with a number of practical tips and tricks.

  12. Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects

    NASA Astrophysics Data System (ADS)

    van den Berg, Petra A. W.; Widengren, Jerker; Hink, Mark A.; Rigler, Rudolf; Visser, Antonie J. W. G.

    2001-09-01

    Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity (<10 kW/cm 2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations (> 50 mM of I -) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the

  13. Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells.

    PubMed

    Chen, Jiji; Irudayaraj, Joseph

    2010-08-01

    Fluorescence correlation or cross-correlation spectroscopy (FCS or FCCS), a single molecule technique, has the ability to provide highly sensitive information on interaction and dynamics of biomolecules both in vitro and in vivo. However, the inherent drawback of FCS is that species with similar molecular weight could not be differentiated. Although FCCS could resolve this through cross-correlation, it suffers from nonideal confocal volume overlap and spectral cross-talk which limits its application. In this work, we demonstrate for the first time the applicability of fluorescence lifetime correlation spectroscopy (FLCS) to monitor the interaction of an antagonist antibody with the epidermal growth factor receptor (EGFR) in live cells. As a proof of concept, we demonstrate the interaction of Cy5 labeled IgG and Alexa633 labeled anti-IgG using a single laser source (636 nm excitation) in vitro. The autocorrelation functions were separated based on their respective lifetime with a single detector and their K(d) value was determined to be 11 +/- 3 nM. An in vivo application constituting the interaction of EGFR neutralizing antibody labeled with Alexa488 and EGFR-GFP in live HEK293 cells was successfully demonstrated. The binding specificity of EGFR neutralizing antibody was confirmed by fluorescence lifetime cross-correlation measurements and fluorescence lifetime imaging (FLIM). The dissociation constant of this complex was found to be 9.2 +/- 2.7 nM. A quantitative assessment of receptor density calculations show that the density of EGFR significantly decreased, from 540 +/- 64 receptors/microm(2) to 38 +/- 7 receptors/microm(2) upon addition of the neutralizing EGFR antibody, indicating that the antagonist could induce receptor internalization. The demonstrated work not only opens up new opportunities in studying protein-protein interactions in solutions and in live cells but also provide new insights in biology to understand how the antagonists influence EGFR

  14. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  15. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  16. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    PubMed

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  17. Analysis of the Fluorescence Correlation Function of Quantum Rods with Different Lengths.

    PubMed

    Lee, Jaeran; Kim, Sok Won

    2015-11-01

    We built a polarization fluorescence correlation spectroscopy system to analyze the variation of the correlation function in rotational diffusion based on the length of rod-like fluorescent particles. Because the rotational diffusion of particles in liquid depends on the relative polarization states of the laser source and particle fluorescence, we compared the amplitudes of the rotational diffusion using the autocorrelation function in different polarization states. For experiments that depend on the length of the fluorescent particles, we prepared three kinds of quantum rod samples with a width of 6.5 ± 0.5 nm and lengths of 17 ± 3, 40 ± 3, and 46 ± 3 nm. Through the experiment, we obtained the hydrodynamic radii of each particle using the rotational diffusion coefficient: 10.7 ± 0.8, 13.4 ± 0.7, and 14.1 ± 0.4 nm with the length of the particles. All the obtained values for radii are 3 nm larger than the calculated equivalent radii of spheres with the same volume as the rod samples. Through a fraction analysis by polarization state, we confirmed that the ratio of rotational fraction for polarization increases with the aspect ratio of the actual particle.

  18. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  19. Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging.

    PubMed

    Woehl, Taylor J; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  20. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  1. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    SciTech Connect

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  2. Diffusion and segmental dynamics of rodlike molecules by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, Roland G.

    2007-08-01

    The dynamics of weakly bending polymers is analyzed on the basis of a Gaussian semiflexible chain model and the fluorescence correlation spectroscopy (FCS) correlation function is determined. Particular attention is paid to the influence of the rotational motion on the decay of the FCS correlation function. An analytical expression for the correlation function is derived, from which the averaged segmental mean square displacement can be determined independent of any specific model for the polymer dynamcis. The theoretical analysis exhibits a strong dependence of the correlation function on the rotational motion for semiflexible polymers with typical lengths and persistence lengths of actin filaments or fd viruses. Hence, FCS allows for a measurement of the rotational motion of such semiflexible polymers. The theoretical results agree well with experimental measurements on actin filaments and confirm the importance of large relaxation times.

  3. BH{sub 2} revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    SciTech Connect

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-07

    The spectroscopy of gas phase BH{sub 2} has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A{sup ~} {sup 2}B{sub 1}(Π{sub u})−X{sup ~2}A{sub 1} band system of {sup 11}BH{sub 2}, {sup 10}BH{sub 2}, {sup 11}BD{sub 2}, and {sup 10}BD{sub 2} have been observed for the first time. The free radicals were “synthesized” by an electric discharge through a precursor mixture of 0.5% diborane (B{sub 2}H{sub 6} or B{sub 2}D{sub 6}) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH{sub 2} were calculated for energies up to 22 000 cm{sup −1} above the X{sup ~} (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm{sup −1}) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  4. Multi-channel digital correlator and hardware simulator for fluorescence correlation spectroscopy, dynamic light scattering and multichannel photon time stamping

    NASA Astrophysics Data System (ADS)

    Lescano, Isaac; Davis, Lloyd

    2007-11-01

    In fluorescence correlation spectroscopy and dynamic light scattering, digital correlators acquire the autocorrelation function of detected photons to measure diffusional dynamics of biomolecules and small particles. Multi-channel data from different wavelengths or scattering angles provides increased information for resolving multiple species. Similarly, in single-molecule spectroscopy and in experiments on photon entanglement, there is a need to acquire time stamps of photons from multiple detectors. To enable such advances, we have developed a cost-effective 16-channel correlator, and also a hardware simulator for a 16-channel photon detector for testing digital correlators, each based on a National Instruments R-series reconfigurable digital i/o card. The correlator scans 16 digital inputs each 6.25 ns for photon detector pulses and sends the photon time stamp and channel data to the host PC via a FIFO and 3 DMA channels, allowing >10^7 counts/s among the 16 channels. The PC calculates all autocorrelation and cross-correlations for logarithmically spaced delays in a real-time algorithm. The hardware simulator works in reverse: Simulated time stamp and channel data are sent by DMA to the card, which generates TTL pulses for the 16 digital outputs as though they came from 16 real photon detectors.

  5. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2013-02-01

    The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.

  6. A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II.

    PubMed

    Hendrickson, Luke; Förster, Britta; Pogson, Barry J; Chow, Wah Soon

    2005-06-01

    A method of partitioning the energy in a mixed population of active and photoinactivated Photosystem II (PS II) complexes based on chlorophyll fluorescence measurements is presented. There are four energy fluxes, each with its quantum efficiency: a flux associated with photochemical electron flow in active PS II reaction centres (JPS II), thermal dissipation in photoinactivated, non-functional PS IIs (JNF), light-regulated thermal dissipation in active PS IIs (JNPQ) and a combined flux of fluorescence and constitutive, light-independent thermal dissipation (Jf,D). The four quantum efficiencies add up to 1.0, without the need to introduce an 'excess' term E, which in other studies has been claimed to be linearly correlated with the rate coefficient of photoinactivation of PS II (kpi). We examined the correlation of kpi with various fluxes, and found that the combined flux (JNPQ + Jf,D= Jpi) is as well correlated with kpi as is E. This combined flux arises from Fs/Fm ', the ratio of steady-state to maximum fluorescence during illumination, which represents the quantum efficiency of combined non-photochemical dissipation pathways in active PS IIs. Since Fs/Fm ' or its equivalent, Jpi, is a likely source of events leading to photoinactivation of PS II, we conclude that Fs/Fm ' is a simple predictor of kpi.

  7. Measuring precise diffusion coefficients with two-focus fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dertinger, Thomas; Gregor, Ingo; von der Hocht, Iris; Erdmann, Rainer; Krämer, Benedikt; Koberling, Felix; Hartmann, Rudolf; Enderlein, Jörg

    2006-02-01

    We present a new method for precisely measuring diffusion coefficients of fluorescent molecules at nanomolar concentrations. The method is based on a modified Fluorescence Correlation Spectroscopy (FCS)-setup which is robust against many artifacts that are inherent to standard FCS 1, 2. The core idea of the new method is the introduction of an external ruler by generating two laterally shifted and overlapping laser foci at a fixed and known distance. Data fitting is facilitated by ab initio calculations of resulting correlation curves and subsequent affine transformation of these curves to match the measured auto- and cross-correlation functions. The affine transformation coefficient along the time axis then directly yields the correct diffusion coefficient. This method is not relying on the rather inexact assumption of a 3D Gaussian shaped detection volume. We measured the diffusion coefficient of the red fluorescent dye Atto-655 (Atto-Tec GmbH) in water and compared the obtained value with results from Gradient Pulsed Field NMR (GPF-NMR).

  8. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  9. Experimental and theoretical DFT studies of structure, spectroscopic and fluorescence properties of a new imine oxime derivative

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Yilmaz, Veysel T.; Arslan, Taner; Buyukgungor, Orhan

    2012-09-01

    A new imine oxime, (1E,2E)-phenyl-[(1-phenylethyl)imino]-ethanal oxime (I), is synthesized and characterized. The title compound crystallizes in the monoclinic space group P21/c with a = 12.3416(7), b = 9.5990(6), c = 11.9750(7), β = 92.417(4) and Z = 4. Crystallographic, vibrational (IR), and NMR (1H and 13C chemical shifts) data are compared with the results of density functional theory (DFT) method at the B3LYP/6-311++G(d,p) level. The structure of I is stabilized by intermolecular Osbnd H⋯N hydrogen bonds. The theoretical calculations show that the compound exhibits a number of isomers, and the molecular geometry of the most stable optimized isomer (s-trans-E,E) can well reproduce the X-ray structure. The calculated vibrational bands and NMR chemical shifts are consistent with the experimental results. The NBO/NPA atomic charges are performed to explore the possible coordination modes of the compound. The electronic (UV-vis) and photoluminescence spectra calculated using the TD-DFT method are correlated to the experimental spectra. The DMSO solutions of I are fluorescent at room temperature. The assignment and analysis of the frontier HOMO and LUMO orbitals indicates that both absorption and emission bands are originated mainly from the π-π* transitions.

  10. Tumor redox metabolism correlation with the expression level of red fluorescent protein

    NASA Astrophysics Data System (ADS)

    Sha, Shuang; Wang, Anle; Lin, Qiaoya; Zhang, Zhihong

    2015-03-01

    The redox metabolism is variable and complicated with the progress of tumor development. Whether the tumor redox state will affect the exogenous gene expression or not, are still not clear now . To investigate the relationship between tumor endogenous redox state and the exogenous gene expression level, a far red fluorescent protein fRFP was used to monitor tumor cells proliferation and as an exogenous protein expression in tumors. NADH (nicotinamide adenine dinucleotide) and Fp (flavin protein) are two important coenzymes in the mitochondria respiratory chain, which can be as a standard representation for redox metabolism state. Three tumor subcutaneous models (melanoma, human pancreatic carcinoma and nasopharyngeal carcinoma) were used to observe their redox state and protein expression by our home-made redox scanner. The results showed that the distribution of fRFP fluorescent protein expression in the inner tumor regions are heterogeneous, and the fluorescent intensity of fRFP and the fluorescent intensity of NADH have high correlation. In addition, we also found the linear coefficient in three tumors are different, the value of coefficient is (R2 = 0.966 and R2 = 0.943) in melanoma, (R2 = 0.701 and R2 = 0.942) in human pancreatic carcinoma, and (R2 = 0.994) in nasopharyngeal carcinoma, respectively. From these results, we consider that the exogenous protein expression of fRFP in tumor had some relationship with the tumor redox state of NADH.

  11. Determination of rotational correlation times from deconvoluted fluorescence anisotropy decay curves. Demonstration with 6,7-dimethyl-8-ribityllumazine and lumazine protein from Photobacterium leiognathi as fluorescent indicators.

    PubMed

    Visser, A J; Ykema, T; van Hoek, A; O'Kane, D J; Lee, J

    1985-03-12

    The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).

  12. Correlation Between Structural, Spectroscopic, and Reactivity Properties Within a Series of Structurally Analogous Metastable Manganese(III)-Alkylperoxo Complexes

    PubMed Central

    Coggins, Michael K.; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A.

    2013-01-01

    Manganese–peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)–OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)–OOR compounds extend the number of known end-on Mn(III)–(η1-peroxos) to six. The ligand backbone is shown to alter the metal–ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O–O and Mn⋯Npy,quin distances), spectroscopic (E(πv*(O–O) → Mn CT band), νO–O), and kinetic (ΔH‡ and ΔS‡) parameters for these complexes provide compelling evidence for rate-limiting O–O bond cleavage. Products identified in the final reaction mixtures of Mn(III)–OOR decay are consistent with homolytic O–O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O–O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O–O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O–O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function. PMID:23432090

  13. A pilot validation of multi-echo based echo-planar correlated spectroscopic imaging in human calf muscles.

    PubMed

    Furuyama, Jon K; Nagarajan, Rajakumar; Roberts, Christian K; Lee, Cathy C; Hahn, Theodore J; Thomas, M Albert

    2014-10-01

    A current limitation of MR spectroscopic imaging of multiple skeletal muscles is prolonged scan duration. A significant reduction in the total scan duration using the echo-planar correlated spectroscopic imaging (EP-COSI) sequence was accomplished using two bipolar readout trains with different phase-encoded echoes for one of two spatial dimensions within a single repetition time (TR). The second bipolar readout was used for spatially encoding the outer k-space, whereas the first readout was used for the central k-space only. The performance of this novel sequence, called multi-echo based echo-planar correlated spectroscopic imaging (ME-EPCOSI), was demonstrated by localizing specific key features in calf muscles and bone marrow of 11 healthy volunteers and five subjects with type 2 diabetes (T2D). A 3 T MRI-MRS scanner equipped with a transmit-receive extremity coil was used. Localization of the ME-EPCOSI sequence was in good agreement with the earlier single-readout based EP-COSI sequence and the required scan time was reduced by a factor of two. In agreement with an earlier report using single-voxel based 2D MRS, significantly increased unsaturated pools of intramyocellular lipid (IMCL) and extramyocellular lipid (EMCL) and decreased IMCL and EMCL unsaturation indices (UIs) were observed in the soleus and tibialis anterior muscle regions of subjects with T2D compared with healthy controls. In addition, significantly decreased choline content was observed in the soleus of T2D subjects compared with healthy controls. Multi-voxel characterization of IMCL and EMCL ratios and UI in the calf muscle may be useful for the non-invasive assessment of altered lipid metabolism in the pathophysiology of T2D.

  14. Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy

    PubMed Central

    Miles, Benjamin T.; Greenwood, Alexander B.; Benito-Alifonso, David; Tanner, Hugh; Galan, M. Carmen; Verkade, Paul; Gersen, Henkjan

    2017-01-01

    Fluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field. PMID:28317888

  15. Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Miles, Benjamin T.; Greenwood, Alexander B.; Benito-Alifonso, David; Tanner, Hugh; Galan, M. Carmen; Verkade, Paul; Gersen, Henkjan

    2017-03-01

    Fluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field.

  16. Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging.

    PubMed

    Kisley, Lydia; Brunetti, Rachel; Tauzin, Lawrence J; Shuang, Bo; Yi, Xiyu; Kirkeminde, Alec W; Higgins, Daniel A; Weiss, Shimon; Landes, Christy F

    2015-09-22

    Porous materials such as cellular cytosol, hydrogels, and block copolymers have nanoscale features that determine macroscale properties. Characterizing the structure of nanopores is difficult with current techniques due to imaging, sample preparation, and computational challenges. We produce a super-resolution optical image that simultaneously characterizes the nanometer dimensions of and diffusion dynamics within porous structures by correlating stochastic fluctuations from diffusing fluorescent probes in the pores of the sample, dubbed here as "fluorescence correlation spectroscopy super-resolution optical fluctuation imaging" or "fcsSOFI". Simulations demonstrate that structural features and diffusion properties can be accurately obtained at sub-diffraction-limited resolution. We apply our technique to image agarose hydrogels and aqueous lyotropic liquid crystal gels. The heterogeneous pore resolution is improved by up to a factor of 2, and diffusion coefficients are accurately obtained through our method compared to diffraction-limited fluorescence imaging and single-particle tracking. Moreover, fcsSOFI allows for rapid and high-throughput characterization of porous materials. fcsSOFI could be applied to soft porous environments such hydrogels, polymers, and membranes in addition to hard materials such as zeolites and mesoporous silica.

  17. Determining Protease Activity In Vivo by Fluorescence Cross-Correlation Analysis

    PubMed Central

    Kohl, Tobias; Haustein, Elke; Schwille, Petra

    2005-01-01

    To date, most biochemical approaches to unravel protein function have focused on purified proteins in vitro. Whereas they analyze enzyme performance under assay conditions, they do not necessarily tell us what is relevant within a living cell. Ideally, cellular functions should be examined in situ. In particular, association/dissociation reactions are ubiquitous, but so far there is no standard technique permitting online analysis of these processes in vivo. Featuring single-molecule sensitivity combined with intrinsic averaging, fluorescence correlation spectroscopy is a minimally invasive technique ideally suited to monitor proteins. Moreover, endogenous fluorescence-based assays can be established by genetically encoding fusions of autofluorescent proteins and cellular proteins, thus avoiding the disadvantages of in vitro protein labeling and subsequent delivery to cells. Here, we present an in vivo protease assay as a model system: Green and red autofluorescent proteins were connected by Caspase-3- sensitive and insensitive protein linkers to create double-labeled protease substrates. Then, dual-color fluorescence cross-correlation spectroscopy was employed to study the protease reaction in situ. Allowing assessment of multiple dynamic parameters simultaneously, this method provided internal calibration and improved experimental resolution for quantifying protein stability. This approach, which is easily extended to reversible protein-protein interactions, seems very promising for elucidating intracellular protein functions. PMID:16055538

  18. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy.

    PubMed

    Korlann, You; Dertinger, Thomas; Michalet, Xavier; Weiss, Shimon; Enderlein, Jörg

    2008-09-15

    We present a new technique, polarization-modulation dual-focus fluorescence correlation spectroscopy (pmFCS), based on the recently intro-duced dual-focus fluorescence correlation spectroscopy (2fFCS) to measure the absolute value of diffusion coefficients of fluorescent molecules at pico- to nanomolar concentrations. Analogous to 2fFCS, the new technique is robust against optical saturation in yielding correct values of the diffusion coefficient. This is in stark contrast to conventional FCS where optical saturation leads to an apparent decrease in the determined diffusion coefficient with increasing excitation power. However, compared to 2fFCS, the new technique is simpler to implement into a conventional confocal microscope setup and is compatible with cw-excitation, only needing as add-ons an electro-optical modulator and a differential interference contrast prism. With pmFCS, the measured diffusion coefficient (D) for Atto655 maleimide in water at 25?C is determined to be equal to (4.09 +/- 0.07) x 10(-6)cm(2)/s, in good agreement with the value of 4.04 x 10-6cm2/s as measured by 2fFCS.

  19. Correlated Spectroscopic Imaging of Calf Muscle in Three Spatial Dimensions Using Group Sparse Reconstruction of Undersampled Single and Multichannel Data

    PubMed Central

    Wilson, Neil E.; Burns, Brian L.; Iqbal, Zohaib; Thomas, M. Albert

    2015-01-01

    Purpose To implement a 5D (3 spatial + 2 spectral) correlated spectroscopic imaging sequence for application to human calf. Theory and Methods Nonuniform sampling was applied across the two phase encoded dimensions and the indirect spectral dimension of an echo planar correlated spectroscopic imaging sequence. Reconstruction was applied that minimized the group sparse mixed ℓ2,1-norm of the data. Multichannel data was compressed using a sensitivity map-based approach with a spatially-dependent transform matrix and utilized the self sparsity of the individual coil images to simplify the reconstruction. Results Single channel data with 8× and 16× undersampling are shown in the calf of a diabetic patient. A 15 channel scan with 12× undersampling of a healthy volunteer was reconstructed using 5 virtual channels and compared to a fully sampled single slice scan. Group sparse reconstruction faithfully reconstructs the lipid cross peaks much better than ℓ1 minimization. Conclusion COSY spectra can be acquired over a 3D spatial volume with scan time under 15 minutes using echo planar readout with highly undersampled data and group sparse reconstruction. PMID:26382049

  20. Correlation of p16(INK4A) expression and HPV copy number with cellular FTIR spectroscopic signatures of cervical cancer cells.

    PubMed

    Ostrowska, Kamila M; Garcia, Amaya; Meade, Aidan D; Malkin, Alison; Okewumi, Ifeoluwapo; O'Leary, John J; Martin, Cara; Byrne, Hugh J; Lyng, Fiona M

    2011-04-07

    Cervical cancer, a potentially preventable disease, has its main aetiology in infection by high risk human papillomavirus (HR-HPV). Approaches to improving cervical cancer screening and diagnostic methodologies include molecular biological analysis, targeting of biomarker proteins, but also exploration and implementation of new techniques such as vibrational spectroscopy. This study correlates the biomarker protein p16(INK4A) expression levels dependent on HPV copy number with the infrared absorption spectral signatures of the cervical cancer cell lines, HPV negative C33A, HPV-16 positive SiHa and CaSki and HPV-18 positive HeLa. Confocal fluorescence microscopy demonstrated that p16(INK4A) is expressed in all investigated cell lines in both nuclear and cytoplasmic regions, although predominantly in the cytoplasm. Flow cytometry was used to quantify the p16(INK4A) expression levels and demonstrated a correlation, albeit nonlinear, between the reported number of integrated HPV copies and p16(INK4A) expression levels. CaSki cells were found to have the highest level of expression, HeLa intermediate levels, and SiHa and C33A the lowest levels. FTIR spectra revealed differences in nucleic acid, lipid and protein signatures between the cell lines with varying HPV copy number. Peak intensities exhibited increasing tendency in nucleic acid levels and decreasing tendency in lipid levels with increasing HPV copy number, and although they were found to be nonlinearly correlated with the HPV copy number, their dependence on p16(INK4A) levels was found to be close to linear. Principal Component Analysis (PCA) of the infrared absorption spectra revealed differences between nuclear and cytoplasmic spectroscopic signatures for all cell lines, and furthermore clearly differentiated the groups of spectra representing each cell line. Finally, Partial Least Squares (PLS) analysis was employed to construct a model which can predict the p16(INK4A) expression level based on a spectral

  1. Infrared Spectroscopic Evidences of Strong Electronic Correlations in (Sr1−xLax)3Ir2O7

    PubMed Central

    Ahn, Gihyeon; Song, S. J.; Hogan, T.; Wilson, S. D.; Moon, S. J.

    2016-01-01

    We report on infrared spectroscopic studies of the electronic response of the (Sr1−xLax)3Ir2O7 system. Our experiments revealed hallmarks of strong electronic correlations in the evolution of the electronic response across the filling-controlled insulator-metal transition. We observed a collapse of the Jeff = 1/2 Mott gap accompanying the transfer of the spectral weight from the high-energy region to the gap region with electron doping. The intraband conductivity at the metallic side of the transition was found to consist of coherent Drude-like and incoherent responses. The sum rule and the extended Drude model analyses further indicated a large mass enhancement. Our results demonstrate a critical role of the electronic correlations in the charge dynamics of the (Sr1−xLax)3Ir2O7 system. PMID:27599573

  2. Correlating structure and fluorescence dynamics of quantum dot clusters using super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Ryan, Duncan P.; Goodwin, Peter M.; Sheehan, Chris J.; Whitcomb, Kevin J.; Gelfand, Martin P.; Van Orden, Alan

    2016-02-01

    Clusters of quantum dots exhibit fluorescent behavior that differs from that of individual particles. Bulk measurements involving a large number of particles obscure these dynamics. Synthesizing clusters with 5-10 particles enables the study of collective behavior where single-molecule fluorescence techniques can be applied. Super-resolution microscopy of these clusters correlated with SEM imaging reveals the influence of geometry and structure on emission dynamics. Signatures of energy transfer can be seen in the form of enhanced blinking. Motion of the emission center of the cluster is tracked, made possible by the independent blinking events of the individual particles. Discrete steps in the localization are observed as random switching between various on/off configurations moves the location of the emission center.

  3. What information is contained in the fluorescence correlation spectroscopy curves, and where

    NASA Astrophysics Data System (ADS)

    Khadem, S. M. J.; Hille, C.; Löhmannsröben, H.-G.; Sokolov, I. M.

    2016-08-01

    We discuss the application of fluorescence correlation spectroscopy (FCS) for characterization of anomalous diffusion of tracer particles in crowded environments. While the fact of anomaly may be detected by the standard fitting procedure, the value of the exponent α of anomalous diffusion may be not reproduced correctly for non-Gaussian anomalous diffusion processes. The important information is however contained in the asymptotic behavior of the fluorescence autocorrelation function at long and at short times. Thus, analysis of the short-time behavior gives reliable values of α and of lower moments of the distribution of particles' displacement, which allows us to confirm or reject its Gaussian nature. The method proposed was tested on the FCS data obtained in artificial crowded fluids and in living cells.

  4. Measurement of the temperature-dependent diffusion properties of nanoparticles by using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-10-01

    Changes in the diffusion properties of three kinds of fluorescent particles, Alexa Fluor 647, Q-dots (quantum dots), and beads, with temperature were investigated with a home-built fluorescence correlation spectroscopy (FCS) system based on a confocal microscope. In all samples, as the temperature was increased, the diffusion times were reduced, indicating an increase in the diffusion coefficient. In particular, of all the particles, Alexa Fluor 647 having the smallest size of ˜1 nm, showed a hydrodynamic radius that increased with increasing temperature of the solvent. However, for the Q-dots and beads with larger sizes, the hydrodynamic radius of the particles was inversely proportional to the temperature. These results show that diffusion coefficient obtained by changing the temperature has an influence on the hydrodynamic radius of the particles.

  5. [Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area].

    PubMed

    Yang, Ce; Zhong, Ning-Ning; Shui, Yu-Lei; Wang, Fei-Yu; Chen, Dang-Yi

    2008-01-01

    Three-dimensional excitation emission matrix was applied to characterize the fluorescence properties of dissolved organic matter in various waters of Shilong coal-mining area. Fluorescence peak I (fulvic-like) and peak II (humic-like) were strong, while peak IV and peak V (protein-like) were weak or even undetected in some samples. Fluorescence peaks in various waters and different zones showed great difference in intensities and the fluorescence peaks in underground water tended to be much lower than those of surface waters. Furthermore, the fluorescence peaks of rivers and lakes were higher than those of mine drainage, and also the fluorescence peaks in coking zone and coal mining zone were higher than those in sewage-irrigated zone, or even much higher than those in farming zone. The reason may be that coal mining activities and coal industry can bring plenty of organic matter from coal to surroundings. Meanwhile, surface water would accept mine drainage, waste water of coal-washing and sewage from daily life easier than underground water, so surface water can be polluted seriously. Fluorescence peaks in waters from coal mining area are little influenced by pH of the water but can be influenced by the content of Ca2+ to water in some extent.

  6. Thermodynamics and Mechanisms of the Interactions between Ultrasmall Fluorescent Gold Nanoclusters and Human Serum Albumin, γ-Globulins, and Transferrin: A Spectroscopic Approach.

    PubMed

    Yin, Miao-Miao; Dong, Ping; Chen, Wen-Qi; Xu, Shi-Ping; Yang, Li-Yun; Jiang, Feng-Lei; Liu, Yi

    2017-05-30

    Noble metal nanoclusters (NCs) show great promise as nanoprobes for bioanalysis and cellular imaging in biological applications due to ultrasmall size, good photophysical properties, and excellent biocompatibility. In order to achieve a comprehensive understanding of possible biological implications, a series of spectroscopic measurements were conducted under different temperatures to investigate the interactions of Au NCs (∼1.7 nm) with three model plasmatic proteins (human serum albumin (HSA), γ-globulins, and transferrin). It was found that the fluorescence quenching of HSA and γ-globulins triggered by Au NCs was due to dynamic quenching mechanism, while the fluorescence quenching of transferrin by Au NCs was a result of the formation of a Au NC-transferrin complex. The apparent association constants of the Au NCs bound to HSA, γ-globulins, and transferrin demonstrated no obvious difference. Thermodynamic studies demonstrated that the interaction between Au NCs and HSA (or γ-globulins) was driven by hydrophobic forces, while the electrostatic interactions played predominant roles in the adsorption process for transferrin. Furthermore, it was proven that Au NCs had no obvious interference in the secondary structures of these three kinds of proteins. In turn, these three proteins had a minor effect on the fluorescence intensity of Au NCs, which made fluorescent Au NCs promising in biological applications owing to their chemical and photophysical stability. In addition, by comparing the interactions of small molecules, Au NCs, and large nanomaterials with serum albumin, it was found that the binding constants were gradually increased with the increase of particle size. This work has elucidated the interaction mechanisms between nanoclusters and proteins, and shed light on a new interaction mode different from the protein corona on the surface of nanoparticles, which will highly contribute to the better design and applications of fluorescent nanoclusters.

  7. Towards correlative super-resolution fluorescence and electron cryo-microscopy

    PubMed Central

    Wolff, Georg; Hagen, Christoph; Grünewald, Kay; Kaufmann, Rainer

    2017-01-01

    Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence based information for guiding cryo-EM data acquisition and/or verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ~400 nm) and cryo-EM (single nanometre to Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities. PMID:27225383

  8. Towards correlative super-resolution fluorescence and electron cryo-microscopy.

    PubMed

    Wolff, Georg; Hagen, Christoph; Grünewald, Kay; Kaufmann, Rainer

    2016-09-01

    Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities.

  9. Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations.

    PubMed

    Zinchuk, Vadim; Wu, Yong; Grossenbacher-Zinchuk, Olga; Stefani, Enrico

    2011-09-15

    Interactions of proteins are examined by detecting their overlap using fluorescent markers. The observed overlap is then quantified to serve as a measure of spatial correlation. A major drawback of this approach is that it can produce false values because of the properties of the image background. To remedy this, we provide a protocol to reduce the contribution of image background and then apply a protein proximity index (PPI) and correlation coefficient to estimate colocalization. Background heterogeneity is reduced by the median filtering procedure, comprising two steps, to reduce random noise and background, respectively. Alternatively, background can be reduced by advanced thresholding. PPI provides separate values for each channel to characterize the contribution of each protein, whereas correlation coefficient determines the overall colocalization. The protocol is demonstrated using computer-simulated and real biological images. It minimizes human bias and can be universally applied to various cell types in which there is a need to understand protein-protein interactions. Background reductions require 3-5 min per image. Quantifications take <1 min. The entire procedure takes approximately 15-30 min.

  10. Characterization of two quinone radicals in the NADH:ubiquinone oxidoreductase from Escherichia coli by a combined fluorescence spectroscopic and electrochemical approach.

    PubMed

    Hielscher, Ruth; Yegres, Michelle; Voicescu, Mariana; Gnandt, Emmanuel; Friedrich, Thorsten; Hellwig, Petra

    2013-12-17

    The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. It was proposed that the electron transfer involves quinoid groups localized at the end of the electron transfer chain. To identify these groups, fluorescence excitation and emission spectra of Escherichia coli complex I and its fragments, namely, the NADH dehydrogenase fragment containing the flavin mononucleotide and six iron-sulfur (Fe-S) clusters, and the quinone reductase fragment containing three Fe-S clusters were measured. Signals sensitive to reduction by either NADH or dithionite were detected within the complex and the quinone reductase fragment and attributed to the redox transition of protonated ubiquinone radicals. A fluorescence spectroscopic electrochemical redox titration revealed midpoint potentials of -37 and- 235 mV (vs the standard hydrogen electrode) for the redox transitions of the quinone radicals in complex I at pH 6 with an absorption around 325 nm and a fluorescence emission at 460/475 nm. The role of these cofactor(s) for electron transfer is discussed.

  11. Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy.

    PubMed

    Wang, Dapeng; Pevzner, Leonid; Li, Chen; Peneva, Kalina; Li, Christopher Y; Chan, Derek Y C; Müllen, Klaus; Mezger, Markus; Koynov, Kaloian; Butt, Hans-Jürgen

    2013-01-01

    The two-dimensional diffusion of isolated molecular tracers at the water-n-alkane interface was studied with fluorescence correlation spectroscopy. The interfacial diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with reduced effective viscosity and increased mobility.

  12. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.

    PubMed

    Kusumi, Akihiro; Shirai, Yuki M; Koyama-Honda, Ikuko; Suzuki, Kenichi G N; Fujiwara, Takahiro K

    2010-05-03

    Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.

  13. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    PubMed Central

    Macháň, Radek; Hof, Martin

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support. PMID:20386647

  14. On the measurement of particle number and mobility in nonideal solutions by fluorescence correlation spectroscopy.

    PubMed Central

    Abney, J R; Scalettar, B A; Hackenbrock, C R

    1990-01-01

    Interparticle interactions are incorporated into the theoretical description of the initial amplitude, G(0), of the normalized fluorescence correlation spectroscopy autocorrelation function. Measurements of particle number, aggregate size, and interaction-dependent diffusion are then analyzed in the context of this generalized theory. It is shown that the neglect of interactions can introduce order-of-magnitude errors into estimates of particle number and aggregate size. It is also shown that measurement of G(0) provides an essentially unique method for testing the validity of theories of interaction-dependent membrane protein diffusion. PMID:2383634

  15. Effect of different agents onto multidrug resistant cells revealed by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Boutin, C.; Roche, Y.; Jaffiol, R.; Millot, J.-M.; Millot, C.; Plain, J.; Deturche, R.; Jeannesson, P.; Manfait, M.; Royer, P.

    Fluorescence correlation spectroscopy (FCS), which is a sensitive and non invasive technique, has been used to characterize the plasma membrane fluidity and heterogeneity of multidrug resistant living cells. At the single cell level, the effects of different membrane agents present in the extra-cellular medium have been analyzed. Firstly, we reveal a modification of plasma membrane microviscosity according to the addition of a fluidity modulator, benzyl alcohol. In the other hand, revertant such as verapamil and cyclosporin-A appears to act more specifically on the slow diffusion sites as microdomains.

  16. Diffusion behavior of the fluorescent proteins eGFP and Dreiklang in solvents of different viscosity monitored by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-12-01

    Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.

  17. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Fluorescence Spectroscopic Analysis of the Binding of Pyrene to Cytochromes P450 1A2 and 3A4.

    NASA Astrophysics Data System (ADS)

    Henry, Judah; Guengerich, F. Peter; Marsch, Glenn

    2007-03-01

    Fluorescence spectroscopy was used to study cytochromes P450 1A2 and 3A4. Spectra of P450s were acquired in the presence and absence of acrylamide quencher. In both P450s, quenching revealed three distinguishable species of amino acid fluorescence, with maxima at 297, 323, and 345 nm. The 345 nm tryptophan fluorescence was quenched by low levels of acrylamide; the 297 nm tyrosine fluorescence was resistant to quenching. The 323 nm fluorescence was observed at intermediate concentrations of quencher. Stern-Volmer plots of P450 quenching were non-linear, but were well-fitted to a superposition of linear plots for each fluorophore species. The effect of the P450's binding on pyrene fluorescence was also examined. Upon binding to P450 1A2, the intensity of the 383 nm pyrene vibronic band was decreased relative to the intensities of the 372 and 393 nm bands. Both P450's showed binding of the pyrene, but 1A2 demonstrated significantly more excimer emission than did the 3A4, which suggests that more than one pyrene molecule binds to 1A2's active site. The results of these analyses will be used in further characterization of these enzymes.

  19. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  20. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    NASA Astrophysics Data System (ADS)

    Etienne, Emilien; Lenne, Pierre-François; Sturgis, James N.; Rigneault, Hervé

    2006-06-01

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries, reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ~50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes, permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry or the FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichia coli illustrates the capabilities of the technique.

  1. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy.

    PubMed

    Staaf, Elina; Bagawath-Singh, Sunitha; Johansson, Sofia

    2017-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.

  3. Analytical form of the autocorrelation function for the fluorescence correlation spectroscopy.

    PubMed

    Hołyst, Robert; Poniewierski, Andrzej; Zhang, Xuzhu

    2017-02-08

    Fluorescence correlation spectroscopy (FCS) can provide information about diffusion coefficients and rate constants of chemical reactions in small systems of interacting molecules. However, the interpretation of FCS experiments depends crucially on the model of the autocorrelation function for the fluorescence intensity fluctuations. In this theoretical work, we consider a system of fluorescent molecules that diffuse and interact with massive particles, e.g. surfactant micelles. Using the general formalism of FCS, we derive a new analytical approximation of the autocorrelation function for systems in which both diffusion and a binary reaction occur. This approximation provides a smooth interpolation between the limit of fast reaction (much faster than diffusion), and the opposite limit of slow reaction. Our studies of noncovalent interactions of micelles with dyes by FCS provided an experimental case to which the approximate autocorrelation function was successfully applied [X. Zhang, A. Poniewierski, A. Jelińska, A. Zagożdżon, A. Wisniewska, S. Hou and R. Hołyst, Soft Matter, 2016, 12, 8186-8194].

  4. Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer.

    PubMed

    Hedstrom, J; Sedarous, S; Prendergast, F G

    1988-08-23

    Measurements of homogeneous and heterogeneous fluorescence intensity decays using a hybrid time-correlated single photon counting/multifrequency phase fluorometer are reported. A trio of fluorophores exhibiting a range of decay profiles was selected. p-Terphenyl, 1,4-bis[2-(4-methyl-5-phenyloxazolyl)]benzene [(Me)2POPOP], and p-bis[2-(5-phenyloxazolyl)]benzene (POPOP), commonly used reference fluorophores, were analyzed initially; their emissions were characterized by monoexponential decay functions. Additionally, emissions from two single tryptophan proteins with different decay profiles were measured. Scorpion neurotoxin variant 3 required three exponentials to fit the emission decay properly (average lifetime approximately 500 ps). At pH 5.5, the fluorescence emission of ribonuclease T1 showed a monoexponential decay with a measured lifetime of approximately 4.0 ns. Thus, in each case, the results from both measurements were consistent between the two detection systems, confirming the view that the two approaches for measuring fluorescence lifetimes are equivalent.

  5. Properties of baculovirus particles displaying GFP analyzed by fluorescence correlation spectroscopy.

    PubMed

    Toivola, Jouni; Ojala, Kirsi; Michel, Patrik O; Vuento, Matti; Oker-Blom, Christian

    2002-12-01

    Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.

  6. A closed form for fluorescence correlation spectroscopy experiments in submicrometer structures.

    PubMed

    Sanguigno, Luigi; De Santo, Ilaria; Causa, Filippo; Netti, Paolo

    2010-12-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion coefficients in an open detection volume. However, in several practical cases, when FCS measurements are carried out in small compartments like microchannels, neglecting boundary effects could lead to erroneous results. Here, a close form solution is proposed to explicitly account for the presence of walls located at a distance comparable with the characteristic detection volume lengths. We derive a one-dimensional diffusion constrained model and then generalize the solution to the two- and the three-dimensional constrained cases. We further indicate within which limits the standard autocorrelation function (ACF) model gives reliable results in microconfinement. Our model relies just on the assumption of elastic hits at the system walls and succeeds in describing the ACF of fluorescent probes confined along one direction. Through the analysis of FCS experimental data, we are able to predict the correct shape of the ACF in channels of micrometric and submicrometric width and measure the extent of lateral confinement. In addition, it permits the investigation of microstructured material features such as cages and cavities having dimensions on the micrometric range. On the basis of the proposed model, we also show in which conditions confinement could generate an apparent time dependent probe mobility, thus allowing a proper interpretation of the transport process taking place in submicrometric compartments.

  7. Fluorescence Correlation Spectroscopy Analysis of Serotonin, Adrenergic, Muscarinic, and Dopamine Receptor Dimerization: The Oligomer Number Puzzle

    PubMed Central

    Grinde, Ellinor; Cowan, Ann; Mazurkiewicz, Joseph E.

    2013-01-01

    The issue of G protein–coupled receptor (GPCR) oligomer status has not been resolved. Although many studies have provided evidence in favor of receptor-receptor interactions, there is no consensus as to the exact oligomer size of class A GPCRs. Previous studies have reported monomers, dimers, tetramers, and higher-order oligomers. In the present study, this issue was examined using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH) analysis, a sensitive method for monitoring diffusion and oligomer size of plasma membrane proteins. Six different class A GPCRs were selected from the serotonin (5-HT2A), adrenergic (α1b-AR and β2-AR), muscarinic (M1 and M2), and dopamine (D1) receptor families. Each GPCR was C-terminally labeled with green fluorescent protein (GFP) or yellow fluorescent protein (YFP) and expressed in human embryonic kidney 293 cells. FCS provided plasma membrane diffusion coefficients on the order of 7.5 × 10−9 cm2/s. PCH molecular brightness analysis was used to determine the GPCR oligomer size. Known monomeric (CD-86) and dimeric (CD-28) receptors with GFP and YFP tags were used as controls to determine the molecular brightness of monomers and dimers. PCH analysis of fluorescence-tagged GPCRs revealed molecular brightness values that were twice the monomeric controls and similar to the dimeric controls. Reduced χ2 analyses of the PCH data best fit a model for a homogeneous population of homodimers, without tetramers or higher-order oligomers. The homodimer configuration was unaltered by agonist treatment and was stable over a 10-fold range of receptor expression level. The results of this study demonstrate that biogenic amine receptors freely diffusing within the plasma membrane are predominantly homodimers. PMID:23907214

  8. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  9. Spectroscopic Analysis of Red Fluorescent Proteins and Development of a Microfluidic Cell Sorter for the Generation of Improved Variants

    NASA Astrophysics Data System (ADS)

    Lubbeck, Jennifer L.

    The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.

  10. A Chromone-Derived Schiff-Base Ligand as Al(3+) "Turn on" Fluorescent Sensor: Synthesis and Spectroscopic Properties.

    PubMed

    Li, Chao-rui; Qin, Jing-can; Wang, Bao-dui; Fan, Long; Yan, Jun; Yang, Zheng-yin

    2016-01-01

    In this study, a novel chromone-derived Schiff-base ligand called 6-Hydroxy-3-formylchromone (2'-furan formyl) hydrazone (HCFH) has been designed and synthesized as a "turn on" fluorescent sensor for Al(3+). This sensor HCFH showed high selectivity and sensitivity towards Al(3+) over other metal ions investigated, and most metal ions had nearly no influences on the fluorescence response of HCFH to Al(3+). Additionally, the significant enhancement by about 171-fold in fluorescence emission intensity at 502 nm was observed in the presence of Al(3+) in ethanol, and it was due to the chelation-enhanced fluorescence (CHEF) effect upon complexation of HCFH with Al(3+) which inhibited the photoinduced electron transfer (PET) phenomenon from the Schiff-base nitrogen atom to chromone group. Moreover, this sensor formed a 1 : 1 complex with Al(3+) and the fluorescence response of HCFH to Al(3+) was nearly completed within 1 min. Thus, this sensor HCFH could be used to detect and recognize Al(3+) for real-time detection.

  11. Fluorescence spectroscopic and calorimetry based approaches to characterize the mode of interaction of small molecules with DNA.

    PubMed

    Banerjee, Amrita; Singh, Jasdeep; Dasgupta, Dipak

    2013-07-01

    Ethidium bromide displacement assay by fluorescence is frequently used as a diagnostic tool to identify the intercalation ability of DNA binding small molecules. Here we have demonstrated that the method has pitfalls. We have employed fluorescence, absorbance and label free technique such as isothermal titration calorimetry to probe the limitations. Ethidium bromide, a non-specific intercalator, netropsin, a (A-T) specific minor groove binder, and sanguinarine, a (G-C) specific intercalator, have been used in our experiments to study the association of a ligand with DNA in presence of a competing ligand. Here we have shown that netropsin quenches the fluorescence intensity of an equilibrium mixture of ethidium bromide - calf thymus DNA via displacement of ethidium bromide. Isothermal titration calorimetry results question the accepted interpretation of the observed decrease in fluorescence of bound ethidium bromide in terms of competitive binding of two ligands to DNA. Furthermore, isothermal titration calorimetry experiments and absorbance measurements indicate that the fluorescence change might be due to formation of ternary complex and not displacement of one ligand by another.

  12. Synthesis, spectroscopic, fluorescence properties and biological evaluation of novel Pd(II) and Cd(II) complexes of NOON tetradentate Schiff bases.

    PubMed

    Ali, Omyma A M

    2014-01-01

    The solid complexes of Pd(II) and Cd(II) with N,N/bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L(1)), and N,N/bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L(2)) have been synthesized and characterized by several techniques using elemental analysis (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. Elemental analysis data proved 1:1 stoichiometry for the reported complexes while spectroscopic data indicated square planar and octahedral geometries for Pd(II) and Cd(II) complexes, respectively. The prepared ligands, Pd(II) and Cd(II) complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Thermal behavior of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. Both the ligands and their complexes have been screened for antimicrobial activities.

  13. Correlative imaging of fluorescent proteins in resin-embedded plant material.

    PubMed

    Bell, Karen; Mitchell, Steve; Paultre, Danae; Posch, Markus; Oparka, Karl

    2013-04-01

    Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology.

  14. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes.

    PubMed

    Steinberger, Tomáš; Macháň, Radek; Hof, Martin

    2014-01-01

    Studies of lateral diffusion are used for the characterization of the dynamics of biological membranes. One of the techniques that can be used for this purpose is fluorescence correlation spectroscopy (FCS), which belongs to the single-molecule techniques. Unfortunately, FCS measurements, when performed in planar lipid systems, are associated with a few sources of inaccuracy in the determination of the lateral diffusion coefficient. The main problems are related to the imperfect positioning of the laser focus relative to the plane of the sample. Another source of inaccuracy is the requirement for external calibration of the detection volume size. This protocol introduces a calibration-free method called Z-scan fluorescence correlation spectroscopy (Z-scan FCS), which is based on the determination of the diffusion time and particle number in steps along the optical (z-) axis by sequential FCS measurements. Z-scan FCS could be employed for diffusion measurements in planar membrane model systems-supported phospholipid bilayers (SPBs) and giant unilamellar vesicles (GUVs) and also in biological membranes. A result from measurements in SPBs is also presented in the protocol as a principle example of the Z-scan technique.

  15. Correlating cell morphology and stochastic gene expression using fluorescence spectroscopy and GPU-enabled image analysis

    NASA Astrophysics Data System (ADS)

    Shepherd, Douglas; Shapiro, Evan; Perillo, Evan; Werner, James

    2014-03-01

    Biological processes at the microscopic level appear stochastic, requiring precise measurement and analytical techniques to determine the nature of the underlying regulatory networks. Single-molecule, single-cell studies of gene expression have provided insights into how cells respond to external stimuli. Recent work has suggested that macroscopic cell properties, such as cell morphology, are correlated with gene expression. Here we present single-cell studies of a signal-activated gene network: Interleukin 4 (IL4) RNA production in rat basophil leukemia (RBL) cells during the allergic response. We fluorescently label individual IL4 RNA transcripts in populations of RBL cells, subject to varying external stimuli. A custom super-resolution microscope is used to measure the number of fluorescent labeled IL4 transcripts in populations of RBL cells on a cell-by-cell basis. To test the hypothesis that cell morphology is connected genotype, we analyze white light images of RBL cells and cross-reference cell morphology with IL4 RNA levels. We find that the activation of RBL cells, determined by white-light imaging, is well correlated with IL4 mRNA expression.

  16. Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy.

    PubMed

    Ridgeway, William K; Millar, David P; Williamson, James R

    2012-08-21

    The self-assembly of bacterial 30S ribosomes involves a large number of RNA folding and RNA-protein binding steps. The sequence of steps determines the overall assembly mechanism and the structure of the mechanism has ramifications for the robustness of biogenesis and resilience against kinetic traps. Thermodynamic interdependencies of protein binding inferred from omission-reconstitution experiments are thought to preclude certain assembly pathways and thus enforce ordered assembly, but this concept is at odds with kinetic data suggesting a more parallel assembly landscape. A major challenge is deconvolution of the statistical distribution of intermediates that are populated during assembly at high concentrations approaching in vivo assembly conditions. To specifically resolve the intermediates formed by binding of three ribosomal proteins to the full length 16S rRNA, we introduce Fluorescence Triple-Correlation Spectroscopy (F3CS). F3CS identifies specific ternary complexes by detecting coincident fluctuations in three-color fluorescence data. Triple correlation integrals quantify concentrations and diffusion kinetics of triply labeled species, and F3CS data can be fit alongside auto-correlation and cross-correlation data to quantify the populations of 10 specific ribosome assembly intermediates. The distribution of intermediates generated by binding three ribosomal proteins to the entire native 16S rRNA included significant populations of species that were not previously thought to be thermodynamically accessible, questioning the current interpretation of the classic omission-reconstitution experiments. F3CS is a general approach for analyzing assembly and function of macromolecular complexes, especially those too large for traditional biophysical methods.

  17. Proton nuclear magnetic resonance and fluorescence spectroscopic studies of segmental mobility in aequorin and a green fluorescent protein from Aequorea forskalea

    SciTech Connect

    Nageswara Rao, B.D.; Kemple, M.D.; Prendergast, F.G.

    1980-10-01

    Aequorin is a protein of low molecular weight (20,000) isolated from the jellyfish Aequorea forskalea which emits blue light upon the binding of Ca/sup 2 +/ ions. This bioluminescence requires neither exogenous oxygen nor any other cofactors. The light emission occurs from an excited state of a chromophore (an imidazolopyrazinone) which is tightly and noncovalently bound to the protein. Apparently the binding of Ca/sup 2 +/ by the protein induces changes in the protein conformation which allow oxygen, already bound or otherwise held by the protein, to react with and therein oxidize the chromophore. The resulting discharged protein remains intact, with the Ca/sup 2 +/ and the chromophore still bound, but is incapable of further luminescence. The fluorescence spectrum of this discharged protein and the bioluminescence spectrum of the original charged aequorin are identical. A green fluorescent protein (GFP) of approx. 30,000 mol wt isolated from the same organism, functions in vivo as an acceptor of energy from aequorin and subsequently emits green light. We are applying proton nuclear magnetic resonance (NMR) spectroscopy and fluorescence spectroscopy to examine structural details of, and fluctuations associated with the luminescent reaction of aequorin and the in vivo energy transfer from aequorin to the GFP.

  18. Study of fluorescence interaction and conformational changes of bovine serum albumin with histamine H₁ -receptor--drug epinastine hydrochloride by spectroscopic and time-resolved fluorescence methods.

    PubMed

    Ariga, Girish G; Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2015-11-01

    The fluorescence, ultraviolet (UV) absorption, time resolved techniques, circular dichroism (CD), and infrared spectral methods were explored as tools to investigate the interaction between histamine H1 drug, epinastine hydrochloride (EPN), and bovine serum albumin (BSA) under simulated physiological conditions. The experimental results showed that the quenching of the BSA by EPN was static quenching mechanism and also confirmed by lifetime measurements. The value of n close to unity indicated that one molecule of EPN was bound to protein molecule. The binding constants (K) at three different temperatures were calculated (7.1 × 10(4), 5.5 × 10(4), and 3.9 × 10(4) M(-1)). Based on the thermodynamic parameters (ΔH(0), ΔG(0), and ΔS(0)), the nature of binding forces operating between drug and protein was proposed. The site of binding of EPN in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz, warfarin, ibuprofen, and digitoxin. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (EPN) was evaluated and found to be 4.48 nm. The UV-visible, synchronous fluorescence, CD, and three-dimensional fluorescence spectral results revealed the changes in secondary structure of the protein upon its interaction with EPN.

  19. Ultraviolet emission and excitation fluorescence spectroscopic characterization of DMBA-treated Swiss Albino mice skin carcinogenesis for measuring tissue transformation

    NASA Astrophysics Data System (ADS)

    Aruna, Prakasa R.; Hemamalini, Srinivasan; Ebenezar, Jeyasingh; Ganesan, Singaravelu

    2002-05-01

    The ultraviolet fluorescence emission spectra of skin tissues under different pathological conditions were measured at 280nm excitation. At this excitation wavelength, the normal skin showed a primary peak emission at 352nm and this primary peak emission from neoplastic skin shows a blue shift with respect to normal tissue. This blue shift increases as the stage of abnormality increases and it is maximum (19nm) for well-differentiated squamous cell carcinoma. This alteration is further confirmed from fluorescence excitation spectra of the tissues for 340nm emission. The study concludes that the change in the emission of tryptophan around 340nm may be due to partial unfolding of protein.

  20. Combining spectroscopic and photometric surveys using angular cross-correlations - I. Algorithm and modelling

    NASA Astrophysics Data System (ADS)

    Eriksen, Martin; Gaztañaga, Enrique

    2015-09-01

    Weak lensing (WL) clustering is studied using 2D (angular) coordinates, while redshift space distortions (RSD) and baryon acoustic oscillations (BAO) use 3D coordinates, which requires a model-dependent conversion of angles and redshifts into comoving distances. This is the first paper of a series, which explore modelling multi-tracer galaxy clustering (of WL, BAO and RSD), using only angular (2D) cross-correlations in thin redshift bins. This involves evaluating many thousands cross-correlations, each a multidimensional integral, which is computationally demanding. We present a new algorithm that performs these calculations as matrix operations. Nearby narrow redshift bins are intrinsically correlated, which can be used to recover the full (radial) 3D information. We show that the Limber approximation does not work well for this task. In the exact calculation, both the clustering amplitude and the RSD effect increase when decreasing the redshift bin width. For narrow bins, the cross-correlation has a larger BAO peak than the auto-correlation because smaller scales are filtered out by the radial redshift separation. Moreover, the BAO peak shows a second (ghost) peak, shifted to smaller angles. We explore how WL, RSD and BAO contribute to the cross-correlations as a function of the redshift bin width and present a first exploration of non-linear effects and signal-to-noise ratio on these quantities. This illustrates that the new approach to clustering analysis provides new insights and is potentially viable in practice.

  1. Preserving the photoswitching ability of standard fluorescent proteins for correlative in-resin super-resolution and electron microscopy.

    PubMed

    Johnson, Errin; Kaufmann, Rainer

    2017-01-01

    There are many different correlative light and electron microscopy (CLEM) techniques available. The use of super-resolution microscopy in CLEM is an emerging application and while offering the obvious advantages of improved resolution in the fluorescence image, and therefore more precise correlation to electron microscopy (EM) ultrastructure, it also presents new challenges. Choice of fluorophore, method of fixation, and timing of the fluorescence imaging are critical to the success of super-resolution CLEM and the relative importance, and technical difficulty, of each of these factors depends on the type of super-resolution microscopy being employed. This chapter details the method we developed for in-resin super-resolution CLEM using single molecule localization microscopy (SMLM) with standard fluorescent proteins (e.g., GFP and mVenus). The key to this approach is being able to preserve not only the fluorescence, but also, and more importantly, the photoswitching ability of the fluorescent proteins throughout the EM sample preparation procedure. Cells are cryofixed using high pressure freezing for optimal structural preservation and then freeze substituted in tannic acid, which preserves the photoswitching ability of the fluorescent proteins and is essential for high-quality SMLM imaging. Resin sections are then imaged using SMLM, achieving a structural resolution of 40-50nm and a localization precision of ∼17nm, followed by transmission electron microscopy. This produces high quality correlative images without the use of specialized fluorescent proteins or antibodies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Whole-Brain Proton MR Spectroscopic Imaging of Mild-to-Moderate Traumatic Brain Injury and Correlation with Neuropsychological Deficits

    PubMed Central

    Gold, Stuart; Kaliannan, Krithica; Saigal, Gaurav; Falcone, Steven; Arheart, Kristopher L.; Harris, Leo; Jagid, Jonathan; Maudsley, Andrew A.

    2010-01-01

    Abstract Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10–15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance. PMID:20201668

  3. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits.

    PubMed

    Govind, Varan; Gold, Stuart; Kaliannan, Krithica; Saigal, Gaurav; Falcone, Steven; Arheart, Kristopher L; Harris, Leo; Jagid, Jonathan; Maudsley, Andrew A

    2010-03-01

    Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10-15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance.

  4. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  5. Fluorescence spectroscopic properties of nitro-substituted diphenylpolyenes: effects of intramolecular planarization and intermolecular interactions in crystals.

    PubMed

    Sonoda, Yoriko; Tsuzuki, Seiji; Goto, Midori; Tohnai, Norimitsu; Yoshida, Masaru

    2010-01-14

    The steady-state absorption and fluorescence properties of (E,E,E)-1,6-diaryl-1,3,5-hexatrienes (2, aryl = 2-nitrophenyl; 3, aryl = 3-nitrophenyl; 4, aryl = 4-nitrophenyl) have been investigated in solution and in the crystalline state. The solid-state absorption spectra of 2-4 shifted to longer wavelengths than those in solution. A combination of theoretical calculations and single-crystal X-ray structure analyses shows considerable planarization of molecules in the solid state, which is mainly responsible for the spectral red shifts. The effects of intermolecular interactions on the absorption spectra appeared to be relatively small in these crystals. This is consistent with the monomeric origin of the solid-state emission. Molecule 2 was nonfluorescent in all solvents studied, probably due to the efficient nonradiative deactivation from ionic species produced by excited-state intramolecular proton transfer (ESIPT) along the C-H...O-type hydrogen bonds. The fluorescence of 3, observed only in medium polar solvents, originated from an intramolecular charge transfer (ICT*) state, while that of 4 derived from locally excited (LE*) and/or ICT* states depending on the solvent polarity. All three molecules exhibited LE* fluorescence in the solid state. No observation of ICT* emission in crystals strongly suggests the twisted geometries for ICT* (TICT) of 3 and 4 in solution. The measurable fluorescence from crystal 2 can be attributed to the restricted torsional motions in the solid excited state.

  6. Correlation analysis of intracellular and secreted cytokines via the generalized integrated mean fluorescence intensity.

    PubMed

    Shooshtari, Parisa; Fortuno, Edgardo S; Blimkie, Darren; Yu, Miao; Gupta, Arvind; Kollmann, Tobias R; Brinkman, Ryan R

    2010-09-01

    The immune response in humans is usually assessed using immunogenicity assays to provide biomarkers as correlates of protection (CoP). Flow cytometry is the assay of choice to measure intracellular cytokine staining (ICS) of cell-mediated immune (CMI) biomarkers. For CMI analysis, the integrated mean fluorescence intensity (iMFI) was introduced as a metric to represent the total functional CMI response as a CoP. iMFI is computed by multiplying the relative frequency (percent positive) of cells expressing a particular cytokine with the MFI of that population, and correlates better with protection in challenge models than either the percentage or the MFI of the cytokine-positive population. While determination of the iMFI as a CoP can readily be accomplished in animal models that allow challenge/protection experiments, this is not feasible in humans for ethical reasons. As a first step toward extending the iMFI concept to humans, we investigated the correlation of the iMFI derived from a human innate immune response ICS assay with functional cytokine release into the culture supernatant, as innate cytokines need to be released to have a functional impact. Next, we developed a quantitatively more correlative mathematical approach for calculating the functional response of cytokine-producing cells by incorporating the assignment of different weights to the magnitude (frequency of cytokine-positive cells) and the quality (the MFI) of the observed innate immune response. We refer to this model as generalized iMFI.

  7. Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC).

    PubMed

    Rich, Ryan M; Mummert, Mark; Gryczynski, Zygmunt; Borejdo, Julian; Sørensen, Thomas Just; Laursen, Bo W; Foldes-Papp, Zeno; Gryczynski, Ignacy; Fudala, Rafal

    2013-05-01

    Fluorescence correlation spectroscopy (FCS) is a frequently applied technique that allows for the precise and sensitive analysis of molecular diffusion and interactions. However, the potential of FCS for in vitro or ex vivo studies has not been fully realized due in part to artifacts originating from autofluorescence (fluorescence of inherent components and fixative-induced fluorescence). Here, we propose the azadioxatriangulenium (ADOTA) dye as a solution to this problem. The lifetime of the ADOTA probe, about 19.4 ns, is much longer than most components of autofluorescence. Thus, it can be easily separated by time-correlated single-photon counting methods. Here, we demonstrate the suppression of autofluorescence in FCS using ADOTA-labeled hyaluronan macromolecules (HAs) with Rhodamine 123 added to simulate diffusing fluorescent background components. The emission spectrum and decay rate of Rhodamine 123 overlap with the usual sources of autofluorescence, and its diffusion behavior is well known. We show that the contributions from Rhodamine 123 can be eliminated by time gating or by fluorescence lifetime correlation spectroscopy (FLCS). While the pairing of ADOTA and time gating is an effective strategy for the removal of autofluorescence from fluorescence imaging, the loss of photons leads to erroneous concentration values with FCS. On the other hand, FLCS eliminates autofluorescence without such errors. We then show that both time gating and FLCS may be used successfully with ADOTA-labeled HA to detect the presence of hyaluronidase, the overexpression of which has been observed in many types of cancer.

  8. Elimination of autofluorescence in fluorescence Correlation spectroscopy by using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time correlated single photon counting (TCSPC)

    PubMed Central

    Rich, Ryan M.; Mummert, Mark; Gryczynski, Zygmunt; Borejdo, Julian; Sørensen, Thomas Just; Laursen, Bo W.; Foldes-Papp, Zeno; Gryczynski, Ignacy; Fudala, Rafal

    2013-01-01

    Fluorescence Correlation Spectroscopy (FCS) is a frequently applied technique that allows for precise and sensitive analyses of molecular diffusion and interactions. However, the potential of FCS for in vitro or ex vivo studies has not been fully realized due in part to artifacts originating from autofluorescence (fluorescence of inherent components and fixative-induced fluorescence). Here, we propose the azadioxatriangulenium (ADOTA) dye as a solution to this problem. The lifetime of the ADOTA probe, about 19.4 ns, is much longer than most components of autofluorescence. Thus, it can be easily separated by time correlated single photon counting (TCSPC) methods. Here, we demonstrate the suppression of autofluorescence in FCS by using ADOTA labeled Hyaluronan macromolecules (HAs) with Rhodamine 123 added to simulate diffusing fluorescent background components. The emission spectrum and decay rate of Rhodamine 123 overlap with the usual sources of autofluorescence, and its diffusion behavior is well known. We show that the contributions from Rhodamine 123 can be eliminated by time-gating or by fluorescence lifetime correlation spectroscopy (FLCS). While the pairing of ADOTA and time-gating is an effective strategy for the removal of autofluorescence from fluorescence imaging, the loss of photons leads to erroneous concentration values with FCS. On the other hand, FLCS eliminates autofluorescence without such errors. We then show that both time gating and FLCS may be used successfully with ADOTA-labeled HA to detect the presence of hyaluronidase, the over-expression of which has been observed in many types of cancer. PMID:23564284

  9. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    NASA Astrophysics Data System (ADS)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  10. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin.

    PubMed

    Abdelhameed, Ali S; Alanazi, Amer M; Bakheit, Ahmed H; Darwish, Hany W; Ghabbour, Hazem A; Darwish, Ibrahim A

    2017-01-15

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 10(4)Lmol(-1). BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  11. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.

    2017-01-01

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  12. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: fluorescence and circular dichroism spectroscopic studies.

    PubMed

    Sultan, Nabil Ali Mohammed; Rao, Rameshwaram Nagender; Nadimpalli, Siva Kumar; Swamy, Musti J

    2006-07-01

    Fluorescence and circular dichroism spectroscopic studies were carried out on the galactose-specific lectin from Dolichos lablab seeds (DLL-II). The microenvironment of the tryptophan residues in the lectin under native and denaturing conditions were investigated by quenching of the intrinsic fluorescence of the protein by a neutral quencher (acrylamide), an anionic quencher (iodide ion) and a cationic quencher (cesium ion). The results obtained indicate that the tryptophan residues of DLL-II are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains residing close to at least some of the tryptophan residues under the experimental conditions. Analysis of the far UV CD spectrum of DLL-II revealed that the secondary structure of the lectin consists of 57% alpha-helix, 21% beta-sheet, 7% beta-turns and 15% unordered structures. Carbohydrate binding did not significantly alter the secondary and tertiary structures of the lectin. Thermal unfolding of DLL-II, investigated by monitoring CD signals, showed a sharp transition around 75 degrees C both in the far UV region (205 nm) and the near UV region (289 nm), which shifted to ca. 77-78 degrees C in the presence of 0.1 M methyl-beta-D-galactopyranoside, indicating that ligand binding leads to a moderate stabilization of the lectin structure.

  13. Spectroscopic orbits of two short-period early-type binaries using two-dimensional cross-correlations

    NASA Astrophysics Data System (ADS)

    González, J. F.; Lapasset, E.

    2003-06-01

    We apply the two-dimensional cross-correlation technique TODCOR to derive spectroscopic orbits for the two B-type double-lined spectroscopic binaries HD 66066A and HD 315031, previously mentioned as blue straggler candidates of the open clusters NGC 2516 and NGC 6530, respectively. Reliable radial velocities for both components are measured even for orbital phases for which the separation between the spectral lines are about 0.5 times the quadratic sum of the full-width at half-maximum of the lines. Both binaries have circular orbits and the orbital periods are 1.67 and 1.38 days for HD 66066A and HD 315031, respectively. We calculate minimum masses with errors of 3-5% and obtain the projected radii from the line widths. We derive absolute stellar parameters which are consistent with the age and distance of the clusters. Both binary systems are formed by main-sequence stars and it is expected that they will experience mass-transfer between their components before the end of the core H-burning stage. HD 315031 is likely a triple system as suggested by the variation of the center-of-mass velocity. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba and San Juan.

  14. Guided fluorescence diagnosis of childhood caries: preliminary measures correlate with depth of carious decay

    NASA Astrophysics Data System (ADS)

    Timoshchuk, Mari-Alina; Zhang, Liang; Dickinson, Brian A.; Ridge, Jeremy S.; Kim, Amy S.; Baltuck, Camille T.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2014-02-01

    The current rise in childhood caries worldwide has increased the demand for portable technologies that can quickly and accurately detect and diagnose early stage carious lesions. These lesions, if identified at an early stage, can be reversed with remineralization treatments, education, and improvements in home care. A multi-modal optical prototype for detecting and diagnosing occlusal caries demineralization in vivo has been developed and pilot tested. The device uses a 405-nm laser as a scanned illumination source to obtain high resolution and high surface contrast reflectance images, which allows the user to quickly image and screen for any signs of demineralized enamel. When a suspicious region is located, the device can be switched to perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitations. These spectra are used to compute an auto-fluorescence (AF) ratio of the suspicious region and the percent difference of AF ratios from a healthy region of the same tooth. The device was tested on 7 children's teeth in vivo with clinically diagnosed carious lesions. Lesion depth was then visually estimated from the video image using the 405-nm scanned light source, and within a month the maximum drill depth was assessed by a clinician. The researcher and clinicians were masked from previous measurements in a blinded study protocol. Preliminary results show that the ratiometric percent difference measurement of the AF spectrum of the tooth correlates with the severity of the demineralization as assessed by the clinician after drilling.

  15. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: fluorescence correlation spectroscopy.

    PubMed

    Chattoraj, Shyamtanu; Chowdhury, Rajdeep; Ghosh, Shirsendu; Bhattacharyya, Kankan

    2013-06-07

    Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of D(t) corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ~200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO.

  16. Information content in fluorescence correlation spectroscopy: binary mixtures and detection volume distortion.

    PubMed

    Lam, Jonathan D; Culbertson, Michael J; Skinner, Nathan P; Barton, Zachary J; Burden, Daniel L

    2011-07-01

    When properly implemented, fluorescence correlation spectroscopy (FCS) reveals numerous static and dynamic properties of molecules in solution. However, complications arise whenever the measurement scenario is complex. Specific limitations occur when the detection region does not match the ideal Gaussian geometry ubiquitously assumed by FCS theory, or when properties of multiple fluorescent species are assessed simultaneously. A simple binary solution of diffusers, where both mole fraction and diffusion constants are sought, can face interpretive difficulty. In order to better understand the limits of FCS, this study systematically explores the relationship between detection-volume distortion, diffusion constants, species mole fraction, and fitting methodology in analyses that utilize a two-component autocorrelation model. FCS measurements from solution mixtures of dye-labeled protein and free dye are compared to simulations, which predict the performance of FCS under a variety of experimental circumstances. The results reveal a range of conditions necessary for performing accurate measurements and describe experimental scenarios that should be avoided. The findings also provide guidelines for obtaining meaningful measurements when grossly distorted detection volumes are utilized and generally assess the latent information contained in FCS datasets.

  17. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    NASA Astrophysics Data System (ADS)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  18. Detection of long-range electrostatic interactions between charged molecules by means of fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nardecchia, Ilaria; Lechelon, Mathias; Gori, Matteo; Donato, Irene; Preto, Jordane; Floriani, Elena; Jaeger, Sebastien; Mailfert, Sebastien; Marguet, Didier; Ferrier, Pierre; Pettini, Marco

    2017-08-01

    In the present paper, an experimental feasibility study on the detection of long-range intermolecular interactions through three-dimensional molecular diffusion in solution is performed. This follows recent theoretical and numerical analyses reporting that long-range electrodynamic forces between biomolecules could be identified through deviations from Brownian diffusion. The suggested experimental technique was fluorescence correlation spectroscopy (FCS). By considering two oppositely charged molecular species in aqueous solution, namely, lysozymes and fluorescent dye molecules (Alexa488), the diffusion coefficient of the dyes has been measured for different values of the concentration of lysozyme, that is, for different average distances between the oppositely charged molecules. For our model, long-range interactions are of electrostatic origin, suggesting that their action radius can be varied by changing the ionic strength of the solution. The experimental outcomes clearly prove the detectability of long-range intermolecular interactions by means of the FCS technique. Molecular dynamics simulations provide a clear and unambiguous interpretation of the experimental results.

  19. Fluorescence Correlation Spectroscopy: A Tool to Study Protein Oligomerization and Aggregation In Vitro and In Vivo.

    PubMed

    Sahoo, Bankanidhi; Drombosky, Kenneth W; Wetzel, Ronald

    2016-01-01

    Fluorescence correlation spectroscopy (FCS) is a highly sensitive analytical technique used to measure dynamic molecular parameters, such as diffusion time (from which particle size can be calculated), conformation, and concentration of fluorescent molecules. It has been particularly powerful in characterizing size distributions in molecular associations (e.g., dimer/multimer formation) both in well-behaved thermodynamically equilibrated systems in vitro as well as in more complex environments in vivo. Protein aggregation reactions like amyloid formation, in contrast, are complex, often involving a series of uniquely structured aggregation intermediates appearing at different time scales. Nonetheless, FCS can be used in appropriate cases to characterize the early stages of some aggregation reactions. Here are described step-by-step protocols and experimental procedures for the study of molecular complex formation in aggregation systems as observed in simple buffer systems, cell extracts, and living cells. The methods described are illustrated with examples from studies of the self-assembly of huntingtin fragments, but in principle can be adapted for any aggregating system.

  20. Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy.

    PubMed

    Mittag, Judith J; Kneidl, Barbara; Preiβ, Tobias; Hossann, Martin; Winter, Gerhard; Wuttke, Stefan; Engelke, Hanna; Rädler, Joachim O

    2017-10-01

    Thermosensitive liposomes (TSLs) whose phase-transition temperature (Tm) lies slightly above body temperature are ideal candidates for controlled drug release via local hyperthermia. Recent studies, however, have revealed disruptive shifts in the release temperature Tr in mouse plasma, which are attributed to undefined interactions with blood proteins. Here, we study the effects of four major plasma proteins - serum albumin (SA), transferrin (Tf), apolipoprotein A1 (ApoA1) and fibrinogen (Fib) - on the temperature-dependent release of fluorescein di-β-D-galactopyranoside (FDG) from TSLs. The amount of fluorescein released was quantified by fluorescence correlation spectroscopy (FCS) after hydrolysis of FDG with β-galactosidase (β-Gal). This approach is more sensitive and thus superior to previous release assays, as it is impervious to the confounding effects of Triton on conventional fluorescence measurements. The assay determines the molar release ratio, i.e. the number of molecules released per liposome. We show that shifts in the Tr of release do not reflect protein affinities for the liposomes derived from adsorption isotherms. We confirm a remarkable shift in induced release towards lower temperatures in the presence of mouse plasma. In contrast, exposure to rat or human plasma, or fetal bovine serum (FBS), has no effect on the release profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE CHROMATIN IN THE CELL NUCLEUS

    SciTech Connect

    Sorscher, Stanley M.; Bartholemew, James C.; Klein, Melvin P.

    1980-03-01

    All systems in thermodynamic equilibrium are subject to spontaneous fluctuations from equilibrium. For very small systems, the fluctuations can be made apparent, and can be used to study the behavior of the system without introducing any external perturbations. The mean squared amplitude of these fluctuations contains information about the absolute size of the system. The characteristic time of the fluctuation autocorrelation function contains kinetic information. In the experiments reported here, these concepts are applied to the binding equilibrium between ethidium bromide and DNA, a system where the fluorescence properties of the dye greatly enhance the effect of spontaneous fluctuations in the binding equilibrium. Preliminary experiments employ well characterized DNA preparations, including calf thymus DNA, SV40 DNA, and calf thymus nucleohistone particles. Additional measurements are described which have been made in small regions of individual nuclei, isolated from green monkey kidney cells, observing as few as 5000 dye molecules. The data indicate that the strength of dye binding increases in nuclei isolated from cells which have been stimulated to enter the cell growth cycle. The viscosity of nuclear material is inferred to be between one and two orders of magnitude greater than that of water, and decreases as the cells leave the resting state, and enter the cell growth cycle. Washing the nuclei also lowers the viscosity. These experiments demonstrate that fluorescence correlation spectroscopy can provide information at the subnuclear level that is otherwise unavailable.

  2. Detection method for quantifying global DNA methylation by fluorescence correlation spectroscopy.

    PubMed

    Umezu, Tomohiro; Ohyashiki, Kazuma; Ohyashiki, Junko H

    2011-08-15

    A method for quantifying global DNA methylation using fluorescence correlation spectroscopy (FCS) has been established. The single-molecule methylation assay (SMMA) is based on two methodologies. One methodology, FCS, estimates the translational diffusion coefficient of molecules in solution, whereas the other methodology uses the high affinity of methyl-CpG-binding domain protein 2 (MBD2) to bind specifically to methylated DNA. We studied the specific binding rates of fluorescence-labeled MBD2 and methylated DNA from biological samples using the automated FCS system. Using a standard curve with methylated control DNA, we developed the SMMA index to assess the global DNA methylation level of the biological samples. A marked decrease in the SMMA index was observed when human leukemia cell lines (U937 and K562) were cultured with DNA demethylating agents. Our findings clearly indicate the applicability of SMMA as a simple and rapid tool for quantifying global DNA methylation. SMMA may prove useful for genome-wide comparative methylation analyses of malignancies and as an indicator of the demethylation effects of epigenetic drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Lipid Coupling in Asymmetric Supported Lipid Bilayers Revealed by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Zhang, Liangfang; Granick, Steve

    2006-03-01

    In biological systems, phospholipids asymmetry in two leaflets is a key feature of cell membranes for membrane biogenesis, intracellular fusion and signal transduction. Detailed information of the interactions and dynamics of the asymmetric membranes is paramount for design of applications. Here we use fluorescence correlation spectroscopy (FCS) to measure the coupling between 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in asymmetric planar-supported bilayers (PSLBs), at temperatures where DLPC is in the fluid phase but DPPC is in the gel phase. Asymmetric PSLBs were prepared by placing dilute fluorescent-labeled 1, 2-dimeristoyl-sn-glycero-3-phosphoethanolamine (DMPE) in DLPC leaflet as the probe for measuring lateral diffusion within the host leaflet environment. By constructing asymmetric bilayers where DLPC is alternatively in the top and in the bottom leaflet, we compare lipid coupling between the two leaflets with frictional interaction between the leaflets and the nanometer-thick water layer that separates the bottom leaflet from the solid support.

  4. Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence-SEM-EDS technique.

    PubMed

    Khalifa, Gal Mor; Kirchenbuechler, David; Koifman, Naama; Kleinerman, Olga; Talmon, Yeshayahu; Elbaum, Michael; Addadi, Lia; Weiner, Steve; Erez, Jonathan

    2016-11-01

    Foraminifera are marine protozoans that are widespread in oceans throughout the world. Understanding biomineralization pathways in foraminifera is particularly important because their calcitic shells are major components of global calcium carbonate production. We introduce here a novel correlative approach combining cryo-SEM, cryo-fluorescence imaging and cryo-EDS. This approach is applied to the study of ion transport processes in the benthic foraminifer genus Amphistegina. We confirm the presence of large sea water vacuoles previously identified in intact and partially decalcified Amphistegina lobifera specimens. We observed relatively small vesicles that were labelled strongly with calcein, and also identified magnesium (Mg)-rich mineral particles in the cytoplasm, as well as in the large sea water vacuoles. The combination of cryo-microscopy with elemental microanalysis and fluorescence imaging reveals new aspects of the biomineralization pathway in foraminifera which are, to date, unique in the world of biomineralization. This approach is equally applicable to the study of biomineralization pathways in other organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  6. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector

    PubMed Central

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD. PMID:26697410

  7. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    PubMed

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO(-)) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site.

  8. Fluorescent N2,N3-ε-Adenine Nucleoside and Nucleotide Probes: Synthesis, Spectroscopic Properties, and Biochemical Evaluation**

    PubMed Central

    Sharon, Einat; Lévesque, Sébastien A.; Munkonda, Mercedes N.; Sévigny, Jean; Ecke, Denise; Reiser, Georg; Fischer, Bilha

    2016-01-01

    N1,N6-ethenoadenine, ε-A, nucleos(t)ides have been previously applied as fluorescent probes in numerous biochemical systems. However, these ε-A analogues lack the H-bonding capability of adenine. To improve the fluorescence characteristics while preserving the H-bonding pattern required for molecular recognition, we designed a novel probe: N2,N3-etheno-adenosine, (N2,N3-ε-A). Here, we describe four novel syntheses of the target ε-nucleoside and related analogues. These methods are short, facile, and provide the product regiospecifically. In addition, we report the absorption and emission spectra of N2,N3-ε-A and the dependence of the spectral features on the pH and polarity of the medium. Specifically, maximum emission of N2,N3-ε-A in water is observed at 420 nm (ϕ=0.03, excitation at 290 nm). The biochemical relevance of the new probe was evaluated with respect to the P2Y1 receptor and NTPDases 1 and 2. N2,N3-ε-ATP was found to be almost equipotent with ATP at the P2Y1 receptor and was hydrolyzed by NTPDases 1 and 2at about 80% of the rate of ATP. Furthermore, protein binding does not seem to shift the fluorescence of N2,N3-ε-ATP. Based on the fluorescence and full recognition by ATP-binding proteins, we propose N2,N3-ε-ATP and related nucleo(s)tides as unique probes for the investigation of adenine nucleo(s)tide-binding proteins as well as for other biochemical applications. PMID:16871613

  9. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.

    PubMed

    Kübler, Daniel; Ingenbosch, Kim N; Bergmann, Anna; Weidmann, Monika; Hoffmann-Jacobsen, Kerstin

    2015-12-01

    Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.

  10. Dye analysis of Shosoin textiles using excitation-emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques.

    PubMed

    Nakamura, Rikiya; Tanaka, Yoko; Ogata, Atsuhiko; Naruse, Masakazu

    2009-07-15

    The dyes of 8th century textiles, treasured for more than 1250 years in the Shosoin treasure repository in Japan, were analyzed by nondestructive methods, i.e., excitation-emission matrix (EEM) fluorescence and ultraviolet-visible (UV-vis) reflectance spectrometry, in combination with natural dye references extracted from plants, which have been widely used from ancient times. In this analysis, five dyes were found in the following objects: embroidered shoes dedicated to Great Buddha of the Todaiji temple by the empress of that time, the cloth lining for a case holding a mirror belonging to the emperor of that time, two rolls of yellow and light green plain-weave silks, and a sleeveless coat used for a musical in a Buddhist ceremony in 752 A.D. EEM fluorescence spectrometry distinguished kihada yellow (Amur cork tree), kariyasu yellow (eulalia), and akane red (Japanese madder). UV-vis spectrometry also distinguished kariyasu yellow, ai blue (knotweed), akane red, and shikon purple (murasaki); the characteristic peaks of these dyes were detected by a second derivatization. The results show that although the dyes used easily degrade with age, EEM fluorescence and UV-vis reflectance spectrometry are useful for distinguishing dyes used in the Shosoin textiles, which had been stored for more than 1250 years.

  11. Tuning the Spectroscopic Properties of Ratiometric Fluorescent Metal Indicators: Experimental and Computational Studies on Mag-fura-2 and Analogues.

    PubMed

    Zhang, Guangqian; Jacquemin, Denis; Buccella, Daniela

    2017-02-02

    In this joint theoretical and experimental work, we investigate the properties of Mag-fura-2 and seven structurally related fluorescent sensors designed for the ratiometric detection of Mg(2+) cations. The synthesis of three new compounds is described, and the absorption and emission spectra of all of the sensors in both their free and metal-bound forms are reported. A time-dependent density functional theory approach accounting for hydration effects using a hybrid implicit/explicit model is employed to calculate the absorption and fluorescence emission wavelengths, study the origins of the hypsochromic shift caused by metal binding for all of the sensors in this family, and investigate the auxochromic effects of various modifications of the "fura" core. The metal-free forms of the sensors are shown to undergo a strong intramolecular charge transfer upon light absorption, which is largely suppressed by metal complexation, resulting in predominantly locally excited states upon excitation of the metal complexes. Our computational protocol might aid in the design of new generations of fluorescent sensors with low-energy excitation and enhanced properties for ratiometric imaging of metal cations in biological samples.

  12. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy.

    PubMed

    Bacia, Kirsten; Schwille, Petra

    2003-01-01

    Fluorescence correlation spectroscopy (FCS) is becoming increasingly popular as a technique that aims at complementing live cell images with biophysical information. This article provides both a short overview over recent intracellular FCS applications and a practical guide for investigators, who are seeking to integrate FCS into live cell imaging to obtain information on particle mobility, local concentrations, and molecular interactions. A brief introduction to the principles of FCS is provided, particularly emphasizing practical aspects such as the choice of appropriate dyes and positioning of the measurement volume in the sample. Possibilities and limitations in extracting parameters from autocorrelation curves are discussed, and attention is drawn to potential artifacts, such as photobleaching and probe aggregation. The principle of dual-color cross-correlation is reviewed along with considerations for proper setup and adjustment. Practical implications of nonideal conditions including incomplete focus overlap and spectral cross-talk are considered. Recent examples of both auto- and cross-correlation applications demonstrate the potential of FCS for cell biology.

  13. Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement.

    PubMed

    Arbour, Tyler J; Enderlein, Jörg

    2010-05-21

    Several methods exist to measure and map fluid velocities in microfluidic devices, which are vital to understanding properties on the micro- and nano-scale. Fluorescence correlation spectroscopy (FCS) is a method traditionally exploited for its ability to measure molecular diffusion coefficients. However, several reports during the past decade have shown that FCS can also be successfully used to measure precise flow rates in microfluidics with very high spatial resolution, making it a competitive alternative to other common flow-measurement methods. In 2007 we introduced a modified version of conventional FCS that overcomes many of the artifacts troubling the standard technique. Here we show how the advantages of this method, called dual-focus FCS, extend to flow measurements. To do so, we have measured the velocity flow profile along the cross-section of a square-bore microfluidic channel and compared the result to the theoretical prediction.

  14. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    PubMed

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures. © 2014. Published by The Company of Biologists Ltd.

  15. Study of mechanical properties of DNA in E. coli cells by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafle, Rudra; Liebeskind, Molly; Meiners, Jens-Christian

    Mechanical quantities like the elasticity of cells are conventionally measured by directly probing them mechanically. Measurements of these quantities for subcellular structures in living cells are almost impossible this way. We use fluorescence correlation spectroscopy (FCS) to measure such mechanical quantities in chromosomal DNA in E. coli cells. We present methods to address complexities of live-cell FCS such as photobleaching, and calculate the viscoelastic moduli from the FCS data. We compare the measured viscoelastic moduli of live cells with those that are ATP-depleted to stop all molecular motor action and find substantial differences. Active processes are stopped in ATP-depleted cells and hence the bacterial DNA appears to become stiffer and the surrounding intracellular medium more viscous. We also compare our results with the FCS data obtained from the lambda DNA solution in various concentrations to mimic the cellular environment.

  16. Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements

    NASA Astrophysics Data System (ADS)

    Pan, Xiaotao; Shi, Xianke; Korzh, Vladimir; Yu, Hanry; Wohland, Thorsten

    2009-03-01

    The flow direction of microfluidics in biological applications is not limited to two dimensions, but often extends to three dimensions. Currently there are optical methods available for the measurement of 3-D microfluidic flow vectors, but with low spatial resolution. Line scan fluorescence correlation spectroscopy (FCS) was proposed to determine flow directions in 2-D within microchannels and small blood vessels in our previous work. Importantly, its spatial resolution was demonstrated to be as good as 0.5 μm. In this work, we extend line scan FCS to the third dimension for the characterization of 3-D flow velocity vectors. The spatial resolution is close to the diffraction limit using a scan length of 0.5 μm in all three dimensions. The feasibility of line scan FCS for 3-D microfluidic flow is verified by measurements in microchannels and small blood vessels of zebrafish embryos.

  17. Nonscaling displacement distributions as may be seen in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Khadem, S. M. J.; Sokolov, I. M.

    2017-05-01

    A continuous time random walk (CTRW) model with waiting times following the Lévy-stable distribution with exponential cutoff in equilibrium is a simple theoretical model giving rise to normal, yet non-Gaussian, diffusion. The distribution of the particles' displacements is explicitly time dependent and does not scale. Since fluorescent correlation spectroscopy (FCS) is often used to investigate diffusion processes, we discuss the influence of this lack of scaling on the possible outcome of the FCS measurements and calculate the FCS autocorrelation curves for such equilibrated CTRWs. The results show that although the deviations from Gaussian behavior may be detected when analyzing the short- and long-time asymptotic behavior of the corresponding curves, their bodies are still perfectly fitted by the fit forms used for normal diffusion. The diffusion coefficients obtained from the fits may however differ considerably from the true tracer diffusion coefficients as describing the time dependence of the mean squared displacement.

  18. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy.

    PubMed

    Daniels, Charlisa R; Reznik, Carmen; Kilmer, Rachel; Felipe, Mary Jane; Tria, Maria Celeste R; Kourentzi, Katerina; Chen, Wen-Hsiang; Advincula, Rigoberto C; Willson, Richard C; Landes, Christy F

    2011-11-01

    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.

  19. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  20. Revisiting oxo-centered carbonyl-triruthenium clusters: investigating CO photorelease and some spectroscopic and electrochemical correlations.

    PubMed

    Moreira, Mariete B; Da Silva, Camila F N; Pesci, Rafaela B P; Deflon, Victor M; Nikolaou, Sofia

    2016-10-25

    We synthesized and characterized a series of oxo-centered carbonyl-triruthenium complexes with the general formula [Ru3O(CH3COO)6(L)2(CO)], where L = 2,6-dimethylpyrazine (dmpz) (1), isonicotinamide (adpy) (2), 4-acetylpyridine (acpy) (3), 3-methylpyridine (3-pic) (4), 4-methylpyridine (4-pic) (5), 4-tert-butylpyridine (4-tbpy) (6), 4-(dimethyl)aminopyridine (dmap) (7), or 4-aminopyridine (ampy) (8); we also investigated the photoreactivity of these complexes. Single-crystal X-ray diffraction helped to elucidate the structures of 1·H2O, 7·C2H4Cl2, and 8. The unit cell of 8 is composed of four cluster units; the hydrogen bonds between the amino groups of the terminal ligand of a neighboring molecule and the oxygen atoms of CO or acetate bridging ligands hold these cluster units together. The spectroscopic (NMR, UV-visible, and IR) and the electrochemical properties (cyclic voltammetry) of these complexes correlated with the ancillary ligands in terms of their σ-donating and π-accepting characteristics. The molecular orbital and the electronic localized description of the [Ru3O]-CO unit helped to rationalize the correlations. The photoreactivity of compounds 1-8 was investigated by laser excitation at 377 nm. Given the CO photorelease quantum yields, σ-donor ligands and aqueous medium (more polar) stabilized the charge-transfer excited state that culminated in CO photosubstitution, leading to higher Φ values.

  1. Time-resolved spectroscopic study of photofragment fluorescence in methane/air mixtures and its diagnostic implications

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Borggren, Jesper; Aldén, Marcus; Bood, Joakim

    2015-09-01

    In this work 80-picosecond laser pulses of 266-nm wavelength with intensities up to (2.0 ± 0.5) × 1011 W/cm2 were used for fragmentation of methane/air gas mixtures at ambient pressure and temperature. Emission spectra are, for the first time, studied with ultrahigh temporal resolution using a streak camera. Fluorescence spectra from CH(A2Δ-X2Π, B2Σ--X2Π, C2Σ+-X2Π), CN(B2Σ+-X2Σ+, Δ v = 0 and Δ v = ±1), NH(A3Π--X3Σ-), OH(A2Σ+-X2Π) and N2 +(B2Σu + X2Σg + were recorded and analyzed. By fitting simulated spectra to high-resolution experimental spectra, rotational and vibrational temperatures are estimated, showing that CH(C), CN(B), NH(A), and OH(A) are formed in highly excited vibrational and rotational states. The fluorescence signal dependencies on laser intensity and CH4/air equivalence ratio were investigated as well as the fluorescence lifetimes. All fragments observed are formed within 200 ps after the arrival of the laser pulse and their fluorescence lifetimes are shorter than 1 ns, except for CN(B-X) Δ v = 0 whose lifetime is 2.0 ns. The CN(B-X) Δ v = 0 fluorescence was studied temporally under high spectral resolution, and it was found that the vibrational levels are not populated simultaneously, but with a rate that decreases with increasing vibrational quantum number. This observation indicates that the rate of the chemical reaction that forms the CN(B) fragments is decreasing with increasing vibrational state of the product. The results provide vital information for the application of laser diagnostic techniques based on strong UV excitation, as they show that such methods might not be entirely non-intrusive and suffering from spectral interferences, unless the laser intensity is kept sufficiently low. Finally, equivalence ratios were determined from "unknown" spectra using multivariate analysis, showing a good agreement with theoretical compositions with an error of 4 %. The method is expected to be a useful diagnostic tool for

  2. Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids.

    PubMed

    Holleboom, Christoph-Peter; Yoo, Sunny; Liao, Pen-Nan; Compton, Ian; Haase, Winfried; Kirchhoff, Helmut; Walla, Peter Jomo

    2013-09-26

    The regulation of light-harvesting in photosynthesis under conditions of varying solar light irradiation is essential for the survival and fitness of plants and algae. It has been proposed that rearrangements of protein distribution in the stacked grana region of thylakoid membranes connected to changes in the electronic pigment-interaction play a key role for this regulation. In particular, carotenoid-chlorophyll interactions seem to be crucial for the down-regulation of photosynthetic light-harvesting. So far, it has been difficult to determine the influence of the dense protein packing found in native photosynthetic membrane on these interactions. We investigated the changes of the electronic couplings between carotenoids and chlorophylls and the quenching in grana thylakoids of varying protein packing density by two-photon spectroscopy, conventional chlorophyll fluorometry, low-temperature fluorescence spectroscopy, and electron micrographs of freeze-fracture membranes. We observed an increasing carotenoid-chlorophyll coupling and fluorescence quenching with increasing packing density. Simultaneously, the antennas size and excitonic connectivity of Photosystem II increased with increasing quenching and carotenoid-chlorophyll coupling whereas isolated, decoupled LHCII trimers decreased. Two distinct quenching data regimes could be identified that show up at different protein packing densities. In the regime corresponding to higher protein packing densities, quenching is strongly correlated to carotenoid-chlorophyll interactions whereas in the second regime, a weak correlation is apparent with low protein packing densities. Native membranes are in the strong-coupling data regime. Consequently, PSII and LHCII in grana membranes of plants are already quenched by protein crowding. We concluded that this ensures efficient electronic connection of all pigment-protein complexes for intermolecular energy transfer to the reaction centers and allows simultaneously

  3. Diffusion Tensor Analysis by Two-Dimensional Pair Correlation of Fluorescence Fluctuations in Cells.

    PubMed

    Di Rienzo, Carmine; Cardarelli, Francesco; Di Luca, Mariagrazia; Beltram, Fabio; Gratton, Enrico

    2016-08-23

    In a living cell, the movement of biomolecules is highly regulated by the cellular organization into subcompartments that impose barriers to diffusion, can locally break the spatial isotropy, and ultimately guide these molecules to their targets. Despite the pivotal role of these processes, experimental tools to fully probe the complex connectivity (and accessibility) of the cell interior with adequate spatiotemporal resolution are still lacking. Here, we show how the heterogeneity of molecular dynamics and the location of barriers to molecular motion can be mapped in live cells by exploiting a two-dimensional (2D) extension of the pair correlation function (pCF) analysis. Starting from a time series of images collected for the same field of view, the resulting 2D pCF is calculated in the proximity of each point for each time delay and allows us to probe the spatial distribution of the molecules that started from a given pixel. This 2D pCF yields an accurate description of the preferential diffusive routes. Furthermore, we combine this analysis with the image-derived mean-square displacement approach and gain information on the average nanoscopic molecular displacements in different directions. Through these quantities, we build a fluorescence-fluctuation-based diffusion tensor that contains information on speed and directionality of the local dynamical processes. Contrary to classical fluorescence correlation spectroscopy and related methods, this combined approach can distinguish between isotropic and anisotropic local diffusion. We argue that the measurement of this iMSD tensor will contribute to advance our understanding of the role played by the intracellular environment in the regulation of molecular diffusion at the nanoscale.

  4. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells

    PubMed Central

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C.; Schneider, Gerd; Grünewald, Kay

    2012-01-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the ‘water-window’ wavelength region (2.34–4.37 nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach – the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only. PMID:22210307

  5. Ultrasensitive detection of genetically modified plants by fluorescence cross-correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Xing, Da; Chen, Tongsheng; Liu, Jinfeng

    2006-09-01

    In this study, a novel method for the direct detection of GMP without amplified by the general method of PCR is firstly presented and proved by experiments. In our method, fluorescence correlation spectroscopy, cleaving nucleic acid by restriction endonuclease and two nucleic acid probe hybridization techniques are combined to distinguish the caulifiower mosaic virus (CaMV) 35S promoter and determine whether samples contain genetically modified components. The detection principle is as follows: firstly two restriction endonucleases FOKI and BsrDlare used to cleave the genomic DNA and the 169bp fragments of CaMV 35S promoter are retrieved; secondly, two nucleic acid probes labeled by Rhodamine Green and y5 dyes respectively hybridize with cleaved 169bp fragments of CaMV 35S promoter; thirdly, the hybridization products simultaneously with two dye-labeled probes are detected by fluorescence cross-correlation spectroscopy and GMP is distinguished. As the detection and analysis by FCS can be performed at the level of single molecule, there is no need for any type of amplification. Genetically modified tobaccos are measured by this method. The results indicate this method can detect CaMV 35S promoter of GMP exactly and the sensitivity can be down to 3.47X10 -10M. Because no any type of amplification is involved, this method can avoid the non-specffic amplification and false-positive problems of PCR, Due to its high-sensitivity, simplicity, reliability and little need for sample amounts, this method promises to be a highly effective detection method for GMP.

  6. Lightweight Raman spectroscope using time-correlated photon-counting detection

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Cheng, Shuna; Jo, Javier A.; Lehmann, Kevin K.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2015-01-01

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise–limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption. PMID:26392538

  7. Lightweight Raman spectroscope using time-correlated photon-counting detection.

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Cheng, Shuna; Jo, Javier A; Lehmann, Kevin K; Yakovlev, Vladislav V; Scully, Marlan O

    2015-10-06

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise-limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption.

  8. An Exploratory Study of Spectroscopic Glutamatergic Correlates of Cortical Excitability in Depressed Adolescents

    PubMed Central

    Lewis, Charles P.; Port, John D.; Frye, Mark A.; Vande Voort, Jennifer L.; Ameis, Stephanie H.; Husain, Mustafa M.; Daskalakis, Zafiris J.; Croarkin, Paul E.

    2016-01-01

    Introduction: Transcranial magnetic stimulation (TMS) research has suggested dysfunction in cortical glutamatergic systems in adolescent depression, while proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated deficits in concentrations of glutamatergic metabolites in depressed individuals in several cortical regions, including the anterior cingulate cortex (ACC). However, few studies have combined TMS and MRS methods to examine relationships between glutamatergic neurochemistry and excitatory and inhibitory neural functions, and none have utilized TMS-MRS methodology in clinical populations or in youth. This exploratory study aimed to examine relationships between TMS measures of cortical excitability and inhibition and concentrations of glutamatergic metabolites as measured by 1H-MRS in depressed adolescents. Methods: Twenty-four adolescents (aged 11–18 years) with depressive symptoms underwent TMS testing, which included measures of the resting motor threshold (RMT), cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Fourteen participants from the same sample also completed 1H-MRS in a 3 T MRI scanner after TMS testing. Glutamate + glutamine (Glx) concentrations were measured in medial ACC and left primary motor cortex voxels with a TE-optimized PRESS sequence. Metabolite concentrations were corrected for cerebrospinal fluid (CSF) after tissue segmentation. Pearson product-moment and Spearman rank-order correlations were calculated to assess relationships between TMS measures and [Glx]. Results: In the left primary motor cortex voxel, [Glx] had a significant positive correlation with the RMT. In the medial ACC voxel, [Glx] had significant positive correlations with ICF at the 10-ms and 20-ms interstimulus intervals (ISIs). Conclusion: These preliminary data implicate glutamate in cortical excitatory processes measured by TMS. Limitations included small sample size, lack of

  9. Depolarized Photon Correlation Spectroscopic Study of the Glass-Forming Liquid Cumene at Very High Pressures

    NASA Astrophysics Data System (ADS)

    Lyon, Kevin; Ransom, Tim; Oliver, William

    2014-03-01

    In recent years full-spectrum analysis of light-scattering data has been utilized to explore the liquid-glass transition at variable temperatures and ambient pressure. We have developed methods for doing depolarized photon correlation spectroscopy (PCS) in the diamond anvil cell in order to probe directly the structural relaxation time of glass-forming liquids at very high pressures. Here we present results for liquid cumene at 25 C between 1 bar and pressures approaching the room-temperature glass transition at 2.1 GPa. Data along higher-temperature isotherms will also be presented. Methods for minimizing any undesired heterodyne component in the collected light as well as the use of the longitudinal modes of the Brillouin spectrum to aid in the acquisition and spatial filtering of the scattered light will be discussed. Intensity-intensity correlation data were found to be well represented by the KWW equation with a nearly constant stretching parameter of g = 0.66 for 25 C. Furthermore, the relaxation time as a function of pressure is described will using a modified VTF expression: (P)=0exp{DP/(P0-P)}, with values of 0 = 11.9 ps, D = 18.6, and P0 = 3.4 GPa at T = 25 °C. Thus, (P) has been obtained at 25 °C for Cumene over seven decades from about a microsecond to several seconds and is found to be in excellent agreement with previously determined values for the alpha relaxation at lower pressures obtained from Brillouin data [G. Li, et al., Phys. Rev. Lett. 74, 2280 (1995)]. Partially supported by NSF Grant Number: DMR 0552944.

  10. Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy.

    PubMed

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Cucina, Mirko; Massaccesi, Luisa; Gigliotti, Giovanni

    2016-04-01

    In a previous work co-digestion of food waste and sewage sludge was performed in a pilot apparatus reproducing operating conditions of an existing full scale digester and processing waste mixed sludge (WMS) and fruit and vegetable waste (FVW) at different organic loading rates. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity was conducted. In this paper we considered humification parameters and spectroscopic analysis. Humification parameters indicated a higher not humified fraction (NH) and a lower degree of humification (DH) of FVW with respect to WMS (NH=19.22 and 5.10%; DH=36.65 and 61.94% for FVW and WMS, respectively) associated with their different chemical compositions and with the stabilization process previously undergone by sludge. FVW additions seemed to be favourable from an agronomical point of view since a lower percentage of organic carbon was lost. Fourier transform infrared spectra suggested consumption of aliphatics associated with rising in bio-methane generation followed by accumulation of aliphatics and carboxylic acids when the biogas production dropped. The trend of peaks ratios can be used as an indicator of the process efficiency. Fluorescence intensity of peak B associated with tryptophan-like substances and peak D associated with humic-like substances observed on tridimensional Excitation Emission Matrix maps increased up to sample corresponding to the highest rate of biogas production. Overall spectroscopic results provided evidence of different chemical pathways of anaerobic digestion associated with increasing amount of FVW which led to different levels of biogas production.

  11. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  12. Biosensors technologies: acousto-optic tunable filter-based hyperspectral and polarization imagers for fluorescence and spectroscopic imaging.

    PubMed

    Gupta, Neelam

    2009-01-01

    Filters are a critical element in fluorescence detection used by many biosensors. One of the main limitations of the conventional optical filters used in biosensors is that they are limited to a single wavelength operation while numerous wavelengths are used in a typical fluorescence detection used for biosensing. Acousto-optic tunable filters (AOTFs) have the potential to overcome this limitation and provide both spectral and polarization information because they are wavelength agile and polarization sensitive. Such filters can be used to develop compact hyperspectral/polarization imagers. Such an imager can be readily used for real-time two-dimensional spectral imaging applications. These imagers are small, vibration-insensitive, robust, remotely controlled, and programmable and can be used in the spectral region from the ultraviolet (UV) to the near infrared (NIR). A minimal amount of data processing is required for AOTF imagers because they can acquire images at only select wavelengths of interest, and the selected wavelengths can be changed based on the sensing requirements. We use AOTFs made of KDP, MgF2, and TeO2, with a Si-based CCD camera to cover different spectral regions from the UV to the NIR. A liquid crystal variable retarder (LCVR) is used to obtain two orthogonally polarized images at each wavelength The user can write software to control the operation and image acquisition for an AOTF imager for a fully computer controlled operation.

  13. Correlations between arsenic in Maine groundwater and microbial populations as determined by fluorescence in situ hybridization.

    PubMed

    Weldon, Jennifer M; MacRae, Jean D

    2006-04-01

    Arsenic is known to cause serious health effects when consumed in drinking water. In the state of Maine, approximately half of the population relies on private groundwater wells for their drinking water. Of those wells, as many as 13% may contain arsenic levels above the current EPA maximum contaminant level of 10 microgl(-1). Microorganisms can potentially contribute to arsenic release into groundwater through several mechanisms. Some can reduce arsenate to arsenite, which is more toxic and may be more mobile. Sulfurospirillum species NP4, which was isolated from well water, respires arsenate and could act in this way. Microorganisms can also act indirectly by reducing bedrock surface coatings, such as iron oxyhydroxides, that adsorb arsenic in the groundwater environment. The genus Geobacter contains many species that are capable of iron reduction that could play a role in the indirect release of arsenic into groundwater. Water samples from Northport, ME and the Branch Lake region of Ellsworth, ME, which both have elevated groundwater arsenic levels, have been probed using fluorescence in situ hybridization (FISH), to determine the percentage of the population that is NP4 and the percentage that are Geobacter species. Geobacter abundance correlates well with the total arsenic concentration indicating that indirect mechanisms could be important in releasing arsenic. NP4 appears to be reducing arsenate since its prevalence correlates well with arsenite, the end product of arsenate respiration.

  14. Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking.

    PubMed

    de Thomaz, A A; Almeida, D B; Pelegati, V B; Carvalho, H F; Cesar, C L

    2015-03-19

    One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.

  15. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens.

  16. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Morishita, Kiyoshi; Maclean, James L.; Liu, Biwu; Jiang, Hui; Liu, Juewen

    2013-03-01

    Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In our effort to elucidate the quenching mechanism, we studied a total of eight AgNCs prepared by different hairpin DNA sequences; they showed different sensitivity to Hg2+, and DNA with a larger cytosine loop size produced more sensitive AgNCs. In all the cases, samples strongly quenched by Hg2+ were also more easily photobleached. Light of shorter wavelengths bleached AgNCs more potently, and photobleached samples can be recovered by NaBH4. Strong fluorescence quenching was also observed with high redox potential metal ions such as Ag+, Au3+, Cu2+ and Hg2+, but not with low redox potential ions. Such metal induced quenching cannot be recovered by NaBH4. Electronic absorption and mass spectrometry studies offered further insights into the oxidation reaction. Our results correlate many important experimental observations and will fuel the further growth of this field.Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In

  17. Studies of cytochrome c-551 unfolding using fluorescence correlation spectroscopy and other biophysical techniques.

    PubMed

    Sil, Pallabi; Paul, Simanta Sarani; Silvio, Eva Di; Travaglini-Allocatelli, Carlo; Chattopadhyay, Krishnananda

    2016-09-21

    In this paper, we have studied the equilibrium unfolding transitions of cytochrome c from Pseudomonas aeruginosa (cytc551), a small bacterial protein. Similar to eukaryotic cytochrome c, cytc551 folds sequentially, although significant differences exist in the order of folding units (foldons). There are two regions of cytc551 (N-terminal helix with residue number 3 to 10 and the loop 2 region containing residues 34 to 45), in which no foldon unit could be assigned. In addition, the helix containing the Cys-X-X-Cys-His motif, adjacent to the N-terminal helix (residue number 3 to 10), shows unexplained ultra-fast collapse. To obtain further insights, we have studied cytc551 site-directed mutants using fluorescence correlation spectroscopy (FCS) and molecular dynamics simulation. We have found out that cytc551 unfolds through the formation of a fluorescently dark intermediate state and the amplitude of the dark component depends on the position of labeling. We have utilized this position dependence to propose a shape change model during the unfolding of cytc551. The present results show that the N-terminal helix remains in a collapsed position even in the completely unfolded state and this helix may act as a rigid support to guide the folding of its adjacent helix. This rigid support may be responsible for the ultra-fast collapse of the adjacent helix region, which occurs during the initial events of folding. The present results also show that the C-terminal end of loop 2 traverses a large distance during unfolding compared to the N-terminal end, which justifies the observed flexibility of the loop 2 region.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2017-01-01

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  20. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  1. Interplay of electron correlations and localization in disordered β-tantalum films: Evidence from dc transport and spectroscopic ellipsometry study

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Chvostova, D.; Bagdinov, A. V.; Petrova, M. G.; Demikhov, E. I.; Pudonin, F. A.; Dejneka, A.

    2015-02-01

    We report the dc transport (5 K ≲ T ≲ 380 K) and spectroscopic ellipsometry (0.8 eV ≤ hν ≤ 8.5 eV, T ≃ 300 K) study of β-Ta films prepared by rf sputtering deposition as a function of their thickness in the range 2.5 nm ≲ d ≲ 200 nm. The dc transport of the β-Ta films with a thickness d ≳ 25 nm is characterized by negative temperature coefficient of resistivity (TCR) caused by localization effects peculiar of highly disordered metals. Their dielectric function spectra display non-metallic-like behavior due to the presence of the pronounced band at 2 eV. We found that with increasing TCR absolute value, specifying elevated degree disorder, the optical spectral weight (SW) of free charge carriers decreases. The associated SW is recovered in the range of Mott-Hubbard transitions, indicating the mechanism of localization enhancement by electronic correlations in disordered metals.

  2. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  3. Interplay of electron correlations and localization in disordered β-tantalum films: Evidence from dc transport and spectroscopic ellipsometry study

    SciTech Connect

    Kovaleva, N. N.; Chvostova, D.; Dejneka, A.; Bagdinov, A. V.; Petrova, M. G.; Demikhov, E. I.; Pudonin, F. A.

    2015-02-02

    We report the dc transport (5 K ≲ T ≲ 380 K) and spectroscopic ellipsometry (0.8 eV ≤ hν ≤ 8.5 eV, T ≃ 300 K) study of β-Ta films prepared by rf sputtering deposition as a function of their thickness in the range 2.5 nm ≲ d ≲ 200 nm. The dc transport of the β-Ta films with a thickness d ≳ 25 nm is characterized by negative temperature coefficient of resistivity (TCR) caused by localization effects peculiar of highly disordered metals. Their dielectric function spectra display non-metallic-like behavior due to the presence of the pronounced band at 2 eV. We found that with increasing TCR absolute value, specifying elevated degree disorder, the optical spectral weight (SW) of free charge carriers decreases. The associated SW is recovered in the range of Mott-Hubbard transitions, indicating the mechanism of localization enhancement by electronic correlations in disordered metals.

  4. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    SciTech Connect

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus; Becker, Wolfgang; Smietana, Stefan; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  5. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  6. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

  7. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    NASA Astrophysics Data System (ADS)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  8. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    PubMed Central

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  9. Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Basché, Thomas; Hinze, Gerald; Stöttinger, Sven

    2016-09-01

    A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.

  10. Two-photon two-focus fluorescence correlation spectroscopy with a tunable distance between the excitation volumes.

    PubMed

    Didier, Pascal; Godet, Julien; Mély, Yves

    2009-05-01

    In the present work, a Michelson interferometer was combined with a two-photon excitation microscope to perform two-focus Fluorescence Correlation Spectroscopy. This simple and original approach allows us to tune the distance between the two excitation volumes and determine absolute diffusion constants. The technique was validated on different model systems that demonstrate the sensitivity of the approach.

  11. Quantitative study of protein-protein interactions in live cell by dual-color fluorescence correlation spectroscopy.

    PubMed

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2014-01-01

    Dual-color FCS is a powerful method to monitor protein-protein interactions in living cells. The main idea is based on the cross-correlation analysis of temporal fluorescence intensity fluctuations of two fluorescent proteins to obtain their co-diffusion and relative concentration. But, when performing these experiments, the spectral overlap in the emission of the two colors produces an artifact that corrupts the cross-correlation data: spectral bleed-through. We have shown that problems with cross talk are overcome with Fluorescence Lifetime Correlation Spectroscopy (FLCS). FLCS applied to dual-color cross-correlation, utilizing for example eGFP and mCherry fluorescent proteins, allows the determination of protein-protein interactions in living cells without the need of spectral bleed-through calibration. Here, we present in detail how this methodology can be implemented using a commercial setup (Microtime from PicoQuant, SP8 SMD from Leica or any conventional confocal with PicoQuant TCSPC module, and also with a Becker and Hickl TCSPC module). The dual-color FLCS experimental procedure where the different laser intensities do not have to be controlled during the experiment constitutes a very powerful technique to quantitatively study protein interactions in live samples.

  12. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies.

    PubMed

    Patil, Sangamesh A; Unki, Shrishila N; Kulkarni, Ajaykumar D; Naik, Vinod H; Badami, Prema S

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial (Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities (Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  13. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  14. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    PubMed Central

    Lang, Kathrin; Rieder, Renate; Micura, Ronald

    2007-01-01

    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures. PMID:17693433

  15. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  16. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  17. Mapping Liquid-liquid protein phase separation using ultra-fast-scanning fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Arnold, Craig B.; Priestley, Rodney D.; Brangwynne, Clifford P.

    Intrinsically disordered proteins (IDPs) are an understudied class of proteins that play important roles in a wide variety of biological processes in cells. We've previously shown that the C. elegans IDP LAF-1 phase separates into P granule-like droplets in vitro. However, the physics of the condensed phase remains poorly understood. Here, we use a novel technique, ultra-fast-scanning fluorescence correlation spectroscopy, to study the nano-scale rheological properties of LAF-1 droplets. Ultra-fast-scanning FCS uses a tunable acoustic gradient index of refraction (TAG) lens with an oil immersion objective to control axial movement of the focal point over a length of several micrometers at frequencies of 70kHz. Using ultra-fast-scanning FCS allows for the accurate determination of molecular concentrations and their diffusion coefficient, when the particle is passing through an excitation volume. Our work reveals an asymmetric LAF-1 phase diagram, and demonstrates that LAF-1 droplets are purely viscous phases which are highly tunable by salt concentration.

  18. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.

    PubMed

    Liu, Ke; Tian, Yu; Burrows, Sean M; Reif, Randall D; Pappas, Dimitri

    2009-09-28

    The ability to quickly measure flow parameters in microfluidic devices is critical for micro total analysis system (microTAS) applications. Macrofluidic methods to assess flow suffer from limitations that have made conventional methods unsuitable for the flow behavior profiling. Single molecule fluorescence correlation spectroscopy (FCS) has been employed in our study to characterize the fluidic vortex generating at a T-shape junction of microscale channels. Due to its high spatial and temporal resolution, the corresponding magnitudes relative to different flow rates in the main channel can be quantitatively differentiated using flow time (tau(F)) measurements of dye molecules traversing the detection volume in buffer solution. Despite the parabolic flow in the channel upstream, a heterogeneous distribution of flow has been detected across the channel intersection. In addition, our current observations also confirmed the aspect of vortex-shaped flow in low-shear design that was developed previously for cell culture. This approach not only overcomes many technical barriers for examining hydrodynamic vortices and movements in miniature structures without physically integrating any probes, but it is also especially useful for the hydrodynamic studies in polymer-glass based micro-reactor and -mixer.

  19. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.

    PubMed

    Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng

    2016-08-01

    We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of electrostatic binding of PAMAM dendrimers and charged phthalocyanines by fluorescence correlation spectroscopy.

    PubMed

    Garcia-Fernandez, Emilio; Paulo, Pedro M R; Costa, Sílvia M B

    2015-02-14

    We have assessed host-guest interactions between PAMAM dendrimers and charged phthalocyanine probes by Fluorescence Correlation Spectroscopy (FCS). Our results show strong binding in water at low ionic strength with an affinity that decreases from KB ∼ 10(9) to 10(8) M(-1) upon decreasing the phthalocyanine charge of z = -4, -2 and -1. The binding affinity also decreases significantly upon salt addition leading to KB values of ca. 10(5)-10(6) M(-1). The changes of binding affinity probed by varying the phthalocyanine charge, and by changing the ionic strength or pH conditions, allowed us to evaluate the electrostatic contribution (Kel) in dendrimer-phthalocyanine interactions. In particular, this approach afforded values of electrostatic potential for PAMAM dendrimers in water at low ionic strength and at dendrimer concentrations in the nanomolar range. The electrostatic potential of PAMAM generations 4 and 7 are around 50 mV in close agreement with theoretical estimates using the Poisson-Boltzmann cell model. Interestingly, the nonelectrostatic binding is significant and contributes even more than electrostatic binding to dendrimer-phthalocyanine interactions. The nonelectrostatic binding contributes to an affinity of KB above 10(5) M(-1), as measured under conditions of low dendrimer charge and high ionic strength, which makes these dendrimers promising hosts as drug carriers.

  1. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    PubMed

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  2. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

    PubMed Central

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545

  3. Measuring tear protein mobility in thin hydrogel films with fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Stevens, Andrew P.; Wright, Bryon E.; Hlady, Vladimir

    2004-06-01

    Fouling of contact lenses is often due to tear protein diffusion into and aggregation within the contact lens material. These processes can diminish water and oxygen diffusion and create optical cloudiness of the lens. In order to understand the interactions between proteins and hydrogel contact lens materials a study was designed to measure the diffusivity of two model proteins within hydrogel films of varying composition using fluorescence correlation spectroscopy (FCS). Diffusion of human serum albumin (HSA) and apoferritin (aFER) was examined in a range of ~20 μm thick poly(acrylamide) (pAA) and poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. Protein diffusivity was measured as a function of depth position within each hydrogel film. The characteristic diffusion time for two proteins in pHEMA hydrogels increased relative to both their diffusivity in solution and in pAA hydrogels, indicating that the protein-pHEMA interaction rather than the degree of hydrogel crosslinking is responsible for the observed effects. The resulting spatial representation of the molecular diffusion of proteins into and interaction with hydrogel materials builds a basis on which to conduct similar studies using commercial contact lens samples.

  4. Phospholipid diffusion coefficients of cushioned model membranes determined via z-scan fluorescence correlation spectroscopy.

    PubMed

    Sterling, Sarah M; Allgeyer, Edward S; Fick, Jörg; Prudovsky, Igor; Mason, Michael D; Neivandt, David J

    2013-06-25

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir-Schaefer method on a hydrogel layer is potentially an effective mimic of the cross section of a biological membrane and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and co-workers revealed that phospholipid diffusion changes from raftlike to free diffusion as the temperature is increased-an insight into the dynamic behavior of hydrogel supported membranes not previously reported.

  5. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  6. Using fluorescence correlation spectroscopy to study diffusion in the presence of a hierarchy of membrane domains

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2014-03-01

    Fluorescence correlation spectroscopy (FCS) is a commonly used experimental technique to study molecular transport, especially in biological systems. FCS is particularly useful in two-dimensional systems such as the cell membrane, where molecules approximately move in a plane over several hundreds of nanometers, and the signal to noise ratio is high. Recent observations showed that proteins and lipids in the plasma membrane (the outermost membrane of a cell) can become temporarily confined in a hierarchy of membrane domains, induced by actin filaments and dynamic clusters formed by lipids and proteins (rafts). There has been considerable interest in measuring the characteristic size and lifetime of these domains via microscopy techniques, including FCS. Even though FCS is widely applicable, interpretation of the results is often indirect, as data has to be fit to model predictions in order to extract transport coefficients. In this talk, I will present our recent theoretical and computational findings on how FCS measurements would reflect diffusion in the simultaneous presence of cytoskeleton induced membrane compartments, and raft-like domains.

  7. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media

    NASA Astrophysics Data System (ADS)

    Zustiak, Silviya; Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-12-01

    Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media.

  8. A Fluorescence Correlation Spectroscopy Study of the Cryoprotective Mechanism of Glucose on Hemocyanin

    NASA Astrophysics Data System (ADS)

    Hauger, Eric J.

    Cryopreservation is the method of preserving biomaterials by cooling and storing them at very low temperatures. In order to prevent the damaging effects of cooling, cryoprotectants are used to inhibit ice formation. Common cryoprotectants used today include ethylene glycol, propylene glycol, dimethyl sulfoxide, glycerol, and sugars. However, the mechanism responsible for the effectiveness of these cryoprotectants is poorly understood on the molecular level. The water replacement model predicts that water molecules around the surfaces of proteins are replaced with sugar molecules, forming a protective layer against the denaturing ice formation. Under this scheme, one would expect an increase in the hydrodynamic radius with increasing sugar concentration. In order to test this hypothesis, two-photon fluorescence correlation spectroscopy (FCS) was used to measure the hydrodynamic radius of hemocyanin (Hc), an oxygen-carrying protein found in arthropods, in glucose solutions up to 20wt%. FCS found that the hydrodynamic radius was invariant with increasing glucose concentration. Dynamic light scattering (DLS) results verified the hydrodynamic radius of hemocyanin in the absence of glucose. Although this invariant trend seems to indicate that the water replacement hypothesis is invalid the expected glucose layer around the Hc is smaller than the error in the hydrodynamic radius measurements for FCS. The expected change in the hydrodynamic radius with an additional layer of glucose is 1nm, however, the FCS standard error is +/-3.61nm. Therefore, the water replacement model cannot be confirmed nor refuted as a possible explanation for the cryoprotective effects of glucose on Hc.

  9. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy.

    PubMed

    Mori, Takayasu; Kikuchi, Eriko; Watanabe, Yuko; Fujii, Shinya; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Sohara, Eisei; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2013-11-01

    WNKs (with-no-lysine kinases) are the causative genes of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), and form a signal cascade with OSR1 (oxidative stress-responsive 1)/SPAK (STE20/SPS1-related proline/alanine-rich protein kinase) and Slc12a (solute carrier family 12) transporters. We have shown that this signal cascade regulates blood pressure by controlling vascular tone as well as renal NaCl excretion. Therefore agents that inhibit this signal cascade could be a new class of antihypertensive drugs. Since the binding of WNK to OSR1/SPAK kinases was postulated to be important for signal transduction, we sought to discover inhibitors of WNK/SPAK binding by screening chemical compounds that disrupt the binding. For this purpose, we developed a high-throughput screening method using fluorescent correlation spectroscopy. As a result of screening 17000 compounds, we discovered two novel compounds that reproducibly disrupted the binding of WNK to SPAK. Both compounds mediated dose-dependent inhibition of hypotonicity-induced activation of WNK, namely the phosphorylation of SPAK and its downstream transporters NKCC1 (Na/K/Cl cotransporter 1) and NCC (NaCl cotransporter) in cultured cell lines. The two compounds could be the promising seeds of new types of antihypertensive drugs, and the method that we developed could be applied as a general screening method to identify compounds that disrupt the binding of two molecules.

  10. Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell

    NASA Astrophysics Data System (ADS)

    Guo, Han-Wen; Yu, Jia-Sin; Hsu, Shu-Han; Wei, Yau-Huei; Lee, Oscar K.; Dong, Chen-Yuan; Wang, Hsing-Wen

    2015-01-01

    Reduced nicotinamide dinucleotide (NADH) fluorescence lifetime has been broadly used as a metabolic indicator for stem cell imaging. However, the direct relationship between NADH fluorescence lifetime and metabolic pathway and activity remains to be clarified. In this study, we measured the NADH fluorescence lifetime of human mesenchymal stem cells (hMSCs) as well as the metabolic indictors, such as adenosine triphosphate (ATP) level, oxygen consumption, and lactate release, up to 4 weeks under normal osteogenic differentiation and oxidative phosphorylation-attenuated/inhibited differentiation by oligomycin A (OA) treatment. NADH fluorescence lifetime was positively correlated with oxygen consumption and ATP level during energy transformation from glycolysis to oxidative phosphorylation. Under OA treatment, oxidative phosphorylation was attenuated/inhibited (i.e., oxygen consumption remained the same as controls or lower), cells showed attenuated differentiation under glycolysis, and NADH fluorescence lifetime change was not detected. Increased expression of the overall complex proteins was observed in addition to Complex I. We suggested special caution needs to be exercised while interpreting NADH fluorescence lifetime signal in terms of stem cell differentiation.

  11. Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Mandal, Amit Kumar; Bhattacharyya, Kankan

    2014-03-01

    Effect of ethanol-water mixture on the hydrodynamic radius (rH) and conformational dynamics of lysozyme has been studied by circular dichroism, emission spectra, and fluorescence correlation spectroscopy. For this purpose, the protein lysozyme is covalently labeled near the active site with a fluorescent probe, alexa 488. The ethanol molecules are sequestered near the hydrophobic tryptophan residues as indicated by the blue shift of the emission maximum of tryptophan. It is observed that both size (rH) and time constant of conformational relaxation (τR) of lysozyme oscillate with increase in ethanol concentration. The rH of the protein fluctuates from 19 Å in the native state, to a minimum of 13 Å, and a maximum of 29 Å. It is proposed that the oscillating behavior arises from competition between mutual interaction among protein, ethanol, and water. The fluorescence intensity fluctuates because of quenching of the fluorescence of the probe (alexa) by the free amino group of certain residues (e.g., tryptophan). Rate of inter-conversion (folding dynamics) between the open (fluorescent) and closed (non-fluorescent) form has been determined and is found to exhibit similar oscillation with variation in ethanol content.

  12. Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging

    PubMed Central

    Leblond, F; Ovanesyan, Z; Davis, S C; Valdés, P A; Kim, A; Hartov, A; Wilson, B C; Pogue, B W; Paulsen, K D; Roberts, D W

    2016-01-01

    Here we derived analytical solutions to diffuse light transport in biological tissue based on spectral deformation of diffused near-infrared measurements. These solutions provide a closed-form mathematical expression which predicts that the depth of a fluorescent molecule distribution is linearly related to the logarithm of the ratio of fluorescence at two different wavelengths. The slope and intercept values of the equation depend on the intrinsic values of absorption and reduced scattering of tissue. This linear behavior occurs if the following two conditions are satisfied: the depth is beyond a few millimeters, and the tissue is relatively homogenous. We present experimental measurements acquired with a broad-beam non-contact multi-spectral fluorescence imaging system using a hemoglobin-containing diffusive phantom. Preliminary results confirm that a significant correlation exists between the predicted depth of a distribution of protoporphyrin IX (PpIX) molecules and the measured ratio of fluorescence at two different wavelengths. These results suggest that depth assessment of fluorescence contrast can be achieved in fluorescence-guided surgery to allow improved intra-operative delineation of tumor margins. PMID:21971201

  13. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating.

    PubMed

    Grossutti, Michael; Seenath, Ryan; Lipkowski, Jacek

    2015-10-27

    The scaffolded vesicle has been employed as an alternative means of developing natural model membranes and envisioned as a potential nutraceutical transporter. Furthering the research of the scaffolded vesicle system, a nucleophilic substitution reaction was implemented to form an ester linkage between palmitate and terminal hydroxyl groups of dextran in order to hydrophobically modify the hydrogel scaffold. An average tilt angle of 38° of the hydrophobic palmitate modifying layer on the surface of the hydrogel was determined from dichroic ratios obtained from infrared spectra collected in the attenuated total reflection (ATR) configuration. ATR-IR studies of the DMPC-coated acylated hydrogel demonstrated that the hydrocarbon chains of the DMPC coating was similar to those of the DMPC bilayers and that the underlying palmitate layer had a negligible effect on the average tilt angle (26°) of the DMPC coating. The permeability of this acylated hydrogel was investigated with fluorescence spectroscopy and the terbium/dipicolinic acid assay. The hydrophobic modification on the surface of the hydrogel bead allowed for an efficient deposition of a DMPC layer that served as an impermeable barrier to terbium efflux. About 72% of DMPC-coated acylated hydrogel beads showed ideal barrier properties. The remaining 28% were leaking, but the half-life of terbium efflux of the DMPC-coated acylated hydrogel was increasing, and the total amount of leaked terbium was decreasing with the incubation time. The half-life time and the retention were considered a marked improvement relative to past scaffolded vesicle preparations. The process of acylating hydrogel beads for efficient DMPC deposition has been identified as another viable method for controlling the permeability of the scaffolded vesicle.

  14. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  15. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  16. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  17. Changes in fluorescent dissolved organic matter upon interaction with anionic surfactant as revealed by EEM-PARAFAC and two dimensional correlation spectroscopy.

    PubMed

    Maqbool, Tahir; Hur, Jin

    2016-10-01

    Surfactants are present in significant amounts in both domestic and industrial wastewater, which may interact with dissolved organic matter (DOM). The present study investigated the interactions of sodium dodecyl sulfate (SDS) with three different DOM solutions, including bovine serum albumin (BSA), humic acid (HA), and the mixture of the two (BSA-HA), based on two advanced spectroscopic tools: excitation emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC) and two dimensional correlation spectroscopy (2D-COS). The responses of two protein-like components to the addition of SDS differed depending the presence and the absence of HA. A decreasing and an increasing trend was observed for tryptophan-like (C1) and tyrosine-like (C2) components, respectively, in the BSA solution, while the BSA-HA mixture exhibited increasing fluorescence trends for both protein-like components. The conflicting results suggest that HA plays a secondary role in the protein-SDS interactions. No interaction between the SDS and humic-like component was found. 2D-COS combined with fluorescence spectra demonstrated that the protein-SDS interaction occurred on the order of C2 > C1 for the BSA solution but C1 > C2 for the BSA-HA mixture. Analyses of Scatchard plots confirmed the sequential order interpreted from 2D-COS, showing consistent trends in the binding constants. However, the presence of HA affected the protein-SDS interactions in different manners for C1 and C2, enhancing and reducing the binding constants, respectively. Circular dichroism spectra confirmed the occurrence of conformational changes in BSA with SDS. EEM-PARAFAC and 2D-COS successfully explained different interactions of surfactant with protein-like components in the presence of HA.

  18. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.

  19. Kinesin-1 inhibits the aggregation of amyloid-β peptide as detected by fluorescence cross-correlation spectroscopy.

    PubMed

    Zheng, Yanpeng; Tian, Shijun; Peng, Xianglei; Yang, Jingfa; Fu, Yuanhui; Jiao, Yueying; Zhao, Jiang; He, Jinsheng; Hong, Tao

    2016-04-01

    Although the exact etiology and pathogenesis of Alzheimer's disease (AD) are still unclear, amyloid-β (Aβ) generated by the proteolytic processing of amyloid-β precursor protein (APP) aggregate to form toxic amyloid species. Kinesin-1 is the first identified ATP-dependent axonal transport motor protein that has been proven to affect Aβ generation and deposition. In this paper, we applied dual-color fluorescence cross-correlation spectroscopy (DC-FCCS) to investigate the direct interaction of Aβ with kinesin-1 at the single-molecule fluorescence level in vitro. The results showed that two kinds of enhanced green fluorescent protein (EGFP)-tagged kinesin light-chain subunits of kinesin-1(KLCs), KLC-E and E-KLC inhibited the aggregation of Aβ over a period of time, providing additional insight into the mechanism of axonal transport deficits in AD.

  20. Skin Intrinsic Fluorescence Correlates With Autonomic and Distal Symmetrical Polyneuropathy in Individuals With Type 1 Diabetes

    PubMed Central

    Conway, Baqiyyah N.; Aroda, Vanita R.; Maynard, John D.; Matter, Nathaniel; Fernandez, Stephen; Ratner, Robert E.; Orchard, Trevor J.

    2011-01-01

    OBJECTIVE To determine whether skin intrinsic fluorescence (SIF) was associated with autonomic neuropathy and confirmed distal symmetrical polyneuropathy (CDSP) in 111 individuals with type 1 diabetes (mean age 49 years, mean diabetes duration 40 years). RESEARCH DESIGN AND METHODS SIF was measured using the SCOUT DM device. Autonomic neuropathy was defined as an electrocardiographic abnormal heart rate response to deep breathing (expiration-to-inspiration ratio <1.1). CDSP was defined using the Diabetes Control and Complications Trial clinical exam protocol (the presence of two or more of the following: symptoms, sensory and/or motor signs, and/or reduced/absent tendon reflexes consistent with DSP) confirmed by the presence of an abnormal age-specific vibratory threshold (using a Vibratron II tester). RESULTS The prevalence of autonomic neuropathy and CDSP were 61 and 66%, respectively. SIF was higher in those with autonomic neuropathy (P < 0.0001). In multivariable analyses controlling for age and updated mean (18-year average) HbA1c, and allowing for other univariately and clinically significant correlates of autonomic neuropathy, each SD change in SIF was associated with a 2.6-greater likelihood of autonomic neuropathy (P = 0.006). Receiver operating characteristic (ROC) analyses revealed that SIF and updated mean HbA1c accounted for 80 and 57%, respectively, of the area under the curve (AUC) for autonomic neuropathy. SIF also was higher in those with CDSP (P < 0.0001) and remained so in multivariable analyses (odds ratio 2.70; P = 0.005). ROC analyses revealed that SIF and updated mean HbA1c accounted for 78 and 59%, respectively, of the AUC for CDSP. CONCLUSIONS SIF, a marker of dermal advanced glycation end products, appears to be more strongly associated with the presence of both CDSP and autonomic neuropathy than mean HbA1c. PMID:21307380

  1. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy.

    PubMed

    Bag, Nirmalya; Yap, Darilyn Hui Xin; Wohland, Thorsten

    2013-10-25

    The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered (Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase. The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics. In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion, which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So-Ld phase are static and large while they are small and dynamic in the Lo-Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313K) is a cumulative effect of domain meltinvg and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells. The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity. © 2013.

  2. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy.

    PubMed

    Bag, Nirmalya; Yap, Darilyn Hui Xin; Wohland, Thorsten

    2014-03-01

    The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered(Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase.The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics.In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion,which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So–Ldphase are static and large while they are small and dynamic in the Lo–Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells.The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.

  3. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.

    PubMed

    Chen, Wei; Qian, Chen; Liu, Xiao-Yang; Yu, Han-Qing

    2014-10-07

    The elucidation of the interaction between TiO2 nanoparticles (NPs) and natural organic matter (NOM) can help one to better understand the fates, features, and environmental impacts of NPs. In this work, two-dimensional (2D) Fourier transformation infrared (FTIR) correlation spectroscopy (CoS) assisted by the fluorescence excitation-emission matrix (EEM) method is used to explore the interaction mechanism of humic acid (HA) with TiO2 NPs at a molecular level. The results show that the C═O bonds (carboxylate, amide, quinone, or ketone) and C-O bonds (phenol, aliphatic C-OH, and polysaccharide) of HA play important roles in their interaction with TiO2 NPs. The adsorption process of HA onto the surface of TiO2 NPs is different from the bonding process of the two species in solution. The forms of the relevant groups of HA and their consequent reaction with TiO2 NPs are affected to a great extent by the solution pH and the surface charge of NPs. The 2D-FTIR-CoS method is found to be able to construct a comprehensive picture about the NOM-TiO2 NPs interaction process. This 2D-FTIR-CoS approach might also be used to probe other complicated interaction processes in natural and engineered environments.

  4. Spatially Multiplexed Imaging: Fluorescence Correlation Spectroscopy for Efficient Measurement of Molecular Diffusion at Solid-Liquid Interfaces.

    PubMed

    Cooper, Justin T; Harris, Joel M

    2016-04-01

    Fluorescence correlation spectroscopy (FCS) has become an important technique for the characterization of molecular dynamics, especially at interfaces. Fluorescence correlation spectroscopy provides both temporal and spatial resolution for measuring fast processes at equilibrium through analysis of noise in fluorescence intensities from the statistical fluctuations in a small number of molecules. The small molecular populations produce very low-level fluorescence signals, where time-averaging the fluorescence autocorrelation function is needed to generate reasonable signal-to-noise (S/N) ratios. Recently imaging cameras have been adapted to FCS measurements of molecular dynamics at interfaces (membranes and surfaces) through the use of electron-multiplying charge-coupled device (EM-CCD) detectors for acquisition of fluorescence from addressable areas on the detector. This approach provides a major advantage over traditional focused-spot FCS by allowing electronic control over the location and area of the acquired region on the sample surface. Imaging-FCS can also provide a spatial multiplexing advantage through its ability to measure intensity data from larger areas in parallel with no loss of time resolution. In this work, this multiplexing advantage is exploited to determine molecular diffusion rates from the simultaneous measurement of multiple areas on a surface, the autocorrelation traces from which are averaged to improve the S/N ratio. As proof of concept, the diffusion of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) on a C18-modified interface was measured using this multiplexed method and compared to autocorrelation data acquired from a single spot. Due to the slow thermal recovery of the EM-CCD that inhibits fast time-averaging, spatial multiplexing in imaging-FCS provides an eightyfold time savings to reach the same S/N ratio as multiple (time-averaged) measurements from a single spot.

  5. Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock or general-valence-bond potential-energy curves with correlation-energy functionals

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.; San-Fabián, Emilio; Moscardó, Federico

    1992-04-01

    The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an approximate correlation-energy functional] may be computed very accurately by adding the correlation obtained from the HF density to the total HF energy. Three density functionals are used: local spin density (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo-San-Fabian) to be used with general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spectroscopic constants (Re,ωe, and De) is studied. Approximate relations showing how correlation affects them are derived, and may be summarized as follows: (1) the effect on Re and ωe depends only on the correlation derivative at Re, and (2) the effect on De depends mainly on the correlation difference between quasidissociated and equilibrium geometries. A consequence is that all the correlation corrections tested here give larger ωe and De and shorter Re than the uncorrected HF or GVB values. This trend is correct for De for both HF and GVB. For Re and ωe, it is correct in most cases for GVB, but it often fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualitatively correct HF or GVB potential-energy curve, together with a correlation-energy approximation with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

  6. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  7. Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF).

    PubMed

    Karolin, Jan O; Geddes, Chris D

    2012-11-01

    We describe a fundamental observation in Metal-Enhanced Fluorescence (MEF), which has become a leading technology in the life sciences today, namely, how the lifetime of fluorophores near-to metallic plasmon-supporting silver islands/nanoparticles, modulates as a function of excitation power irradiance. This finding is in stark contrast to that observed in classical far-field fluorescence spectroscopy, where excitation power does not influence fluorophore radiative decay/lifetime.

  8. Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study.

    PubMed

    Krawczyk, Przemysław; Jędrzejewska, Beata; Pietrzak, Marek; Janek, Tomasz

    2016-11-01

    In this study, the 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde (PB1) was investigated as a fluorescent dye. For this reason, the spectroscopic properties in different solvents were thoroughly studied. The experimental data were supported by quantum-chemical calculations using density functional theory. Measurements and theoretical calculations showed that PB1 dye is characterized by the non-monotonic solvatochromism, strongly polar charge transfer excited state, large Stokes' shift, high fluorescence quantum yield and high fluorescence lifetime. Simulations using AutoDock presented in this study, showed that after conjugation with Concanavalin A in the active site with LYS116, the PB1 possesses the highest probability of binding affinity. The interaction between the PB1 dye and the Concanavalin A lectin has been investigated by circular dichroism spectroscopy. Conventional fluorescence microscopy imaging of Candida albicans and Yarrowia lipolytica cells, incubated with the PB1-Concanavalin A, was demonstrated. Results show that the PB1 dye is a photostable low molecular weight fluorescent probe, which emits a blue fluorescence. The results of this study have implications for designing PB1-protein conjugate as a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Calculated LogP value together with LogBCF show that PB1-protein conjugate is a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation.

    PubMed

    Moser, Bernhard; Hochreiter, Bernhard; Herbst, Ruth; Schmid, Johannes A

    2017-01-01

    The question whether two proteins interact with each other or whether a protein localizes to a certain region of the cell is often addressed with fluorescence microscopy and analysis of a potential colocalization of fluorescence markers. Since a mere visual estimation does not allow quantification of the degree of colocalization, different statistical methods of pixel-intensity correlation are commonly used to score it. We observed that these correlation coefficients are prone to false positive results and tend to show high values even for molecules that reside in different organelles. Our aim was to improve this type of analysis and we developed a novel method combining object-recognition based colocalization analysis with pixel-intensity correlation to calculate an object-corrected Pearson coefficient. We designed a macro for the Fiji-version of the software ImageJ and tested the performance systematically with various organelle markers revealing an improved robustness of our approach over classical methods. In order to prove that colocalization does not necessarily mean a physical interaction, we performed FRET (fluorescence resonance energy transfer) microscopy. This confirmed that non-interacting molecules can exhibit a nearly complete colocalization, but that they do not show any significant FRET signal in contrast to proteins that are bound to each other. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Correlative cryo-fluorescence and cryo-soft X-ray tomography of adherent cells at European synchrotrons.

    PubMed

    Carzaniga, Raffaella; Domart, Marie-Charlotte; Duke, Elizabeth; Collinson, Lucy M

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a synchrotron-hosted imaging technique used to analyze the ultrastructure of intact, cryo-prepared cells. Correlation of cryo-fluorescence microscopy and cryo-SXT can be used to localize fluorescent proteins to organelles preserved close to native state. Cryo-correlative light and X-ray microscopy (cryo-CLXM) is particularly useful for the study of organelles that are susceptible to chemical fixation artifacts during sample preparation for electron microscopy. In our recent work, we used cryo-CLXM to characterize GFP-LC3-positive early autophagosomes in nutrient-starved HEK293A cells (Duke et al., 2013). Cup-shaped omegasomes were found to form at "hot-spots" on the endoplasmic reticulum. Furthermore, cryo-SXT image stacks revealed the presence of large complex networks of tubulated mitochondria in the starved cells, which would be challenging to model at this scale and resolution using light or electron microscopy. In this chapter, we detail the cryo-CLXM workflow that we developed and optimized for studying adherent mammalian cells. We show examples of data collected at the three European synchrotrons that currently host cryo-SXT microscopes, and describe how raw cryo-SXT datasets are processed into tomoX stacks, modeled, and correlated with cryo-fluorescence data to identify structures of interest. © 2014 Elsevier Inc. All rights reserved.

  11. 5-HT spatial distribution imaging with multiphoton excitation of 5-HT correlative visible fluorescence in live cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Zeng, Shaoqun; Liu, Yafeng; Zhou, Wei; Chen, Tongsheng; Luo, Qingming

    2002-04-01

    The autofluorescence of 5-Hydroxytryptamine (5-HT) loaded rat mucosal mast cells (RBL-2H3 cells) is imaged with multiphoton excitation laser scanning microscope (MPELSM). 5-HT correlative visible fluorescence (Fco-vis) excited with 740-nm multiphoton excitation is observed in live cells for the first time, and the generating mechanism of 5-HT Fco-vis is studied. The spatial distribution of 5-HT in live cells is imaged at high spatial resolution in our experiment, which provides a new way to study the correlation between 5-HT spatial distribution and content, and the cellular functional state in live tissue or cells.

  12. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    PubMed

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  13. Self-diffusion of rodlike and spherical particles in a matrix of charged colloidal spheres: A comparison between fluorescence recovery after photobleaching and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lellig, C.; Wagner, J.; Hempelmann, R.; Keller, S.; Lumma, D.; Härtl, W.

    2004-10-01

    The fluorescence recovery after photobleaching (FRAP) method and the fluorescence correlation spectroscopy (FCS) have been applied on suspensions of highly charged colloidal spheres with a small content of rod-shaped tobacco mosaic virus (TMV) particles. Since these methods only determine the self-diffusion coefficient of the fluorescently labeled species, DS of the rods and the spheres could independently be measured. The ionic strength of the dispersion medium has been varied to measure self-diffusion of rods and spheres in dependence on the degree of order of the matrix spheres. In contrast to FRAP, which allows the determination of the long-time self-diffusion coefficient DSL, FCS measures self-diffusion on a shorter time scale. Thus a comparison of the results that were obtained by FCS and FRAP, in combination with Brownian Dynamics simulations, gives insight into the time dependence of the self-diffusion coefficient of an interacting colloidal system. As the mean interparticle distance of the matrix is of the same order of magnitude as the length of a TMV rod, the rotational motion is influenced by the assembly of spheres around a TMV particle. Since FCS is sensitive both to translational and rotational motion, whereas FRAP, which probes the diffusion at much larger length scales, is only sensitive to the translational motion of TMV, the comparison of diffusion coefficients measured employing FRAP and FCS can give some insights in the rotational diffusion: the experimental data indicate a slowing down of the rotational motion of a TMV rod with increasing structural order of the matrix spheres.

  14. Correlation between Raman and fluorescence microscopy studies of field-aged commercial urethane-backed poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Remillard, J. T.; Weber, W. H.; Jones, J.; Helms, J.; Poindexter, B. D.

    1998-03-01

    Urethane-foam-backed poly(vinyl chloride) (PVC) composites are widely used in vehicle interiors. Exposure to heat and light causes vinyl to degrade through dehydrochlorination, a process which results in the formation of conjugated polyene sequences. This leads to the cracking and discoloration that commonly occurs with age in commercial PVC. We present the results of Raman and fluorescence microscopy measurements used to quantify the degradation of two commercial field-aged foam/PVC composites containing different heat stabilizer packages. Raman spectroscopy provides chemically-specific evidence of polyene formation, and clearly indicates differences in the durability of the two materials. After extracting the low molecular weight components from the vinyl, we find the variations in fluorescence intensity with weathering time are closely correlated with the variations in polyene concentration measured using Raman microscopy. This suggests fluorescence techniques can be used as a semiquantitative measure of PVC degradation. These measurements are most easily performed using a fluorescence microscope and CCD camera to record images of the samples. Intensities are quickly determined through the use of image processing software.

  15. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking

    PubMed Central

    Rose, Markus; Hirmiz, Nehad; Moran-Mirabal, Jose M.; Fradin, Cécile

    2015-01-01

    Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of DFCS ~ 3 μm2 · s−1 and DSPT ~ 2 μm2 · s−1, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: D ≳ 1 μm2 · s−1 for FCS and D ≲ 5 μm2 · s−1 for SPT (with standard imaging conditions). In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes. PMID:26610279

  16. Monitoring human parvovirus B19 virus-like particles and antibody complexes in solution by fluorescence correlation spectroscopy.

    PubMed

    Toivola, Jouni; Michel, Patrik O; Gilbert, Leona; Lahtinen, Tomi; Marjomäki, Varpu; Hedman, Klaus; Vuento, Matti; Oker-Blom, Christian

    2004-01-01

    Fluorescence correlation spectroscopy (FCS) was used in monitoring human parvovirus B19 virus-like particle (VLP) antibody complexes from acute phase and past-immunity serum samples. The Oregon Green 488-labeled VLPs gave an average diffusion coefficient of 1.7 x 10(-7) cm2 s(-1) with an apparent hydrodynamic radius of 14 nm. After incubation of the fluorescent VLPs with an acute phase serum sample, the mobility information obtained from the fluorescence intensity fluctuation by autocorrelation analysis showed an average diffusion coefficient of 1.5 x 10(-8) cm2 s(-1), corresponding to an average radius of 157 nm. In contrast, incubation of the fluorescent VLPs with a past-immunity serum sample gave an average diffusion coefficient of 3.5 x 10(-8) cm2 s(-1) and a radius of 69 nm. A control serum devoid of B19 antibodies caused a change in the diffusion coefficient from 1.7 x 10(-7) to 1.6 x 10(-7) cm2 s(-1), which is much smaller than that observed with acute phase or past-immunity sera. Thus, VLP-antibody complexes with different diffusion coefficients could be identified for the acute phase and past-immunity sera. FCS measurement of VLP-immune complexes could be useful in distinguishing between antibodies present in acute phase or past-immunity sera as well as in titration of the VLPs.

  17. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    SciTech Connect

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. ); Wyssbrod, H.R.; Porter, R.A. ); Michaels, C.A. )

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  18. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    PubMed

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  19. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy.

    PubMed

    Papadopoulos, Dimitrios K; Krmpot, Aleksandar J; Nikolić, Stanko N; Krautz, Robert; Terenius, Lars; Tomancak, Pavel; Rigler, Rudolf; Gehring, Walter J; Vukojević, Vladana

    2015-11-01

    Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.

  20. Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells.

    PubMed

    Roudeau, Stéphane; Carmona, Asuncion; Perrin, Laura; Ortega, Richard

    2014-11-01

    X-ray chemical element imaging has the potential to enable fundamental breakthroughs in the understanding of biological systems because chemical element interactions with organelles can be studied at the sub-cellular level. What is the distribution of trace metals in cells? Do some elements accumulate within sub-cellular organelles? What are the chemical species of the elements in these organelles? These are some of the fundamental questions that can be addressed by use of X-ray chemical element imaging with synchrotron radiation beams. For precise location of the distribution of the elements, identification of cellular organelles is required; this can be achieved, after appropriate labelling, by use of fluorescence microscopy. As will be discussed, this approach imposes some limitations on sample preparation. For example, standard immunolabelling procedures strongly modify the distribution of the elements in cells as a result of the chemical fixation and permeabilization steps. Organelle location can, however, be performed, by use of a variety of specific fluorescent dyes or fluorescent proteins, on living cells before cryogenic fixation, enabling preservation of element distribution. This article reviews the methods used for fluorescent organelle labelling and X-ray chemical element imaging and speciation of single cells. Selected cases from our work and from other research groups are presented to illustrate the potential of the combination of the two techniques.

  1. Correlation Of Balkan Endemic Nephropathy With Fluorescent Organic Compounds In Shallow Groundwater

    NASA Astrophysics Data System (ADS)

    Goldberg, Marvin C.; Feder, Gerald L.; Radovanovic, Zoran

    1994-04-01

    Balkan endemic nephropathy (BEN) is a disease of intersitial nephropathy leading to end-stage renal failure. The disease occurs in persons living in villages on alluvial valleys of streams tributary to the Danube River in Rumania, Bulgaria and former Yugoslavia. The etiologic agent is not known, but a contaminant in shallow groundwater has become suspect. In this study, samples of drinking water from endemic and non-endemic village water supplies were analyzed by excitation/emission matrix (EEM) fluorescence spectroscopy. Spectra characteristic of groundwater from BEN households show elongated teardrop shapes in the fluorescence excitation/emission matrix. A sharp rise occurs in fluorescence emission between 380 and 400 nanometers (nm) and a trailing emission intensity from 400 to 550 nm. Spectra of groundwater samples from some BEN households have an additional excitation maxima at 300 nm, which further contributes to the emission intensity at 400 nm. Spectra of water samples from non-BEN households located in endemic villages show characteristics of BEN household waters, exhibiting the 250-nm excitation peak, even though the fluorophoric intensity is much less than that in samples from BEN household waters. Samples from non-endemic villages do not show the characteristic EEM spectra described as "teardrop shaped". The non-BEN households have lower concentrations of these fluorophores in the drinking water than the endemic households; hence, one of the factors in contracting the disease may be the concentration of these fluorescent materials in drinking water.

  2. Artifact Free and Detection Profile Independent Higher Order Fluorescence Correlation Spectroscopy for Microsecond Resolved Kinetics. 2. Mixtures and Reactions.

    PubMed

    Abdollah-Nia, Farshad; Gelfand, Martin P; Van Orden, Alan K

    2017-02-09

    Fluorescence correlation spectroscopy (FCS) is a primary tool in the time-resolved analysis of non-reacting or reacting molecules in solution, based on fluorescence intensity fluctuations. However, conventional FCS alone is insufficient for complete determination of reaction or mixture parameters. In an accompanying article, a technique for computation of artifact-free higher-order correlations with microsecond time resolution was described. Here, we demonstrate applications of the technique to analyze systems of fast and slow reactions. As an example of slow- or non-reacting systems, the technique is applied to resolve two-component mixtures of labeled oligonucleotides. Next, the protonation reaction of fluorescein isothiocyanate (FITC) in phosphate buffer is analyzed as an example of fast reactions (relaxation time <1 μs ). By reference to an (apparent) non-reacting system, the simple factorized form of cumulant-based higher-order correlations is exploited to remove the dependence on the molecular detection function (MDF). Therefore, there is no need to model and characterize the experimental MDF, and the precision and the accuracy of the technique are enhanced. It is verified that higher-order correlation analysis enables complete and simultaneous determination of number and brightness parameters of mixing or reacting molecules, the reaction relaxation time, and forward and reverse reaction rates.

  3. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.

    PubMed

    Shang, Li; Nienhaus, G Ulrich

    2017-02-21

    Nanotechnology holds great promise for applications in many fields including biology and medicine. Unfortunately, the processes occurring at the interface between nanomaterials and living systems are exceedingly complex and not yet well understood, which has significantly hampered the realization of many nanobiotechnology applications. Whenever nanoparticles (NPs) are incorporated by a living organism, a protein adsorption layer, also known as the "protein corona", forms on the NP surface. Accordingly, living organisms interact with protein-coated rather than bare NPs, and their biological responses depend on the nature of the protein corona. In recent years, a wide variety of biophysical techniques have been employed to elucidate mechanistic aspects of NP-protein interactions. In most studies, NPs are immersed in protein or biofluid (e.g., blood serum) solutions and then separated from the liquid for analysis. Because this approach may modify the composition and structure of the protein corona, our group has pioneered the use of fluorescence correlation spectroscopy (FCS) as an in situ technique, capable of examining NP-protein interactions while the NPs are suspended in biological fluids. FCS allows us to measure, with subnanometer precision and as a function of protein concentration, the increase in hydrodynamic radius of the NPs due to protein adsorption. This Account aims at reviewing recent progress in the exploration of NP-protein interactions by using FCS. In vitro FCS studies of the adsorption of important serum proteins onto water-solubilized luminescent NPs always showed a stepwise increase of the NP radius upon protein binding in the form of a binding isotherm, regardless of the type of NP and its specific surface functionalization. This observation indicates formation of a protein monolayer on the NP. Structure-based calculations of protein surface potentials revealed that positively charged patches on the proteins interact electrostatically with

  4. Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and 13C NMR spectroscopy.

    PubMed

    Koynov, K; Mihov, G; Mondeshki, M; Moon, C; Spiess, H W; Müllen, K; Butt, H-J; Floudas, G

    2007-05-01

    We report on the combined use of fluorescence correlation spectroscopy (FCS) and 1H and 13C NMR spectroscopy to detect the size and type of peptide secondary structures in a series of poly-Z-L-lysine functionalized polyphenylene dendrimers bearing the fluorescent perylenediimide core in solution. In dilute solution, the size of the molecule as detected from FCS and 1H NMR diffusion measurements matches nicely. We show that FCS is a sensitive probe of the core size as well as of the change in the peptide secondary structure. However, FCS is less sensitive to functionality. A change in the peptide secondary conformation from beta-sheets to alpha-helices detected by 13C NMR spectroscopy gives rise to a steep increase in the hydrodynamic radii for number of residues n > or = 16. Nevertheless, helices are objects of low persistence.

  5. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy

    PubMed Central

    Brama, Elisabeth; Peddie, Christopher J.; Wilkes, Gary; Gu, Yan; Collinson, Lucy M.; Jones, Martin L.

    2016-01-01

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables ‘smart collection’ of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables ‘smart tracking’ of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes. PMID:28090593

  6. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes

    PubMed Central

    Kopek, Benjamin G.; Shtengel, Gleb; Xu, C. Shan; Clayton, David A.; Hess, Harald F.

    2012-01-01

    Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, efforts to combine superresolution fluorescence and EM have been stymied by the divergent and incompatible sample preparation protocols of the two methods. Here, we describe a protocol that preserves both the delicate photoactivatable fluorescent protein labels essential for superresolution microscopy and the fine ultrastructural context of EM. This preparation enables direct 3D imaging in 500- to 750-nm sections with interferometric photoactivatable localization microscopy followed by scanning EM images generated by focused ion beam ablation. We use this process to “colorize” detailed EM images of the mitochondrion with the position of labeled proteins. The approach presented here has provided a new level of definition of the in vivo nature of organization of mitochondrial nucleoids, and we expect this straightforward method to be applicable to many other biological questions that can be answered by direct imaging. PMID:22474357

  7. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos.

    PubMed

    Pozzi, Paolo; Sironi, Laura; D'Alfonso, Laura; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe; Pallavicini, Piersandro; Cotelli, Franco; Foglia, Efrem A

    2014-06-01

    Biomedical issues in vasculogenesis and cardiogenesis require methods to follow hemodynamics with high spatial (micrometers) and time (milliseconds) resolution. At the same time, we need to follow relevant morphogenetic processes on large fields of view. Fluorescence cross-correlation spectroscopy coupled to scanning or wide-field microscopy meets these needs but has limited flexibility in the excitation pattern. To overcome this limitation, we develop here a two-photon two-spots setup coupled to an all-reflective near-infrared (NIR) optimized scanning system and to an electron multiplying charge-coupled device. Two NIR laser spots are spaced at adjustable micron-size distances (1 to 50 μm) by means of a Twyman-Green interferometer and repeatedly scanned on the sample, allowing acquisition of information on flows at 4 ms-3 μm time-space resolution in parallel on an extended field of view. We analyze the effect of nonhomogeneous and variable flow on the cross-correlation function by numerical simulations and show exemplary application of this setup in studies of blood flow in zebrafish embryos in vivo. By coupling the interferometer with the scanning mirrors and by computing the cross-correlation function of fluorescent red blood cells, we are able to map speed patterns in embryos' vessels.

  8. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Sironi, Laura; D'Alfonso, Laura; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe; Pallavicini, Piersandro; Cotelli, Franco; Foglia, Efrem A.

    2014-06-01

    Biomedical issues in vasculogenesis and cardiogenesis require methods to follow hemodynamics with high spatial (micrometers) and time (milliseconds) resolution. At the same time, we need to follow relevant morphogenetic processes on large fields of view. Fluorescence cross-correlation spectroscopy coupled to scanning or wide-field microscopy meets these needs but has limited flexibility in the excitation pattern. To overcome this limitation, we develop here a two-photon two-spots setup coupled to an all-reflective near-infrared (NIR) optimized scanning system and to an electron multiplying charge-coupled device. Two NIR laser spots are spaced at adjustable micron-size distances (1 to 50 μm) by means of a Twyman-Green interferometer and repeatedly scanned on the sample, allowing acquisition of information on flows at 4 ms-3 μm time-space resolution in parallel on an extended field of view. We analyze the effect of nonhomogeneous and variable flow on the cross-correlation function by numerical simulations and show exemplary application of this setup in studies of blood flow in zebrafish embryos in vivo. By coupling the interferometer with the scanning mirrors and by computing the cross-correlation function of fluorescent red blood cells, we are able to map speed patterns in embryos' vessels.

  9. Pilot study on the correlation between skin auto-fluorescence and serum antioxidant enzyme: skin auto-fluorescence is negatively associated with levels of malondialdehyde.

    PubMed

    Yim, J H; Jeong, K H; Kim, J Y; Cho, Y H; Bae, S J; Shin, M K

    2017-05-01

    Various methods have been used to objectively record skin changes. However, estimating the intrinsic and extrinsic aging of skin remains a challenge. Our objective was to study intrinsic skin aging with respect to patient age and extrinsic photo-aging of human dorsal (photo-exposed) and volar (photo-protected) forearm in vivo through skin auto-fluorescence (AF). We also examined the correlations between serum antioxidant enzyme, malondialdehyde(MDA), and skin AF. 37 healthy volunteers were enrolled. We measured skin AF and its heterogeneity on the dorsal and volar forearms. We also examined serum concentration of catalase, superoxide dismutase, vitamin E, and MDA levels in every participant. In photo-protected areas, skin AF intensity in the 40 years or older group was significantly higher compared to the group less than 40 years-old. On the other hand, heterogeneity value was significantly higher in the less than 40 years-old group in photo-protected area. With respect to serum antioxidant enzyme and MDA level, only MDA level showed a negative correlation with skin AF intensity in photo-exposed area. We determined that skin AF intensity of the photo-protected area reflects intrinsic skin aging. In addition, degree of photo-aging could be indirectly inferred by skin AF of photo-exposed area and serum MDA level. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Probing the binding kinetics of proinflammatory cytokine-antibody interactions using dual color fluorescence cross correlation spectroscopy.

    PubMed

    Wu, Chia-Yan; Huang, Chuan-Keng; Chung, Chao-Yu; Huang, I-Ping; Hwu, Yeukuang; Yang, Chung-Shi; Lai, Yiu-Kay; Lo, Leu-Wei; Chiang, Su-Yu

    2011-05-21

    Dual color fluorescence cross correlation spectroscopy (FCCS) was used to investigate quantitatively the binding kinetics of tumor necrosis factor (TNFα) with TNFα antibody (anti-TNFα) following fluorescent labeling. Through the analysis of the auto correlation curves of fluorescence correlation spectroscopy (FCS), diffusion coefficients of 100.06 ± 4.9 μm(2) s(-1) and 48.96 ± 2.52 μm(2) s(-1) for Alexa488-TNFα and Atto647N-anti-TNFα were obtained. In addition, the calculated hydrodynamic diameters of the Alexa488-TNFα and Atto647N-anti-TNFα were approximately 4.89 ± 0.24 nm and 9.99 ± 0.52 nm, respectively, which agrees with the values of 5.20 ± 1.23 nm and 9.28 ± 0.86 nm for the native TNFα and the anti-TNFα as determined from dynamic light scattering measurements. For the binding kinetics, association (k(on)) and dissociation (k(off)) rate constants were (1.13 ± 0.08) × 10(4) M(-1) s(-1) and (1.53 ± 0.19) × 10(-3) s(-1) while the corresponding dissociation constant (K(d)) at 25 °C was (1.36 ± 0.10) × 10(-7) M. We believe this is the first report on the binding kinetics for TNFα-antibody recognition in the homogeneous phase. Using this technology, we have shown that controlled experiments can be performed to gain insight into molecular mechanisms involved in the immune response.

  11. Anomalous Diffusion in Polymer Solution as Probed by Fluorescence Correlation Spectroscopy and Its Universal Importance in Biological Systems

    NASA Astrophysics Data System (ADS)

    Ushida, Kiminori

    2008-02-01

    Experimental evidence of anomalous diffusion occurring in an inhomogeneous media (hyaluronan aquous solution) was obtained by use of fluorescence correlation spectroscopy (FCS) combined with other techniques (PFG-NMR and Photochemical reactions). The diffusion coefficient was obtained as a function of diffusion time or diffusion distance. Since this polymer solution can be regarded as a model system of extracellular matrices (ECMs), intercellular communication, which takes part in ECM, is greatly influenced by this anomalous diffusion mode. Therefore universal importance of anomalous diffusion in biological activity is identified in this series of independent experiments to measure diffusion coefficients.

  12. Monitoring the dynamics of phase separation in a polymer blend by confocal imaging and fluorescence correlation spectroscopy.

    PubMed

    Doroshenko, Mikheil; Gonzales, Maria; Best, Andreas; Butt, Hans-Jürgen; Koynov, Kaloian; Floudas, George

    2012-09-26

    The phase separation of the polymer blend polystyrene/poly(methyl phenyl siloxane) (PS/PMPS) is studied in situ by laser scanning confocal microscopy (LSCM) and by fluorescence correlation spectroscopy (FCS) at macroscopic and microscopic length scales, respectively. It is shown for the first time that FCS when combined with LSCM can provide independent information on the local concentration within the phase-separated domains as well as the interfacial width. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Adulteration screening of botanical materials by a sensitive and model-free approach using infrared spectroscopic imaging and two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Zhou, Qun; Sun, Su-qin

    2016-11-01

    Infrared (IR) spectroscopy is often used as a simple, fast, and green method for the adulteration screening of botanical materials for foods and herbs. However, the overlapping of absorption signals of various substances significantly decrease the sensitivity and specificity of IR spectroscopy in the detection of adulterated samples. In this research, a model-free approach is proposed for the sensitive and non-targeted screening of botanical materials adulterated by adding other plant materials. First, the spectra of the entities in the test sample are collected by near-infrared spectroscopic imaging and clustered by unsupervised pattern recognition methods. The sample may be adulterated if there are two or more clusters of the entities. Next, the entities of different clusters are characterized by mid-infrared spectroscopy to interpret the chemical compositions to determine the clustering is caused whether by adulteration or other reasons. Second derivative spectroscopy and two-dimensional correlation spectroscopy are often needed to resolve the overlapped bands mathematically or experimentally to find the characteristic signals to identify the authentic and adulterant entities. The feasibility of this approach was proved by the simulated adulterated sample of saffron. In conclusion, botanical materials adulterated by adding other plant materials can be detected by a simple, fast, sensitive, and green screening approach using IR spectroscopic imaging, two-dimensional correlation spectroscopy, and necessary chemometrics techniques.

  14. Steady-state and time-resolved fluorescence spectroscopic studies on the interaction between bovine serum albumin and Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, Manping; Shi, Yarong; Chen, Huacai

    2016-10-01

    The interaction between bovine serum albumin(BSA) and Ag-nanoparticles was studied under a pH 7.4 buffer system by time-resolved fluorescence technique combined with the steady-state absorption and fluorescence spectrum. With Ag-nanoparticles, the BSA showed blue shift of fluorescence from 335nm to 332.5nm, accompanied by the fluorescence intensity decreasing. When adding the Ag-nanoparticles to the three fluorescent amino acids tryptophan(Trp), tyrosine(Tyr)and phenylalanine(Phe), only Trp displayed peak shift which from 346.5nm to 341nm. Strong interaction between BSA and the Ag-nanoparticles may come from Trp residue. Time-resolved fluorescence gave that BSA had only one fluorescence lifetime around 6ns from 308 to 313K. When adding Ag-nanoparticles, two fluorescence lifetimes appeared. One is a little above than 6ns and the other is around 3ns. The two Trp residues in 134th and 212th position may give contribution to the changes of the fluorescence lifetime. The 134th Trp residue is probably protected by BSA molecule structure and basically don't contact with Ag-nanoparticles, which shows little change of fluorescence lifetime. The 212th Trp residue is likely the target of the Ag-nanoparticles. The Ag-nanoparticles changed the microenvironment of BSA around the 212th Trp residue and therefore increases the exposure of the 212th Trp and the 134th Trp .

  15. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2015-12-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  16. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  17. Correlation of the thermal stability of phospholipid-based emulsions and the microviscosity measurements using fluorescence polarization.

    PubMed

    Zhang, Xiaoguang; Kirsch, Lee E

    2004-01-01

    The fluorescence polarization technique was used to measure the microviscosity of a series of phospholipid-based emulsions. Fourteen different oil-in-water emulsions containing 20% medium chain length triglycerides, various concentrations and types of phospholipids, and 2.2% glycerin were prepared by microfluidization and pH-adjusted to 4.0 or 7.4. Microviscosity was measured by determining the anisotropy of a fluorophore probe (1,6-phenyl 1,3,5-hexatriene) which was found to obey Perrin's equation as has been previously reported for liposomes and membrane bilayers. Moreover the method was validated by comparing viscosities of phospholipid-oil mixtures measured by rheometry and fluorescence polarization. The viscosities determined by fluorescence polarization were within 6% of the values obtained by classic rheometry. Emulsions were also subjected to thermal stress at 121 degrees C. The droplet growth rate was estimated by measuring the time-dependent mean droplet diameter using photon correlation spectroscopy. The logarithm of the droplet growth rate was found to be directly proportional to the interfacial rigidity (i.e., the inverse microviscosity) which suggested that coalescence rather than molecular diffusion is the primary mechanism of droplet growth under these conditions of thermal stress.

  18. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  19. G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates.

    PubMed

    Liu, Jia-quan; Chen, Chang-yue; Xue, Yong; Hao, Yu-hua; Tan, Zheng

    2010-08-04

    Sequences with the potential to form G-quadruplex structures are spread throughout genomic DNA. G-quadruplexes in promoter regions can play regulatory roles in gene expression. Expression of protein-encoding genes involves processing of DNA and RNA molecules at the level of transcription and translation, respectively. In order to examine how the G-quadruplex affects processing of nucleic acids, we established a real-time fluorescent assay and studied the unwinding of intramolecular G-quadruplex formed by the human telomere, ILPR and PSMA4 sequences by the BLM helicase. Through comparison with their corresponding duplex substrates, we found that the unwinding of intramolecular G-quadruplex structures was much less efficient than that of the duplexes. This result is in contrast to previous reports that multistranded intermolecular G-quadruplexes are far better substrates for the BLM and other RecQ family helicases. In addition, the unwinding efficiency varied significantly among the G-quadruplex structures, which correlated with the stability of the structures. These facts suggest that G-quadruplex has the capability to modulate the processing of DNA and RNA molecules in a stability-dependent manner and, as a consequence, may provide a mechanism to play regulatory roles in events such as gene expression.

  20. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy.

    PubMed

    Hur, Jin; Lee, Bo-Mi

    2011-06-01

    The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions.

  1. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  2. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-arg proteins and stapled peptides.

    PubMed

    LaRochelle, Jonathan R; Cobb, Garrett B; Steinauer, Angela; Rhoades, Elizabeth; Schepartz, Alanna

    2015-02-25

    We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of "cell-penetrating peptides" traffic to the cytosol of mammalian cells. We find that certain molecules containing a "penta-arg" motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells.

  3. Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution.

    PubMed

    Pal, Nibedita; Dev Verma, Sachin; Singh, Moirangthem Kiran; Sen, Sobhan

    2011-10-15

    Fluorescence correlation spectroscopy (FCS) is an ideal tool for measuring molecular diffusion and size under extremely dilute conditions. However, the power of FCS has not been utilized to its best to measure diffusion and size parameters of complex chemical systems. Here, we apply FCS to measure the size, and, most importantly, the size distribution and polydispersity of a supramolecular nanostructure (i.e., microemulsion droplets, MEDs) in dilute solution. It is shown how the refractive index mismatch of a solution can be corrected in FCS to obtain accurate size parameters of particles, bypassing the optical matching problem of light scattering techniques that are used often for particle-size measurements. We studied the MEDs of 13 different W(0) values from 2 to 50 prepared in a ternary mixture of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and isooctane, with sulforhodamine-B as a fluorescent marker. We find that, near the optical matching point of MEDs, the dynamic light scattering (DLS) measurements underestimate the droplet sizes while FCS estimates the accurate ones. A Gaussian distribution model (GDM) and a maximum-entropy-based FCS data fitting model (MEMFCS) are used to analyze the fluorescence correlation curves that unfold Gaussian-type size distributions of MEDs in solution. We find the droplet size varies linearly with W(0) up to ~20, but beyond this W(0) value, the size variation deviates from this linearity. To explain nonlinear variation of droplet size for W(0) values beyond ~20, we invoke a model (the coated-droplet model) that incorporates the size polydispersity of the droplets.

  4. Lack of Correlation Between the Spatial Distribution of A2E and Lipofuscin Fluorescence in the Human Retinal Pigment Epithelium

    PubMed Central

    Ablonczy, Zsolt; Higbee, Daniel; Anderson, David M.; Dahrouj, Mohammad; Grey, Angus C.; Gutierrez, Danielle; Koutalos, Yiannis; Schey, Kevin L.; Hanneken, Anne; Crouch, Rosalie K.

    2013-01-01

    Purpose. The accumulation of lipofuscin in the RPE is a hallmark of aging in the eye. The best characterized component of lipofuscin is A2E, a bis-retinoid byproduct of the normal retinoid visual cycle, which exhibits a broad spectrum of cytotoxic effects in vitro. The purpose of our study was to correlate the distribution of lipofuscin and A2E across the human RPE. Methods. Lipofuscin fluorescence was imaged in flat-mounted RPE from human donors of various ages. The spatial distributions of A2E and its oxides were determined using matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS) on flat-mounted RPE tissue sections and retinal cross-sections. Results. Our data support the clinical observations of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. High-resolution MALDI-IMS of retinal cross-sections confirmed the A2E localization data obtained in RPE flat-mounts. Singly- and doubly-oxidized A2E had distributions similar to A2E, but represented <10% of the A2E levels. Conclusions. This report to our knowledge is the first description of the spatial distribution of A2E in the human RPE by imaging mass spectrometry. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging. PMID:23847313

  5. [Effect of temperature on the aggregation behavior of collagen solution by two-dimensional synchronous fluorescence correlation spectroscopy].

    PubMed

    Wu, Wan-ye; Wu, Kun; Li, Guo-ying

    2015-02-01

    The synchronous fluorescence spectroscopy and two dimensional correlation analysis method were applied to study the aggregation behavior of acid-soluble collagen solutions (0.2, 0.4 and 1.6 mg x mL(-1)) during the heating process of 10-70 degrees C. It was found that the fluorescence excited at 292 and 282 nm (delta lamda=9 nm) belongs to the tyrosine (Tyr) residues which participate in forming hydrogen bonds or not, respectively. The two dimensional correlation analysis with the temperature varying showed that with the temperature increased (10-30 degrees C) hydrogen bonds among collagen molecular with Tyr residues formed in the 0.2 mg x mL(-1) collagen solution, while the higher aggregations of collagen molecular and hydrophobic micro-domains appeared in the 0.4 and 1.6 mg x mL(-1) collagen solutions. With approaching the denatured temperature of collagen (36-38 degrees C), the hydrophobic micro-domain and aggregates seemed to be broken in the 0.4 and 1.6 mg x mL(-1) collagen solutions, however the hydrogen bonds in the 0.2 mg x mL(-1) were stable. Above the denaturation temperature of collagen, the triple-helix structure of collagen molecular in solution of each concentration tended to be loose. In the heating process of 45-70 degrees C, this trend was more obvious.

  6. Photon Correlation versus Interference of Single-Atom Fluorescence in a Half-Cavity

    SciTech Connect

    Dubin, Francois; Rotter, Daniel; Mukherjee, Manas; Russo, Carlos; Eschner, Juergen; Blatt, Rainer

    2007-05-04

    Photon correlations are investigated for a single laser-excited ion trapped in front of a mirror. Varying the relative distance between the ion and the mirror, photon correlation statistics can be tuned smoothly from an antibunching minimum to a bunchinglike maximum. Our analysis concerns the non-Markovian regime of the ion-mirror interaction and reveals the field establishment in a half-cavity interferometer.

  7. Correlated analysis of chemical variations with spectroscopic features of the K-Na jarosite solid solutions relevant to Mars

    NASA Astrophysics Data System (ADS)

    Ling, Zongcheng; Cao, Fengke; Ni, Yuheng; Wu, Zhongchen; Zhang, Jiang; Li, Bo

    2016-06-01

    Detailed chemical, structural and spectroscopic properties of jarosite solid solution minerals are key information for their potential discoveries by future remote sensing and in-situ detections on Mars. We successfully synthesized seven homogeneous K-Na jarosite solid solutions under hydrothermal conditions at 140 °C, whose phase identifications and chemical compositions are confirmed by X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). The chemical ratios of K/(K+Na) in jarosite solid solutions lead to systematic shifts of their characteristic Raman peaks ν1 (SO4)2- (from 1006 to 1011.3 cm-1), ν3 (SO4)2- (from 1100.6 to 1111.2 cm-1), ν2 (SO4)2- (from 434.2 to 444.8 cm-1) with the increase of Na content. While the OH stretching mode decreases with even larger peak position variations (e.g., ∼3410 cm-1 peak shifts from 3410.5 to 3385.7 cm-1) as the K-Na jarosite solid solutions are enriched in Na content. Raman spectroscopic measurements of the seven K-Na jarosite solid solutions enabled us to build a calibration that uses Raman peak positions to estimate K-Na variation in jarosite, which is the key step for their possible applications in the future Raman applications on Mars' missions (e.g., ExoMars and Mars 2020 missions). The band assignments and compositional related variations of their XRD, near-infrared (NIR) and mid-infrared (MIR) spectra also provide informative clues for identifying the jarosite minerals and inferring their composition during martian in-situ and remote sensing measurements.

  8. Correlations between nuclear and fluorescent Imaging of mammary tumors in mice

    NASA Astrophysics Data System (ADS)

    Carroll, Robin; Stone, John; Blue, Eric; Bradley, Eric; Qian, Jianguo; Saha, Margaret; Welsh, Robert

    2008-10-01

    Progress with new imaging technologies permits the study of biological processes both in vivo and noninvasively. Two systems, a position-sensitive gamma camera and a cooled-CCD camera have been applied in this work. A C3H strain of mouse carrying the Mouse Mammary Tumor Virus (MMTV) was imaged using 800 nm Q-tracker fluorescent dots conjugated to a peptide targeting integrin αυβ C a mammary marker for angiogenesis. We subsequently imaged with the gamma camera to detect low levels of ^125I distribution, and hence, the activity of a trans-membrane protein called the sodium iodide symporter (NIS) responsible for iodine transport. Preliminary results indicate that the biodistribution of the tagged Q-tracker dots and ^125I co-localize very early in seemingly normal mammary glands of infected MMTV mice, while in larger palpable tumors the Q-dot signals are less apparent in comparison with the^125I signal.

  9. Structural studies on Si:H network before and after solid phase crystallization using spectroscopic ellipsometry: Correlation with Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Goswami, Romyani; Ray, Swati

    2013-10-01

    The structure of hydrogenated silicon films (Si:H) before and after solid phase crystallization (SPC) has been investigated by detailed study of spectroscopic ellipsometry (SE). The Si:H films have been deposited by radio frequency plasma enhanced chemical vapor deposition (RF PECVD) system varying deposition power density from 0.03 W/cm2 to 0.46 W/cm2, just below the onset of amorphous to nano-crystalline transition region. Solid phase crystallization of the Si:H network has been done by thermal annealing of the films in a vacuum furnace. Different bulk compositions of the as deposited Si:H network and annealed (polycrystalline) films have been calculated from the fitted parameters obtained from the simulation of the ellipsometry data by Bruggeman effective medium approximation (BEMA) method. More compact and void free structure in the bulk layer of the as deposited films has been observed at low power deposition region. Whereas void fraction in the bulk and surface roughness layer has increased with increase of deposition power density. For the annealed films higher crystallinity at the bulk layer with fewer voids has been observed at the low power region but in the surface roughness layer void fraction dominates in all the low and high power deposited films. The results obtained from the spectroscopic ellipsometry study have been correlated with Raman spectroscopy and transmission electron microscopy for both the as deposited and annealed films.

  10. FoCuS-point: software for STED fluorescence correlation and time-gated single photon counting.

    PubMed

    Waithe, Dominic; Clausen, Mathias P; Sezgin, Erdinc; Eggeling, Christian

    2016-03-15

    Fluorescence Correlation Spectroscopy (FCS) is a popular tool for measuring molecular mobility and how mobility relates to molecular interaction dynamics and bioactivity in living cells. The FCS technique has been significantly advanced by its combination with super-resolution STED microscopy (STED-FCS). Specifically, the use of gated detection has shown great potential for enhancing STED-FCS, but has also created a demand for software which is efficient and also implements the latest algorithms. Prior to this study, no open software has been available which would allow practical time-gating and correlation of point data derived from STED-FCS experiments. The product of this study is a piece of stand-alone software called FoCuS-point. FoCuS-point utilizes advanced time-correlated single-photon counting (TCSPC) correlation algorithms along with time-gated filtering and innovative data visualization. The software has been designed to be highly user-friendly and is tailored to handle batches of data with tools designed to process files in bulk. FoCuS-point also includes advanced fitting algorithms which allow the parameters of the correlation curves and thus the kinetics of diffusion to be established quickly and efficiently. FoCuS-point is written in python and is available through the github repository: https://github.com/dwaithe/FCS_point_correlator Furthermore, compiled versions of the code are available as executables which can be run directly in Linux, Windows and Mac OSX operating systems. dominic.waithe@imm.ox.ac.uk. © The Author 2015. Published by Oxford University Press.

  11. Label-free fluorescence detection of aromatic compounds in chip electrophoresis applying two-photon excitation and time-correlated single-photon counting.

    PubMed

    Beyreiss, Reinhild; Geißler, David; Ohla, Stefan; Nagl, Stefan; Posch, Tjorben Nils; Belder, Detlev

    2013-09-03

    In this study, we introduce time-resolved fluorescence detection with two-photon excitation at 532 nm for label-free analyte determination in microchip electrophoresis. In the developed method, information about analyte fluorescence lifetimes is collected by time-correlated single-photon counting, improving reliable peak assignment in electrophoretic separations. The determined limits of detection for serotonin, propranolol, and tryptophan were 51, 37, and 280 nM, respectively, using microfluidic chips made of fused silica. Applying two-photon excitation microchip separations and label-free detection could also be performed in borosilicate glass chips demonstrating the potential for label-free fluorescence detection in non-UV-transparent devices. Microchip electrophoresis with two-photon excited fluorescence detection was then applied for analyses of active compounds in plant extracts. Harmala alkaloids present in methanolic plant extracts from Peganum harmala could be separated within seconds and detected with on-the-fly determination of fluorescence lifetimes.

  12. Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends.

    PubMed

    Chappell, John; Lidzey, David G; Jukes, Paul C; Higgins, Anthony M; Thompson, Richard L; O'Connor, Stephen; Grizzi, Ilaria; Fletcher, Robert; O'Brien, Jim; Geoghegan, Mark; Jones, Richard A L

    2003-09-01

    Blends of conjugated polymers are frequently used as the active semiconducting layer in light-emitting diodes and photovoltaic devices. Here we report the use of scanning near-field optical microscopy, scanning force microscopy and nuclear-reaction analysis to study the structure of a thin film of a phase-separated blend of two conjugated polymers prepared by spin-casting. We show that in addition to the well-known micrometre-scale phase-separated morphology of the blend, one of the polymers preferentially wets the surface and forms a 10-nm-thick, partially crystallized wetting layer. Using near-field microscopy we identify unexpected changes in the fluorescence emission from the blend that occurs in a 300-nm-wide band located at the interface between the different phase-separated domains. Our measurements provide an insight into the complex structure of phase-separated conjugated-polymer thin films. Characterizing and controlling the properties of the interfaces in such films will be critical in the further development of efficient optoelectronic devices.

  13. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression

    SciTech Connect

    Hammel, Kenneth E.; Ralph, John; Hunt, Christopher G.; Houtman, Carl J.

    2016-09-06

    This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusible oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.

  14. Correlated fluorescence-atomic force microscopy studies of the clathrin mediated endocytosis in SKMEL cells

    NASA Astrophysics Data System (ADS)

    Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam; Smith, Steve

    2017-02-01

    Clathrin-mediated endocytosis (CME) is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. Currently, there are two models describing membrane bending during the formation of clathrin cages: the first involves the deposition of all clathrin molecules to the plasma membrane, forming a flat lattice prior to membrane bending, whereas in the second model, membrane bending happens simultaneously as the clathrin arrives to the site to form a clathrin-coated cage. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorophores (actin filaments labeled with green phalloidin and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. An extensive statistical survey of many hundreds of CME events, at various stages of progression, are observed via this method, allowing inferences about the dominant mechanisms active in CME in SKMEL cells. Results indicate a mixed model incorporating aspects of both the aforementioned mechanisms for CME.

  15. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    SciTech Connect

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-12-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a biologically determined partition coefficient K{sub DOC}. The authors observed significant linear relationships between K{sub DOC} and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons as determined by {sup 13}C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K{sub DOC} with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, their results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  16. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  17. Fluorescence detection of esophageal neoplasia

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Vladimirov, B.; Avramov, L.

    2008-06-01

    White-light endoscopy is well-established and wide used modality. However, despite the many technological advances that have been occurred, conventional endoscopy is suboptimal and usually detects advanced stage lesions. The limitations of standard endoscopy initiate development of spectroscopic techniques, additional to standard endoscopic equipment. One of the most sensitive approaches is fluorescence spectroscopy of gastrointestinal mucosa for neoplasia detection. In the recent study delta-aminolevulinic acid/Protoporphyrin IX (5-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus. The 5-ALA is administered per os six hours before measurements at dose 20 mg/kg weight. Excitation source has max of emission at 405 nm and light is delivered by the standard light guide of the endoscopic equipment. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. Spectral features observed during endoscopic investigations could be distinct as the next regions: 450-630 nm region, where tissue autofluorescence is observed; 630-710 nm region, where fluorescence of PpIX is clearly pronounced; 530-580 nm region, where minima in the autofluorescence signal are observed, related to reabsorption of blood. The lack of fluorescence peaks in the red spectral area for normal mucosa is an indication for selective accumulation of 5-ALA/PpIX only in abnormal sites Very good correlation between fluorescence signals and histology examination of the lesions investigated is achieved.

  18. Slow molecular dynamics close to crystal surfaces during crystallization of a protein lysozyme studied by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, S.

    2010-09-01

    Fluorescence correlation spectroscopy (FCS) was applied to the crystallization processes of egg-white lysozyme. Utilizing FCS's high spatial resolution of about the laser wavelength used, the molecular dynamics close to crystal surfaces was investigated for both tetragonal single crystals and needlelike spherulites. When the FCS measurement was done at the point closer than 1 μm to the surface of a tetragonal single crystal, the relaxation time became several times longer than that in bulk solution, but the fluorescence intensity (thus concentration) was similar to that observed in bulk solution. On the other hand, the peculiar slow dynamics (a few orders of magnitude slower than that in bulk solution) of concentrated liquid states of the lysozyme molecules was observed in needlelike spherulites. We suggested that these observations could be explained by the formation of softly connected aggregates accumulating around the needlelike crystals, which could cause the instability of the crystal growth and thus the formation of spherulites. These aggregates gradually disappeared as the crystallization further proceeded. After the disappearance of the aggregates, the spherulites started to mature.

  19. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.

    PubMed

    Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H

    2016-12-29

    Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.

  20. Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 1. Multidetector and Sub-Binning Approach.

    PubMed

    Abdollah-Nia, Farshad; Gelfand, Martin P; Van Orden, Alan

    2017-03-10

    Fluorescence correlation spectroscopy (FCS) is a powerful tool in the time-resolved analysis of nonreacting or reacting molecules in solution, based on fluorescence intensity fluctuations. However, conventional (second-order) FCS alone is insufficient to measure all parameters needed to describe a reaction or mixture, including concentrations, fluorescence brightnesses, and forward and reverse rate constants. For this purpose, correlations of higher powers of fluorescence intensity fluctuations can be calculated to yield additional information from the single-photon data stream collected in an FCS experiment. To describe systems of diffusing and reacting molecules, considering cumulants of fluorescence intensity results in simple expressions in which the reaction and diffusion parts factorize. The computation of higher-order correlations in experiments is hindered by shot-noise and common detector artifacts, the effects of which become worse with increasing order. In this article, we introduce a technique to calculate artifact-free higher-order correlation functions with improved time resolution, and without any need for modeling and calibration of detector artifacts. The technique is formulated for general multidetector experiments and verified in both two-detector and single-detector configurations. Good signal-to-noise ratio is achieved down to 1 μs in correlation curves up to order (2, 2). This capability makes possible a variety of new measurements including multicomponent analysis and fast reaction kinetics, as demonstrated in a companion article (10.1021/acs.jpcb.7b00408).

  1. Correlative super-resolution fluorescence and metal replica transmission electron microscopy

    PubMed Central

    Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.

    2014-01-01

    Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288

  2. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-07-01

    Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.

  3. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    PubMed Central

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-01-01

    Abstract. Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response. PMID:24996661

  4. Sizing-up finite fluorescent particles with nanometer-scale precision by convolution and correlation image analysis.

    PubMed

    Gennerich, Arne; Schild, Detlev

    2005-05-01

    Determining the positions, shapes and sizes of finite living particles such as bacteria, mitochondria or vesicles is of interest in many biological processes. In fluorescence microscopy, algorithms that can simultaneously localize such particles as a function of time and determine the parameters of their shapes and sizes at the nanometer scale are not yet available. Here we develop two such algorithms based on convolution and correlation image analysis that take into account the position, orientation, shape and size of the object being tracked, and we compare the precision of the two algorithms using computer simulations. We show that the precision of both algorithms strongly depends on the object's size. In cases where the diameter of the object is larger than about four to five times the beam waist radius, the convolution algorithm gives a better precision than the correlation algorithm (it leads to more precise parameters), while for smaller object diameters, the correlation algorithm gives superior precision. We apply the convolution algorithm to sequences of confocal laser scanning micrographs of immobile Escherichia coli bacteria, and show that the centroid, the front end, the rear end, the left border and the right border of a bacterium can be determined with a signal-to-noise-dependent precision down to approximately 5 nm.

  5. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun; Rossini, Micol; Joiner, Joanna; Munger, J. William; Kornfeld, Ari; Richardson, Andrew D.

    2015-04-01

    Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760 nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r2 = 0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r2 = 0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r2 = 0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP.

  6. Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.

    PubMed

    Moore, Chad L; Cheng, Delfine; Shami, Gerald J; Murphy, Christopher R

    2016-05-01

    In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol whi