NASA Technical Reports Server (NTRS)
Daily, J. W.
1978-01-01
Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.
NASA Astrophysics Data System (ADS)
Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu
2017-02-01
Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.
Li, Long; Ji, Yuzhuo; Tang, Xinjing
2014-10-21
Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.
Shot noise limited detection of OH using the technique of laser induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
NASA Astrophysics Data System (ADS)
Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki
2017-04-01
We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.
Enhanced speed in fluorescence imaging using beat frequency multiplexing
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke
2016-03-01
Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Fu, Jiaxin; Yao, Kun; Song, Qianqian; Xu, Kuoxi; Pang, Xiaobin
2018-03-01
A quinoline-based fluorescence probe has been prepared and characterized. Probe 1 showed a selective sensing ability for Al3 + and Fe3 + ions through fluorescence enhancement response at 515 nm when it was excited at 360 nm. In the presence of Fe3 + ion, probe 1 exhibited a detection limit of 2.10 × 10- 6 M. As for Al3 +, its detection limit of 3.58 × 10- 7 M was significantly lower than the highest limit of Al3 + in drinking water recommended by the WHO (7.41 μM), representing a rare example in reported fluorescent probe for Al3 + ion. The fluorescence microscopy experiments have demonstrated that probe 1 could be used in live cells for the detection of Al3 + and Fe3 + ions.
Dual fluorescence/contactless conductivity detection for microfluidic chip.
Liu, Cui; Mo, Yun-yan; Chen, Zuan-guang; Li, Xiang; Li, Ou-lian; Zhou, Xie
2008-07-28
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K(+), Na(+), fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na(+), FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02micromolL(-1), 0.05micromolL(-1), 0.16micromolL(-1), 0.15micromolL(-1), 0.12micromolL(-1) respectively, and the limits of detection (LOD) of CCD achieved 0.58micromolL(-1) and 0.39micromolL(-1) for K(+) and Na(+) respectively.
Maximizing the Biochemical Resolving Power of Fluorescence Microscopy
Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.
2013-01-01
Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821
Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi
2005-06-01
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.
NASA Astrophysics Data System (ADS)
Huang, Peng-Cheng; Fang, Hao; Xiong, Jing-Jing; Wu, Fang-Ying
2017-02-01
A new p-dimethylaminobenzamide derivative based compound BDIH has been synthesized. Cu2 + turned on the fluorescence of compound BDIH with a 1:2 binding stoichiometry. The fluorescent color of compound BDIH shows an evident change from colorless to bright blue upon the addition of Cu2 +, which could be visibly detected by the naked eye under UV light at 365 nm. More importantly, the detection limit was found to be 0.64 nM which is far lower than the maximal allowed concentration of the WHO limit (31.5 μM) for drinking water. This selective ;turn-on; fluorescence sensor was used to identify Cu2 + in living cells using confocal fluorescence microscopy, indicating that compound BDIH has a potential application for selective detection of Cu2 + in organism.
NASA Astrophysics Data System (ADS)
Lv, Hongshui; Sun, Haiyan; Wang, Shoujuan; Kong, Fangong
2018-05-01
A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180 nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26 ppb, which was lower than the threshold limit value set by USEPA (10 ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.
Shot noise limited detection of OH using the technique of laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
Zhao, Zhenjun; Aliwarga, Yulina; Willcox, Mark D P
2007-12-01
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1-10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce.
Zhao, Zhenjun; Aliwarga, Yulina; Willcox, Mark DP
2007-01-01
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1–10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce. PMID:18166676
Tache, Florentin; Farca, Alexandru; Medvedovici, Andrei; David, Victor
2002-05-15
Both derivatization of free captopril in human plasma samples using monobromobimane as fluorescent label and the corresponding HPLC-fluorescence detection (FLD) method were validated. Calibration curve for the fluorescent captopril derivative in plasma samples is linear in the ppb-ppm range with a detection limit of 4 ppb and an identification limit of 10 ppb (P%: 90; nu > or = 5). These methods were successfully applied on bioequivalence studies carried out on some marketed pharmaceutical formulations.
Plasmonics Enhanced Smartphone Fluorescence Microscopy.
Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan
2017-05-18
Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.
Zugel, S A; Burke, B J; Regnier, F E; Lytle, F E
2000-11-15
Two-photon excited fluorescence detection was performed on a microfabricated electrophoresis chip. A calibration curve of the fluorescent tag beta-naphthylamine was performed, resulting in a sensitivity of 2.5 x 10(9) counts M(-1) corresponding to a detection limit of 60 nM. Additionally, leucine aminopeptidase was assayed on the chip using electrophoretically mediated microanalysis. The differential electroosmotic mobilities of the enzyme and substrate, L-leucine beta-naphthylamide, allowed for efficient mixing in an open channel, resulting in the detection of a 30 nM enzyme solution under constant potential. A zero potential incubation for 1 min yielded a calculated detection limit of 4 nM enzyme.
Liu, Yizhang; Jiang, Xuekai; Cao, Wenfeng; Sun, Junyong; Gao, Feng
2018-02-14
Carboxyl-functionalized semiconducting polymer dots (Pdots) were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers) was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0-50 nM (R² = 0.990) and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0-30 nM (R² = 0.997), with a detection limit of 0.56 nM and a recovery rate of 96.2-104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.
Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme
2015-01-01
Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149
Liu, Hua; Na, Weidan; Liu, Ziping; Chen, Xueqian; Su, Xingguang
2017-06-15
In this paper, a facile and rapid fluorescence turn-on assay for fluorescent detection of ascorbic acid (AA) was developed by using the orange emission graphene quantum dots (GQDs). In the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ), catechol can be oxidized by hydroxyl radicals and converted to o-benzoquinone, which can significantly quench the fluorescence of GQDs. However, when AA present in the system, it can consume part of H 2 O 2 and hydroxyl radicals to inhibit the generation of o-benzoquinone, resulting in fluorescence recovery. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of H 2 O 2 in the range of 3.33-500µM with a detection limit of 1.2µM. The linear detection for AA was in the range from 1.11 to 300µM with a detection limit of 0.32µM. The proposed method was applied to the determination of AA in human serum samples with satisfactory results. Copyright © 2017. Published by Elsevier B.V.
Capillary electrophoresis (CE) has been applied to the determination of the groundwater migration tracer dye fluorescein based on laser-induced fluorescence (LIF) detection and compared to determinations obtained with traditional spectrofluorimetry. Detection limits of injected d...
Wang, Shaozhen; Sun, Junyong; Gao, Feng
2015-06-21
A turn-on fluorescent chemosensor of Pb(2+) in the near-infrared (NIR) region, which is based on the Pb(2+)-tuned restored fluorescence of a weakly fluorescent fluorophore-gold nanoparticle (AuNPs) assembly, has been reported. In this fluorophore-AuNP assembly, NIR fluorescent dye brilliant cresyl blue (BCB) molecules act as fluorophores and are used for signal transduction of fluorescence, while AuNPs act as quenchers to quench the nearby fluorescent BCB molecules via electron transfer. In the presence of Pb(2+), fluorescent BCB molecules detached from AuNPs and restored their fluorescence due to the formation of a chelating complex between Pb(2+) and glutathione confined on AuNPs. Under the optimal conditions, the present BCB-AuNP assembly is capable of detecting Pb(2+) with a concentration ranging from 7.5 × 10(-10) to 1 × 10(-8) mol L(-1) (0.16-2.1 ng mL(-1)) and a detection limit of 0.51 nM (0.11 ng mL(-1)). The present BCB-AuNP assembly can be used in aqueous media for the determination of Pb(2+) unlike common organic fluorescent reagents, and also shows advantages of NIR fluorescence spectrophotometry such as less interference, lower detection limit, and higher sensitivity. Moreover, the present method was successfully applied for the detection of Pb(2+) in water samples with satisfactory results.
Zhang, Kui; Mei, Qingsong; Guan, Guijian; Liu, Bianhua; Wang, Suhua; Zhang, Zhongping
2010-11-15
The development of a simple and on-site assay for the detection of organophosphorus pesticed residues is very important for food safety and exosystem protection. This paper reports the surface coordination-originated fluorescence resonance energy transfer (FRET) of CdTe quantum dots (QDs) and a simple ligand-replacement turn-on mechanism for the highly sensitive and selective detection of organophosphorothioate pesticides. It has been demonstrated that coordination of dithizone at the surface of CdTe QDs in basic media can strongly quench the green emission of CdTe QDs by a FRET mechanism. Upon the addition of organophosphorothioate pesticides, the dithizone ligands at the CdTe QD surface are replaced by the hydrolyzate of the organophosphorothioate, and hence the fluorescence is turned on. The fluorescence turn on is immediate, and the limit of detection for chlorpyrifos is as low as ∼0.1 nM. Two consecutive linear ranges allow a wide determination of chlorpyrifos concentrations from 0.1 nM to 10 μM. Importantly, the fluorescence turn-on chemosensor can directly detect chlorpyrifos residues in apples at a limit of 5.5 ppb, which is under the maximum residue limit allowed by the U.S. Environmental Protection Agency. The very simple strategy reported here should facilitate the development of fluorescence turn-on chemosensors for chemo/biodetection.
A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM.
Tan, Jie; Lai, Zongqiang; Zhong, Liping; Zhang, Zhenghua; Zheng, Rong; Su, Jing; Huang, Yong; Huang, Panpan; Song, Hui; Yang, Nuo; Zhou, Sufang; Zhao, Yongxiang
2018-04-01
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 10 2 to 1 × 10 7 cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Liu, Yuhong; Zhang, Yan; Zhang, Yongbin; Huo, Fangjun; Yin, Caixia; Wang, Yu; Qin, Liping
2015-07-01
A new fluorescent enhanced probe based on (E)-9-(2-nitrovinyl)-anthracene is developed, which shows high selectivity and sensitivity for the detection of bisulfite anions at Na2HPO4 citric acid buffer solutions (pH 5.0). When addition of HSO3-, the fluorescence intensity is significantly enhanced and the probe displays apparent fluorescence color changes from non-fluorescence to blue under a UV lamp illumination, the solution color also changes from yellow to colorless. The detection limit is determined to be as low as 6.30 μM. This offers another specific colorimetric and fluorescent probe for bisulfite anions detection, furthermore it is applied in detecting the level of bisulfite in sugar samples.
Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells.
Feng, Weiyong; Liu, Dandan; Feng, Shumin; Feng, Guoqiang
2016-11-01
Carbon monoxide (CO) is an important gasotransmitter in living systems and its fluorescent detection is of particular interest. However, fluorescent detection of CO in living cells is still challenging due to lack of effective probes. In this paper, a readily available fluorescein-based fluorescent probe was developed for rapid detection of CO. This probe can be used to detect CO in almost wholly aqueous solution under mild conditions and shows high selectivity and sensitivity for CO with colorimetric and remarkable fluorescent turn-on signal changes. The detection limit of this probe for CO is as low as 37 nM with a linear range of 0-30 μM. More importantly, this probe (1 μM dose) can be conveniently used for fluorescent imaging CO in living cells.
Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Cai, Jie; Wu, Shuyan; Cai, Ziping
2012-05-30
In this contribution, bovine serum albumin stabilized gold nanoclusters as novel fluorescent probes were successfully utilized for the detection of ciprofloxacin for the first time. Our prepared gold nanoclusters exhibited strong emission with peak maximum at 635 nm. Cu(2+) was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of ciprofloxacin caused the fluorescence intensity restoration of the Cu(2+)-gold nanoclusters system. The increase in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by ciprofloxacin allows the sensitive detection of ciprofloxacin in the range of 0.4 ng mL(-1) to 50 ng mL(-1). The detection limit for ciprofloxacin is 0.3 ng mL(-1) at a signal-to-noise ratio of 3. The present sensor for ciprofloxacin detection possesses a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.
Braun, Kevin L; Hapuarachchi, Suminda; Fernandez, Facundo M; Aspinwall, Craig A
2007-08-01
Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.
Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje
2016-11-15
Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.
Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun
2014-01-01
In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.
Colorimetric and fluorescent detection of hydrazine with high sensitivity and excellent selectivity
NASA Astrophysics Data System (ADS)
Shi, Bingjie; Qi, Sujie; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Ni, Zhonghai
2018-01-01
It is critical to develop probes for rapid, selective, and sensitive detection of the highly toxic hydrazine in both environmental and biological science. In this work, under mild condition, a novel colorimetric and off-on fluorescent probe was synthesized for rapid recognition of hydrazine with excellent selectivity over other various species including some biological species, metal ions and anions. The limit of quantification (LOQ) value was 1.5 × 10- 4 M-3.2 × 10- 3 M (colorimetric method) and 1.5 × 10- 4 M - 3.2 × 10- 3 M (fluorescent method) with as low as detection limit of 46.2 μM.
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.
2018-01-01
Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E
2018-01-01
Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.
Liu, Yuan; Wang, Yu-Min; Zhu, Wu-Yang; Zhang, Chong-Hua; Tang, Hao; Jiang, Jian-Hui
2018-07-05
This work describes a simple and sensitive fluorescent method for detection of hydroquinone utilizing conjugated polymer nanoparticles (CPNs). The CPNs serve both as a catalyst to accelerate the conversion of hydroquinone to benzoquinone and a fluorescent probe. In the presence of hydroquinone, the fluorescence of CPNs can be effectively quenched by benzoquinone. The detection limit of hydroquinone was down to 5 nM and excellent selectivity toward possible interferences was obtained. This method was successfully applied for hydroquinone detection in lake water and satisfactory results were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru
2013-06-01
The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.
Yang, Xiaoming; Zhu, Shanshan; Dou, Yao; Zhuo, Yan; Luo, Yawen; Feng, Yuanjiao
2014-05-01
Tetracycline and Eu(3+), while coexisting, usually appear as a complex by chelating. This complex shows low fluorescence intensity, leading to its limitation of analytical goals. Gold nanoclusters (AuNCs), emerging as novel nano-material, are attracting increasing attentions in multiple fields. Herein, gold nanoclusters first function as a fluorescence-enhanced reagent rather than a conventional fluorescent-probe, and a dramatic enhanced-fluorescence system was built based on Eu(3+)-Tetracycline complex (EuTC) by introducing gold nanoclusters. Simultaneously, three types of gold nanoclusters were employed for exploring various conditions likely affecting the system, which demonstrate that no other gold nanoclusters than DNA-templated gold nanoclusters enormously caused fluorescence-enhancement of EuTC. Moreover, this enhanced-fluorescence system permitted available detection of tetracycline (TC) in a linear range of 0.01-5 μM, with a detection limit of 4 nM at a signal-to-noise ratio of 3. Significantly, the practicality of this method for detection of TC in human urine and milk samples was validated, demonstrating its advantages of simplicity, sensitivity and low cost. Interestingly, this system described here is probably promising for kinds of applications based on its dramatically enhanced-fluorescence. © 2013 Published by Elsevier B.V.
Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung
2011-09-15
Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor
2015-01-01
Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.
NASA Astrophysics Data System (ADS)
Otz, M. H.; Otz, H. K.; Keller, P.
2002-05-01
Synthetic fluorescent dyes, applied below the visual detection limit (< 0.1 mg/L), have been used as tracers of ground water flow paths since the beginning of the 1950s. Since 1965, we have used spectro-fluorometers with photomultipliers to measure low concentrations of fluorescent dyes in ground water in Switzerland. In collaboration with the Engineering Geology Department of the ETH, we have separated uranine at 0.1 ng/L and Na-naphtionate at 1 ng/L from background fluorescence of spring water in the Finstersee region. These values are 10-100 times lower than postulated detection limits in the literature. The use of low dye concentrations prevents a study region from being contaminated by increased background levels due to remnant dye within the aquifer, thereby leaving the region available for future dye tracing studies. Lower detection limits also can solve particular hydraulic problems where conventional methods fail and enhance the possibility for using artificial dyes in environmentally sensitive aquifer settings.
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
NASA Astrophysics Data System (ADS)
Zareh Jonaghani, Mohammad; Zali-Boeini, Hassan
2017-05-01
A highly efficient and selective fluorescent and colorimetric chemosensor based on naphthothiazole skeleton was synthesized and its colorimetric and fluorescent properties were investigated. The sensor displays a rapid and highly selective colorimetric and fluorescence response toward Hg2 + without interference with other metal ions in CH3CN/H2O mixture (50/50, v/v). The detection limit for the fluorescent chemosensor S1 toward Hg2 + was 3.42 × 10- 8 M.
Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance
Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong
2013-01-01
We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023
NASA Astrophysics Data System (ADS)
Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.
2016-02-01
Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.
Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim
2009-01-21
Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
Fang, Bi-Yun; Yao, Ming-Hao; Wang, Chun-Yuan; Wang, Chao-Yang; Zhao, Yuan-Di; Chen, Fang
2016-04-01
A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 μM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 μM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell. Copyright © 2015 Elsevier B.V. All rights reserved.
Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua
2016-07-15
Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water.
Wankar, Shashwati; Turner, Nicholas W; Krupadam, Reddithota J
2016-08-15
Molecular imprints of the tobacco necrosis virus (TNV) have been formed within polythiophene nanofilms with an approximate thickness of 200nm. These films have been electrochemically deposited onto conducting Au surfaces. Upon rebinding, the TNV-polythiophene complex changes the fluorescence intensity of the nanofilm. The fluorescence intensity at 410nm was observed to be proportional to the concentration of viruses in the range of 0.1-10ngL(-1) (0.15-15pg) with the lower calculated detection limit of 2.29ngL(-1) (3.4pg). The intensity of the fluorescence emission is not affected by the thickness of the polythiophene film and the nature of TNV specific binding sites. Kinetic data analyses showed that the nanofilm responds to TNV within 2min; and cross-selectivity studies with tobacco mosaic virus (TMV) showed an excellent specificity for the targeted TNV. These binding experiments demonstrate the potential of fluorescence emission for the specific, label free and rapid detection of viruses using nanofilm sensors. Taking into account the lower limit of detection, the fluorescence sensing reported here is reliable, simple to perform, rapid, cost-effective and offers a sensitive analytical method for virus detection in water resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Sedgwick, Adam C; Gardiner, Jordan E; Kim, Gyoungmi; Yevglevskis, Maksims; Lloyd, Matthew D; Jenkins, A Toby A; Bull, Steven D; Yoon, Juyoung; James, Tony D
2018-05-08
Two 'turn on' TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear 'turn on' with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.
Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection
Cunningham, Brian T.; Zangar, Richard C.
2013-01-01
Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539
Two sugar-rhodamine "turn-on" fluorescent probes for the selective detection of Fe3 +
NASA Astrophysics Data System (ADS)
Chen, Qing; Fang, Zhijie
2018-03-01
Two new sugar-rhodamine fluorescent probes (RDG1 and RDG2) have been synthesized and characterized by 1H NMR, 13C NMR and HRMS. Their UV-Vis, fluorescence spectra and fluorescence-response to Fe3 + are investigated and discussed. RDG1 had a very nice linear relationship between UV absorbance and Fe3 + concentration with the correlation coefficient as high as 0.997 and the detection limit is 3.46 × 10- 6 M. Upon the addition of Fe3 +, the spirolactam ring of RDG1 was opened and a 1:1 metal ligand complex was formed from Job's plot. The results showed that RDG1 can be used as an effective fluorescent probe for selective detection of Fe3 + in water. RDG2 was incorporated the well-known rhodamine group and a water-soluble D-glucose group within one molecule and can be used for detecting Fe3 + in natural water as a selective fluorescent sensor. The addition of Fe3 + into RDG2 resulted in a strongly enhanced fluorescence as well as color change of solution from colorless to pink. Job's plot of RDG2 indicated 1:1 stoichiometry of RDG2-Fe3 +. RDG2 can serve as a probe for Fe3 + between pH = 4.0 to 7.0 and it's detection limit is 2.09 × 10- 6 M. The OFF-ON fluorescent mechanisms of RDG1-Fe3 + and RDG2-Fe3 + are proposed.
Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Koshonna; Thurn, Ted; Xin, Lun
Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less
Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; ...
2017-07-19
Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less
Hu, Yanling; Yang, Donlgliang; Yang, Chen; Feng, Ning; Shao, Zhouwei; Zhang, Lei; Wang, Xiaodong; Weng, Lixing; Luo, Zhimin; Wang, Lianhui
2018-04-11
A novel fluorescent "off-on" probe based on carbon nitride (C₃N₄) nanoribbons was developed for citrate anion (C₆H₅O₇ 3- ) detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu 2+ and then recovered by the addition of C₆H₅O₇ 3- , because the chelation between C₆H₅O₇ 3- and Cu 2+ blocks the electron transfer between Cu 2+ and C₃N₄ nanoribbons. The turn-on fluorescent sensor using this fluorescent "off-on" probe can detect C₆H₅O₇ 3- rapidly and selectively, showing a wide detection linear range (1~400 μM) and a low detection limit (0.78 μM) in aqueous solutions. Importantly, this C₃N₄ nanoribbon-based "off-on" probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C₆H₅O₇ 3- in HeLa cells.
Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng
2017-01-01
Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402
Recommendations for fluorescence instrument qualification: the new ASTM Standard Guide.
DeRose, Paul C; Resch-Genger, Ute
2010-03-01
Aimed at improving quality assurance and quantitation for modern fluorescence techniques, ASTM International (ASTM) is about to release a Standard Guide for Fluorescence, reviewed here. The guide's main focus is on steady state fluorometry, for which available standards and instrument characterization procedures are discussed along with their purpose, suitability, and general instructions for use. These include the most relevant instrument properties needing qualification, such as linearity and spectral responsivity of the detection system, spectral irradiance reaching the sample, wavelength accuracy, sensitivity or limit of detection for an analyte, and day-to-day performance verification. With proper consideration of method-inherent requirements and limitations, many of these procedures and standards can be adapted to other fluorescence techniques. In addition, procedures for the determination of other relevant fluorometric quantities including fluorescence quantum yields and fluorescence lifetimes are briefly introduced. The guide is a clear and concise reference geared for users of fluorescence instrumentation at all levels of experience and is intended to aid in the ongoing standardization of fluorescence measurements.
Fluorescence calibration method for single-particle aerosol fluorescence instruments
NASA Astrophysics Data System (ADS)
Shipley Robinson, Ellis; Gao, Ru-Shan; Schwarz, Joshua P.; Fahey, David W.; Perring, Anne E.
2017-05-01
Real-time, single-particle fluorescence instruments used to detect atmospheric bioaerosol particles are increasingly common, yet no standard fluorescence calibration method exists for this technique. This gap limits the utility of these instruments as quantitative tools and complicates comparisons between different measurement campaigns. To address this need, we have developed a method to produce size-selected particles with a known mass of fluorophore, which we use to calibrate the fluorescence detection of a Wideband Integrated Bioaerosol Sensor (WIBS-4A). We use mixed tryptophan-ammonium sulfate particles to calibrate one detector (FL1; excitation = 280 nm, emission = 310-400 nm) and pure quinine particles to calibrate the other (FL2; excitation = 280 nm, emission = 420-650 nm). The relationship between fluorescence and mass for the mixed tryptophan-ammonium sulfate particles is linear, while that for the pure quinine particles is nonlinear, likely indicating that not all of the quinine mass contributes to the observed fluorescence. Nonetheless, both materials produce a repeatable response between observed fluorescence and particle mass. This procedure allows users to set the detector gains to achieve a known absolute response, calculate the limits of detection for a given instrument, improve the repeatability of the instrumental setup, and facilitate intercomparisons between different instruments. We recommend calibration of single-particle fluorescence instruments using these methods.
Gaseous phase ion detection method based on laser-induced fluorescence for ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Guo, Kaitai; Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is widely used in the field of chemical composition analysis. Faraday cup is the most classical method to detect ions for IMS in the atmospheric pressure. However, the performance of Faraday plate was limited by many kinds of factors, including interfering electromagnetic waves, thermal(Johnson) noise, induced current , gain bandwidth product, etc. There is a theoretical limit in detection of ions at ambient condition which is approximately 106 ions per second. In this paper, we introduced a novel way using laser-induced fluorescence (LIF) to bypass the limitation of Faraday plate. Fluorescent ions which were selected by IMS get excited when they fly through the laser excitation area. The fluorescence emitted by the excited ions was captured exponentially and amplified through proper optoelectronic system. Rhodamine 6G (R6G) was selected as the fluorochrome for the reason that excitation wavelength, emission wavelength, and fluorescence quantum yield were more appropriate than others. An orthometric light path is designed to eliminate the adverse impact which was caused by induced laser. The experiment result shows that a fluorescence signal from the sample ions of the IMS could be observed. Compared with Faraday plate, the LIF-IMS may find a potential application in more system at the atmosphere condition.
Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li
2002-02-01
A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.
BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.
Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy
2014-01-01
Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.
Volatile chemical reagent detector
Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David
2004-08-24
A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.
Douša, Michal; Doubský, Jan; Srbek, Jan
2016-07-01
An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon
2018-04-01
A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy.
Zhang, Juanni; Tian, Jianniao; He, Yanlong; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-09-07
We report a fluorescence polarization platform for H1N1 detection based on the construction of a DNA functional QD fluorescence polarization probe and a bi-functional protein binding aptamer (Apt-DNA). The assay has a linear range from 10 nM to 100 nM with a detection limit of 3.45 nM and is selective over the mismatched bases.
Goswami, Shyamaprosad; Manna, Abhishek; Paul, Sima; Quah, Ching Kheng; Fun, Hoong-Kun
2013-12-25
We have designed a chemodosimeter DPNO (weak fluorescence) which can be oxidized to HPNO (strong blue fluorescence) by OCl(-) with high selectivity and sensitivity in a ratiometric approach with a noticeably lower detection limit. The sensor could be useful for the detection of hypochlorites in tap water.
Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection
Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi
2017-01-01
Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689
Patra, Digambara
2010-01-15
A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.
Yoshii, K; Kaihara, A; Tsumura, Y; Ishimitsu, S; Tonogai, Y
2001-01-01
A liquid chromatographic (LC) method was developed for the determination of emamectin and its metabolites (8,9-Z-isomer, N-demethylated, N-formylated, and N-methylformylated emamectin) in various crops. The analytes were extracted with acetone, cleaned up on cartridge columns (C18 and NH2), derivatized with trifluoroacetic anhydride and 1-methylimidazole, and determined by LC with fluorescence detection. Because radish inhibited the formation of the fluorescent derivatives, an additional Bond Elut PRS cartridge was used in the cleanup of Japanese radish samples. During sample preparation, N-formylated emamectin partially degraded to emamectin B1b and emamectin B1a, and the 8,9-Z-isomer partially degraded to N-demethylated emamectin. Therefore, emamectin and its metabolites were determined as total emamectin, i.e., their sum was estimated as emamectin benzoate. Their recoveries from most crops were approximately 80-110% with the developed method. The detection limits for the analytes in vegetables were 0.1-0.3 parts per trillion (ppt). The results for these compounds were confirmed by LC/mass spectrometry (LC/MS; electrospray ionization mode). Because the fluorescent derivative of emamectin was undetectable by LC/MS, the results for the analyte were confirmed by using a sample solution without derivatization. Limits of detection by LC/MS were similar to the fluorescence detection limits, 0.1-0.3 ppt in vegetables. In addition to the emamectins, milbemectin, ivermectin, and abamectin were also determined by the developed method.
Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2018-05-15
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziqiang
1999-12-10
Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based onmore » monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10 -8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.« less
Carbon dots-based fluorescent probe for "off-on" sensing of Hg(II) and I⁻.
He, Jiangling; Zhang, Haoran; Zou, Jinliang; Liu, Yingliang; Zhuang, Jianle; Xiao, Yong; Lei, Bingfu
2016-05-15
Herein, we report a simple, one-step reflux method for synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and diethylenetriamine (DETA) as the surface passivation reagent along with a high quantum yield (82.40%), the fluorescence intensity of the CDs was found to be effectively quenched by Hg(II) ions. Upon addition of I(-) to the CDs/Hg(II) complex dispersion, the fluorescence intensity of the CDs was significantly recovered. Furthermore, we developed an "off-on" fluorescence assay for the detection of I(-) using CDs/Hg(II) as a fluorescence probe. This probe enables the selective detection of Hg(II) with a linear range of 0-80 μM and a limit of detection is 0.201 µM and a limit of detection about I(-) is 0.234 µM with a linear range of 0-70 μM. Most importantly, the sensors can be successfully applied to the determination of Hg(II) and I(-) in real lake water and urine of cattles, the "off-on" sensor demonstrates high selectivity, repeatability, stability, which offer this CDs-based "off-on" fluorescent sensor a promising platform for environmental and biological sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jiamian; Song, Jie; Wang, Xiuyun; Wu, Shuo; Zhao, Yanqiu; Luo, Pinchen; Meng, Changgong
2016-12-01
A label-free ratiometric fluorescence aptasensor has been developed for the rapid and sensitive detection of cocaine in complex biofluids. The fluorescent aptasensor is composed of a non-labeled GC-38 cocaine aptamer which serves as a basic sensing unit and two fluorophores, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and SYBR Green I (SGI) which serves as a signal reporter and a build-in reference, respectively. The detection principle is based on a specific cocaine mediated ATMND displacement reaction and the corresponding change in the fluorescence ratio of ATMND to SGI. Due to the high affinity of the non-labeled aptamer, the good precision originated from the ratiometric method, and the good fluorescence quantum yield of the fluorophore, the aptasensor shows good analytical performance with respect to cocaine detection. Under optimal conditions, the aptasensor shows a linear range of 0.10-10μM and a low limit of detection of 56nM, with a fast response of 20s. The low limit of detection is comparable to most of the fluorescent aptasensors with signal amplification strategies and much lower than all of the unamplified cocaine aptasensors. Practical sample analysis in a series of complex biofluids, including urine, saliva and serum, also indicates the good precision, stability, and high sensitivity of the aptasensor, which may have great potential for the point-of-care screening of cocaine in complex biofluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian
2018-02-05
A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.
Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin
2014-05-01
An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.
;Turn-on; fluorescent probe detection of Ca2 + ions and applications to bioimaging
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yin, Caixia; Liu, Tao; Zhang, Yongbin; Huo, Fangjun
2017-06-01
Ca2 + is intracellular divalent cation with the largest concentration variations and involved in many biological phenomena and often acted as a second messenger in signaling pathway. Therefore, the development of probes for specific Ca2 + detection is of great importance. Herein, a novel turn-on fluorescent probe for the detection of Ca2 + in MeCN-aqueous medium was designed and synthesized. The probe displayed responses to Ca2 + with a fluorescence enhancement at 525 nm, accompanying with a distinct fluorescence change from nearly colorless to bright yellow-green. Besides, the probe exhibited a rapid signal response time (within 25 s), a good linearity range and a lower detection limit (2.70 × 10- 7 M). In addition, the ability of the probe to detect Ca2 + in living cells (HeLa cells) via an enhancement of the fluorescence has also been demonstrated.
Recent Progress in Fluorescent Imaging Probes
Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung
2015-01-01
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684
Recent Progress in Fluorescent Imaging Probes.
Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung
2015-09-22
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP).
Li, Zhen; Zhu, Wenping; Zhang, Jinwen; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2013-07-07
A label-free fluorescent DNA biosensor has been presented based on isothermal circular strand-displacement polymerization reaction (ICSDPR) combined with graphene oxide (GO) binding. The proposed method is simple and cost-effective with a low detection limit of 4 pM, which compares favorably with other GO-based homogenous DNA detection methods.
A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells
NASA Astrophysics Data System (ADS)
Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian
2018-06-01
A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.
High sensitivity fluorescent single particle and single molecule detection apparatus and method
Mathies, Richard A.; Peck, Konan; Stryer, Lubert
1990-01-01
Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.
Fu, QiangQiang; Tang, Yong; Shi, CongYing; Zhang, XiaoLi; Xiang, JunJian; Liu, Xi
2013-11-15
A novel fluorescence quenching immunochromatographic sensor (ICS) was developed for detecting chromium (Cr(3+)) within 15 min utilizing the fluorescence quenching function of gold nanoparticles (Au-NPs). The sensor performed with a positive readout. When the low concentrations of Cr(3+) samples were applied, detection signals of the test line (T line) were quenched, whereas when higher concentration Cr(3+) samples (1.56 ng/mL) were applied, the detection signal of the T line appeared. The detection signal intensity of the T line increased with increasing concentrations of Cr(3+). The low detection limit of developed fluorescence quenching ICS was 1.56 ng/mL. The fluorescence quenching ICS has a linear range of detection of Cr(3+) comprising between 6.25 ng/mL to 800 ng/mL. The recoveries of the fluorescence quenching ICS to detect Cr(3+) in tap water ranged from 94.7% to 101.7%. This result indicated that the developed sensor gave higher sensitivity and reliable reproducibility. It could provide a general detection method for small analyte in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
da Costa, José Luiz; da Matta Chasin, Alice Aparecida
2004-11-05
This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.
Wu, Di; Qi, Wenjing; Liu, Chun; Zhang, Qing
2017-04-01
A "turn-on" fluorescent sensor for ozone using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer was developed. The spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine (IDS) was utilized. Ozone cleaves C = C bond of IDS and suppresses energy transfer from BSA-Au NCs to IDS. Therefore, this proposed fluorescent sensor is a "turn-on" detection motif. It is the first application of fluorescent nanoclusters in sensitively detecting ozone from 0.2 to 12 μM with the limit of detection of 35 nM (the volume of 500 μL, 1.68 ppb). The proposed fluorescent sensor for ozone is more sensitive and faster (within 2 min) than most methods and is with good selectivity for ozone detection against other reactive oxygen species, reactive nitrogen, or metallic ions. Besides, the proposed method is also utlized in ozone detection in ambient air by monitoring 1 h (60 min) in Qijiang district in Chongqing city. The average of concentration of ozone in ambient air ranges from 44.97 to 52.85 μg/m 3 . The results are compared with the automatic monitoring data provided by Qijiang Environmental Monitoring Station and the relative deviations range, respectively, from 2.1 to 5.6%, which suggests that it is a promising fluorescent sensor for ozone in ambient air. This study not only develops a new model of energy transfer motif using BSA-Au NCs as donor and IDS as acceptor but also expands the application of BSA-Au NCs in environmental science. Graphical abstract A "turn-on" fluorescent sensor for ozone detection using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer is developed. It is the first time to utilize spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine and to achieve fast, sensitive, and selective ozone detection with a limit of detection of down to 35 nM (the volume of 500 μL, 1.68 ppb).
Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.
Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C
2016-01-01
Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.
Intravital Fluorescence Excitation in Whole-Animal Optical Imaging
Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.
2016-01-01
Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU. PMID:26901051
Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan
2015-03-17
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+.
Li, Yan; Li, Lianzhi; Pu, Xuewei; Ma, Guolin; Wang, Erqiong; Kong, Jinming; Liu, Zhipeng; Liu, Yangzhong
2012-06-15
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.
New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods.
Westergaard Mulberg, Mads; Taskova, Maria; Thomsen, Rasmus P; Okholm, Anders H; Kjems, Jørgen; Astakhova, Kira
2017-08-17
For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung
2009-05-15
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.
A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.
Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun
2016-11-01
Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.
Laser induced fluorescence of biochemical for UV LIDAR application.
Gupta, L; Sharma, R C; Razdan, A K; Maini, A K
2014-05-01
Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.
Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran
2015-11-23
An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeong, Hee-Jin; Itayama, Shuya; Ueda, Hiroshi
2015-03-26
An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose "Q'-body", which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q'-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q'-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.
Jeong, Hee-Jin; Itayama, Shuya; Ueda, Hiroshi
2015-01-01
An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose “Q’-body”, which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q’-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q’-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin. PMID:25822756
Zhang, Cheng; Nestorova, Gergana; Rissman, Robert A.; Feng, June
2013-01-01
8-Hydroxy-2′-deoxyguanosine (8-OHdG) is one of the major forms of oxidative deoxyribonucleic acid (DNA) damage, and is commonly analyzed as an excellent marker of DNA lesions. The purpose of this study was to develop a sensitive method to accurately and rapidly quantify the 8-OHdG by using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The method involved the use of specific antibody to detect DNA lesions (8-OHdG) and consecutive fluorescence labeling. Next, the urine sample with 8-OHdG fluorescently labeled along with other constituents was resolved by capillary electrophoretic system and the lesion of interest was detected using fluorescence detector. The limit of detection was 0.18 fmol, which is sufficient sensitivity for detection and quantification of 8-OHdG in untreated urine samples. The relative standard deviation (RSD) was found to be 11.32 % for migration time, and 5.52 % for peak area. To demonstrate the utility of this method, the urinary concentration of 8-OHdG in an Alzheimer’s transgenic mouse model was determined. Collectively, our results indicate that this methodology offers great advantages such as high separation efficiency, good selectivity, low limit of detection (LOD), simplicity and low cost of analysis. PMID:23712533
A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.
Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu
2014-02-13
Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.
Detection of proteolytic activity by covalent tethering of fluorogenic substrates in zymogram gels.
Deshmukh, Ameya A; Weist, Jessica L; Leight, Jennifer L
2018-05-01
Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.
Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon
2018-04-15
A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A
2015-02-20
Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.
Research of the fluorescence detection apparatus for nutrients
NASA Astrophysics Data System (ADS)
Wang, Yu; Yan, Huimin; Ni, Xuxiang; Xu, Xiaoyi; Chen, Shibing
2015-10-01
The research of the multifunctional analyzer of Clinical Nutrition, which integrates the absorbance, luminescence, fluorescence and other optical detection methods, can overcome the functional limitations of a single technology on human nutrition analysis, and realize a rapid and accurate analysis of the nutrients. This article focuses on the design of fluorescence detection module that uses a photomultiplier tube(PMT) to detect weak fluorescence, and utilizes the single photon counting method to measure the fluorescence intensity, and then according to the relationship between the fluorescent marker and fluorescence intensity, the concentration of the analyte can be derived. Using fluorescein isothiocyanate(FITC, the most widely used fluorescein currently)to mark antibodies in the experiment, therefore, according to the maximum absorption wavelength and the maximum emission wavelength of the fluorescein isothiocyanate, to select the appropriate filters to set up the optical path. In addition, the fluorescence detection apparatus proposed in this paper uses an aspherical lens with large numerical aperture, in order to improve the capacity of signal acquisition more effectively, and the selective adoption of flexible optical fiber can realize a compact opto-mechanical structure, which is also conducive to the miniaturization of the device. The experimental results show that this apparatus has a high sensitivity, can be used for the detection and analysis of human nutrition.
NASA Astrophysics Data System (ADS)
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-11-01
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b
Fluorenone based fluorescent probe for selective "turn-on" detection of pyrophosphate and alanine
NASA Astrophysics Data System (ADS)
Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D.
2018-06-01
To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565 nm for pyrophosphate and 530 nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73 - and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.
Tsai, H Y; Li, S Y; Fuh, C Bor
2018-03-01
Magnetofluorescent nanocomposites with optimal magnetic and fluorescent properties were prepared and characterized by combining magnetic nanoparticles (iron oxide@polymethyl methacrylate) with fluorescent nanoparticles (rhodamine 6G@mSiO 2 ). Experimental parameters were optimized to produce nanocomposites with high magnetic susceptibility and fluorescence intensity. The detection of a model biomarker (alpha-fetoprotein) was used to demonstrate the feasibility of applying the magnetofluorescent nanocomposites combined with quantum dots and using magnetic fluorescence-linked immunoassay. The magnetofluorescent nanocomposites enable efficient mixing, fast re-concentration, and nanoparticle quantization for optimal reactions. Biofunctional quantum dots were used to confirm the alpha-fetoprotein (AFP) content in sandwich immunoassay after mixing and washing. The analysis time was only one third that required in ELISA. The detection limit was 0.2 pg mL -1 , and the linear range was 0.68 pg mL -1 -6.8 ng mL -1 . This detection limit is lower, and the linear range is wider than those of ELISA and other methods. The measurements made using the proposed method differed by less than 13% from those obtained using ELISA for four AFP concentrations (0.03, 0.15, 0.75, and 3.75 ng mL -1 ). The proposed method has a considerable potential for biomarker detection in various analytical and biomedical applications. Graphical abstract Magnetofluorescent nanocomposites combined with fluorescent quantum dots were used in magnetic fluorescence-linked immunoassay.
Photonic crystal enhanced fluorescence immunoassay on diatom biosilica.
Squire, Kenneth; Kong, Xianming; LeDuff, Paul; Rorrer, Gregory L; Wang, Alan X
2018-05-16
Fluorescence biosensing is one of the most established biosensing methods, particularly fluorescence spectroscopy and microscopy. These are two highly sensitive techniques but require high grade electronics and optics to achieve the desired sensitivity. Efforts have been made to implement these methods using consumer grade electronics and simple optical setups for applications such as point-of-care diagnostics, but the sensitivity inherently suffers. Sensing substrates, capable of enhancing fluorescence are thus needed to achieve high sensitivity for such applications. In this paper, we demonstrate a photonic crystal-enhanced fluorescence immunoassay biosensor using diatom biosilica, which consists of silica frustules with sub-100 nm periodic pores. Utilizing the enhanced local optical field, the Purcell effect and increased surface area from the diatom photonic crystals, we create ultrasensitive immunoassay biosensors that can significantly enhance fluorescence spectroscopy as well as fluorescence imaging. Using standard antibody-antigen-labeled antibody immunoassay protocol, we experimentally achieved 100× and 10× better detection limit with fluorescence spectroscopy and fluorescence imaging respectively. The limit of detection of the mouse IgG goes down to 10 -16 M (14 fg/mL) and 10 -15 M (140 fg/mL) for the two respective detection modalities, virtually sensing a single mouse IgG molecule on each diatom frustule. The effectively enhanced fluorescence imaging in conjunction with the simple hot-spot counting analysis method used in this paper proves the great potential of diatom fluorescence immunoassay for point-of-care biosensing. Scanning electron microscope image of biosilica diatom frustule that enables significant enhancement of fluorescence spectroscopy and fluorescence image. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E
2018-05-30
Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.
Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao
2012-12-14
Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells
NASA Astrophysics Data System (ADS)
Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi
2017-02-01
A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.
NASA Astrophysics Data System (ADS)
Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun
2011-10-01
In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.
Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.
2010-01-01
The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566
NASA Astrophysics Data System (ADS)
Xu, Yang; Chen, Xi; Chai, Ran; Xing, Chengfen; Li, Huanrong; Yin, Xue-Bo
2016-07-01
A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03129c
Bing, Qijing; Wang, Lin; Li, Donglin; Wang, Guang
2018-09-05
A new benzimidazole base turn-on fluorescent and ratiometric absorption chemosensor (L) bearing bidentate ligand for detection of Cu 2+ was designed and synthesized. Fluorescence and UV-vis spectra studies demonstrated that L can detect Cu 2+ ions in aqueous solution using fluorescence enhancement and ratiometric absorption sensing over a wide pH range. Both fluorescent and ratiometric absorption sensing of L for Cu 2+ possessed high selectivity and sensitivity over other competitive metal ions and had low detection limit. Job's plot, mass spectra and DFT calculation indicated the sensing mechanism is the complex formation between L and Cu 2+ with 1:2 stoichiometry. Fluorescence images of HepG2 in the absence and presence of Cu 2+ displayed L had cell permeability and detection ability for Cu 2+ in live cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang
2017-06-06
Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.
Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei
2016-06-15
Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.
Lee, Eun Zoo; Lee, Sun Uk; Heo, Nam-Su; Stucky, Galen D; Jun, Young-Si; Hong, Won Hi
2012-04-25
A turn-on fluorescence sensor, Cu(2+)-c-mpg-C(3)N(4), was developed for detection of CN(-) in aqueous solution by simply mixing cubic mesoporous graphitic carbon nitride (c-mpg-C(3)N(4)) and aqueous solution of Cu(NO(3))(2). The highly sensitive detection of CN(-) with a detection limit of 80 nM is not only possible in aqueous solution but also in human blood serum.
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-12-14
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.
Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu
2017-06-16
A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.
Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis
2013-05-01
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.
NASA Astrophysics Data System (ADS)
Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan
2016-04-01
Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01136e
Fluorescence Immunoassay for Cocaine Detection.
Nakayama, Hiroshi; Kenjjou, Noriko; Shigetoh, Nobuyuki; Ito, Yuji
2016-04-01
A fluorescence immunoassay (FIA) has been developed for the detection of cocaine using norcocaine labeled with merocyanine dye and a monoclonal antibody specific to cocaine. Using this FIA, the detection range for cocaine was between 20.0 and 1700 μg/L with a limit of detection of 20.0 μg/L. Other cocaine derivatives did not interfere significantly with the detection when using this immunoassay technique with cross-reactivity values of less than 20%. Thus this FIA could be considered a useful tool for the detection of cocaine.
Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko
2015-03-25
An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zongchao; Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn; Lin, Xiangyi
Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significantmore » fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.« less
Near-infrared laser-induced fluorescence detection in capillary electrophoresis.
McWhorter, S; Soper, S A
2000-04-01
As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.
Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei
2015-04-22
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Guillo, Christelle; Ferrance, Jerome P; Landers, James P
2006-04-28
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).
Huang, Hailiang; Shi, Shuo; Gao, Xing; Gao, Ruru; Zhu, Ying; Wu, Xuewen; Zang, Ruimin; Yao, Tianming
2016-05-15
Based on specific aptamer binding properties, a strategy for adenosine, dopamine and 17β-estradiol detection was realised by employing Ru complex and quantum dots (QDs) as fluorescence probes. Ru complex, which could quench the fluorescence of QDs, preferred to bind with aptamer DNA and resulted in the fluorescence rise of QDs. When the aptamer DNA was incubated with the target first, it could not bind with Ru complex and the fluorescence of QDs was quenched. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of adenosine, dopamine and 17β-estradiol with a limit of detection (LOD) of 101 nM, 19 nM and 37 nM, respectively. The experiments in fetal bovine serum were also carried out with good results. This universal method was rapid, label-free, low-cost, easy-operating and highly repeatable for the detection of adenosine, dopamine and 17β-estradiol. Qualitative detection by naked eyes was also available without complex instruments. It could also be extended to detect various analytes, such as metal ions, proteins and small molecules by using appropriate aptamers. Copyright © 2015 Elsevier B.V. All rights reserved.
Sutter, Marc; Oliveira, Sabrina; Sanders, Niek N; Lucas, Bart; van Hoek, Arie; Hink, Mark A; Visser, Antonie J W G; De Smedt, Stefaan C; Hennink, Wim E; Jiskoot, Wim
2007-03-01
The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein beta-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of beta-galactosidase below and above the protein's unfolding temperature of 57.4 degrees C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with beta-galactosidase aggregates led to a shift of the emission maximum (lambda (max)) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated beta-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native beta-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with beta-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.
Ramezani, Mohammad; Abnous, Khalil; Taghdisi, Seyed Mohammad
2017-01-01
Detection and quantitation of antibiotic residues in blood serum and foodstuffs are in great demand. We have developed aptasensors for detection of streptomycin using electrochemical and optical methods. In the first method, an electrochemical aptasensor was developed for sensitive and selective detection of streptomycin, based on combination of exonuclease I (Exo I), complementary strand of aptamer (CS), arch shaped structure of aptamer (Apt)-CS conjugate, and gold electrode. The designed electrochemical aptasensor exhibited high selectivity toward streptomycin with a limit of detection (LOD) as low as 11.4 nM. Moreover, the developed electrochemical aptasensor was successfully used to detect streptomycin in milk and serum with LODs of 14.1 and 15.3 nM, respectively. In the second method, fluorescence quenching and colorimetric aptasensors were designed for detection of streptomycin based on aqueous gold nanoparticles (AuNPs) and double-stranded DNA (dsDNA). In the absence of streptomycin, aptamer/FAM-labeled complementary strand dsDNA is stable, resulting in the aggregation of AuNPs by salt bridge and an obvious color change from red to blue and strong emission of fluorescence. The colorimetric and fluorescence quenching aptasensors showed excellent selectivity toward streptomycin with limit of detections as low as 73.1 and 47.6 nM, respectively. The presented aptasensors were successfully used to detect streptomycin in milk and serum. For serum, LODs were determined to be 58.2 and 102.4 nM for fluorescence quenching and colorimetric aptasensors, respectively. For milk, LODs were calculated to be 56.2 and 108.7 nM for fluorescence quenching and colorimetric aptasensors, respectively.
Avens, Heather J.; Bowman, Christopher N.
2009-01-01
Antibody microarrays are a critical tool for proteomics, requiring broad, highly sensitive detection of numerous low abundance biomarkers. Fluorescent polymerization-based amplification (FPBA) is presented as a novel, non-enzymatic signal amplification method that takes advantage of the chain-reaction nature of radical polymerization to achieve a highly amplified fluorescent response. A streptavidin-eosin conjugate localizes eosin photoinitiators for polymerization on the chip where biotinylated target protein is bound. The chip is contacted with acrylamide as a monomer, N-methyldiethanolamine as a coinitiator and yellow/green fluorescent nanoparticles (NPs) which, upon initiation, combine to form a macroscopically visible and highly fluorescent film. The rapid polymerization kinetics and the presence of cross-linker favor entrapment of the fluorescent NPs in the polymer, enabling highly sensitive fluorescent biodetection. This method is demonstrated as being appropriate for antibody microarrays and is compared to detection approaches which utilize streptavidin-FITC (SA-FITC) and streptavidin-labeled yellow/green NPs (SA-NPs). It is found that FPBA is able to detect 0.16 (+/− 0.01) biotin-antibody/µm2 (or 40 zeptomole surface-bound target molecules), while SA-FITC has a limit of detection of 31 (+/− 1) biotin-antibody/µm2 and SA-NPs fail to achieve any significant signal under the conditions evaluated here. Further, FPBA in conjunction with fluorescent stereomicroscopy yields equal or better sensitivity compared to fluorescent detection of SA-eosin using a much more costly microarray scanner. By facilitating highly sensitive detection, FPBA is expected to enable detection of low abundance antigens and also make possible a transition towards less expensive fluorescence detection instrumentation. PMID:19508906
Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin
2016-02-21
A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.
The design and application of fluorophore–gold nanoparticle activatable probes
Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan
2013-01-01
Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462
Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection
Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.
2010-01-01
A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826
Zhang, Yuhua; Fang, Xian; Zhao, Hong; Li, Zengxi
2018-05-01
A highly sensitive and selective detection of hexavalent chromium (Cr(VI)) and ascorbic acid (AA) was proposed using nitrogen-doped carbon dots (N-CDs). In the absence of AA, the quantitative detection of Cr(VI) was realized through Cr(VI) acting as a quencher to quench the fluorescence of N-CDs by inner filter effect (IFE) and static quenching effect. Under the optimal conditions, the linear range for Cr(VI) detection was from 0.01 to 250μM with a detection limit of 5nM (S/N = 3). In the presence of AA, the fluorescence intensity could be rapidly enhanced compared with the fluorescence of N-CDs/Cr(VI) system since Cr(VI) can be reduced into trivalent chromium (Cr(III)) by AA. And a wide linear range for AA detection was obtained from 1 to 750μM. The detection limit was 0.3μM (S/N = 3). More importantly, this method can be successfully applied to the detection of Cr(VI) in real water samples, and AA in vitamins C tablets and human serum sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang
2016-05-15
Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.
Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations
Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry
2013-01-01
The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063
Joint reconstruction of x-ray fluorescence and transmission tomography
Di, Zichao Wendy; Chen, Si; Hong, Young Pyo; Jacobsen, Chris; Leyffer, Sven; Wild, Stefan M.
2017-01-01
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption. PMID:28788848
Challenges in paper-based fluorogenic optical sensing with smartphones
NASA Astrophysics Data System (ADS)
Ulep, Tiffany-Heather; Yoon, Jeong-Yeol
2018-05-01
Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.
A new azine derivative colorimetric and fluorescent dual-channel probe for cyanide detection
NASA Astrophysics Data System (ADS)
Yu, Bin; Li, Chun-Yu; Sun, Yin-Xia; Jia, Hao-Ran; Guo, Jian-Qiang; Li, Jing
2017-09-01
A novel azine derivative colorimetric and fluorescent dual-channel probe salicylaldehyde hydrazine-3,5-dibromosalicylaldehyde (1) has been designed, synthesized and characterized. The probe 1 is confirmed to have especial selectivity and good sensitivity on detecting CN- via UV-vis absorption and fluorescence spectrum in aqueous solution (H2O/DMSO, 1:4, v/v). This colorimetric and fluorescent dual-channel probe response to CN- owed to the deprotonation process and established the mechanism by using 1H NMR spectroscopy. Further researches showed that the detection limit of the probe 1 to CN- anions is 8.01 × 10- 9 M, significantly lower than the maximum level 1.9 × 10- 6 M in potable water from WHO guidelines.
Nandi, Sandip; Sahana, Animesh; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Das, Debasis
2015-09-01
Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently. Graphical Abstract DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.
NASA Astrophysics Data System (ADS)
Yang, Rui; Guo, Xiangfeng; Jia, Lihua; Zhang, Yu; Zhao, Zhenlong; Lonshakov, Fedor
2017-11-01
A simple method was developed in the synthesis of fluorescent carbon dots (referred to as M-CDs), calcined treatment of mangosteen pulp in air, without the assistance of any chemical reagent. The M-CDs possess good-solubility, satisfactory chemical stability and can be applied as the fluorescent temperature probe. More strikingly, the fluorescence of M-CDs can be fleetly and selectively quenched by Fe3+ ions. The phenomenon was used to develop a fluorescent method for facile detection of Fe3+ with a linear range of 0-0.18 mM and a detection limit of 52 nM. Eventually, the M-CDs were applied for cell imaging, demonstrating their potential toward diverse applications.
A rhodol-based fluorescent chemosensor for hydrazine and its application in live cell bioimaging
NASA Astrophysics Data System (ADS)
Tiensomjitr, Khomsan; Noorat, Rattha; Wechakorn, Kanokorn; Prabpai, Samran; Suksen, Kanoknetr; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon
2017-10-01
A rhodol cinnamate fluorescent chemosensor (RC) has been developed for selective detection of hydrazine (N2H4). In aqueous medium, the rhodol-based probe exhibited high selectivity for hydrazine among other molecules. The addition of hydrazine triggered a fluorescence emission with 48-fold enhancement based on hydrazinolysis and a subsequent ring-opening process. The chemical probe also displayed a selective colorimetric response toward N2H4 from colorless solution to pink, readily observed by the naked eye. The detection limit of RC for hydrazine was calculated to be 300 nM (9.6 ppb). RC is membrane permeable and was successfully demonstrated to detect hydrazine in live HepG2 cells by confocal fluorescence microscopy.
Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng
2016-05-01
In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6) M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.
A Colorimetric and Fluorescent Probe for the Detection of Cu2+ in a Complete Aqueous Solution.
Xu, Jing; Wang, Zuokai; Liu, Caiyun; Xu, Zhenghe; Zhu, Baocun; Wang, Ning; Wang, Kun; Wang, Jiangting
2018-01-01
The fluorescent probe has become an important method for the detection of heavy metal ions. In the present work, a new and simple fluorescent probe, Cu-P, for detecting copper ion (Cu 2+ ) was designed and synthesized. The probe has shown high sensitivity and selectivity toward Cu 2+ . The detection limit was 13 nM (based on the 3σ/slope). A significant color change from yellow to pink was observed; thus, the probe Cu-P could serve as a "naked-eye" indicator for Cu 2+ . Furthermore, the proposed probe was used to detect Cu 2+ in real water and soil extract samples, with the result being satisfactory. Therefore, our proposed probe would provide a promising method for the detection of Cu 2+ in the environment.
Use of x-ray fluorescence for in-situ detection of metals
NASA Astrophysics Data System (ADS)
Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.
1995-01-01
X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.
Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu
2015-01-01
DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun
2016-08-24
Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples.
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
Field, Jeffrey J; Winters, David G; Bartels, Randy A
2015-11-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.
Fluorescence spectroscopy of trapped molecular ions
NASA Astrophysics Data System (ADS)
Wright, Kenneth Charles
This thesis describes the development of a unique instrument capable of detecting fluorescence emission from large gas phase molecular ions trapped in a three-dimensional quadrupole ion trap. The hypothesis that has formed the basis of this work is the belief that fluorescence spectroscopy can be combined with ion trap mass spectrometry to probe the structure of gas phase molecular ions. The ion trap provides a rarefied environment where fluorescence experiments can be conducted without interference from solvent molecules or impurities. Although fluorescence was not detected during preliminary experiments, two significant experimental challenges associated with detecting the gas phase fluorescence of ions were discovered. First, gas phase ions were vulnerable to photodissociation and low laser powers were necessary to avoid photodissociation. Since fluorescence emission is directly proportional to laser intensity, a lower laser power limits the fluorescence signal. Second, the fluorescence emission was not significantly Stokes shifted from the excitation. The lack of Stokes shift meant the small fluorescence signal must be detected in the presence of a large amount of background scatter generated by the excitation. Initially, this background was seven orders of magnitude higher than the analytical signal ultimately detected. A specially designed fiber optic probe was inserted between the electrodes of the ion trap to stop light scattered off the outside surfaces of the trap from reaching the detector. The inside surfaces of the ion trap were coated black to further reduce the amount of scattered light collected. These innovations helped reduced the background by six orders of magnitude and fluorescence emission from rhodamine-6G was detected. Pulse counting experiments were used to optimize fluorescence detection. The effects of trapping level, laser power, and irradiation time were investigated and optimized. The instrument developed in this work not only allows for the detection of fluorescent photons, but the sensitivity is high enough for the light to be dispersed and an emission spectrum recorded. The emission spectra of rhodamine-6G and 5-carboxyrhodamine-6G ions reported in this thesis represent the first spectra recorded from large molecular ions confined in a quadrupole ion trap. Finally, anti-Stokes fluorescence from rhodamine-6G was also detected.
Fluorogenic Ag+–Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining
Xie, Sheng; Wong, Alex Y. H.; Kwok, Ryan T. K.; Li, Ying; Su, Huifang; Lam, Jacky W. Y.
2018-01-01
Abstract Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains. PMID:29575702
Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2015-01-25
In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi
2014-11-01
A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo
2018-01-01
A new reaction-based fluorescent probe 6-cyanonaphthalen-2-yl-2,4- dinitrobenzenesulfonate (probe 1) was designed and synthesized for detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence increased accompanied by a visual color change from colorless to yellow. Importantly, this distinct color response indicates that probe 1 could be used as a visual tool for detection of H 2 S. H 2 S can be detected quantitatively in the concentration range 0 to 25 μM and the detection limit was 30 nM. Moreover, probe 1 was successfully used as a sensor to determine H 2 S levels in red wine and beer. Fluorescent probe 1 could be employed as a visible sensor for H 2 S. Probe 1 could be used to detect H 2 S quantitatively in food simple. © 2017 Institute of Food Technologists®.
Huang, Jin; Zhu, Zhi; Bamrungsap, Suwussa; Zhu, Guizhi; You, Mingxu; He, Xiaoxiao; Wang, Kemin; Tan, Weihong
2010-01-01
Lysozyme (Lys) plays crucial roles in the innate immune system, and the detection of Lys in urine and serum has considerable clinical importance. Traditionally, the presence of Lys has been detected by immunoassays; however, these assays are limited by the availability of commercial antibodies and tedious protein modification, and prior sample purification. To address these limitations, we report here the design, synthesis and application of a competition-mediated pyrene-switching aptasensor for selective detection of Lys in buffer and human serum. The detection strategy is based on the attachment of pyrene molecules to both ends of a hairpin DNA strand, which becomes the partially complementary competitor to an anti-Lys aptamer. In the presence of target Lys, the aptamer hybridizes with part of the competitor, which opens the hairpin such that both pyrene molecules are spatially separated. In the presence of target Lys, however, the competitor is displaced from the aptamer by the target, subsequently forming an initial hairpin structure. This brings the two pyrene moieties into close proximity to generate an excimer, which, in turn, results in a shift of fluorescence emission from ca. 400 nm (pyrene monomer) to 495 nm (pyrene excimer). The proposed method for Lys detection showed sensitivity as low as 200 pM and high selectivity in buffer. When measured by steady-state fluorescence spectrum, the detection of Lys in human serum showed a strong fluorescent background, which obscured detection of the excimer signal. However, time-resolved emission measurement (TREM) supported the potential of the method in complex environments with background fluorescence by demonstrating the temporal separation of probe fluorescence emission decay from the intense background signal. We have also demonstrated that the same strategy can be applied to the detection of small biomolecules such as adenosine triphosphate (ATP), sowing the generality of our approach. Therefore, the competition-mediated pyrene-switching aptasensor is promising to have potential for clinical and forensic applications. PMID:21080638
Wang, Fangfang; Huang, Lingyun; Na, Na; He, Dacheng; Sun, Dezhi; Ouyang, Jin
2012-05-21
In this paper, a simple and sensitive small-molecule fluorescent probe, 2,5-dihydroxy-4'-dimethylaminochalcone (DHDMAC), was designed and synthesized for the detection of human serum proteins via hydrophobic interactions after polyacrylamide gel electrophoresis (PAGE). This probe produced lower fluorescence emission in the absence of proteins, and the emission intensity was significantly increased after the interaction with serum proteins. To demonstrate the imaging performance of this probe as a fluorescent dye, a series of experiments was conducted that included sensitivity comparison and 2D-PAGE. The results indicated that the sensitivity of DHDMAC staining is comparable to that of the most widely used fluorescent dye, SYPRO Ruby, and more protein spots (including thyroxine-binding globulin, angiotensinogen, afamin, zinc-α-2-glycoprotein and α-1-antichymotrypsin) were detected after 2D-PAGE. Therefore, DHDMAC is a good protein reporter due to its fast staining procedure, low detection limits and high resolution.
Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7.
Yang, Dandan; Liu, Mei; Xu, Jing; Yang, Chao; Wang, Xiaoxiao; Lou, Yongbing; He, Nongyue; Wang, Zhifei
2018-08-01
In this work, carbon nanosphere (CNS)-based fluorescence "turn off/on" aptasensor was developed for targeted detection of breast cancer cell MCF-7 by conjugation with FAM (a dye)-labeled mucin1 (MUC1) aptamer P0 (P0-FAM), which can recognize MUC1 protein overexpressed on the surface of MCF-7. Different from other carbon based fluorescence quenching materials, CNSs prepared by the carbonization of glucose not only have the high fluorescence quenching efficiency (98.8%), but also possess negligible cytotoxicity (in the concentration range of 0-1 mg/mL, which is 10 times higher than that of traditional carbon nanotubes or graphene oxide (0-100 µg/mL)). As for the detection of the mimic of the tumor antigen MUC1, the resulting fluorescence intensity increases nearly linearly in the range of 0-6 μM with the limit of detection (LOD) of 25 nM. Copyright © 2018 Elsevier B.V. All rights reserved.
Fluorescence spectroscopy using indocyanine green for lymph node mapping
NASA Astrophysics Data System (ADS)
Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin
2014-02-01
The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng
2017-12-01
A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar, E-mail: gdas@rrcat.gov.in; Tiwari, M. K.; Singh, A. K.
The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-raymore » fluorescence detection sensitivities.« less
Panchompoo, Janjira; Aldous, Leigh; Baker, Matthew; Wallace, Mark I; Compton, Richard G
2012-05-07
Carbon black (CB) nanoparticles modified with fluorescein, a highly fluorescent molecule, were prepared using a facile and efficient methodology. Simply stirring CB in aqueous solution containing fluorescein resulted in the strong physisorption of fluorescein onto the CB surface. The resulting Fluorescein/CB was then characterised by means of X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), fluorescence microscopy and fluorescence spectroscopy. The optimum experimental conditions for fluorescence of Fluorescein/CB viz. fluorescence excitation and emission wavelengths, O(2) removal and the amount of Fluorescein/CB used, were investigated. The Fluorescein/CB was used as a fluorescent probe for the sensitive detection of Pd(II) in water, based on fluorescence quenching. The results demonstrated that the fluorescence intensity of Fluorescein/CB decreased with increasing Pd(II) concentration, and the fluorescence quenching process could be described by the Stern-Volmer equation. The limit of detection (LOD) for the fluorescence quenching of Fluorescein/CB by Pd(II) in aqueous solution was found to be 1.07 μM (based on 3σ). Last, approaches were studied for the removal of Fe(III) which interferes with the fluorescence quenching of Fluorescein/CB. Complexation of Fe(III) with salicylic acid was used to enhance and control the selectivity of Fluorescein/CB sensor towards Pd(II) in the presence of Fe(III).
Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Wang, Zheming; Clark, Sue B.
Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed for supporting more efficient tracking within the nuclear, medicinal, and industrial fields. Spectroelectrochemistry (SEC) is a powerful technique combining electrochemistry and spectroscopy that can meet those needs. The primary limitation of SEC as a detection method for lanthanides is their low molar absorptivity in absorbance based measurements and low emission intensities in fluorescence based measurements; both lead to high limits of detection. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation may also stabilizemore » the metal ions in solution and improve the electrochemical reversibility, or Nernstian behavior, of the redox couples. To demonstrate this concept, studies were completed using europium in complexes with four different sensitizing ligands. Initial work indicates Eu in the four complexes studied does display the necessary characteristics for SEC analysis, which was successfully and reproducibly applied to all Eu complexes.« less
Wu, Chi-Ming; Chen, Yen-Hao; Dayananda, Kasala; Shiue, Tsun-Wei; Hung, Chen-Hsiung; Liaw, Wen-Feng; Chen, Po-Yu; Wang, Yun-Ming
2011-12-05
A colorless and non-fluorescent rhodamine derivative, rhodamine B hydrazide (RH), is applied to detect nitric oxide and form fluorescent rhodamine B (RB). The reaction mechanism of RH with NO is proposed in this study. The probe shows good stability over a broad pH range (pH>4). Furthermore, fluorescence intensity of RH displays an excellent linearity to the NO concentration and the detection limit is as low as 20 nM. A 1000-fold fluorescence turn-on from a dark background was observed. Moreover, the selectivity study indicated that the fluorescence intensity increasing in the presence of NO was significantly higher than those of other reactive oxygen/nitrogen species. In exogenously generated NO detection study, clear intracellular red fluorescence was observed in the presence of S-nitroso-N-acetyl-D,L-penicillamine (SNAP, a kind of NO releasing agent). In endogenously generated NO detection study, increasing incubation time of RH with lipopolysaccharied (LPS) pre-treated cells could obtain a highly fluorescent cell image. These cell imaging results demonstrated that RH can efficiently penetrate into Raw 264.7 cells and be used for detection of exogenously and endogenously generated nitric oxide. Copyright © 2011 Elsevier B.V. All rights reserved.
Fluorescence-based ion-sensing with colloidal particles.
Ashraf, Sumaira; Carrillo-Carrion, Carolina; Zhang, Qian; Soliman, Mahmoud G; Hartmann, Raimo; Pelaz, Beatriz; Del Pino, Pablo; Parak, Wolfgang J
2014-10-01
Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats. Here the benefits of using particle-based fluorescence sensors, their limitations and strategies to overcome these limitations will be described and exemplified with selected examples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrated bio-fluorescence sensor.
Thrush, Evan; Levi, Ofer; Ha, Wonill; Wang, Ke; Smith, Stephen J; Harris, James S
2003-09-26
Due to the recent explosion in optoelectronics for telecommunication applications, novel optoelectronic sensing structures can now be realized. In this work, we explore the integration of optoelectronic components towards miniature and portable fluorescence sensors. The integration of these micro-fabricated sensors with microfluidics and capillary networks may reduce the cost and complexity of current research instruments and open up a world of new applications in portable biological analysis systems. A novel optoelectronic design that capitalizes on current vertical-cavity surface-emitting laser (VCSEL) technology is explored. Specifically, VCSELs, optical emission filters and PIN photodetectors are fabricated as part of a monolithically integrated near-infrared fluorescence detection system. High-performance lasers and photodetectors have been characterized and integrated to form a complete sensor. Experimental results show that sensor sensitivity is limited by laser background. The laser background is caused by spontaneous emission emitted from the side of the VCSEL excitation source. Laser background will limit sensitivity in most integrated sensing designs due to locating excitation sources and photodetectors in such close proximity, and methods are proposed to reduce the laser background in such designs so that practical fluorescent detection limits can be achieved.
Wang, Fengyang; Feng, Chongchong; Lu, Linlin; Xu, Zhiai; Zhang, Wen
2017-07-01
Herein, a ratiometric turn-on fluorescent probe for sensitive detection of biothiols was designed. The probe consisted of two parts: one was rhodamine B serving as a fluorescence reference, and the other was coumarin derivative as the responsive fluorophore with an acrylate group for biothiols recognition. The response was based on the mechanism of Michael addition and intramolecular cyclization reaction, and the probe showed ratiometric and sensitive response to biothiols. Especially, the detection limit of this probe for cysteine was found to be 0.13μΜ. More importantly, the probe showed the advantage of fast response, of which the fluorescence intensity can reach the maximum within 10min. The ratiometric fluorescent probe has been successfully applied for the determination of biothiols in fetal bovine serum samples and the result was in good agreement with that tested by Ellman method. Copyright © 2017. Published by Elsevier B.V.
Blending DNA binding dyes to improve detection in real-time PCR.
Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes
2017-03-01
The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.
A new FRET ratiometric fluorescent chemosensor for Hg2+ and its application in living EC 109 cells
NASA Astrophysics Data System (ADS)
Song, Jianhua; Huai, Manxiu; Wang, Cuicui; Xu, Zhanhui; Zhao, Yufen; Ye, Yong
2015-03-01
On the basis of fluorescent resonance energy transfer, a new fluorophore dyad (L) bearing rhodamine B and naphthalimide was developed as fluorescent ratiometric chemosensor for Hg2+ in aqueous solution. L exhibited high selectivity and excellent sensitivity towards Hg2+ with a broad pH span (1.0-8.0) and the detection limit of L was 2.11 × 10-8 M. Sensor L for the detection of Hg2+ was rapid and the recognizing event could complete in 2.5 min. A significant change in the color could be used for naked-eye detection. The selective fluorescence response of L to Hg2+ is due to the Hg2+-promoted ring opening of spirolactam of rhodamine moiety, leading to a cyclization reaction of thiourea moiety. In addition, fluorescence imaging experiments of Hg2+ in living EC 109 cells demonstrated its value of practical applications in biological systems.
Song, Quanwei; Peng, Manshu; Wang, Le; He, Dacheng; Ouyang, Jin
2016-03-15
The novel, facile and universal aptamer-based methods for the highly sensitive and selective fluorescence detection of important biomolecules have attracted considerable interest. Here, we present a label-free aptasensor for adenosine triphosphate (ATP) detection in aqueous solutions by using an ultra-sensitive nucleic acid stain PicoGreen (PG) as a fluorescent indicator and core-shell Ag@SiO2 nanoparticles (NPs) as a metal-enhanced fluorescence (MEF) platform. In the presence of ATP, the complementary DNA (cDNA)/aptamer duplexes confined onto the Ag@SiO2 NPs surface can release their aptamers into the buffered solution, causing a significant reduction in fluorescence intensity. By virtue of the amplified fluorescence signal, this aptasensor toward ATP can achieve a detection limit of 14.2 nM with a wide linear range and exhibit a good assay performance in complex biological samples. This sensing approach is cost-effective and efficient because it avoids the fluorescence labeling process and the use of any enzymes. Hence, this method may offer an alternative tool for determining the concentrations of ATP in biochemical and biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.
He, Yue; Lin, Yi; Tang, Hongwu; Pang, Daiwen
2012-03-21
Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled aptamer on GO brings the dyes in close proximity to the GO surface resulting in high efficiency quenching of dye fluorescence. Therefore, the fluorescence of the designed aptasensor is completely quenched by GO, and the system shows very low background fluorescence. Conversely, and very importantly, upon the adding of MUC1, the quenched fluorescence is recovered significantly, and MUC1 can be detected in a wide range of 0.04-10 μM with a detection limit of 28 nM and good selectivity. Moreover, the results have also been verified for real sample application by testing 2% serum containing buffer solution spiked with a series of concentrations of MUC1. This journal is © The Royal Society of Chemistry 2012
Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai
2018-02-01
A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Shuming; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Shui, Lingling
2018-04-01
Ratiometric fluorescent probes could eliminate the influence from experimental factors and improve the detection accuracy. In this article, a ratiometric nanoprobe was constructed based on silver nanoclusters (AgNCs) with nitrogen-doped carbon dots (NCDs) and used for the detection of biothiols. The fluorescence peak of AgNCs was observed at 650 nm with excitation wavelength at 370 nm. In order to construct the ratiometric fluorescent probe, NCDs with the excitation and emission wavelengths at 370 nm and 450 nm were selected. After adding AgNCs, the fluorescence of NCDs was quenched. The mechanism of the fluorescence quenching was studied by fluorescence, UV-Vis absorption and the fluorescence lifetime spectra. The results indicated that the quenching could be ascribed to the inner filter effect (IFE). With the addition of biothiols, the fluorescence of AgNCs at 650 nm decreased due to the breakdown of AgNCs, and the fluorescence of NCDs at 450 nm recovered accordingly. Thus, the relationship between the ratio of the fluorescence intensities (I450/I650) and biothiol concentration was used to establish the determination method for biothiols. Cysteine (Cys) was taken as the model of biothiols, and the working curve for Cys was I450/I650 = 0.60CCys - 1.86 (CCys: μmol/L) with the detection limit of 0.14 μmol/L (S/N = 3). Then, the method was used for the detection of Cys in human urine and serum samples with satisfactory accuracy and recovery ratios. Furthermore, the probe could be applied for the visual semi-quantitative determination of Cys by naked eyes.
Liu, Dongkui; Lu, Xing; Yang, Yiwen; Zhai, Yunyun; Zhang, Jian; Li, Lei
2018-05-04
Acute myocardial infarction (AMI) is one of the leading risks to global health. Thus, the rapid, accurate early diagnosis of AMI is highly critical. Human cardiac troponin I (cTnI) has been regarded as a golden biomarker for AMI due to its excellent selectivity. In this work, a novel fluorescent aptasensor based on a graphene oxide (GO) platform was developed for the highly sensitive and selective detection of cTnI. GO binds to the fluorescent anti-cTnI aptamer and quenches its fluorescence. In the presence of cTnI, the fluorescent anti-cTnI aptamer leaves the surface of GO, combines with cTnI because of the powerful affinity of the fluorescent anti-cTnI aptamer and cTnI, and then restores the fluorescence of the fluorescent anti-cTnI aptamer. Fluorescence-enhanced detection is highly sensitive and selective to cTnI. The method exhibited good analytical performance with a reasonable dynamic linearity at the concentration range of 0.10-6.0 ng/mL and a low detection limit of 0.07 ng/mL (S/N = 3). The fluorescent aptasensor also exhibited high selectivity toward cTnI compared with other interference proteins. The proposed method may be a potentially useful tool for cTnI determination in human serum. Graphical abstract A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.
Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na
2014-11-11
Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.
Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection
NASA Astrophysics Data System (ADS)
Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco
2018-06-01
We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.
OBORNY, Nathan J.; COSTA, Elton E. Melo; SUNTORNSUK, Leena; ABREU, Fabiane C.; LUNTE, Susan M.
2016-01-01
A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate—arginine, citrulline, taurine, histamine, glutamate, and aspartate—were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. Limits of detection for the analytes of interest were 50nM – 250nM for the benchtop system and 250 nM – 1.3 μM for the portable system, both of which were adequate for analyte determination in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample. PMID:26753703
Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.
Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng
2009-05-15
A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.
Handheld lasers allow efficient detection of fluorescent marked organisms in the field.
Rice, Kevin B; Fleischer, Shelby J; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F; Gish, Moshe
2015-01-01
Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.
Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao
2017-09-15
In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing
2017-03-01
A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on CN bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. Copyright © 2016. Published by Elsevier B.V.
Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection
NASA Astrophysics Data System (ADS)
Zhao, Chunxi; Jiao, Yang; Hu, Feng; Yang, Yaling
2018-02-01
In this work, a green, simple, economical method was developed in the synthesis of fluorescent carbon dots using pork as carbon source. The as-prepared carbon dots exhibit exceptional advantages including high fluorescent quantum yield (17.3%) and satisfactory chemical stability. The fluorescence of carbon dots based nanosensor can be selectively and efficiently quenched by uric acid. This phenomenon was used to develop a fluorescent method for facile detection of uric acid within a linear range of 0.1-100 μM and 100-500 μM, with a detection limit of 0.05 μM (S/N = 3). Finally, the proposed method was successfully applied in the determination of uric acid in human serum and urine samples with satisfactory recoveries, which suggested that the new nanosensors have great prospect toward the detection of uric acid in human fluids.
A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples.
Wang, Jialin; Wang, Hao; Hao, Yanfeng; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo
2018-10-01
A novel fluorescent probe 3'-hydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene]-6'-yl-2,4-dinitrobenzenesulfonate (probe 1) was designed and synthesized as a visual sensor for the detection of cysteine levels in milk and water samples. The addition of cysteine to the solution of probe 1 resulted in an increase in fluorescence intensity and color change, from light yellow to yellow-green. The distinct color response indicated that probe 1 could be used as a visual sensor for cysteine. Cysteine can be detected quantitatively at concentrations between 0 and 400 μM and the detection limit of the fluorescence response to the probe was 6.5 μM. This suggests that probe 1 could be used as a signaling tool to determine the cysteine levels in samples, such as milk and water. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-01-01
A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.
Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruihua; Li, Haitao; Kong, Weiqian
2013-07-15
Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less
A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui
2015-07-01
The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k
A novel fluorescent probe for rapid and sensitive detection of hydrogen sulfide in living cells
NASA Astrophysics Data System (ADS)
Pan, Jian; Xu, Junchao; Zhang, Youlai; Wang, Liang; Qin, Caiqin; Zeng, Lintao; Zhang, Yue
2016-11-01
A novel fluorescent probe for H2S was developed based on a far-red emitting indole-BODIPY, which was decorated with morpholine and 2,4-dinitrobenzenesulfonyl (DNBS) group. This probe showed rapid response (t1/2 = 3 min), high selectivity and sensitivity for H2S with significant colorimetric and fluorescence OFF-ON signals, which was triggered by cleavage of 2,4-dinitrobenzenesulfonyl group. This probe could quantitatively detect the concentrations of H2S ranging from 0 to 60 μM, and the detection of limit was found to be as low as 26 nM. Cell imaging results indicated that the probe could detect and visualize H2S in the living cells.
Qu, Zhengyi; Na, Weidan; Liu, Xiaotong; Liu, Hua; Su, Xingguang
2018-01-02
In this paper, we developed a sensitive fluorescence biosensor for tyrosinase (TYR) and acid phosphatase (ACP) activity detection based on nitrogen-doped graphene quantum dots (N-GQDs). Tyrosine could be catalyzed by TYR to generate dopaquinone, which could efficiently quench the fluorescence of N-GQDs, and the degree of fluorescence quenching of N-GQDs was proportional to the concentration of TYR. In the presence of ACP, l-Ascorbic acid-2-phosphate (AAP) was hydrolyzed to generate ascorbic acid (AA), and dopaquinone was reduced to l-dopa, resulting in the fluorescence recovery of the quenched fluorescence by dopaquinone. Thus, a novel fluorescence biosensor for the detection of TYR and ACP activity based on N-GQDs was constructed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of TYR and ACP in the range of 0.43-3.85 U mL -1 and 0.04-0.7 mU mL -1 with a detection limit of 0.15 U mL -1 and 0.014 mU mL -1 , respectively. The feasibility of the proposed biosensor in real samples assay was also studied and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Alarfaj, Nawal A; El-Tohamy, Maha F
2015-12-01
Two novel sensitive sequential injection chemiluminescence analysis and fluorescence methods for trovafloxacin mesylate detection have been developed. The methods were based on the enhancement effect of gold nanoparticles on luminol-ferricyanide-trovafloxacin and europium(III)-trovafloxacin complex systems. The optimum conditions for both detection methods were investigated. The chemiluminescence signal was emitted due to the enhanced effect of gold nanoparticles on the reaction of luminol-ferricyanide-trovafloxacin in an alkaline medium. The response was linear over a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) mol/L (%RSD = 1.3), (n = 9, r = 0.9991) with a detection limit of 1.7 × 10(-10) mol/L (S/N = 3). The weak fluorescence intensity signal of the oxidation complex of europium(III)-trovafloxacin was strongly enhanced by gold nanoparticles and detected at λex = 330 and λem = 540 nm. Fluorescence detection enabled the determination of trovafloxacin mesylate over a linear range of 1.0 × 10(-8) to 1.0 × 10(-3) mol/L (%RSD = 1.2), (n = 6, r = 0.9993) with a detection limit of 3.3 × 10(-9) mol/L. The proposed methods were successfully applied to the determination of the studied drug in its bulk form and in pharmaceutical preparations. The results were treated statistically and compared with those obtained from other reported methods. Copyright © 2015 John Wiley & Sons, Ltd.
Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu
2016-11-15
Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Censoring approach to the detection limits in X-ray fluorescence analysis
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.
2004-10-01
We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called "nondetects", can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples.
Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Cao, Yuting; Chen, Yinji
2017-01-15
Herein, a smart single-stranded DNA binding protein (SSB)-assisted fluorescence aptamer switch based on fluorescence resonance energy transfer (FRET) was designed. The FRET switch was synthesized by connecting SSB labeled quantum dots (QDs@SSB) as donor with aptamer (apt) labeled gold nanoparticles (AuNPs@apt) as acceptor, and it was employed for detecting chloramphenicol (CAP) in a homogenous solution. In the assay, the interaction between core-shell QDs@SSB and AuNPs@apt leads to a dramatic quenching (turning off). After adding CAP in the detection system, AuNPs@apt can bind the target specifically then separate QDs@SSB with AuNPs@apt-target, resulting in restoring the fluorescence intensity of QDs (turning on). Consequently, the fluorescence intensity recovers and the recovery extent can be used for detection of CAP in homogenous phase via optical responses. Under optimal conditions, the fluorescence intensity increased linearly with increasing concentrations of CAP from 0.005 to 100ngmL -1 . The limit of this fluorescence aptamer switch was around 3pgmL -1 for CAP detection. When the analyte is changed, the assay can be applied to detect other targets only by changing relative aptamer in AuNPs@apt probe. Furthermore, it has potential to be served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T.
2011-01-01
By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer. PMID:22109210
NASA Astrophysics Data System (ADS)
Kamei, Toshihiro; Wada, Takehito
2006-09-01
A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.
Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T
2011-11-07
By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.
Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie
2017-01-01
This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. PMID:29160812
Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie
2017-11-21
This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.
NASA Astrophysics Data System (ADS)
Tsai, H. Y.; Gao, B. Z.; Yang, S. F.; Li, C. S.; Fuh, C. Bor
2014-01-01
This paper presents the use of fluorescent biofunctional nanoparticles (10-30 nm) to detect alpha-fetoprotein (AFP) in a thin-channel magnetic immunoassay. We used an AFP model biomarker and s-shaped deposition zones to test the proposed detection method. The results show that the detection using fluorescent biofunctional nanoparticle has a higher throughput than that of functional microparticle used in previous experiments on affinity reactions. The proposed method takes about 3 min (versus 150 min of previous method) to detect 100 samples. The proposed method is useful for screening biomarkers in clinical applications, and can reduce the run time for sandwich immunoassays to less than 20 min. The detection limits (0.06 pg/ml) and linear ranges (0.068 pg/ml-0.68 ng/ml) of AFP using fluorescent biofunctional nanoparticles are the same as those of using functional microparticles within experimental errors. This detection limit is substantially lower and the linear range is considerably wider than those of enzyme-linked immunosorbent assay (ELISA) and other methods in sandwich immunoassay methods. The differences between this method and an ELISA in AFP measurements of serum samples were less than 12 %. The proposed method provides simple, fast, and sensitive detection with a high throughput for biomarkers.
Novel fabrication of fluorescent silk utilized in biotechnological and medical applications.
Kim, Dong Wook; Lee, Ok Joo; Kim, Seong-Wan; Ki, Chang Seok; Chao, Janet Ren; Yoo, Hyojong; Yoon, Sung-Il; Lee, Jeong Eun; Park, Ye Ri; Kweon, HaeYong; Lee, Kwang Gill; Kaplan, David L; Park, Chan Hum
2015-11-01
Silk fibroin (SF) is a natural polymer widely used and studied for diverse applications in the biomedical field. Recently, genetically modified silks, particularly fluorescent SF fibers, were reported to have been produced from transgenic silkworms. However, they are currently limited to textile manufacturing. To expand the use of transgenic silkworms for biomedical applications, a solution form of fluorescent SF needed to be developed. Here, we describe a novel method of preparing a fluorescent SF solution and demonstrate long-term fluorescent function up to one year after subcutaneous insertion. We also show that fluorescent SF labeled p53 antibodies clearly identify HeLa cells, indicating the applicability of fluorescent SF to cancer detection and bio-imaging. Furthermore, we demonstrate the intraoperative use of fluorescent SF in an animal model to detect a small esophageal perforation (0.5 mm). This study suggests how fluorescent SF biomaterials can be applied in biotechnology and clinical medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Phuong-Diem; Cong, Vu Thanh; Baek, Changyoon; Min, Junhong
2017-03-15
This study introduces the double-ligands stabilizing gold nanoclusters and the fabrication of gold nanocluster/graphene nanocomplex as a "turn-on" fluorescent probe for the detection of cancer-related enzyme matrix metalloproteinase-9. A facile, one-step approach was developed for the synthesis of fluorescent gold nanoclusters using peptides and mercaptoundecanoic acid as co-templating ligands. The peptide was designed to possess a metalloproteinase-9 cleavage site and to act not only as a stabilizer but also as a targeting ligand for the enzyme detection. The prepared gold nanoclusters show an intense red fluorescence with a broad adsorption spectrum. In the presence of the enzyme, due to the excellent quenching properties and the negligible background of graphene oxide, the developed peptide-gold nanocluster/graphene nanocomplex yielded an intense "turn-on" fluorescent response, which strongly correlated with the enzyme concentration. The limit of detection of the nanocomplex was 0.15nM. The sensor was successfully applied for "turn-on" detection of metalloproteinase-9 secreted from human breast adenocarcinoma MCF-7 cells with high sensitivity, selectivity, significant improvement in terms of detection time and simplicity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Borghei, Yasaman-Sadat; Hosseini, Morteza; Ganjali, Mohammad Reza
2018-01-01
Here we describe a label-free detection strategy for large deletion mutation in breast cancer (BC) related gene BRCA1 based on a DNA-silver nanocluster (NC) fluorescence upon recognition-induced hybridization. The specific hybridization of DNA templated silver NCs fluorescent probe to target DNAs can act as effective templates for enhancement of AgNCs fluorescence, which can be used to distinguish the deletion of BRCA1 due to different fluorescence intensities. Under the optimal conditions, the fluorescence intensity of the DNA-AgNCs at emission peaks around 440 nm (upon excitation at 350 nm) increased with the increasing deletion type within a dynamic range from 1.0 × 10-10 to 2.4 × 10-6 M with a detection limit (LOD) of 6.4 × 10-11 M. In this sensing system, the normal type shows no significant fluorescence; on the other hand, the deletion type emits higher fluorescence than normal type. Using this nanobiosensor, we successfully determined mutation using the non-amplified genomic DNAs that were isolated from the BC cell line.
Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine
NASA Astrophysics Data System (ADS)
Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan
2015-02-01
A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.
Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao
2017-09-01
A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of nuclear resonance fluorescence excitation measured with LaBr3(Ce) detectors near 2 MeV
NASA Astrophysics Data System (ADS)
Omer, Mohamed; Negm, Hani; Ohgaki, Hideaki; Daito, Izuru; Hayakawa, Takehito; Bakr, Mahmoud; Zen, Heishun; Hori, Toshitada; Kii, Toshiteru; Masuda, Kai; Hajima, Ryoichi; Shizuma, Toshiyuki; Toyokawa, Hiroyuki; Kikuzawa, Nobuhiro
2013-11-01
The performance of LaBr3(Ce) to measure nuclear resonance fluorescence (NRF) excitations is discussed in terms of limits of detection and in comparison with high-purity germanium (HPGe) detectors near the 2 MeV region where many NRF excitation levels from special nuclear materials are located. The NRF experiment was performed at the High Intensity γ-ray Source (HIγS) facility. The incident γ-rays, of 2.12 MeV energy, hit a B4C target to excite the 11B nuclei to the first excitation level. The statistical-sensitive non-linear peak clipping (SNIP) algorithm was implemented to eliminate the background and enhance the limits of detection for the spectra measured with LaBr3(Ce). Both detection and determination limits were deduced from the experimental data.
A miniaturised image based fluorescence detection system for point-of-care-testing of cocaine abuse
NASA Astrophysics Data System (ADS)
Walczak, Rafał; Krüger, Jan; Moynihan, Shane
2015-08-01
In this paper, we describe a miniaturised image-based fluorescence detection system and demonstrate its viability as a highly sensitive tool for point-of-care-analysis of drugs of abuse in human sweat with a focus on monitor individuals for drugs of abuse. Investigations of miniaturised and low power optoelectronic configurations and methodologies for real-time image analysis were successfully carried out. The miniaturised fluorescence detection system was validated against a reference detection system under controlled laboratory conditions by analysing spiked sweat samples in dip stick and then strip with sample pad. As a result of the validation studies, a 1 ng mL-1 limit of detection of cocaine in sweat and full agreement of test results with the reference detection system can be reported. Results of the investigations open the way towards a detection system that integrates a hand-held fluorescence reader and a wearable skinpatch, and which can collect and in situ analyse sweat for the presence of cocaine at any point for up to tenths hours.
Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia
2016-11-01
We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.
Pulsed laser fluorometry for environmental monitoring
NASA Astrophysics Data System (ADS)
Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.
A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.
Microgels for multiplex and direct fluorescence detection
NASA Astrophysics Data System (ADS)
Causa, Filippo; Aliberti, Anna; Cusano, Angela M.; Battista, Edmondo; Netti, Paolo A.
2015-05-01
Blood borne oligonucleotides fragments contain useful clinical information whose detection and monitoring represent the new frontier in liquid biopsy as they can transform the current diagnosis procedure. For instance, recent studies have identified a new class of circulating biomarkers such as s miRNAs, and demonstrated that changes in their concentration are closely associated with the development of cancer and other pathologies. However, direct detection of miRNAs in body fluids is particularly challenging and demands high sensitivity -concentration range between atto to femtomolarspecificity, and multiplexing Here we report on engineered multifunctional microgels and innovative probe design for a direct and multiplex detection of relevant clinical miRNAs in fluorescence by single particle assay. Polyethyleneglycol-based microgels have a coreshell architecture with two spectrally encoded fluorescent dyes for multiplex analyses and are endowed with fluorescent probes for miRNA detection. Encoding and detection fluorescence signals are distinguishable by not overlapping emission spectra. Tuneable fluorescence probe conjugation and corresponding emission confinement on single microgel allows for enhanced target detection. Such suspension array has indeed high selectivity and sensitivity with a detection limit of 10-15 M and a dynamic range from 10-9 to 10-15 M. We believe that sensitivity in the fM concentration range, signal background minimization, multiplexed capability and direct measurement of such microgels will translate into diagnostic benefits opening up new roots toward liquid biopsy in the context of point-of-care testing through an easy and fast detection of sensitive diagnostic biomarkers directly in serum.
Niu, Cheng-Gang; Qin, Pin-Zhu; Zeng, Guang-Ming; Gui, Xiao-Qin; Guan, Ai-Ling
2007-02-01
A new fluorescent dye, N-allyl-4-morpholinyl-1,8-naphthalimide (AMN), was synthesized as a fluorescence indicator in the fabrication of a sensor for determining water content in organic solvents. To prevent leakage of the fluorophore, AMN was photo-copolymerized with acrylamide, (2-hydroxyethyl)methacrylate, and triethylene glycol dimethacrylate on a glass surface treated with a silanizing agent. The sensing mechanism is based on the solvatochromic feature of the covalently immobilized AMN. The fluorescence intensity of AMN decreased with increasing water contents when it was excited at 400 nm. In the range of ca. 0.00-4.40% (v/v), the fluorescence intensity of AMN changed as a linear function of water content. The sensor exhibited satisfactory reproducibility, reversibility, and a response time (t (99)) of the order of 50 s. The detection limit was solvent-dependent, when acetonitrile was used as the solvent, and the detection limit could be as low as 0.006% (v/v) of water. Additionally, the prepared sensor is pH-insensitive and possesses a relatively long lifetime of at least one month.
Joint reconstruction of x-ray fluorescence and transmission tomography
Di, Zichao; Chen, Si; Hong, Young Pyo; ...
2017-05-30
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less
Lin, Li-Rong; Luo, He-Dong; Li, Xiu-Ying; Li, Na; Zhou, Na; Jia, Yu-Zhu; Liu, Yi-Hong; Li, Yao-Qun
2014-01-01
Based on the high solubility efficiency and strong fluorescence response of benzo(a)pyrene (BaP) in dimethyl sulfoxide in combination with the high-performance derivative constant-energy synchronous fluorescence spectroscopic (DCESFS) technique, a simple, sensitive and economic method was developed for the determination of BaP in liquid milk. This method comprises ultrasound-assisted solvent extraction, solvent replacement and DCESFS detection. No saponification or other tedious clean-up procedures were needed. The recoveries of BaP in different milk samples were greater than 82%. Detection limits in full- and low-fat milk were 0.03 and 0.04 μg kg(-1), respectively.
Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection
NASA Astrophysics Data System (ADS)
Zhang, Jian; Wang, Junbin; Fu, Jinping; Fu, Xucheng; Gan, Wei; Hao, Hequn
2018-02-01
In this study, nitrogen and sulfur co-doped carbon dots (NSCDs) were fabricated by microwave-assisted one-pot synthesis using vitamin C and thiourea as precursors. The as-prepared NSCDs demonstrated excellent properties, including aqueous dispensability, strong fluorescence emission, excellent environmental stability, high selectivity, and sensitivity toward Fe3+ ions. The NSCD-based material can be used as a "turn off" fluorescent probe for detecting Fe3+ ions at a low detection limit (4.2 nM). In addition, the "turn off" and "turn on" of NSCD fluorescent probe could be modulated by adding Fe3+ and EDTA, indicating weak interaction between the Fe3+ ions and NSCDs.
NASA Astrophysics Data System (ADS)
Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei
2018-05-01
Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.
Ulu, Sevgi Tatar; Tuncel, Muzaffer
2012-04-01
A novel precolumn derivatization reversed-phase high-performance liquid chromatography method with fluorescence detection is described for the determination of ranitidine in human plasma. The method was based on the reaction of ranitidine with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole forming yellow colored fluorescent product. The separation was achieved on a C(18) column using methanol-water (60:40, v/v) mobile phase. Fluorescence detection was used at the excitation and emission of 458 and 521 nm, respectively. Lisinopril was utilized as an internal standard. The flow rate was 1.2 mL/min. Ranitidine and lisinopril appeared at 3.24 and 2.25 min, respectively. The method was validated for system suitability, precision, accuracy, linearity, limit of detection, limit of quantification, recovery and robustness. Intra- and inter-day precisions of the assays were in the range of 0.01-0.44%. The assay was linear over the concentration range of 50-2000 ng/mL. The mean recovery was determined to be 96.40 ± 0.02%. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (150 mg) of ranitidine. © The Author [2012]. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.
2010-02-01
Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.
Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids.
Zhou, Xi; Ma, Peipei; Wang, Anqi; Yu, Chenfei; Qian, Tao; Wu, Shishan; Shen, Jian
2015-02-15
A facilely prepared fluorescent sensor was developed for dopamine (DA) detection with high sensitivity and selectivity based on polypyrrole/graphene quantum dots (PPy/GQDs) core/shell hybrids. The composites exhibit strong fluorescence emission, which is dramatically enhanced as high as three times than pristine GQDs. The prepared sensor allows a highly sensitive determination of DA by fluorescent intensity decreasing with the addition of DA and presents a good linearity in range of 5-8000 nM with the detection limit of 10 pM (S/N = 3). Furthermore, the application of the proposed approach have been demonstrated in real samples and showed promise in diagnostic purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-01
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k
Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi
2016-02-18
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Dong, Jiantong; Wu, Tongbo; Xiao, Yu; Xu, Lei; Fang, Simin; Zhao, Meiping
2016-09-29
A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.
Diao, Haipeng; Li, Tingting; Zhang, Rong; Kang, Yu; Liu, Wen; Cui, Yanhua; Wei, Shuangyan; Wang, Ning; Li, Lihong; Wang, Haojiang; Niu, Weifen; Sun, Tijian
2018-07-05
Most carbon dots (CDs) conventional fabrication approaches produce single colored fluorescent materials, different methods are required to synthesize distinct carbon dots for specific optical applications. Herein, using one-pot hydrothermal treatment of Syringa obtata Lindl, a facile, low-cost and green assay is achieved in the controllable synthesis of blue and green fluorescent carbon dots. The fluorescent emission of CDs can be well-tuned by adding sodium hydroxide in the precursor solution. Blue fluorescent CDs are applied to Fe 3+ sensing with a low detection limit of 0.11 μM of linear range from 0.5 to 80 μM, and then further extended to analysis river water samples. Green fluorescent CDs can be applied to pH detection, which show a remarkable linear enhancement in the green fluorescence emission region when the pH is increased from 1.98 to 8.95. Eventually, the detection of Fe 3+ and pH are applied for the living cells fluorescent images in MCF-7 cells are achieved successfully, indicating as-synthesized CDs potential toward diverse application as promising candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Sirichai, S; de Mello, A J
2001-01-01
The separation and detection of both print and film developing agents (CD-3 and CD-4) in photographic processing solutions using chip-based capillary electrophoresis is presented. For simultaneous detection of both analytes under identical experimental conditions a buffer pH of 11.9 is used to partially ionise the analytes. Detection is made possible by indirect fluorescence, where the ions of the analytes displace the anionic fluorescing buffer ion to create negative peaks. Under optimal conditions, both analytes can be analyzed within 30 s. The limits of detection for CD-3 and CD-4 are 0.17 mM and 0.39 mM, respectively. The applicability of the method for the analysis of seasoned photographic processing developer solutions is also examined.
Xu, Jinxia; Bai, Zhangjun; Zu, Fanlin; Yan, Fanyong; Wei, Junfu; Zhang, Saihui; Luo, Yunmei
2018-07-05
A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe 3+ ) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe 3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe 3+ , the FDS of CDs appeared to be highly sensitive with a quick response to Fe 3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe 3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe 3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe 3+ in the analysis of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
Schreier, Stefan; Doungchawee, Galayanee; Triampo, Darapond; Wangroongsarb, Piyada; Hartskeerl, Rudi A; Triampo, Wannapong
2012-04-01
Climate change, world population growth, and poverty have led to an increase in the incidence of leptospirosis. Leptospirosis is caused by pathogenic spirochaete bacteria that belong to the genus Leptospira. The bacteria are maintained in the renal tubules of the reservoir hosts (typically a rodent), then shed into the environment via the urine. Water is key for environmental survival and transmission, as leptospires can survive for several weeks in a moist environment. Therefore, environmental epidemiological studies are needed to study the contamination of environmental water sources. However, few such studies have been performed using cultivation of the isolates and PCR assays. But, leptospira cultivation can be easily contaminated by other organisms and takes usually several weeks. Moreover, PCR is a complex and costly analysis for the underdeveloped countries that have the highest incidence of leptospirosis. In this study, we describe two modifications of a fluorescence microscopy assay based on immuno-magnetic separation (IMS) to detect leptospires in environmental water samples that mainly differ in fluorescent dye staining. The first type uses acridine orange fluorescent dye staining combined with multiplexed IMS for sample screening. The detection limit ranged from 10(2) to 10(3) organisms per mL and largely depended on the capture efficiency (CE) of the immuno-magnetic particles. The second type uses serogroup-specific immuno-particles and direct fluorescence antibody staining (DFA) to detect leptospires; the detection limit of this second assay was approximately 10(1) cells per mL. Both assay types were applied to natural and experimentally infected water samples, which were also analysed with DFM and real-time PCR. Our data show that the fluorescent microscopy immunoassay successfully identified experimental leptospire contamination and was as sensitive as PCR. This modified immune-fluorescence assay may therefore enable epidemiological studies of leptospirosis. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian
2016-04-01
5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.
Zhu, Shengchao; Zhang, Qin; Guo, Liang-Hong
2008-08-22
Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17beta-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17beta-estradiol is 1.9 pg mL(-1), which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.
Sun, Junyong; Mei, Han; Gao, Feng
2017-05-15
The rational surface functionalization of semiconducting polymer dots (Pdots) has attracted much attention to extend their applications in fabricating chemo/biosensing platform. In this study, a novel ratiometric fluorescent sensing platform using functionalized Pdots as probes for fluorescence signal transmission has been designed for sensing Cu(Ⅱ) and activity of alkaline phosphatase (ALP) with high selectivity and enhanced sensitivity. The highly fluorescent Pdots were firstly prepared with Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) via nanoprecipitation method, and then assembled with non-fluorescent rhodamine B hydrazide (RB-hy), which shows special binding activity to Cu(Ⅱ), through adsorption process to obtain functionalized nanohybrids, Pdots@RB-hy. As thus, a FRET donors/acceptors pair, in which PFBT Pdots act as energy donors while RB-hy-Cu(II) complexes act as energy acceptors were constructed. On the basis of the varies in fluorescence intensities of donors/acceptors in the presence of different amounts of Cu(II), a ratiometric method for sensing Cu(II) has been proposed. The proposed ratiometric Cu(II) sensor shows a good linear detection range from 0.05 to 5μM with a detection limit of 15nM. Furthermore, using the Pdots@RB-hy-Cu(II) system as signal transducer, a ratiometric sensing for alkaline phosphatase (ALP) activity has also been established with pyrophosphate (PPi) as substrates. The constructed ratiometric sensor of ALP activity displays a linear detection range from 0.005 to 15UL -1 with a detection limit of 0.0018UL -1 . The sensor was further successfully used for ALP activity detection in human serum with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Lu, Hongzhi; Quan, Shuai; Xu, Shoufang
2017-11-08
In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.
Blom, H; Gösch, M
2004-04-01
The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.
Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals
NASA Astrophysics Data System (ADS)
Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.
2018-02-01
Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.
A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions
NASA Astrophysics Data System (ADS)
Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun
2018-03-01
In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.
Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M
2000-02-25
The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Chen, Si; Hong, Young Pyo
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less
Remote sensing of OH in the atmosphere using the technique of laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Wang, C. C.
1983-01-01
The use of a laser-induced fluorescence technique for the sensitive measurement of the atmospheric hydroxyl radical is discussed. Results of laboratory studies of the fluorescence and other spectroscopic properties of OH which allow the calculation of OH concentrations from the returned signals for various altitudes, water vapor contents and temperatures are presented. The experimental setup used for airborne OH measurements is then described, with particular attention given to the use of a telescope for excitation and light collection in a coaxial configuration and the periodic tuning of the exciting radiation necessary to obtain an OH signal in the presence of strong solar and nonresonant fluorescence backgrounds. The best detection limit obtained to date with the system is noted to be about 700,000 OH/cu cm, and it is expected that, with planned improvements in detection and tuning schemes, limits in the neighborhood of 1,000,000 OH/cu cm will be achieved routinely.
NASA Astrophysics Data System (ADS)
Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Beheshti, Hamed Reza; Ramezani, Mohammad; Abnous, Khalil
2016-02-01
Analytical approaches for the detection and quantitation of ochratoxin A (OTA) in blood serum and food products are high in demand. In this study, a fluorescent aptamer-based sensor (aptasensor) is developed for the selective and sensitive detection of OTA, based on a complementary strand of aptamer (CS) and two types of nanoparticles, gold nanoparticles (AuNPs) and silica nanoparticles (SNPs) coated with streptavidin. The fabricated aptasensor inherits the characteristics of SNPs, as enhancers of fluorescence intensity; AuNPs, such as large surface area and unique optical properties; and high affinity of the aptamer toward its target compared to its CS. In the absence of OTA, no FAM and biotin-labeled CS is in the environment of the SNPs coated with streptavidin, which leads to no fluorescence emission. In the presence of the target, an FAM and biotin-labeled CS-SNPs coated with streptavidin conjugate is formed, thus resulting in a very strong fluorescence emission. The designed fluorescent aptasensor exhibits high selectivity toward OTA with a limit of detection (LOD) as low as 0.098 nM. Furthermore, the fabricated aptasensor was successfully applied for the detection of OTA in grape juice and serum with LODs of 0.113 and 0.152 nM, respectively.
Dai, Haichao; Shi, Yan; Wang, Yilin; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang
2014-03-15
In this work, we proposed a facile, environmentally friendly and cost-effective assay for melamine with BSA-stabilized gold nanoclusters (AuNCs) as a fluorescence reader. Melamine, which has a multi-nitrogen heterocyclic ring, is prone to coordinate with Hg(2+). This property causes the anti-quenching ability of Hg(2+) to AuNCs through decreasing the metallophilic interaction between Hg(2+) and Au(+). By this method, detection limit down to 0.15 µM is obtained, which is approximately 130 times lower than that of the US food and Drug Administration estimated melamine safety limit of 20 µM. Furthermore, several real samples spiked with melamine, including raw milk and milk powder, are analyzed using the sensing system with excellent recoveries. This gold-nanocluster-based fluorescent method could find applications in highly sensitive detection of melamine in real samples. © 2013 Elsevier B.V. All rights reserved.
Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection
Bates, Mark; Dempsey, Graham T; Chen, Kok Hao; Zhuang, Xiaowei
2012-01-01
Understanding the complexity of the cellular environment will benefit from the ability to unambiguously resolve multiple cellular components, simultaneously and with nanometer-scale spatial resolution. Multicolor super-resolution fluorescence microscopy techniques have been developed to achieve this goal, yet challenges remain in terms of the number of targets that can be simultaneously imaged and the crosstalk between color channels. Herein, we demonstrate multicolor stochastic optical reconstruction microscopy (STORM) based on a multi-parameter detection strategy, which uses both the fluorescence activation wavelength and the emission color to discriminate between photo-activatable fluorescent probes. First, we obtained two-color super-resolution images using the near-infrared cyanine dye Alexa 750 in conjunction with a red cyanine dye Alexa 647, and quantified color crosstalk levels and image registration accuracy. Combinatorial pairing of these two switchable dyes with fluorophores which enhance photo-activation enabled multi-parameter detection of six different probes. Using this approach, we obtained six-color super-resolution fluorescence images of a model sample. The combination of multiple fluorescence detection parameters for improved fluorophore discrimination promises to substantially enhance our ability to visualize multiple cellular targets with sub-diffraction-limit resolution. PMID:22213647
Yu, Tingting; Sun, Ping; Hu, Yijie; Ji, Yinggang; Zhou, Hongping; Zhang, Baowei; Tian, Yupeng; Wu, Jieying
2016-12-15
A simple-molecule fluorescence probe L has been designed, synthesized and characterized, which shows high selectivity and sensitivity for the main group magnesium ion through fluorescence "turn-on" response in ethanol solution, and no interference from calcium ion in particular. Detection limit of probe L is 1.47×10(-6) M and the rapid response could reach about 15-20s. The recognition mechanism has been established by fluorescence spectra, (1)H NMR study. Moreover, probe L presents a great photostability, low toxicity and cellular permeability, then we have carried out fluorescent bio-imaging of the probe L for magnesium ions in HeLa cells, which showed that probe L could be utilized to detect the intracellular magnesium ion. Furthermore, it is successfully used as a magnesium ion developer in plant tissues, which shows that it not only can be well tracking the transport of magnesium ion but also make a corresponding fluorescence response to different concentrations magnesium ion. These results would make this probe a great potential application for detecting Mg(2+) in biological system. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng
2018-04-01
An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Huihui; Zhu, Houjuan; Sun, Mingtai; Yan, Yehan; Zhang, Kui; Huang, Dejian; Wang, Suhua
2015-08-11
Herein, we report a novel approach to the rapid visual detection of gaseous sulfur dioxide (SO2) by manipulating the surface chemistry of 3-aminopropyltriethoxysilane (APTS)-modified quantum dots (QDs) using fluorescent coumarin-3-carboxylic acid (CCA) for specific reaction with SO2. The CCA molecules are attached to the surface amino groups of the QDs through electrostatic attraction, thus the fluorescence of CCA is greatly suppressed because of the formation of an ion-pair complex between the ATPS-modified QDs and CCA. Such an interaction is vulnerable to SO2 because SO2 can readily react with surface amino groups to form strong charge-transfer complexes and subsequently release the strongly fluorescent CCA molecules. The mechanism has been carefully verified through a series of control experiments. Upon exposure to different amounts of SO2, the fluorescent color of the nanoparticle-based sensor displays continuously changes from red to blue. Most importantly, the approach owns high selectivity for SO2 and a tolerance of interference, which enables the sensor to detect SO2 in a practical application. Using this fluorescence-based sensing method, we have achieved a visual detection limit of 6 ppb for gaseous SO2.
Design of a smartphone-camera-based fluorescence imaging system for the detection of oral cancer
NASA Astrophysics Data System (ADS)
Uthoff, Ross
Shown is the design of the Smartphone Oral Cancer Detection System (SOCeeDS). The SOCeeDS attaches to a smartphone and utilizes its embedded imaging optics and sensors to capture images of the oral cavity to detect oral cancer. Violet illumination sources excite the oral tissues to induce fluorescence. Images are captured with the smartphone's onboard camera. Areas where the tissues of the oral cavity are darkened signify an absence of fluorescence signal, indicating breakdown in tissue structure brought by precancerous or cancerous conditions. With this data the patient can seek further testing and diagnosis as needed. Proliferation of this device will allow communities with limited access to healthcare professionals a tool to detect cancer in its early stages, increasing the likelihood of cancer reversal.
NASA Astrophysics Data System (ADS)
Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.
2018-03-01
Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.
Handheld Lasers Allow Efficient Detection of Fluorescent Marked Organisms in the Field
Fleischer, Shelby J.; De Moraes, Consuelo M.; Mescher, Mark C.; Tooker, John F.
2015-01-01
Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health. PMID:26035303
Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing
2017-05-15
5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Zhao; Wang, Libing; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin
2015-08-15
We herein report a facile, one-step pyrolysis synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and lysine as the surface passivation reagent. The as-prepared CDs show narrow size distribution, excellent blue fluorescence and good photo-stability and water dispersivity. The fluorescence of the CDs was found to be effectively quenched by ferric (Fe(III)) ions with high selectivity via a photo-induced electron transfer (PET) process. Upon addition of phytic acid (PA) to the CDs/Fe(III) complex dispersion, the fluorescence of the CDs was significantly recovered, arising from the release of Fe(III) ions from the CDs/Fe(III) complex because PA has a higher affinity for Fe(III) ions compared to CDs. Furthermore, we developed an "off-on" fluorescence assay method for the detection of phytic acid using CDs/Fe(III) as a fluorescent probe. This probe enables the selective detection of PA with a linear range of 0.68-18.69 μM and a limit of detection (signal-to-noise ratio is 3) of 0.36 μM. The assay method demonstrates high selectivity, repeatability, stability and recovery ratio in the detection of the standard and real PA samples. We believe that the facile operation, low-cost, high sensitivity and selectivity render this CD-based "off-on" fluorescent probe an ideal sensing platform for the detection of PA. Copyright © 2015 Elsevier B.V. All rights reserved.
Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
Venkatramaiah, N; Kumar, Shiv; Patil, Satish
2012-11-12
Herein we report a novel fluoranthene-based fluorescent fluorophore 7,10-bis(4-bromophenyl)-8,9-bis[4-(hexyloxy)phenyl]fluoranthene (S(3)) and its remarkable properties in applications of explosive detection. The sensitivity towards the detection of nitroaromatics (NACs) was evaluated through fluorescence quenching in solution, vapor, and contact mode approaches. The contact mode approach using thin-layer silica chromatographic plates exhibited a femtogram (1.15 fg cm(-2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), whereas the solution-phase quenching showed PA detection at the 2-20 ppb level. Fluorescence lifetime measurements revealed that the quenching is static in nature and the quenching process is fully reversible. Binding energies between model binding sites of the S(3) and analyte compounds reveal that analyte molecules enter into the cavity created by substituted phenyl rings of fluoranthene and are stabilized by strong intermolecular interactions with alkyl chains. It is anticipated that the sensor S(3) could be a promising material for the construction of portable optical devices for the detection of onsite explosive nitroaromatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beyond the margins: real-time detection of cancer using targeted fluorophores
Zhang, Ray R.; Schroeder, Alexandra B.; Grudzinski, Joseph J.; Rosenthal, Eben L.; Warram, Jason M.; Pinchuk, Anatoly N.; Eliceiri, Kevin W.; Kuo, John S.; Weichert, Jamey P.
2017-01-01
Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings. PMID:28094261
Zhang, Hao; Li, Yan; Su, Xingguang
2013-11-15
In this paper, we establish a novel fluorescence-sensing system for the detection of biotin based on the interaction between DNA and graphene oxide and on protection of the terminal of the biotinylated single-stranded DNA fluorescent probe by streptavidin. In this system, streptavidin binds to the biotinylated DNA, which protects the DNA from hydrolysis by exonuclease I. The streptavidin-DNA conjugate is then adsorbed to the graphene oxide resulting in the fluorescence being quenched. Upon the addition of free biotin, it competes with the labeled biotin for the binding sites of streptavidin and then the exonuclease I digests the unbound DNA probe from the 3' to the 5' terminal, releasing the fluorophore from the DNA. Because of the weak affinity between the fluorophore and graphene oxide, the fluorescence is recovered. Under optimal conditions, the fluorescence intensity is proportional to the concentration of biotin in the concentration range of 0.5-20nmol/L. The detection limit for biotin is 0.44nmol/L. The proposed fluorescence-sensing system was applied to the determination of biotin in some real samples with satisfactory reproducibility and accuracy. This work could provide a common platform for detecting small biomolecules based on protein-small molecule ligand binding. Copyright © 2013 Elsevier Inc. All rights reserved.
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
da Silva, Dayse L P; Rüttinger, Hans H; Mrestani, Yahia; Baum, Walter F; Neubert, Reinhard H H
2006-06-01
CE methods have been developed for the determination of taurine in pharmaceutical formulation (microemulsion) and in biological media such as sweat. The CE system with end-column pulsed amperometric detection has been found to be an interesting method in comparison with UV and fluorescence detection for its simplicity and rapidity. A gold-disk electrode of 100 mm diameter was used as the working electrode. The effects of a field decoupler at the end of the capillary, separation voltage, injection and pressure times were investigated. A detection limit of 4 x 10(-5) mol/L was reached using integrated pulsed amperometric detection, a method successfully applied to taurine analysis of the biological samples such as sweat. For taurine analysis of oil-in-water microemulsion, fluorescence detector was the favored method, the detection limit of which was 4 x 10(-11) mol/L.
Nameghi, Morteza Alinezhad; Danesh, Noor Mohammad; Ramezani, Mohammad; Hassani, Faezeh Vahdati; Abnous, Khalil; Taghdisi, Seyed Mohammad
2016-08-01
Analytical techniques for detection of ochratoxin A (OTA) in food products and blood serum are of great significance. In this study, a fluorescent aptasensor was developed for sensitive and specific detection of OTA, based on a DNA pyramid nanostructure (DPN) and PicoGreen (PG) dye. The designed aptasensor inherits characteristics of DPN, such as high stability and capacity for PG loading. PG, as a fluorescent dye, could bind to double-stranded DNA (dsDNA). In the absence of OTA, the pyramid structure of DPN remains intact, leading to a very strong fluorescence emission. Because of higher affinity of aptamer for its target relative to its complementary strand, upon addition of target, the pyramid structure of DPN is disassembled, leading to a weak fluorescence emission. The presented aptasensor showed high specificity toward OTA with a limit of detection (LOD) as low as 0.135 nM. Besides, the designed sensing strategy was successfully utilized to recognize OTA in serum and grape juice with LODs of 0.184 and 0.149 nM, respectively.
NASA Astrophysics Data System (ADS)
Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie
2015-03-01
For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors
Anazawa, Takashi; Yamazaki, Motohiro
2017-12-05
Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).
Determination of ammonium on an integrated microchip with LED-induced fluorescence detection.
Xue, Shuhua; Uchiyama, Katsumi; Li, Hai-Fang
2012-01-01
A simply fabricated microfluidic device integrated with a fluorescence detection system has been developed for on-line determination of ammonium in aqueous samples. A 365-nm light-emitting diode (LED) as an excitation source and a minor band pass filter were mounted into a polydimethylsiloxane (PDMS)-based microchip for the purpose of miniaturization of the entire analytical system. The ammonium sample reacted with o-phthaldialdehyde (OPA) on-chip with sodium sulfite as reducing reagent to produce a fluorescent isoindole derivative, which can emit fluorescence signal at about 425 nm when excited at 365 nm. Effects of pH, flow rate of solutions, concentrations of OPA-reagent, phosphate and sulfite salt were investigated. The calibration curve of ammonium in the range of 0.018-1.8 microg/mL showed a good linear relationship with R2 = 0.9985, and the detection limit was (S/N = 3) 3.6 x 10(-4) microg/mL. The relative standard deviation was 2.8% (n = 11) by calculating at 0.18 microg/mL ammonium for repeated detection. The system was applied to determine the ammonium concentration in rain and river waters, even extent to other analytes fluorescence detection by the presented device.
A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.
Liu, Feng; Ding, Ailing; Zheng, Jiushang; Chen, Jiucun; Wang, Bin
2018-06-01
A label-free sensing platform is developed based on switching the structure of aptamer for highly sensitive and selective fluorescence detection of ochratoxin A (OTA). OTA induces the structure of aptamer, transforms into G-quadruplex and produces strong fluorescence in the presence of zinc(II)-protoporphyrin IX probe due to the specific bind to G-quadruplex. The simple method exhibits high sensitivity towards OTA with a detection limit of 0.03 nM and excellent selectivity over other mycotoxins. In addition, the successful detection of OTA in real samples represents a promising application in food safety.
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-01
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.
Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan
2017-01-15
In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Yuanyuan; Zhou, Jin; Feng, Hui; Zheng, Jieyu; Ma, Hui-Min; Liu, Weidong; Tang, Cong; Ao, Hang; Zhao, Meizhi; Qian, Zhaosheng
2016-12-15
A convenient, fluorescent dual-channel chemosensor on the basis of bis(3-pyridylmethyl)amine-functionalized carbon quantum dots (BPMA-CQDs) nanoprobe was constructed, and it can discriminatively detect glutathione from its analogues cysteine and homocysteine based on two distinctive strategies. Two distinct fluorescence responses of BPMA-CQDs probe to Cu(II) and Ag(I) were identified and further employed to achieve selective detection of Cu(II) and Ag(I) respectively. Based on the BPMA-CQDs/Cu(II) conjugate, discriminative detection of GSH was achieved in terms of correlation between the amounts of GSH and fluorescence recovery. The addition of GSH into BPMA-CQDs/Cu(II) system induces the reduction of Cu(II) to Cu(I), which could efficiently block PET process resulting in the following fluorescence recovery. Based on the BPMA-CQDs/Ag(I) conjugate, GSH assay could also be established on the basis of fluorescence response to GSH. The introduction of GSH into the preceding system triggers the competitive coordination to Ag(I) between BPMA and GSH, and silver ions are finally taken away by GSH from the probe, where the fluorescence is restored to its original weak state. Both of the detection strategies can achieve discriminative detection of GSH from Cys and Hcy. The assays showed good stability and repeatability, and covered a broad linear range of up to 13.3μM with a lowest detection limit of 42.0nM. Moreover, both of them were utilized to monitor GSH level in live cells. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.
2016-05-01
The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis. Electronic supplementary information (ESI) available: Base pair mismatch tuning of CProbes. Binding capacity of the QDs. Theoretical limit of detection (LOD) for the monoplex systems. Kinetics of strand displacement. Kinetics of QProbe-CProbe binding. LOD and saturation point calculations. See DOI: 10.1039/c6nr00484a
Suero Molina, Eric; Wölfer, Johannes; Ewelt, Christian; Ehrhardt, André; Brokinkel, Benjamin; Stummer, Walter
2018-02-01
OBJECTIVE Fluorescence guidance with 5-aminolevulinic acid (5-ALA) helps improve resections of malignant gliomas. However, one limitation is the low intensity of blue light for background illumination. Fluorescein has recently been reintroduced into neurosurgery, and novel microscope systems are available for visualizing this fluorochrome, which highlights all perfused tissues but has limited selectivity for tumor detection. Here, the authors investigate a combination of both fluorochromes: 5-ALA for distinguishing tumor and fluorescein for providing tissue fluorescence of adjacent brain tissue. METHODS The authors evaluated 6 patients who harbored cerebral lesions suggestive of high-grade glioma. Patients received 5-ALA (20 mg/kg) orally 4 hours before induction of anesthesia. Low-dose fluorescein (3 mg/kg intravenous) was injected immediately after anesthesia induction. Pentero microscopes (equipped either with Yellow 560 or Blue 400 filters) were used to visualize fluorescence. To simultaneously visualize both fluorochromes, the Yellow 560 module was combined with external blue light illumination (D-light C System). RESULTS Fluorescein-induced fluorescence created a useful background for protoporphyrin IX (PPIX) fluorescence, which appeared orange to red, surrounded by greenly fluorescent normal brain and edematous tissue. Green brain-tissue fluorescence was helpful in augmenting background. Levels of blue illumination that were too strong obscured PPIX fluorescence. Unspecific extravasation of fluorescein was noted at resection margins, which did not interfere with PPIX fluorescence detection. CONCLUSIONS Dual labeling with both PPIX and fluorescein fluorescence is feasible and gives superior background information during fluorescence-guided resections. The authors believe that this technique carries potential as a next step in fluorescence-guided resections if it is completely integrated into the surgical microscope.
Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M
2015-01-01
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5–5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry PMID:25523156
Label free selective detection of estriol using graphene oxide-based fluorescence sensor
NASA Astrophysics Data System (ADS)
Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul
2014-07-01
Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.
2015-01-01
Indocyanine green (ICG) is a near-infrared (NIR) contrast agent commonly used for in vivo cardiovascular and eye imaging. For medical diagnosis, ICG is limited by its aqueous instability, concentration-dependent aggregation, and rapid degradation. To overcome these limitations, scientists have formulated ICG in various liposomes, which are spherical lipid membrane vesicles with an aqueous core. Some encapsulate ICG, while others mix it with liposomes. There is no clear understanding of lipid–ICG interactions. Therefore, we investigated lipid–ICG interactions by fluorescence and photon correlation spectroscopy. These data were used to design stable and maximally fluorescent liposomal ICG nanoparticles for NIR optical imaging of the lymphatic system. We found that ICG binds to and is incorporated completely and stably into the lipid membrane. At a lipid:ICG molar ratio of 250:1, the maximal fluorescence intensity was detected. ICG incorporated into liposomes enhanced the fluorescence intensity that could be detected across 1.5 cm of muscle tissue, while free ICG only allowed 0.5 cm detection. When administered subcutaneously in mice, lipid-bound ICG in liposomes exhibited a higher intensity, NIR image resolution, and enhanced lymph node and lymphatic vessel visualization. It also reduced the level of fluorescence quenching due to light exposure and degradation in storage. Lipid-bound ICG could provide additional medical diagnostic value with NIR optical imaging for early intervention in cases of lymphatic abnormalities. PMID:24512123
NASA Astrophysics Data System (ADS)
la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric
2000-08-01
The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.
Le, Tao; Zhang, Zhihao; Wu, Juan; Shi, Haixing; Cao, Xudong
2018-01-01
A rapid, simple, and sensitive fluorescent immunochromatographic strip test (ICST) based on quantum dots (QDs) has been developed to detect 1-aminohydantoin (AHD), a major metabolite of nitrofurantoin in animal tissues. To achieve this, QD-labeled antibody conjugates, which consist of CdSe/ZnS QDs and monoclonal antibodies, were prepared by an activated ester method. Under optimal conditions, with the nitrophenyl derivative of AHD as the target, the ICST had a linear range from 0.1 to 100 ng/mL, with a correlation coefficient of 0.9656 and a 50% inhibitory concentration of 4.51 ng/mL. The limit of detection was 0.14 ng/g, which was below the minimum required performance limit of 1 μg/kg for AHD established by the European Commission. The recoveries for AHD ranged from 81.5% to 108.2%, with coefficients of variation below 13%, based on intraday and interday analysis. Furthermore, for AHD in real samples, the ICST showed high reliability and high correlation with liquid chromatography-tandem mass spectrometry (correlation coefficient of 0.9916). To the best of our knowledge, this is the first report of a novel and sensitive method based on a fluorescent ICST to detect AHD below the minimum required performance limit. The ICST demonstrated high reliability, and could be ideally suited for rapid, simple, and on-site screening of AHD contamination in animal tissues. Graphical abstract A rapid, simple, and sensitive fluorescent immunochromatographic strip test that is based on quantum dots was developed to detect 1-aminohydantoin (AHD), a major metabolite of nitrofurantoin in animal tissues. 2-NBA 2-nitrobenzaldehyde, NP nitrophenyl.
Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj
2012-06-15
Novel pentacenequinone derivative 3 has been synthesized using the Suzuki-Miyaura coupling protocol which forms fluorescent nanoaggregates in aqueous media due to its aggregation-induced emission enhancement attributes and selectively senses picric acid with a detection limit of 500 ppb.
Detection of chitinase activity by 2-aminobenzoic acid labeling of chito-oligosaccharides.
Ghauharali-van der Vlugt, Karen; Bussink, Anton P; Groener, Johanna E M; Boot, Rolf G; Aerts, Johannes M F G
2009-01-01
Chitinases are hydrolases capable of hydrolyzing the abundant natural polysaccharide chitin. Next to artificial fluorescent substrates, more physiological chito-oligomers are commonly used in chitinase assays. Analysis of chito-oligosaccharides products is generally accomplished by UV detection. However, the relatively poor sensitivity poses a serious limitation. Here we report on a novel, much more sensitive assay for the detection of chito-oligosaccharide reaction products released by chitinases, based on fluorescent detection, following chemical labeling by 2-aminobenzoic acid. Comparison with existing UV-based assays, shows that the novel assay offers the same advantages yet allows detection of chito-oligosaccharides in the low picomolar range.
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-02-09
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-01-01
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163
Hennig, Georg; Homann, Christian; Teksan, Ilknur; Hasbargen, Uwe; Hasmüller, Stephan; Holdt, Lesca M.; Khaled, Nadia; Sroka, Ronald; Stauch, Thomas; Stepp, Herbert; Vogeser, Michael; Brittenham, Gary M.
2016-01-01
Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in ∼1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure. PMID:26883939
NASA Astrophysics Data System (ADS)
Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro
2018-02-01
An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.
An analog filter approach to frequency domain fluorescence spectroscopy
Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.
2015-10-01
The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less
Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin
2016-03-15
A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Huo, Bingbing; Liu, Bingping; Chen, Tao; Cui, Liang; Xu, Gengfang; Liu, Mengli; Liu, Jingquan
2017-10-10
A facile and effective approach for the preparation of functionalized born nitride quantum dots (BNQDs) with blue fluorescence was explored by the hydrothermal treatment of the mixture of boric acid and melamine at 200 °C for 15 h. The as-prepared BNQDs were characterized by transmission electron microscopy (TEM), high-resolution TEM, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The single layered BNQDs with the average size of 3 nm showed a blue light emission under the illumination of the UV light. The BNQDs could be easily dispersed in an aqueous medium and applied as fluorescent probes for selective detection of Fe 3+ with remarkable selectivity and sensitivity (the lowest detection limit was 0.3 μM). The fluorescence fiber imaging demonstrated that the as-prepared quantum dots could be used as a valuable fluorchrome. Therefore, the BNQDs could be envisioned for potential applications in many fields such as biocompatible staining, fluorescent probes, and biological labeling.
NASA Astrophysics Data System (ADS)
Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong
2018-05-01
An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.
Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors
NASA Astrophysics Data System (ADS)
Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai
2018-02-01
Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.
Fluorescent Sensing of Fluoride in Cellular System
Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong
2015-01-01
Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future. PMID:25553106
Rosen, Christian B; Hansen, Dennis J; Gothelf, Kurt V
2013-12-07
Fluoride detection through hydrogen bonding or deprotonation is most commonly achieved using amide, urea or pyrrole derivatives. The sensor molecules are often complex constructs and several synthetic steps are required for their preparation. Here we report the discovery that simple arylaldoximes have remarkable properties as fluoride anion sensors, providing distinct colorimetric or fluorescent readouts, depending on the structure of the arylaldoxime. The oximes showed exceptional selectivity towards fluoride over other typical anions, and low detection limits for fluoride in both DMSO and DMSO-water mixtures were obtained.
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang
2016-04-15
As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu
2012-10-02
Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.
Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.
Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina
2008-12-01
The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.
Henry, James; Anand, Ashish; Chowdhury, Mustafa; Coté, Gerard; Moreira, Rosana; Good, Theresa
2004-11-01
A nanoparticle-based immunoassay for the detection of recombinant bovine prion protein (PrP) was developed as a step in the development of screening tools for the prevention of the spread of transmissible spongiform encephalopathies. The assay is based on the competitive binding between PrP and a peptide-fluorophore to a nanoparticle-labeled antibody which is specific for a conserved prion sequence. The fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, enabling detection of changes in the concentration of bound fluorophore in the presence of prion protein. Important factors considered during the development of the assay were ease of use, robustness, and detection level. The effects of pH and nanoparticle conjugation chemistry on surface-modified fluorescence observed in the assay were explored. Effects of concentrations of antibody and fluorophore on reproducibility and detection limits were examined. At present, the detection limits of the system are approximately equal to the antibody-peptide fluorophore equilibrium dissociation constant, which is near one nanomolar concentration. Improved assay performance could be obtained by optimization of the nanoparticle surface resonance effects. The simplicity of the assay and ease of use may make the type of assay described in this report attractive for screening purposes in the food industry.
Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping
2017-01-01
A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 102–103 CFU·mL−1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens. PMID:28241478
Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping
2017-02-23
A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 10²-10³ CFU·mL -1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens.
NASA Astrophysics Data System (ADS)
Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao
2015-02-01
In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-14
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.
Li, Hailong; Zhai, Junfeng; Tian, Jingqi; Luo, Yonglan; Sun, Xuping
2011-08-15
In this article, carbon nanoparticles (CNPs) were used as a novel fluorescent sensing platform for highly sensitive and selective Hg(2+) detection. To the best of our knowledge, this is the first example of CNPs obtained from candle soot used in this type of sensor. The general concept used in this approach is based on that adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by CNP via π-π stacking interactions between DNA bases and CNP leads to substantial dye fluorescence quenching; however, in the presence of Hg(2+), T-Hg(2+)-T induced hairpin structure does not adsorb on CNP and thus retains the dye fluorescence. A detection limit as low as 10nM was achieved. The present CNP-based biosensor for Hg(2+) detection exhibits remarkable specificity against other possible metal ions. Furthermore, superior selectivity performance was observed when Hg(2+) detection was carried out in the presence of a large amount of other interference ions. Finally, in order to evaluate its potential practical application, Hg(2+) detection was conducted with the use of lake water other than pure buffer and it is believed that it holds great promise for real sample analysis upon further development. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Toma, Mana; Tawa, Keiko
2018-03-01
A bioinspired polydopamine (PDA) coating is a good candidate for the rapid and cheap chemical modification of biosensor surfaces. Herein, we report the effect of PDA thickness on the detection sensitivity of a fluorescence biosensor utilizing surface plasmon-enhanced fluorescence. The thickness of PDA films was tuned by the incubation time of the dopamine solution and varied from 1 to 17 nm. The detection sensitivity was evaluated as the limit of detection (LOD) of a fluorescently labelled target analyte by a model immunoassay. The LOD was determined to be 1.6 pM for the thickest PDA film and was improved to 1.0 pM by reducing the thickness to the range from 1 to 5 nm, corresponding to the incubation time of 10 to 60 min. The experimental results indicate that the PDA coating is suitable for the surface functionalization of biosensors in mass production as it does not require precise control of the incubation time.
Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-01-15
A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe 3+ detection was designed and synthesized. In presence of Fe 3+ , sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe 3+ complex was found as 2.4×10 4 with the lower detection limit of 14.3nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1 H NMR spectra. Sensor L for Fe 3+ detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe 3+ ions in practical water samples with good recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo
2017-09-01
Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.
Kong, Weiheng; Wu, Di; Xia, Lian; Chen, Xuefeng; Li, Guoliang; Qiu, Nannan; Chen, Guang; Sun, Zhiwei; You, Jinmao; Wu, Yongning
2017-06-22
Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-d-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10 -8 M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Junqiu; Yan, Juping; Wang, Yingte; Zhang, Yong
2018-07-01
A facile and economic approach to synthesis highly fluorescence carbon dots (CDs) via one-step hydrothermal treatment of D-sorbitol was presented. The as-synthesized CDs were characterized by good water solubility, well monodispersion, and excellent biocompatibility. Spherical CDs had a particle size about 5 nm and exhibited a quantum yield of 8.85% at excitation wavelength of 360 nm. In addition, the CDs can serve as fluorescent probe for sensitive and selective detection of Fe3+ ions with the detection limit of 1.16 μM. Moreover, the potential of the as-prepared carbon dots for biological application was confirmed by employing it for fluorescence imaging in MCF-7 cells.
Mehrzad-Samarin, Mina; Faridbod, Farnoush; Dezfuli, Amin Shiralizadeh; Ganjali, Mohammad Reza
2017-06-15
A novel optical nanosensor for detection of Metronidazole in biological samples was reported. Graphene quantum dots embedded silica molecular imprinted polymer (GQDs-embedded SMIP) was synthesized and used as a selective fluorescent probe for Metronidazole detection. The new synthesized GQDs-embedded SMIP showed strong fluorescent emission at 450nm excited at 365nm which quenched in presence of Metronidazole as a template molecule.. The quenching was proportional to the concentration of Metronidazole in a linear range of at least 0.2μM to 15μM. The limit of detection for metronidazole determination was obtained 0.15μM. The nanosensor successfully worked in plasma matrixes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xuan; Li, Xuebing; Chen, Wenfang; Wang, Rulin; Bian, Wei; Choi, Martin M. F.
2018-06-01
Phosphorus doped graphitic carbon nitride (P-g-C3N4) nanosheets were synthesized by calcination. P-g-C3N4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C3N4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30 μM with a detection limit of 53 nM. The quenching mechanism was discussed. The P-g-C3N4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples.
NASA Astrophysics Data System (ADS)
Xu, Miao
Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a ratiometric fluorescence sensor, which allows for dual-band emission monitoring and thus enhances the detection reliability. Moreover, the significant spectral overlap between the fluorescence of the pristine sensor and the absorption of the reacted state enables effective Foster Resonance Energy Transfer (FRET). This FRET process can significantly enhance the fluorescence sensing efficiency in comparison to the normal single-band sensor system, for which the sensing efficiency is solely determined by the stoichiometric conversion of sensor molecules.
NASA Astrophysics Data System (ADS)
Wu, Wei-Na; Wu, Hao; Wang, Yuan; Mao, Xian-Jie; Zhao, Xiao-Lei; Xu, Zhou-Qing; Fan, Yun-Chang; Xu, Zhi-Hong
2018-01-01
A coumarin-based sensor C1, namely 3-acetoacetylcoumarin was designed, synthesized and applied for hydrazine detection. Hydrazinolysis of the chemosensor gives a fluorescent coumarin-pyrazole product C1 - N2H4 [3-(3-methyl-1H-pyrazol-5-yl)coumarin], and thus resulting in a prominent fluorescence off-on response toward hydrazine under physiological conditions. The probe is highly selective toward hydrazine over cations, anions and other biologically/environmentally abundant analytes. The detection limit of the probe is 3.2 ppb. The sensing mechanism was supported by 1H NMR, IR, MS and DFT calculation. The application of the fluorescent probe in monitoring intracellular hydrazine in glioma cell line U251 was also demonstrated.
Wang, Xiao; Zhou, Yanmei; Xu, Chenggong; Song, Haohan; Li, Li; Zhang, Junli; Guo, Meixia
2018-06-03
A turn-on fluorescent probe (DAME) for sensing hypochlorous acid (HClO) with excellent selectivity was presented. The fluorescent probe was composed of coumarin derivative as the fluorophore and dimethylcarbamothioic chloride group with a sulfide moiety as modulator. Additionally, the sulfide moiety would be oxidized by HClO, and then free dye of coumarin derivate was released and exhibited significant fluorescence. In addition, the probe could respond to HClO in solutions within 60 s and the limit of detection was down to 34.75 nM. Moreover, the probe was used for the detection of HClO in tap water through the home-made test paper. And confocal images confirmed that probe DAME could be used for recognizing HClO in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector
NASA Astrophysics Data System (ADS)
Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae
2013-07-01
Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.
NASA Astrophysics Data System (ADS)
Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya
2018-05-01
A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.
Active substrates improving sensitivity in biomedical fluorescence microscopy
NASA Astrophysics Data System (ADS)
Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.
2005-08-01
Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.
Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo.
Chen, Hong; Sun, Tao; Qiao, Xiao-Guang; Tang, Qian-Oian; Zhao, Shan-Chao; Zhou, Zhan
2018-06-12
Due to the importance of hypochlorous acid (HClO) in biological and industrial, development of fluorescent probes for HClO has been an active research area. Here, a new red-emitting ratiometric fluorescent probe (P) was synthesized and well defined characterization via NMR, HR-MS, and fluorescence spectrum, which serves as a selective and sensitive probe for ClO - group. The probe showed a ratiometric fluorescent response to hypochlorite at the emission intensities ratio (I 480 /I 612 ) increasing from 0.28 to 27.46. The emission intensities ratio (I 480 /I 612 ) was linearly enhanced (I 480 /I 612 = 0.064 X + 0.096) with the ClO - concentration range from 1 to 30 μM. The detection limitation for ClO - in aqueous solution is 0.47 μM. Moreover, this biocompatible red-emitting ratiometric fluorescent probe was utilized to the fluorescence imaging of ClO - in living cells and Zebrafish. Copyright © 2018. Published by Elsevier B.V.
Shan, Huimei; Liu, Chongxuan; Wang, Zheming; ...
2015-01-01
A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDEmore » 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.« less
Chen, Song; Hou, Peng; Wang, Jing; Fu, Shuang; Liu, Lei
2018-05-28
We have successfully developed a new green-emitting H 2 S fluorescence probe employing a 2,4-dinitrophenyl ether moiety as the sensing group based on 3'-formyl-4'-hydroxybiphenyl-4-carbonitrile. This probe displayed a rapid (2 min), sensitive (the detection limit was 0.18 μM) and selective with a large Stokes shift (183 nm) in response to H 2 S, which was beneficial for fluorescence sensing and cell imaging studies. Moreover, this probe can qualitatively and quantitatively detect H 2 S with a good linearity (R 2 = 0.9991). Importantly, this probe had been used for the detection of H 2 S in living MDA-MB-231 cells with good performance. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Tao; Li, Yang; Niu, Qingfen; Li, Tianduo; Liu, Yan
2018-04-01
A new simple and efficient fluorescent sensor L based on 1,8-diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.
Jin, Lihua; Zhang, Zaihua; Tang, Anwen; Li, Cong; Shen, Yehua
2016-05-15
In this work, we have presented a novel strategy to utilize as-synthesized yeast extract-stabilized Cu nanoclusters (Cu NCs) for sensitive and selective detection of S(2-). The fluorescence intensity of Cu NCs was enhanced significantly in the presence of both Na2S2O8 and S(2-). By virtue of this specific response, a Cu NC-based fluorescent turn-on sensor was developed, which allows the detection of S(2-) in the range of 0.02-0.8 μM with a detection limit of 10nM. The enhancing mechanism was also discussed based on fluorescence decay, transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies, indicating that S(2-) enhanced the Cu NCs emission mainly through sulfide-induced aggregation of Cu NCs. Furthermore, we demonstrated the usability of the present approach for the detection of S(2-) in water samples, which illustrates its great potential for the environmental monitoring and water quality inspection fields. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Xiu-Xiu; Qian, Ying
2017-08-05
An aldoxime containing fluorescent probe based on vinylpydine-appended triphenylamine-BODIPY has been designed and used for hypochlorite detection. OX-PPA-BODIPY was developed by introducing an aldoxime group into the 2-position of BODIPY, which can be used for the detection of hypochlorite with a sharp color change from pink to green. The attachment of 4-vinylpyridine moiety to triphenylamine-BODIPY constructs a fluorogen with desirable conjugated system. The probe, which displays extremely weak fluorescence owing to the CN isomerization mechanism at 2-position of BODIPY, responds to HClO/ClO - through a dramatic enhancement of its fluorescence intensity. This new probe, a naked-eye visible and fluorometric chemodosimeter, exhibits high selectivity and sensitivity toward hypochlorite over other reactive oxygen species (ROS) and anions. The detection is accompanied by a 20-fold increase in fluorescent intensity (Φ F from 0.02 to 0.43). The detection limit of the probe for hypochlorite is 7.37×10 -7 M. Moreover, OX-PPA-BODIPY can be used to detect hypochlorite in real water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiu-xiu; Qian, Ying
2017-08-01
An aldoxime containing fluorescent probe based on vinylpydine-appended triphenylamine-BODIPY has been designed and used for hypochlorite detection. OX-PPA-BODIPY was developed by introducing an aldoxime group into the 2-position of BODIPY, which can be used for the detection of hypochlorite with a sharp color change from pink to green. The attachment of 4-vinylpyridine moiety to triphenylamine-BODIPY constructs a fluorogen with desirable conjugated system. The probe, which displays extremely weak fluorescence owing to the Cdbnd N isomerization mechanism at 2-position of BODIPY, responds to HClO/ClO- through a dramatic enhancement of its fluorescence intensity. This new probe, a naked-eye visible and fluorometric chemodosimeter, exhibits high selectivity and sensitivity toward hypochlorite over other reactive oxygen species (ROS) and anions. The detection is accompanied by a 20-fold increase in fluorescent intensity (ΦF from 0.02 to 0.43). The detection limit of the probe for hypochlorite is 7.37 × 10- 7 M. Moreover, OX-PPA-BODIPY can be used to detect hypochlorite in real water samples.
Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.
2018-06-01
Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.
Jiao, Yanna; Ding, Li; Zhu, Shaohua; Fu, Shanliang; Gong, Qiang; Li, Hui; Wang, Libing
2013-01-01
A method for the determination of fluorescent whitening agents in plastic food contact materials by high performance liquid chromatography (HPLC) with fluorescence detector was developed. The samples were extracted with trichloromethane by sonication for 30 min at 40 degrees C. The HPLC method was performed on a column of Eclipse XDB-C18 (250 mm x 4.6 mm, 5 microm) by gradient elution using 5 mmol/L ammonium acetate and acetonitrile as the mobile phases, and detected by the fluorescence detector at an excitation wavelength of 350 nm and an emission wavelength of 430 nm. The experimental results indicated that the four fluorescent whitening agents were separated well. The limits of detection (LOD) (S/N = 3) were 0.3, 0.1, 0.05, 0.14 mg/L, and the limits of quantification (LOQ) (S/N = 10) were 1.0, 0.4, 0.2, 0.5 mg/L for 1,4-bis (4-cyanostyryl) benzene (C. I. 199), 1,4-bis (2-benzoxazolyl) naphthalene (C. I. 367), 4,4'-bis(2-methoxystyryl) biphenyl (C. I. 378) and 2,5-thiophenediylbis (5-tert-butyl-1,3-benzoxazole) (C. I. 184), respectively. Good linearities with correlation coefficients (r2) not less than 0.991 were obtained. The proposed method is simple, accurate, sensitive and can meet the requirements of the routine determination of fluorescent whitening agents in entry-exit products.
Wu, Yunqing; Zeng, Lifeng; Xiong, Ying; Leng, Yuankui; Wang, Hui; Xiong, Yonghua
2018-05-01
Herein, we present a novel sandwich fluorescence enzyme linked immunosorbent assay (ELISA) for highly sensitive detection of Hepatitis B virus surface antigen (HBsAg) based on glucose oxidase (GOx)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (MPA-QDs). In this system, hydrogen peroxide (H 2 O 2 ) sensitive MPA-QDs was used as a signal output, and glucose oxidase (GOx) was used as label which can generate H 2 O 2 via catalytic oxidation of glucose. The proposed method showed dynamic linear detection of HBsAg both in the range of 47pgmL -1 ~ 380pgmL -1 and 0.75ngmL -1 ~ 12.12ngmL -1 . The detection limit of the proposed fluorescence ELISA was 1.16pgmL -1 , which was approximately 430-fold lower than that of horseradish peroxidase (HRP)-based conventional ELISA. The average recoveries for HBsAg-spiked serum samples ranged from 98.0% to 126.8% with the relative standard derivation below 10%, thus indicating acceptable precision and high reproducibility of the proposed fluorescence ELISA for HBsAg detection. Additionally, the developed method showed no false positive results analyzing 35 real HBsAg-negative serum samples, and exhibited excellent agreement (R 2 =0.9907) with a commercial time-resolved fluorescence immunoassay (TRFIA) kit for detecting 31 HBsAg-positive serum samples. In summary, the proposed method based on fluorescence quenching of H 2 O 2 sensitive QDs is considerably to be an excellent biodetection platform with ultrahigh sensitivity, good accuracy and excellent reliability. Copyright © 2018 Elsevier B.V. All rights reserved.
An aqueous fluorescent sensor for Pb2+ based on phenothiazine-polyamide.
Xie, Yadian; Li, Han; Liu, Xingliang; Wang, Zhaoqian; Lv, Haitang; Cao, Jianfang; Zhang, Chao; Jia, Qiangqiang; Han, Aixia
2018-04-30
A sensitive and selective fluorescent sensor for Pb 2+ ion based on phenothiazine-polyamide was built (named sensor PP). Due to introducing of four diethanolamine groups to polyamide, this sensor was totally water soluble. PP could detect Pb 2+ ion within 1 min in the presence of other metal ions in aqueous solution, the detect limit was 9.11 × 10 -8 M. Copyright © 2018 Elsevier B.V. All rights reserved.
Feltus, A; Hentz, N G; Daunert, S
2001-05-25
A class-selective post-capillary reaction detection method for capillary electrophoresis is described in which a streptavidin-fluorescein isothiocyanate (streptavidin-FITC) conjugate is used to detect biotin moieties. The selective binding of biotin moieties to the streptavidin-FITC conjugate causes an enhancement of fluorescence proportional to the concentration of biotin present. After capillary electrophoresis the separated analytes react with streptavidin-FITC in a coaxial reactor and are then detected either by a benchtop spectrofluorometer (2.5 microM detection limit) or by an epi-fluorescence microscope (1 x 10(-7) M detection limit). The method is used to examine biotinylated species in a crude mammalian cell lysate which was found to contain 83+/-3 fmol in 3600 cell volumes. In addition, it is used to examine the uptake of biotin by individual sea urchin oocytes. The results indicate that, in the oocytes, biocytin is the prevalent form of biotin and its concentration varies widely between cells (mean=2+/-2 microM).
Cobb, K A; Novotny, M V
1992-01-01
The use of two different amino acid-selective fluorogenic reagents for the derivatization of peptides is investigated. One such scheme utilizes a selective reaction of benzoin with the guanidine moiety to derivatize arginine residues occurring in a peptide. The second scheme involves the formylation of tyrosine, followed by reaction with 4-methoxy-1,2-phenylenediamine. The use of capillary electrophoresis and laser-induced fluorescence detection allows enhanced efficiencies and sensitivities to be obtained for the separations of either arginine- or tyrosine-containing peptides. A helium-cadmium laser (325 nm) is ideally suited for the laser-based detection system due to a close match of the excitation maxima of derivatized peptides from both reactions. A detection limit of 270 amol is achieved for model arginine-containing peptides, while the detection limit for model tyrosine-containing peptides is measured at 390 amol. Both derivatization reactions are found to be useful for high-sensitivity peptide mapping applications in which only the peptides containing the derivatized amino acids are detected.
NASA Astrophysics Data System (ADS)
Marguí, E.; Zawisza, B.; Skorek, R.; Theato, T.; Queralt, I.; Hidalgo, M.; Sitko, R.
2013-10-01
This study was aimed to achieve improved instrumental sensitivity and detection limits for multielement determination of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Pb and Cd in liquid samples by using different X-ray fluorescence (XRF) configurations (a benchtop energy-dispersive X-ray fluorescence spectrometer, a benchtop polarised energy-dispersive X-ray fluorescence spectrometer and a wavelength-dispersive X-ray fluorescence spectrometer). The preconcentration of metals from liquid solutions consisted on a solid-phase extraction using carbon nanotubes (CNTs) as solid sorbents. After the extraction step, the aqueous sample was filtered and CNTs with the absorbed elements were collected onto a filter paper which was directly analyzed by XRF. The calculated detection limits in all cases were in the low ng mL- 1 range. Nevertheless, results obtained indicate the benefits, in terms of sensitivity, of using polarized X-ray sources using different secondary targets in comparison to conventional XRF systems, above all if Cd determination is required. The developed methodologies, using the aforementioned equipments, have been applied for multielement determination in water samples from an industrial area of Poland.
Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung
2018-06-30
A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.
Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N
2017-08-01
We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.
A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.
Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun
2018-03-15
In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu
2018-01-01
The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.
Ding, Hui; Wang, Rongyu; Wang, Xiao; Ji, Wenhua
2018-06-21
Molecularly imprinted covalent organic polymers were constructed by an imine-linking reaction between 1,3,5-triformylphloroglucinol and 2,6-diaminopyridine and used for the selective solid-phase extraction of benzoxazole fluorescent whitening agents from food samples. Binding experiments showed that imprinting sites on molecularly imprinted polymers had higher selectivity for targets compared with those of the corresponding non-imprinted polymers. Parameters affecting the solid-phase extraction procedure were examined. Under optimal conditions, actual samples were treated and the eluent was analyzed with high-performance liquid chromatography with diode-array detection. The results showed that the established method owned the wide linearity, satisfactory detection limits and quantification limits, and acceptable recoveries. Thus, this developed method possesses the practical potential to the selectively determine benzoxazole fluorescent whitening agents in complex food samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dansby-Sparks, Royce N.; Jin, Jun; Mechery, Shelly J
2009-01-01
Optical fluorescence sol-gel sensors have been developed for the detection of carbon dioxide gas in the 0.03?30% range with a detection limit of 0.008% (or 80 ppm) and a quantitation limit of 0.02% (or 200 ppm) CO{sub 2}. Sol?gels were spin-coated on glass slides to create an organically modified silica-doped matrix with the 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) fluorescent indicator. The luminescence intensity of the HPTS indicator (513 nm) is quenched by CO{sub 2}, which protonates the anionic form of HPTS. An ion pair technique was used to incorporate the lipophilic dye into the hydrophilic sol?gel matrix. TiO{sub 2} particles (<5 {mu}m diameter)more » were added to induce Mie scattering and increase the incident light interaction with the sensing film, thus increasing the signal-to-noise ratio. Moisture-proof overcoatings have been used to maintain a constant level of water inside the sensor films. The optical sensors are inexpensive to prepare and can be easily coupled to fiber optics for remote sensing capabilities. A fiber-optic bundle was used for the gas detection and shown to work as part of a multianalyte platform for simultaneous detection of multiple analytes. The studies reported here resulted in the development of sol?gel optical fluorescent sensors for CO{sub 2} gas with sensitivity below that in the atmosphere (ca. 387 ppm). These sensors are a complementary approach to current FT-IR measurements for real-time carbon dioxide detection in environmental applications.« less
Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.
Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth
2016-11-10
Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags 1 . Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.
Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.
Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike
2018-05-01
We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.
NASA Astrophysics Data System (ADS)
Garg, Dimple; Mehta, Akansha; Mishra, Amit; Basu, Soumen
2018-03-01
Presently, the combination of carbon quantum dots (CQDs) and metal oxide nanostructures in one frame are being considered for the sensing of purine compounds. In this work, a combined system of CQDs and MnO2 nanostructures was used for the detection of anticancer drugs, 6-Thioguanine (6-TG) and 6-Mercaptopurine (6-MP). The CQDs were synthesized through microwave synthesizer and the MnO2 nanostructures (nanoflowers and nanosheets) were synthesized using facile hydrothermal technique. The CQDs exhibited excellent fluorescence emission at 420 nm when excited at 320 nm wavelength. By combining CQDs and MnO2 nanostructures, quenching of fluorescence was observed which was attributed to fluorescence resonance energy transfer (FRET) mechanism, where CQDs act as electron donor and MnO2 act as acceptor. This fluorescence quenching behaviour disappeared on the addition of 6-TG and 6-MP due to the formation of Mn-S bond. The detection limit for 6-TG (0.015 μM) and 6-MP (0.014 μM) was achieved with the linear range of concentration (0-50 μM) using both MnO2 nanoflowers and nanosheets. Moreover, the as-prepared fluorescence-sensing technique was successfully employed for the detection of bio-thiol group in enapril drug. Thus a facile, cost-effective and benign chemistry approach for biomolecule detection was designed.
Li, Song-Jiao; Fu, Ya-Jun; Li, Chun-Yan; Li, Yong-Fei; Yi, Lan-Hua; Ou-Yang, Juan
2017-11-22
Cysteine (Cys) is involved in cellular growth and Cys deficiency is related with many diseases. So far, a number of fluorescent probes have been constructed for the detection of Cys successfully. However, the probes are difficult to discriminate Cys from Hcy and the emission wavelength of the probes is in ultraviolet or visible range. Herein, a NIR fluorescent probe named NIR-BODIPY-Ac is synthesized and used to detect Cys. The emission wavelength of the probe is at 708 nm that belongs to near-infrared (NIR) region by attaching indolium to BODIPY core, which is suitable for bioimaging in vivo. Moreover, the probe exhibits high fluorescence quantum yield (Φ = 0.51) after the addition of Cys and high sensitivity toward Cys with 81-fold fluorescence enhancement. The linear range of the probe for Cys covers from 0.2 to 30 μM with a detection limit of 0.05 μM. Furthermore, the probe shows high selectivity towards Cys owing to the fact that there is more fast reaction rate between the probe and Cys than that of Hcy. In particular, the NIR fluorescent probe is applied for the detection of exogenous and endogenous Cys in biological samples such as cell, tissue and mouse with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua
2017-02-28
A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen) 3 2 + -doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.
Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua
2017-01-01
A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen)32+-doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs. PMID:28264472
Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong
2011-05-23
A microchip electrophoresis method with laser induced fluorescence detection was developed for the immunoassay of phenobarbital. The detection was based on the competitive immunoreaction between analyte phenobarbital and fluorescein isothiocyanate (FITC) labeled phenobarbital with a limited amount of antibody. The assay was developed by varying the borate concentration, buffer pH, separation voltage, and incubation time. A running buffer system containing 35 mM borate and 15 mM sodium dodecyl sulfate (pH 9.5), and 2800 V separation voltage provided analysis conditions for a high-resolution, sensitive, and repeatable assay of phenobarbital. Free FITC-labeled phenobarbital and immunocomplex were separated within 30s. The calibration curve for phenobarbital had a detection limit of 3.4 nM and a range of 8.6-860.0 nM. The assay could be used to determine the phenobarbital plasma concentration in clinical plasma sample. Copyright © 2011 Elsevier B.V. All rights reserved.
Detection of Cryptosporidium and Giardia in clinical laboratories in Europe--a comparative study.
Manser, M; Granlund, M; Edwards, H; Saez, A; Petersen, E; Evengard, B; Chiodini, P
2014-01-01
To determine the routine diagnostic methods used and compare the performance in detection of oocysts of Cryptosporidium species and cysts of Giardia intestinalis in faecal samples by European specialist parasitology laboratories and European clinical laboratories. Two sets of seven formalin-preserved faecal samples, one containing cysts of Giardia intestinalis and the other, containing oocysts of Cryptosporidium, were sent to 18 laboratories. Participants were asked to examine the specimens using their routine protocol for detecting these parasites and state the method(s) used. Eighteen laboratories answered the questionnaire. For detection of Giardia, 16 of them used sedimentation/concentration followed by light microscopy. Using this technique the lower limit of detection of Giardia was 17.2 cysts/mL of faeces in the best performing laboratories. Only three of 16 laboratories used fluorescent-conjugated antibody-based microscopy. For detection of Cryptosporidium acid-fast staining was used by 14 of the 17 laboratories that examined the samples. With this technique the lower limit of detection was 976 oocysts/mL of faeces. Fluorescent-conjugated antibody-based microscopy was used by only five of the 17 laboratories. There was variation in the lower limit of detection of cysts of Giardia and oocysts of Cryptosporidium between laboratories using the same basic microscopic methods. Fluorescent-conjugated antibody-based microscopy was not superior to light microscopy under the conditions of this study. There is a need for a larger-scale multi-site comparison of the methods used for the diagnosis of these parasites and the development of a Europe-wide laboratory protocol based upon its findings. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Yan, Xu; Li, Hongxia; Han, Xiaosong; Su, Xingguang
2015-12-15
In this work, we develop a novel and sensitive sensor for the detection of organophosphorus pesticides based on the inner-filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs has been designed by hybridizing two differently colored CdTe QDs, in which the red emissive QDs entrapped in the silica sphere acting as the reference signal, and the green emissive QDs covalently attached on the silica surface serving as the response signal.The fluorescence of RF-QDs could be quenched by AuNPs based on IFE. Protamine could effectively turn on the fluorescence due to the electrostatic attraction between protamine and AuNPs. Trypsin can easily hydrolyze protamine, leading to the quench of the fluorescence. Then, the fluorescence could be recovered again by the addition of parathion-methyl (PM) which could inhibit the activity of trypsin. By measuring the fluorescence of RF-QDs, the inhibition efficiency of PM to trypsin activity was evaluated. Under the optimized conditions, the inhibition efficiency was proportional to the logarithm of PM concentration in the range of 0.04-400 ng mL(-1), with a detection limit of 0.018 ng mL(-1). Furthermore, the simple and convenient method had been used for PM detection in environmental and agricultural samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin
2018-01-01
4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.
Fluorescence detection of esophageal neoplasia
NASA Astrophysics Data System (ADS)
Borisova, E.; Vladimirov, B.; Avramov, L.
2008-06-01
White-light endoscopy is well-established and wide used modality. However, despite the many technological advances that have been occurred, conventional endoscopy is suboptimal and usually detects advanced stage lesions. The limitations of standard endoscopy initiate development of spectroscopic techniques, additional to standard endoscopic equipment. One of the most sensitive approaches is fluorescence spectroscopy of gastrointestinal mucosa for neoplasia detection. In the recent study delta-aminolevulinic acid/Protoporphyrin IX (5-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus. The 5-ALA is administered per os six hours before measurements at dose 20 mg/kg weight. Excitation source has max of emission at 405 nm and light is delivered by the standard light guide of the endoscopic equipment. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. Spectral features observed during endoscopic investigations could be distinct as the next regions: 450-630 nm region, where tissue autofluorescence is observed; 630-710 nm region, where fluorescence of PpIX is clearly pronounced; 530-580 nm region, where minima in the autofluorescence signal are observed, related to reabsorption of blood. The lack of fluorescence peaks in the red spectral area for normal mucosa is an indication for selective accumulation of 5-ALA/PpIX only in abnormal sites Very good correlation between fluorescence signals and histology examination of the lesions investigated is achieved.
Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun
2016-09-20
In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.
Duan, Jiazhi; Ma, Baojin; Liu, Feng; Zhang, Shan; Wang, Shicai; Kong, Ying; Du, Min; Han, Lin; Wang, Jianjun; Sang, Yuanhua; Liu, Hong
2018-04-26
Although the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals. Based on the effect of substituting ions' concentration on the fluorescent property of Tb-Asp, a facile method for copper ions detection with high sensitivity was proposed by measuring the fluorescent intensity of Tb-Asp nanocrystals' suspensions containing different concentrations of copper ions. The good biocompatibility, great convenience of synthesis and sensitive detection ability make Tb-Asp nanocrystals a very low cost and effective material for metal ions detection, which also opens a new door for practical applications of metal-Asp coordinated nanocrystals.
Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili
2016-03-15
A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-02-01
A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.
Wilson, Peter M.; LaBonte, Melissa J.; Russell, Jared; Louie, Stan; Ghobrial, Andrew A.; Ladner, Robert D.
2011-01-01
Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5–3′ exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R2 > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC–MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation. PMID:21576234
Carbon dots based fluorescent sensor for sensitive determination of hydroquinone.
Ni, Pengjuan; Dai, Haichao; Li, Zhen; Sun, Yujing; Hu, Jingting; Jiang, Shu; Wang, Yilin; Li, Zhuang
2015-11-01
In this paper, a novel biosensor based on Carbon dots (C-dots) for sensitive detection of hydroquinone (H2Q) is reported. It is interesting to find that the fluorescence of the C-dots could be quenched by H2Q directly. The possible quenching mechanism is proposed, which shows that the quenching effect may be caused by the electron transfer from C-dots to oxidized H2Q-quinone. Based on the above principle, a novel C-dots based fluorescent probe has been successfully applied to detect H2Q. Under the optimal condition, detection limit down to 0.1 μM is obtained, which is far below U.S. Environmental Protection Agency estimated wastewater discharge limit of 0.5 mg/L. Moreover, the proposed method shows high selectivity for H2Q over a number of potential interfering species. Finally, several water samples spiked with H2Q are analyzed utilizing the sensing method with satisfactory recovery. The proposed method is simple with high sensitivity and excellent selectivity, which provides a new approach for the detection of various analytes that can be transformed into quinone. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Mian; Liu, Xiaomei; Lu, Huizhe; Wang, Hongmei; Qin, Zhaohai
2015-01-21
A "turn-on" fluorescent and colorimetric chemosensor (RBS) for Pd(2+) has been designed and synthesized through introduction of sulfur as a ligand atom to Rhodamine B. RBS exhibits high selectivity (freedom from the interference of Hg(2+ )in particular) and sensitivity toward Pd(2+) with a detection limit as low as 2.4 nM. RBS is also a reversible sensor, and it can be made into test paper to detect Pd(2+) in pure water. Compared to the chemosensors that introduced phosphorus to Rhodamine to detect Pd(2+), RBS can be synthesized more simply and economically.
NASA Astrophysics Data System (ADS)
Xu, Wen-Zhi; Liu, Wei-Yan; Zhou, Ting-Ting; Yang, Yu-Tao; Li, Wei
2018-03-01
We constructed a novel probe for hydrazine detection based on ICT and PET mechanism. Phthalimide and acetyl ester groups were used as the recognition units. Addition of hydrazine produced a turn-on fluorescence at 525 nm along with the fluorescent color change from dark to yellow. The probe could selectively detect hydrazine over other related interfering species. The detection limit of the probe for hydrazine was calculated to be 0.057 μM which was lower than the EPA standard (0.320 μM). Furthermore, the probe could also be applied for the imaging of hydrazine in living cells.
Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang
2018-07-05
A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Shim, Jae-Jin; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol; Lee, Yong Rok
2016-05-01
This paper reports turn-off fluorescence sensor for Fe(3+) ion in water using fluorescent N-doped carbon dots as a probe. A simple and efficient hydrothermal carbonization of Prunus avium fruit extract for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is described. This green approach proceeds quickly and provides good quality N-CDs. The mean size of synthesized N-CDs was approximately 7nm calculated from the high-resolution transmission electron microscopic images. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of CDs. The N-CDs showed excellent fluorescent properties, and emitted blue fluorescence at 411nm upon excitation at 310nm. The calculated quantum yield of the synthesized N-CDs is 13% against quinine sulfate as a reference fluorophore. The synthesized N-CDs were used as a fluorescent probe towards the selective and sensitive detection of biologically important Fe(3+) ions in water by fluorescence spectroscopy and for bio-imaging of MDA-MB-231 cells. The limit of detection (LOD) and the Stern-Volmer quenching constant for the synthesized N-CDs were 0.96μM and 2.0958×10(3)M of Fe(3+) ions. The green synthesized N-CDs are efficiently used as a promising candidate for the detection of Fe(3+) ions and bio-imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong
2013-10-01
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies. Electronic supplementary information (ESI) available: Absorbance and fluorescence spectra of quantum dot nanoprobes, electrophoresis analysis, and experimental setup for fluorescence imaging with dual channels. See DOI: 10.1039/c3nr03291d
Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide.
Yun, Wen; Wu, Hong; Liu, Xingyan; Fu, Min; Jiang, Jiaolai; Du, Yunfeng; Yang, Lizhu; Huang, Yu
2017-09-15
A novel fluorescent detection strategy for simultaneous detection of Cu 2+ , Pb 2+ and Mg 2+ based on DNAzyme branched junction structure with three kinds of DNAzymes and graphene oxide (GO) was presented. Three fluorophores labeled DNA sequences consisted with enzyme-strand (E-DNA) and substrate strand (S-DNA) were annealed to form DNAzyme branched junction structure. In the presence of target metal ion, the DNAzyme was activated to cleave the fluorophore labeled S-DNA. The S-DNA fragments were released and adsorbed onto GO surface to quench the fluorescent signal. The detection limit was calculated to be 1 nM for Cu 2+ , 200 nM for Mg 2+ , and 0.3 nM for Pb 2+ , respectively. This strategy was successfully used for simultaneous detection of Cu 2+ , Mg 2+ and Pb 2+ in human serum. Moreover, it had potential application for simultaneous detection of multiple metal ions in environmental and biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin
2018-01-05
A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin
2018-01-01
A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.
Babamiri, Bahareh; Hallaj, Rahman; Salimi, Abdollah
2018-06-20
In the present study, we constructed an ultrasensitive solid surface fluorescence-immunosensor based on highly luminescent CdTe@CdS-PAMAM structures as nanoprobe for determination of HBsAg by monitoring fluorescence intensity. This strategy was achieved by using PAMAM as a signal amplifier; the PAMAM dendrimer with the many functional amine groups can amplify the fluorescence signal of QDs by covalent attachment of CdTe@CdS on PAMAM and hence, improve the sensitivity of the proposed method significantly. A sandwich type immunosensor was formed after the addition of HBsAg and the PAMAM-QD-Ab 2 , respectively. Under optimal conditions, the designed immunosensor demonstrates a good analytical performance for the HBsAg detection in an excellent linear range from 5 fg ml -1 to 0.15 ng ml -1 with the detection limit (LOD) of 0.6 fg ml -1 at a S/N ratio of 3. In addition, the analysis of human serum samples shows that the fluorescent immunoassay has the great potential for early diagnosis of hepatitis B and can be used for the detection of other tumor markers in clinical applications.
Xu, Yuanhong; Li, Jing; Wang, Erkang
2008-05-01
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.
Fluorescence guided surgery and tracer-dose, fact or fiction?
KleinJan, Gijs H; Bunschoten, Anton; van den Berg, Nynke S; Olmos, Renato A Valdès; Klop, W Martin C; Horenblas, Simon; van der Poel, Henk G; Wester, Hans-Jürgen; van Leeuwen, Fijs W B
2016-09-01
Fluorescence guidance is an upcoming methodology to improve surgical accuracy. Challenging herein is the identification of the minimum dose at which the tracer can be detected with a clinical-grade fluorescence camera. Using a hybrid tracer such as indocyanine green (ICG)-(99m)Tc-nanocolloid, it has become possible to determine the accumulation of tracer and correlate this to intraoperative fluorescence-based identification rates. In the current study, we determined the lower detection limit of tracer at which intraoperative fluorescence guidance was still feasible. Size exclusion chromatography (SEC) provided a laboratory set-up to analyze the chemical content and to simulate the migratory behavior of ICG-nanocolloid in tissue. Tracer accumulation and intraoperative fluorescence detection findings were derived from a retrospective analysis of 20 head-and-neck melanoma patients, 40 penile and 20 prostate cancer patients scheduled for sentinel node (SN) biopsy using ICG-(99m)Tc-nanocolloid. In these patients, following tracer injection, single photon emission computed tomography fused with computed tomography (SPECT/CT) was used to identify the SN(s). The percentage injected dose (% ID), the amount of ICG (in nmol), and the concentration of ICG in the SNs (in μM) was assessed for SNs detected on SPECT/CT and correlated with the intraoperative fluorescence imaging findings. SEC determined that in the hybrid tracer formulation, 41 % (standard deviation: 12 %) of ICG was present in nanocolloid-bound form. In the SNs detected using fluorescence guidance a median of 0.88 % ID was present, compared to a median of 0.25 % ID in the non-fluorescent SNs (p-value < 0.001). The % ID values could be correlated to the amount ICG in a SN (range: 0.003-10.8 nmol) and the concentration of ICG in a SN (range: 0.006-64.6 μM). The ability to provide intraoperative fluorescence guidance is dependent on the amount and concentration of the fluorescent dye accumulated in the lesion(s) of interest. Our findings indicate that intraoperative fluorescence detection with ICG is possible above a μM concentration.
Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots.
Lu, Li-Qiang; Tan, Tian; Tian, Xi-Ke; Li, Yong; Deng, Pan
2017-09-15
Mercury ions sensing is an important issue for human health and environmental safety. A novel fluorescence nanosensor was designed for rapid visual detection of ultratrace mercury ions (Hg 2+ ) by using CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) based on the surface ion-exchange mechanism. The synthesized CH 3 NH 3 PbBr 3 QDs can emitt intense green fluorescence with high quantum yield of 50.28%, and can be applied for Hg 2+ sensing with the detection limit of 0.124 nM (24.87 ppt) in the range of 0 nM-100 nM. Furthermore, the interfering metal ions have no any influence on the fluorescence intensity of QDs, showing the perovskite QDs possess the high selectivity and sensitivity for Hg 2+ detection. The sensing mechanism of perovskite QDs for Hg 2+ is has also been investigated by XPS, EDX studies, showing Pb 2+ on the surface of perovskite QDs has been partially replaced by Hg 2+ . Spot plate test shows that the perovskite QDs can also be used for visual detection of Hg 2+ . Our research indicated the perovskite QDs are promising candidates for the visual fluorescence detection of environmental micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie
2017-05-15
A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Gómez-Ariza, José Luis; Lorenzo, Fernando; García-Barrera, Tamara
2005-05-01
Mercury and arsenic are two elements of undoubted importance owing to their toxic character. Although speciation of these elements has been developed separately, in this work for the first time the speciation of As and Hg using two atomic fluorescence detectors in a sequential ensemble is presented. A coupling based on the combination of high-performance liquid chromatography (where mercury and arsenic species are separated) and two atomic fluorescence detectors in series, with several online treatments, including photooxidation (UV) and hydride generation, has allowed the determination of mercury and arsenic compounds simultaneously. The detection limits for this device were 16, 3, 17, 12 and 8 ng mL(-1) for As(III), monomethylarsinic acid, As(V), Hg2+ and methylmercury, respectively. This coupling was compared with an analogous one based on inductively coupled plasma-mass spectrometry (ICP-MS) detection, with detection limits of 0.7, 0.5, 0.8, 0.9 and 1.1 ng mL(-1), respectively. Multispeciation based on ICP-MS exhibits better sensitivity than the coupling based on tandem atomic fluorescence, but this second device is a very robust system and exhibits obvious advantages related to the low cost of acquisition and maintenance, as well as easy handling, which makes it a suitable system for routine laboratories.
Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots
NASA Astrophysics Data System (ADS)
Yuan, Yusheng; Zhao, Xin; Qiao, Man; Zhu, Jinghui; Liu, Shaopu; Yang, Jidong; Hu, Xiaoli
2016-10-01
Fluorescent carbon dots was prepared by heating N-(2-hydroxyethyl)ethylene diaminetriacetic acid in air. The carbon dots were not only highly soluble in water but also uniform in size, and possessed strong blue fluorescence and excitation wavelength-dependent emission properties with the maximum excitation and emission wavelength at 366 nm and 423 nm, respectively. Food colorant sunset yellow whose excitation and emission wavelength at 303 nm and 430 nm could selectively quench the fluorescence of carbon dots, efficient fluorescent resonance energy transfer between the carbon dots and sunset yellow is achieved. This was exploited to design a method for the determination of sunset yellow in the concentration range from 0.3 to 8.0 μmol L- 1, with a limit of detection (3 σ/k) of 79.6 nmol L- 1. Furthermore the fluorimetric detection method was established and validated for sunset yellow in soft drinks samples with satisfactory results.
Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions
NASA Astrophysics Data System (ADS)
Wang, Chaoyu; Fu, Jiaxin; Yao, Kun; Xue, Kun; Xu, Kuoxi; Pang, Xiaobin
2018-06-01
Two novel acridine-based fluorescence chemosensors (L1 and L2) were prepared and their metal ions sensing properties were investigated. L1 (L2) exhibited an excellent selective fluorescence response toward Fe3+ (Ni2+) and the stoichiometry ratio of L1-Fe3+ and L2-Ni2+ were 1:1. The detection limits of L1 and L2 were calculated by the fluorescence titration to be 4.13 μM and 1.52 μM, respectively, which were below the maximum permissive level of Fe3+ and Ni2+ ions in drinking water set by the EPA. The possible mechanism of the fluorescence detection of Fe3+ and Ni2+ had been proposed according to the analysis of Job's plot, IR spectra and ESI-MS. The determination of Fe3+ and Ni2+ ions in living cells had been applied successfully.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X
2017-03-22
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.
Triphenylbenzene Sensor for Selective Detection of Picric Acid.
Nagendran, S; Vishnoi, Pratap; Murugavel, Ramaswamy
2017-07-01
A C 3 -symmetric triphenylbenzene based photoluminescent compound, 1,3,5-tris(4'-(N-methylamino)phenyl) benzene ([NHMe] 3 TAPB), has been synthesized by mono-N-methylation of 1,3,5-tris(4'-aminophenyl) benzene (TAPB) and structurally characterized. [NHMe] 3 TAPB acts as a selective fluorescent sensor for picric acid (PA) with a detection limit as low as 2.25 ppm at a signal to noise ratio of 3. Other related analytes (i.e. TNT, DNT and DNB) show very little effect on the fluorescence intensity of [NHMe] 3 TAPB. The selectivity is triggered by proton transfer from picric acid to the fluorophore and ground-state complex formation between the protonated fluorophore and picrate anion through hydrogen bonding interactions. The fluorescence lifetime measurements reveal static nature of fluorescence quenching.
NASA Astrophysics Data System (ADS)
Liu, Zhaodi; Xu, Huajie; Sheng, Liangquan; Chen, Shuisheng; Huang, Deqian; Liu, Jie
2016-03-01
A colorimetric and fluorescent chemosensor (L) for Al(III) was synthesized and fully characterized. L could be both used as a colorimetric and fluorescent chemosensor for the detection of Al3 + ions with low detection limit (8.87 × 10- 7 M) in CH3CN-H2O (1:1, v/v) solution. The binding ratio of L-Al3 + was determined from the Job plot (absorption and fluorescence spectra) and MALDI-TOF MS data to be 1:1. The binding constant (Ka) of Al3 + binding to L was calculated to be 4.8 × 105 M- 1 from a Benesi-Hildebrand plot. Moreover, the binding site of L with Al3 + was determined by 1H NMR titration experiment.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential
NASA Astrophysics Data System (ADS)
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.
2017-03-01
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.
Hernández-Borges, Javier; Ravelo-Pérez, Lidia M; Hernández-Suárez, Estrella M; Carnero, Aurelio; Rodríguez-Delgado, Miguel Angel
2007-09-21
In this work an analytical method for the determination of abamectin residues in avocados is developed using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection. A pre-column derivatization with trifluoroacetic anhydride (TFAA) and N-methylimidazole (NMIM) was carried out. The mobile phase consisted of water, methanol and acetonitrile (5:47.5:47.5 v/v/v) and was pumped at a rate of 1 mL/min (isocratic elution). The fluorescence detector was set at an excitation wavelength of 365 nm and an emission wavelength of 470 nm. Homogenized avocado samples were extracted twice with acetonitrile:water 8:2 (v/v) and cleaned using C(18) solid-phase extraction (SPE) cartridges. Recovery values were in the range 87-98% with RSD values lower than 13%. The limits of detection (LODs) and quantification (LOQs) of the whole method were 0.001 and 0.003 mg/kg, respectively. These values are lower than the maximum residue limit (MRL) established by the European Union (EU) and the Spanish legislation in avocado samples.
Fluorescence 'turn-on' sensor for F- derived from vitamin B6 cofactor.
Sharma, Darshna; Sahoo, Suban K; Chaudhary, Soma; Bera, Rati Kanta; Callan, John F
2013-07-07
A novel vitamin B6 Schiff base analog (L) was synthesized by combining vitamin B6 cofactor pyridoxal with 2-aminophenol. Receptor L displays a color change detectable by the naked-eye from yellow to red in the presence of fluoride and acetate due to the formation of hydrogen bonding host-guest complexes in 1 : 1 stoichiometry. Importantly, receptor L showed fluoride-selective 'turn-on' fluorescent response with a detection limit (3σ) of 7.39 × 10(-8) M.
Real-Time Detection of Telomerase in a Microelectromechanical Systems Platform
2005-05-01
contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 147 19a...Telomerase accomplishes this by alleviating the “end-replication problem” (6,10,14,23,33,43). First described by Hayflick in 1965, the end-replication...were produced to determine the minimum detection limit of the ABI Prism 7000 as an optical fluorescent detection device. In addition, I wanted to
A quantum dot-based immunoassay for screening of tylosin and tilmicosin in edible animal tissues.
Le, Tao; Zhu, Liqian; Yang, Xian
2015-01-01
A rapid, indirect competitive fluorescence-linked immunosorbent assay (ic-FLISA) based on quantum dots (QDs) as the fluorescent marker was developed for the detection of tylosin and tilmicosin in edible animal tissues. The end point fluorescent detection system was carried out using QDs conjugated with goat anti-mouse secondary antibody. The limits of detection (LODs) for the determination of tylosin and tilmicosin were 0.02 and 0.04 μg kg(-1), respectively. This detection method was used to analyse spiked samples and the recoveries ranged from 83.5% to 98.7% for tylosin and from 81.8% to 98.2% for tilmicosin. In real porcine tissue sample analysis, the results of ic-FLISA were similar to those obtained from an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) to an HPLC method indicating its potential for tylosin and tilmicosin screening in edible animal tissues.
NASA Astrophysics Data System (ADS)
Chin, Suk-Fun; Tan, Shao-Chien; Pang, Suh-Cem; Ng, Sing-Muk
2017-11-01
Nitrogen (N) doped carbon dots (N-CDs) that showed blue fluorescence with quantum yield (QY) of 12.25% were synthesized by one step microwave irradiation of lysine in ortho-phosphoric acid at 1000 W for 5 min. The as-synthesized N-CDs were successfully explored as fluorescent probes for selective detection of ferric (Fe3+) ions in aqueous condition with a linear range from 0.2 to 5.0 mM and a detection limit of 0.074 mM ± 0.081 (S/N = 3). The N-CDs exhibited high selectivity towards the detection of Fe3+ ions even in the presence of interfering ions. The N-CDs also demonstrated the potential of practical application for determining of Fe3+ ions concentration in real samples with high recovery rate and low relative standard deviation error.
Huang, Hui; Li, Yongxin; Liu, Jintong; Tong, Jin; Su, Xingguang
2015-10-15
Bisphenol A (BPA) is a kind of carcinogen, which can interfere with the body's endocrine system. In this paper, a new kind of fluorescent sensor for BPA detection was established based on the fluorescent conjugated polymer PPESO3. The oxidative product of BPA is able to quench PPESO3 in the presence of HRP and H2O2, and the quenched PL intensity of PPESO3 was proportionally to the concentration of BPA in the range of 1-100 μmol/L with a detection limit of 4 × 10(-7) mol/L. The proposed method has been applied to detect BPA in eight food packaging samples with satisfactory results. The proposed method has the potential for the assay of BPA in food or food packaging samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhiyu; Fan, ZheFeng
2018-01-01
A highly sensitive sensor for detection of histidine (His) based on the nitrogen-doped graphene quantum dots (N-GQDs)-Cu2 + system has been designed. The N-GQDs were synthesized by one-step hydrothermal approach according to previous report. The fluorescence of N-GQDs can be effectively quenched by Cu2 + due to the binding between Cu2 + and functional groups on the surface of N-GQDs. The high affinity of His to Cu2 + enables Cu2 + to be dissociated from the surface of N-GQDs and recovering the fluorescence. The sensor displayed a sensitive response to His in the concentration range of 0-35 μmol L- 1, with a detection limit of 72.2 nmol L- 1. The proposed method is successfully applied to detect His in samples with a recovery range of 96-102%.
Ulu, Sevgi Tatar
2012-01-01
A sensitive spectrofluorimetric method was developed for the determination of tizanidine in human plasma, urine and pharmaceutical preparations. The method is based on reaction of tizanidine with 1-dimethylaminonaphthalene-5-sulphonyl chloride (dansyl chloride) in an alkaline medium to form a highly fluorescent derivative that was measured at 511 nm after excitation at 383 nm. The different experimental parameters affecting the fluorescence intensity of tizanidine was carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the ranges 50-500 and 20-300 ng/mL for plasma and urine, respectively, detection limits of 1.81 and 0.54 ng/mL and quantification limits of 5.43 and 1.62 ng/mL for plasma and urine, respectively. The method presents good performance in terms of linearity, detection and quantification limits, precision, accuracy and specificity. The proposed method was successfully applied for the determination of tizanidine in pharmaceutical preparations. The results obtained were compared with a reference method, using t- and F-tests. Copyright © 2011 John Wiley & Sons, Ltd.
Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence
Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T.
2013-01-01
Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers. PMID:23624689
NASA Astrophysics Data System (ADS)
Omenetto, N.; Smith, B. W.; Winefordner, J. D.
1989-01-01
Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.
NASA Astrophysics Data System (ADS)
Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan
2015-07-01
We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.
Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng
2015-01-15
A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording.
Zhang, Haichong K; Yan, Ping; Kang, Jeeun; Abou, Diane S; Le, Hanh N D; Jha, Abhinav K; Thorek, Daniel L J; Kang, Jin U; Rahmim, Arman; Wong, Dean F; Boctor, Emad M; Loew, Leslie M
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong
2018-05-05
An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
Bergquist, J; Vona, M J; Stiller, C O; O'Connor, W T; Falkenberg, T; Ekman, R
1996-03-01
The use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the analysis of microdialysate samples from the periaqueductal grey matter (PAG) of freely moving rats is described. By employing 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) as a derivatization agent, we simultaneously monitored the concentrations of 8 amino acids (arginine, glutamine, valine, gamma-amino-n-butyric acid (GABA), alanine, glycine, glutamate, and aspartate), with nanomolar and subnanomolar detection limits. Two of the amino acids (GABA and glutamate) were analysed in parallel by conventional high-performance liquid chromatography (HPLC) in order to directly compare the two analytical methods. Other CE methods for analysis of microdialysate have been previously described, and this improved method offers greater sensitivity, ease of use, and the possibility to monitor several amino acids simultaneously. By using this technique together with an optimised form of microdialysis technique, the tiny sample consumption and the improved detection limits permit the detection of fast and transient transmitter changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu
A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less
NASA Astrophysics Data System (ADS)
Oguz, Mehmet; Bhatti, Asif Ali; Karakurt, Serdar; Aktas, Mehmet; Yilmaz, Mustafa
2017-01-01
The present study demonstrates the synthesis of water-soluble fluorescent calix[4]arenes (6 and 7) and its application in living cell imaging for Hg2 + detection at a low level. The synthesized fluorescent ligands 6 and 7 were characterized by 1H NMR technique. The fluorescent study showed both water soluble ligands were Hg2 + selective and follow photo-induced electron transfer (PET) process. From the fluorimeter titration experiment detection limit was calculated as 1.14 × 10- 5 and 3.42 × 10- 5 for ligand 6 and 7, respectively. From the Benesi-Hildebrand plot binding constant values were evaluated as 666.7 and 733.3 M- 1 for 6 and 7, respectively. The interactions between ligands 6 and 7 and Hg2 + were also demonstrated in living cells, SW-620, using Fluorescent Cell Imager. While ligands 6 and 7 alone show fluorescent properties, they loss their action with the presence of Hg2 + in SW-620 cells.
Xue, Dandan; Zheng, Chunhong; Qu, Shengzu; Liao, Guanming; Fan, Congbin; Liu, Gang; Pu, Shouzhi
2017-06-01
A diarylethene bearing a triazole-linked rhodamine B unit was synthesized. Its fluorescent emission was significantly enhanced in the presence of protons or Cu 2 + due to transformation from the pirocyclic form to open-ring form. The fluorescence was quenched sequentially upon irradiation with 297 nm light based on the intramolecular fluorescence resonance energy transfer mechanism. In an acetonitrile: water binary solvent (1: 1 v/v), the compound showed significant fluorescent enhancement for Cu 2 + compared with a wide range of tested metal ions with a fast response and a limit of detection of 2.86 × 10 -8 mol L -1 . Using Cu 2 + and UV light as the chemical inputs, and fluorescence intensity at 597 nm as the output, a logic gate was developed at the molecular level. Moreover, the compound can be used with a high accuracy to detect Cu 2 + in a natural water sample. Copyright © 2016 John Wiley & Sons, Ltd.
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-05
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Bhatt, Shreya; Bhatt, Madhuri; Kumar, Anshu; Vyas, Gaurav; Gajaria, Tejal; Paul, Parimal
2018-07-01
We report a one pot green strategy for the synthesis of carbon dots using tulsi leaves and their potential application in sensing of Cr(VI) selectively. The detection mechanism is based on the phenomenon called inner filter effect (IFE) and a good linear static quenching was observed in the range of 1.6 μM to 50 μM with a detection limit of 4.5 ppb. The reversible switching in fluorescence has been tested and a good recovery in fluorescence was observed up to three consecutive cycles upon addition of ascorbic acid as reducing agent. Also the low toxicity, high fluorescence and photostabilty of the CDs make them excellent imaging and patterning agent. The acid and alkali resistant property of these CDs makes it suitable for real sample analysis. The fluorescent CDs were applied for successful detection of Cr(VI) in water with spike-recoveries ranging from 93 to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Dan; Zhao, Dongxia; Huang, Jiaxuan; Zhu, Yu; Chao, Jie; Su, Shao; Li, Jiang; Wang, Lihua; Shi, Jiye; Zuo, Xiaolei; Weng, Lixing; Li, Qian; Wang, Lianhui
2018-05-16
Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Wang, Yang; Ma, Zhong-Ying; Zhang, De-Long; Deng, Jia-Li; Chen, Xiong; Xie, Cheng-Zhi; Qiao, Xin; Li, Qing-Zhong; Xu, Jing-Yuan
2018-04-01
A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL1) has been conveniently synthesized and characterized. HL1 exhibited a highly selective and pronounced enhancement for Al3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al3+ with 41 fold intensity enhancement at 545 nm. HL1 displays good linear relationship with Al3+ in the low concentration and the limit of detection is 8.08 × 10-8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL1 could be used to detect Al3+ ions in real sample by fluorescence spectrometry and Al3+ ions in cells by bioimaging.
Ultra-small dye-doped silica nanoparticles via modified sol-gel technique
NASA Astrophysics Data System (ADS)
Riccò, R.; Nizzero, S.; Penna, E.; Meneghello, A.; Cretaio, E.; Enrichi, F.
2018-05-01
In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam
2017-01-01
Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair.
Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.
Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli
2016-01-05
A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.
1992-01-01
Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.
Multichannel waveguides for the simultaneous detection of disease biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K
2009-01-01
The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease ormore » for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.« less
An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.
Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M
2001-09-15
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
Lv, Lei; Jin, Yongdong; Kang, Xiaojiao; Zhao, Yangyang; Cui, Chengbi; Guo, Zhijun
2018-05-30
This paper describes an aptamer/gold nanoparticle-based assay for ochratoxin A (OTA) detection. This assay is based on the use of an aptamer labeled with carboxyfluorescein (FAM) at its 5'-end and gold nanoparticles (AuNPs) that act as quenchers of fluorescence. When OTA is absent in the system, the fluorescently labeled aptamers are adsorbed on the surface of AuNPs. The fluorescence signal of the fluorescein-labeled OTA aptamer generated is quenched by the fluorescence resonance energy transfer effect of AuNPs. When OTA is present in the system, the fluorescently labeled aptamer binds to OTA and forms a folded structure, which can resist the adsorption of AuNPs. Thus, the fluorescent signal can be retained. The detection limit of this sensing platform is 5 nM, and the linear detection range is 10-1000 nM (R 2 = 0.994). The procedure was validated by the quantitation of OTA in spiked ginger powder samples and were found to be free of interference by the sample matrix. The recoveries and the relative standard deviation varied from 89.0% to 117.8% and from 1.9% to 6.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng
2016-01-01
A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.
Srinivasan, K; Subramanian, K; Murugan, K; Dinakaran, K
2016-10-24
A rapid and sensitive fluorescent sensor based on the MoS 2 nanosheet/DNA/carbon dot nanoassembly has been developed towards the detection of mercury(ii) present in environmental samples. Bio-carbon dots (CDs) having strong fluorescence maxima at 451 nm were synthesized via one-step treatment with honey under low temperature carbonization. These CDs were nearly spherical with good size distribution and excellent monodispersity, and the average sizes of CD were around 2-4 nm as evidenced from transmission electron microscopy. The conjugation of DNA strands on the surface of the carbon dots provided an efficient fluorescent probe. The fluorescence of the MoS 2 nanosheet/DNA/carbon dot nanoassembly enhanced gradually with the increase in the concentration of Hg 2+ ions and the detection limit was found to be 1.02 nM. Furthermore, the fluorescence intensity was found to be linear with the concentration of Hg 2+ ions in the range from 0 to 10 nM and their respective coefficient of determination was found to be 0.93676 and 0.98178. The present MoS 2 nanosheet/DNA/carbon dot nanoassembly is highly selective toward Hg 2+ ions over a wide range of metal ions tested.
Capillary Array Waveguide Amplified Fluorescence Detector for mHealth
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2013-01-01
Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345
Censoring: a new approach for detection limits in total-reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.; Braziewicz, J.
2004-08-01
It is shown that the detection limits in the total-reflection X-ray fluorescence (TXRF), which restrict quantification of very low concentrations of trace elements in the samples, can be accounted for using the statistical concept of censoring. We demonstrate that the incomplete TXRF measurements containing the so-called "nondetects", i.e. the non-measured concentrations falling below the detection limits and represented by the estimated detection limit values, can be viewed as the left random-censored data, which can be further analyzed using the Kaplan-Meier (KM) method correcting for nondetects. Within this approach, which uses the Kaplan-Meier product-limit estimator to obtain the cumulative distribution function corrected for the nondetects, the mean value and median of the detection limit censored concentrations can be estimated in a non-parametric way. The Monte Carlo simulations performed show that the Kaplan-Meier approach yields highly accurate estimates for the mean and median concentrations, being within a few percent with respect to the simulated, uncensored data. This means that the uncertainties of KM estimated mean value and median are limited in fact only by the number of studied samples and not by the applied correction procedure for nondetects itself. On the other hand, it is observed that, in case when the concentration of a given element is not measured in all the samples, simple approaches to estimate a mean concentration value from the data yield erroneous, systematically biased results. The discussed random-left censoring approach was applied to analyze the TXRF detection-limit-censored concentration measurements of trace elements in biomedical samples. We emphasize that the Kaplan-Meier approach allows one to estimate the mean concentrations being substantially below the mean level of detection limits. Consequently, this approach gives a new access to lower the effective detection limits for TXRF method, which is of prime interest for investigation of metallic impurities on the silicon wafers.
Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui
2013-05-07
The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.
Analysis of nanoliter samples of electrolytes using a flow-through microfluorometer.
Zhelyaskov, V R; Liu, S; Broderick, M P
2000-04-01
Several techniques have been developed to study the transport properties of nanoliter samples of renal tubule segments, such as continuous flow colorimetry and continuous fluorometry. We have extended the capability of the NANOFLO, a flow-through microfluorometer, designed for measurement of carbon dioxide, urea, ammonia, glucose, lactate, etc., to analyze sodium, calcium and chloride ions, using three commercially available fluorescent indicators for intracellular and extracellular measurements. The selection of fluorescent indicator for each electrolyte was dependent on the optimal match of the dissociation constant and the analyte concentration range of interest. Using Fluo-3 dye we achieved a detection limit for Ca2+ of 0.1 pmol and selectivity over Mg2+ of between 7:1 to 10:1. Using sodium green dye we achieved detection limit for Na+ of 12 pmol and a selectivity over K+ of 40:1. The detection limit for Cl- using lucigenin dye was 10 pmol. This technique can be readily adapted for the measurement of other physiologically important ultralow volume.
Wang, Jixiang; Gao, Lin; Han, Donglai; Pan, Jianming; Qiu, Hao; Li, Hongji; Wei, Xiao; Dai, Jiangdong; Yang, Jinghai; Yao, Hui; Yan, Yongsheng
2015-03-11
In this study, fluorescent molecularly imprinted polymers (FMIPs), which were for the selective recognition and fluorescence detection of λ-cyhalothrin (LC), were synthesized via fluorescein 5(6)-isothiocyanate (FITC) and 3-aminopropyltriethoxysilane (APTS)/SiO2 particles. The SiO2@FITC-APTS@MIPs were characterized by Fourier transform infrared (FT-IR), UV-vis spectrophotometer (UV-vis), fluorescence spectrophotometer, thermogravimetric analysis (TGA), confocal laser scanning microscope (CLSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized SiO2@FITC-APTS@MIPs with an imprinted polymer film (thickness was about 100 nm) was demonstrated to be spherically shaped and had good monodispersity, high fluorescence intensity, and good selective recognition. Using fluorescence quenching as the detection tool, the largest fluorescence quenching efficiency (F0/F - 1) of SiO2@FITC-APTS@MIPs is close to 2.5 when the concentration of the LC is 1.0 μM L(-1). In addition, a linear relationship (F0/F - 1= 0.0162C + 0.0272) could be obtained covering a wide concentration range of 0-60 nM L(-1) with a correlation coefficient of 0.9968 described by the Stern-Volmer equation. Moreover, the limit of detection (LOD) of the SiO2@FITC-APTS@MIPs was 9.17 nM L(-1). The experiment results of practical detection revealed that the SiO2@FITC-APTS@MIPs as an attractive recognition element was satisfactory for the determination of LC in Chinese spirits. Therefore, this study demonstrated the potential of SiO2@FITC-APTS@MIPs for the recognition and detection of LC in food.
NASA Astrophysics Data System (ADS)
Miao, Hong; Zhong, Dan; Zhou, Zinan; Yang, Xiaoming
2015-11-01
Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material.Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material. Electronic supplementary information (ESI) available: Relevant figures. See DOI: 10.1039/c5nr05362e
Peng, Sijia; Wang, Wenjuan; Chen, Chunlai
2018-05-10
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
He, Shengfa; Li, Xin; Gao, Jinyan; Tong, Ping; Chen, Hongbing
2018-01-01
Bovine β-lactoglobulin (BLG) is the major allergen in cows' milk, and the specific epitope plays a key role in food allergy. Developing a method specifically bind to the IgE epitope is necessary for testing BLG and its allergenic residues. The monoclonal antibody (1G9) specific to the IgE linear epitope for BLG was identified as high affinity and specificity. Based on 1G9, a sensitive fluorescent sandwich enzyme-linked immunosorbent assay (sELISA) was successfully developed using catalase-mediated fluorescence quenching of thiolated CdTe quantum dots in the presence of hydrogen peroxide as fluorescent signal output. The fluorescent sELISA showed high sensitivity and specificity, the limit of detection was 0.49 ng mL -1 , which was 16-fold lower than horseradish peroxidase (HRP)-based sELISA. The linear range for BLG detection were 125-4000 ng mL -1 (r = 0.9939) and 0.48-62.5 ng mL -1 (r = 0.9919). The recoveries and coefficients of variation were 94.25-109.83% and 4.38-20.29%, respectively. Allergenic residues were also detected in hydrolysed infant formulas. The results of fluorescent sELISA showed good performance as HRP-based sELISA and commercial sELISA kit. This proposed fluorescent sELISA could be employed to detect BLG and its allergenic residues in food with highly sensitivity, reliability, and recovery. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Deng, Yun-Liang; Xu, Dang-Dang; Pang, Dai-Wen; Tang, Hong-Wu
2017-02-01
A three-layer core-shell nanostructure consisting of a silver core, a silica spacer, and a fluorescent dye RuBpy-doped outer silica layer was fabricated, and the optimal metal-enhanced fluorescence (MEF) distance was explored through adjusting the thickness of the silica spacer. The results show that the optimal distance is ˜10.4 nm with the maximum fluorescence enhancement factor 2.12. Then a new target-triggered MEF ‘turn-on’ strategy based on the optimized composite nanoparticles was successfully constructed for quantitative detection of prostate specific antigen (PSA), by using RuBpy as the energy donor and BHQ-2 as the acceptor. The hybridization of the complementary DNA of PSA-aptamer immobilized on the surface of the MEF nanoparticles with PSA-aptamer modified with BHQ-2, brought BHQ-2 in close proximity to RuBpy-doped silica shell and resulted in the decrease of fluorescence. In the presence of target PSA molecules, the BHQ-PSA aptamer is dissociated from the surface of the nanoparticles with the fluorescence switched on. Therefore, the assay of PSA was achieved by measuring the varying fluorescence intensity. The results show that PSA can be detected in the range of 1-100 ng ml-1 with a detection limit of 0.20 ng ml-1 (6.1 pM), which is 6.7-fold increase of that using hollow RuBpy-doped silica nanoparticles. Moreover, satisfactory results were obtained when PSA was detected in 1% serum.
NASA Astrophysics Data System (ADS)
R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony
2018-06-01
Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.
Gogoi, Bedanta; Sen Sarma, Neelotpal
2015-06-03
Rapid detection of picric acid in real sample is of outmost importance from the perspective of health, safety, and environment. In this study, a very simple and cost-effective detection of picric acid is accomplished by developing a couple of biobased conjugates curcumin-cysteine (CC) and curcumin-tryptophan (CT), which undergo efficient fluorescence turn on toward picric acid in aqueous media. Both the probes experience about 26.5-fold fluorescence enhancements at 70 nM concentration of the analyte. Here, the fluorescence turn on process is governed by the aggregation induced emission, which is induced from the electrostatic interaction between the conjugates with picric acid. The detection limit of CC and CT are about 13.51 and 13.54 nM of picric acid, respectively. Importantly, both the probes exhibit high selectivity and low interference of other analogues toward the detection of picric acid. In addition, the probes are highly photostable, show low response time and are practically applicable for sensing picric acid in real environmental samples, which is the ultimate goal of this work.
NASA Astrophysics Data System (ADS)
Huang, Peng-Cheng; Fang, Hao; Xiong, Jing-Jing; Wu, Fang-Ying
2017-06-01
A new Al3+-specific fluorescent probe NQ was designed and synthesized from 2-hydroxy-1-naphthaldehyde and 2-aminoquinoline. Upon the addition of Al3+, the fluorescent intensity of NQ was significantly enhanced compared with other examined metal ions in aqueous solution. The result of a Job’s plot indicated the formation of a 1:1 complex between the probe and Al3+, and the possible binding mode of the system between NQ and Al3+ was clarified by IR analysis and 1H NMR titration. Moreover, other metal ions examined had little effect on the detection of Al3+. The detection limit of NQ for Al3+ detection was 1.98 μM, which is lower than the level (7.4 μM) in drinking water defined by the World Health Organization. In addition, the fluorescent probe NQ could be recyclable simply through treatment with a proper reagent such as F-, and could also be used for the detection of Al3+ in real samples.
Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J
2016-02-01
Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing
2017-12-14
A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-11-13
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Shi, Yan; Wu, Jiazhen; Sun, Yujing; Zhang, Yue; Wen, Zhiwei; Dai, Haichao; Wang, Hongda; Li, Zhuang
2012-01-01
Water safety is one of the most pervasive problems afflicting people throughout the world. Microcystin, a hepatotoxin produced by cyanobacteria, poses a growing and serious threat of water safety. According to World Health Organization (WHO), the limit of content of microcystin-LR (MC-LR) in drinking water is as low as 1 μg/L; it is thus necessary to explore a sensitive method for the trace detection of microcystins (MCs). Based on the observation of gold nanoparticles (Au NPs) induced graphene oxide (GO) fluorescence quenching, a reliable biosensor was developed here for microcystins detection. MCs could be attached on Au NPs through the interaction with single strand-DNA (ss-DNA) modified on Au NPs, which formed Au-DNA-MCs complexes. These MCs in the complexes could be immunologically recognized by the antibodies adsorbed on GO sheets, as a result, Au NPs were close enough to quench the photoluminescence of GO by the fluorescence resonance energy transfer (FRET). The fluorescence intensity decreased with the increase of MCs as more Au NPs linked onto GO surface. The limit of detection was 0.5 and 0.3 μg/L for microcystin-LR and microcystin-RR (MC-RR), respectively, which satisfies the strictest standard of WHO. Well defined results were also obtained in natural lake water and the specificity experiment. The antibody used here could recognize Adda group, the conservative part of MCs, which allowed the biosensor to detect both single toxin and the total content of MCs existing in the water sample. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Oellig, Claudia
2017-07-21
Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, T.J.; Barnes, R.H.
1990-11-01
Two new methods for real-time measurement of gaseous formaldehyde have been developed. One is a spectroscopic method based on direct fluorescence detection of gaseous formaldehyde following excitation with UV light. This method has been developed to the prototype stage by modifications of a commercial fluorescence SO2 detector to convert it to formaldehyde detection. The prototype spectroscopic formaldehyde monitor exhibits a detection limit of <30 ppbv, with a time response of about one minute. The second method is based on derivatization of formaldehyde in aqueous solution to form a fluorescent product. The detection of fluorescent product was made more sensitive bymore » using intense 254 nm light from a mercury lamp for excitation, thereby allowing use of a simple and efficient glass coil scrubber for collection of gaseous formaldehyde. The wet chemical formaldehyde monitor incorportating these improvements exhibits a detection limit for gaseous formaldehyde of 0.2 ppbv and for aqueous formaldehyde of 0.2 micromolar with time response of about one minute, following a lag time of 2 minutes. Both instruments were tested in the laboratory with gaseous formaldehyde standards, and the aqueous scrubbing/analysis method was field tested by continuous operation over a 10-day period in which outdoor and indoor air were sampled for alternate half-hour periods. A comparison of real-time (aqueous scrubbing/analysis) and integrated measurements, using dinitrophenylhydrazine (DNPH) impingers, showed close agreement between the real-time and DNPH data, even at concentrations as low as 1 ppbv.« less
Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Edge, Allison
2012-01-01
A dominant aptamer loop structure from a library of nearly 100 candidate aptamer sequences developed against immobilized 25-hydroxyvitamin D(3) (calcidiol) was converted into a 5'-TYE 665 and 3'-Iowa black-labelled aptamer beacon. The aptamer beacon exhibited a mild 'lights on' reaction in buffer as a function of increasing concentrations of several vitamin D analogues and metabolites, with a limit of detection of approximately 200 ng/mL, and was not specific for any particular congener. In 10% or 50% human serum, the same aptamer beacon inverted its fluorescence behaviour to become a more intense 'lights off' reaction with an improved limit of detection in the range 4-16 ng/mL. We hypothesized that this drastic change in fluorescence behaviour was due to the presence of creatinine and urea in serum, which might destabilize the quenched beacon, causing an increase in fluorescence followed by decreasing fluorescence as a function of vitamin D concentrations that may bind and quench increasingly greater fractions of the denatured beacons. However, the results of several control experiments in the presence of physiological or greater concentrations of creatinine and urea, alone or combined in buffer, failed to produce the beacon fluorescence inversion. Other possible mechanistic hypotheses are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging
Quang, Tri T.; Kim, Hye-Yeong; Bao, Forrest Sheng; Papay, Francis A.; Edwards, W. Barry; Liu, Yang
2017-01-01
Fluorescence imaging is a powerful technique with diverse applications in intraoperative settings. Visualization of three dimensional (3D) structures and depth assessment of lesions, however, are oftentimes limited in planar fluorescence imaging systems. In this study, a novel Fluorescence Imaging Topography Scanning (FITS) system has been developed, which offers color reflectance imaging, fluorescence imaging and surface topography scanning capabilities. The system is compact and portable, and thus suitable for deployment in the operating room without disturbing the surgical flow. For system performance, parameters including near infrared fluorescence detection limit, contrast transfer functions and topography depth resolution were characterized. The developed system was tested in chicken tissues ex vivo with simulated tumors for intraoperative imaging. We subsequently conducted in vivo multimodal imaging of sentinel lymph nodes in mice using FITS and PET/CT. The PET/CT/optical multimodal images were co-registered and conveniently presented to users to guide surgeries. Our results show that the developed system can facilitate multimodal intraoperative imaging. PMID:28437441
Yin, Huan-Shun; Li, Bing-Chen; Zhou, Yun-Lei; Wang, Hai-Yan; Wang, Ming-Hui; Ai, Shi-Yun
2017-10-15
MicroRNAs have been involved into many biological processes and are regarded as disease biomarkers. Simple, rapid, sensitive and selective method for microRNA detection is crucial for early diagnosis and therapy of diseases. In this work, sensitive fluorescence assay was developed for microRNA-21 detection based on DNA polymerase induced strand displacement amplification reaction, Mg 2+ -dependent DNAzyme catalysis reaction, and magnetic separation. In the presence of target microRNA-21, amounts of trigger DNA could be produced with DNA polymerase induced strand displacement amplification reaction, and the trigger DNA could be further hybridized with signal DNA, which was labeled with biotin and AMCA dye. After introduction of Mg 2+ , trigger DNA could form DNAzyme to cleave signal DNA. After magnetic separation, the DNA fragment with AMCA dye could give fluorescence signal, which was related to microRNA-21 concentration. Based on the two efficient signal amplifications, the developed method showed high detection sensitivity with low detection limit of 0.27fM (3σ). In addition, this fluorescence strategy also possessed excellent detection specificity, and could be applied to analyze microRNA-21 expression level in serum of cancer patient. According to the obtained results, the developed fluorescence method might be a promising detection platform for microRNA-21 quantitative analysis in biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Pan, Hong; Wang, Sufan; Dao, Xiaoyao; Ni, Yonghong
2018-02-05
Tb 3+ -doped zinc-based coordination polymer nanospindle bundles (Zn-PDC/Tb 3+ , or [Zn(2,5-PDC)(H 2 O) 2 ]·H 2 O/Tb 3+ ) were synthesized by a simple solution precipitation route at room temperature, employing Zn(NO 3 ) 2 , Tb(NO 3 ) 3 , and 2,5-Na 2 PDC as the initial reactants, and a mixture of water and ethanol with the volume ratio of 10:10 as the solvent. The as-obtained nanostructures presented strong fluorescent emission under the excitation of 298 nm light, which was attributed to the characteristic emission of the Tb 3+ ion. It was found that the above-mentioned strong fluorescence of the nanostructures could be selectively quenched by cefixime (CFX) in aqueous solution. The other common antibiotics hardly interfered. Thus, as-obtained Zn-PDC/Tb 3+ nanostructures could be prepared as a highly sensitive fluorescence probe for selective detection of CFX in an aqueous system. The corresponding detection limit reached 72 ppb. The theoretic calculation and UV-vis absorption experiments confirmed that the fluorescence quenching of Zn-PDC/Tb 3+ nanostructures toward CFX should be attributed to the electron transfer and the fluorescence inner filter effect between the fluorescent matter and the analyte. In addition, the strong fluorescence of the nanostructures could also be selectively quenched by acetone in the water system.
Shi, Xinhao; Gu, Wei; Peng, Weidong; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong
2014-02-26
A novel strategy was developed for fluorescent detection of Pb(2+) in aqueous solution based on the fact that graphene oxide (GO) could quench the fluorescence of amino pyrene (AP)-grafted gold nanoparticles (AP-AuNPs) and Pb(2+) could accelerate the leaching rate of AuNPs in the presence of S2O3(2-). In this system, fluorescence reporter AP was grafted on AuNPs through the Au-N bond. In the presence of GO, the system shows fluorescence quenching because of π-π stacking between AP and GO. With the addition of Pb(2+) and S2O3(2-), the system displays fluorescence recovery, which is attributed to the fact that Pb(2+) could accelerate the leaching of the AuNPs from GO surfaces and release of AP into aqueous solution. Interestingly, the concentration of GO could control the fluorescence "turn-off" or "turn-on" for Pb(2+) detection. In addition, GO is also an excellent promoter for the acceleration of the leaching of AuNPs and shortening the analytical time to ∼15 min. Under the optimal conditions, the fluorescence Pb(2+) sensor shows a linear range from 2.0 × 10(-9) to 2.3 × 10(-7) mol/L, with a detection limit of 1.0 × 10(-10) mol/L.
Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip.
Dongre, Chaitanya; van Weerd, Jasper; Besselink, Geert A J; Vazquez, Rebeca Martinez; Osellame, Roberto; Cerullo, Giulio; van Weeghel, Rob; van den Vlekkert, Hans H; Hoekstra, Hugo J W M; Pollnau, Markus
2011-02-21
We introduce a principle of parallel optical processing to an optofluidic lab-on-a-chip. During electrophoretic separation, the ultra-low limit of detection achieved with our set-up allows us to record fluorescence from covalently end-labeled DNA molecules. Different sets of exclusively color-labeled DNA fragments-otherwise rendered indistinguishable by spatio-temporal coincidence-are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a single ultrasensitive, albeit color-blind photomultiplier, and Fourier analysis decoding. As a proof of principle, fragments obtained by multiplex ligation-dependent probe amplification from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are simultaneously analyzed.
Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D
2016-09-01
Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.
Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.
2016-01-01
Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials. PMID:27699098
Bok, Sangho; Korampally, Venumadhav; Darr, Charles M; Folk, William R; Polo-Parada, Luis; Gangopadhyay, Keshab; Gangopadhyay, Shubhra
2013-03-15
We report a simple, robust fluorescence biosensor for the ultra-sensitive detection of Clostridium botulinum Neurotoxin Type A (BoNT/A) in complex, real-world media. High intrinsic signal amplification was achieved through the combined use of ultra-bright, photostable dye-doped nanoparticle (DOSNP) tags and high surface area nanoporous organosilicate (NPO) thin films. DOSNP with 22 nm diameter were synthesized with more than 200 times equivalent free dye fluorescence and conjugated to antibodies with average degree of substitution of 90 dyes per antibody, representing an order of magnitude increase compared with conventional dye-labeled antibodies. The NPO films were engineered to form constructive interference at the surface where fluorophores were located. In addition, DOSNP-labeled antibodies with NPO films increased surface roughness causing diffuse scattering resulting in 24% more scattering intensity than dye-labeled antibody with NPO films. These substrates were used for immobilization of capture antibodies against BoNT/A, which was further quantified by DOSNP-labeled signal antibodies. The combination of optical effects enhanced the fluorescence and, therefore, the signal-to-noise ratio significantly. BoNT/A was detected in PBS buffer down to 21.3 fg mL(-1) in 4 h. The assay was then extended to several complex media and the four-hour detection limit was found to be 145.8 fg mL(-1) in orange juice and 164.2 fg mL(-1) in tap water, respectively, demonstrating at least two orders of magnitude improvement comparing to the reported detection limit of other enzyme-linked immunosorbent assays (ELISA). This assay, therefore, demonstrates a novel method for rapid, ultra-low level detection of not only BoNT/A, but other analytes as well. Copyright © 2012 Elsevier B.V. All rights reserved.
Yun, Kyusik; Zhong, Linlin
2018-05-16
A novel fluorescence "Switch on" for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0-1.8 U·mL-1, with a low detection limit of 0.04 U·mL-1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new "switch-on" sensor applications in heparin-related biomedical detection. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Yun, Kyusik
2018-07-01
A novel fluorescence ‘Switch on’ for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0–1.8 U · ml‑1, with a low detection limit of 0.04 U · ml‑1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new ‘switch-on’ sensor applications in heparin-related biomedical detection.
Tian, Jianniao; Zhou, Liujin; Zhao, Yanchun; Wang, Yuan; Peng, Yan; Zhao, Shulin
2012-04-15
A multicolor quantum dot (QD)-based nanosensor for multiplex detection of two tumor markers in a homogeneous format based on fluorescence polarization immunoassay was proposed. QDs520 and QDs620 were labeled alpha-fetoprotein(α-AFP) and carcinoembryonic antigen (CEA), respectively. After separated and purified by ultrafiltration, they were used in fluorescence polarization immunoassay for the simultaneous detection of human serum alpha-fetoprotein and carcinoembryonic antigen. Under the optimal conditions, the multi-analyte immunosensor had a wide linear range (from 0.5 ng mL(-1) to 500 ng mL(-1)) for both two tumor markers and good correlation (0.996 for α-AFP and 0.993 for CEA). The detection limits (LOD) were 0.36 ng mL(-1) for CEA and 0.28 ng mL(-1) for α-AFP (S/N=3). The carcinoembryonic antigen and fetoprotein in clinical serum samples were simultaneously detected. The results from 28 serum samples had a good agreement with enzyme-linked immunosorbent assay (ELISA). The relative standard deviation and the recovery suggested that the precision and the accuracy of this analytical method were satisfactory. This strategy with high sensitivity, good specificity, easy procedures and short analysis time shows great promise for clinical diagnoses and basic discovery. The application of QDs with longer fluorescence lifetime and small fluorescence polarization can be used for the determination of high molecular-weight substances which cannot be analyzed using dye fluorescence polarization immunoassay. Copyright © 2012 Elsevier B.V. All rights reserved.
Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan
2015-09-15
Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Palmer, Peter T.
2011-01-01
Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…
NASA Astrophysics Data System (ADS)
Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei
2017-03-01
In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.
The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less
Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar
2015-03-05
Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar
2015-03-01
Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.
Fegade, Umesh A; Sahoo, Suban K; Singh, Amanpreet; Singh, Narinder; Attarde, Sanjay B; Kuwar, Anil S
2015-05-04
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu(2+) and Zn(2+) in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn(2+) and Cu(2+) ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu(2+) and Zn(2+) ions, respectively. Further, we have effectively utilized the two metal ions (Cu(2+) and Zn(2+)) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm. Copyright © 2015 Elsevier B.V. All rights reserved.
Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N
2017-10-17
The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.
NASA Astrophysics Data System (ADS)
Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua
2018-04-01
Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.
Jung, Kwan Ho; Lee, Keun-Hyeung
2015-09-15
A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.
Zhu, Linzhao; Zhao, Zhiyong; Zhang, Xiongzhi; Zhang, Haijun; Liang, Feng; Liu, Simin
2018-04-18
Amantadine (AMA) and its derivatives are illicit veterinary drugs that are hard to detect at very low concentrations. Developing a fast, simple and highly sensitive method for the detection of AMA is highly in demand. Here, we designed an anthracyclic compound (ABAM) that binds to a cucurbit[7]uril (CB[7]) host with a high association constant of up to 8.7 × 10⁸ M −1 . The host-guest complex was then used as a fluorescent probe for the detection of AMA. Competition by AMA for occupying the cavity of CB[7] allows ABAM to release from the CB[7]-ABAM complex, causing significant fluorescence quenching of ABAM (indicator displacement assay, IDA). The linear range of the method is from 0.000188 to 0.375 μg/mL, and the detection limit can be as low as 6.5 × 10 −5 μg/mL (0.35 nM). Most importantly, due to the high binding affinity between CB[7] and ABAM, this fluorescence host-guest system shows great anti-interference capacity. Thus, we are able to accurately determine the concentration of AMA in various samples, including pharmaceutical formulations.
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui
2015-06-15
The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang
2017-05-15
Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Quanwei; Wang, Ruihua; Sun, Feifei; Chen, Hongkun; Wang, Zoumengke; Na, Na; Ouyang, Jin
2017-01-15
Owing to their promising advantages in biochemical analysis, aptamer-based sensing systems for the fluorescence detection of important biomolecules are being extensively investigated. Herein, we propose a turn-on fluorescent aptasensor for label-free detection of adenosine triphosphate (ATP) by utilizing the in situ formation of copper nanoparticles (CuNPs) and the specific digestion capability of exonuclease I (Exo I). In this assay, the addition of ATP can effectively hinder the digestion of aptamer-derived oligonucleotides due to the G-quadruplex structure. Accordingly, the remaining poly thymine at 5'-terminus of substrate DNA can serve as an efficient template for red-emitting fluorescent CuNPs with a Mega-Stokes shifting in buffered solution, which can be used to evaluate the concentration of ATP. This method is cost-effective and facile, because it avoids the use of traditional dye-labeled DNA strands and complex operation steps. Under optimized conditions, this method achieves a selective response for ATP with a detection limit of 93nM, and exhibits a good detection performance in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Fan, Daoqing; Shang, Changshuai; Gu, Wenling; Wang, Erkang; Dong, Shaojun
2017-08-09
Glutathione (GSH) plays crucial roles in various biological functions, the level alterations of which have been linked to varieties of diseases. Herein, we for the first time expanded the application of oxidase-like property of MnO 2 nanosheet (MnO 2 NS) to fluorescent substrates of peroxidase. Different from previously reported fluorescent quenching phenomena, we found that MnO 2 NS could not only largely quench the fluorescence of highly fluorescent Scopoletin (SC) but also surprisingly enhance that of nonfluorescent Amplex Red (AR) via oxidation reaction. If MnO 2 NS is premixed with GSH, it will be reduced to Mn 2+ and lose the oxidase-like property, accompanied by subsequent increase in SC's fluorescence and decrease in AR's. On the basis of the above mechanism, we construct the first MnO 2 NS-based ratiometric fluorescent sensor for ultrasensitive and selective detection of GSH. Notably, this ratiometric sensor is programmed by the cascade logic circuit (an INHIBIT gate cascade with a 1 to 2 decoder). And a linear relationship between ratiometric fluorescent intensities of the two substrates and logarithmic values of GSH's concentrations is obtained. The detection limit of GSH is as low as 6.7 nM, which is much lower than previous ratiometric fluorescent sensors, and the lowest MnO 2 NS-based fluorescent GSH sensor reported so far. Furthermore, this sensor is simple, label-free, and low-cost; it also presents excellent applicability in human serum samples.
Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut
2018-05-15
A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
NASA Astrophysics Data System (ADS)
Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.
2010-03-01
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2016-07-15
Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P
2010-03-19
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.
Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla
2017-12-01
In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.
George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T.
2013-01-01
Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels (“enhanced excitation”) and the spatially biased funneling of fluorophore emissions through coupling to PC resonances (“enhanced extraction”), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couples fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 minute. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM. PMID:23963502
Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol
2015-05-15
We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.
Fu, Zhen-Hai; Yan, Lu-Bin; Zhang, Xiaolong; Zhu, Fan-Fan; Han, Xin-Long; Fang, Jianguo; Wang, Ya-Wen; Peng, Yu
2017-05-16
Relay recognition of copper(ii) ions and biothiols via a fluorescence "on-off-on" cascade was designed and realized as a new sequential combination of cations and small molecules. Probe 1 bearing a fluorescein skeleton was thus synthesized, which performed well in 100% HEPES buffer (pH = 7.0) solution, as a highly sensitive, selective fluorescence sensor for Cu 2+ . The limit of detection (LOD, 0.017 ppm) was obtained, and this value is much lower than 1.3 ppm, allowed by US EPA. The 1 : 1 complex generated from fast sensing of Cu 2+ when excited at 491 nm, showed good relay recognition for biothiols (i.e., Cys, Hcy and GSH with low detection limits of 0.12 μM, 0.036 μM and 0.024 μM, respectively) via remarkable fluorescence enhancement. The origin of this relay process was disclosed through ESI-MS and corresponding density functional theory (DFT) computations. Notably, probe 1 can be utilized for the construction of a molecular logic gate with the IMPLICATION function by using the above fluorescence changes. Moreover, this relay recognition was also applied to HepG2 cell imaging successfully.
A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.
Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na
2014-02-15
A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Haijian; Li, Ming; Jiang, Linye; Shen, Feng; Hu, Yufeng; Ren, Xueqin
2017-02-01
Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence ;turn on; sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121 μg L- 1 and the limit of detection was 5.6 μg L- 1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.
Fu, Xiuli; Lou, Tingting; Chen, Zhaopeng; Lin, Meng; Feng, Weiwei; Chen, Lingxin
2012-02-01
A novel platform for effective "turn-on" fluorescence sensing of lead ions (Pb(2+)) in aqueous solution was developed based on gold nanoparticle (AuNP)-functionalized graphene. The AuNP-functionalized graphene exhibited minimal background fluorescence because of the extraordinarily high quenching ability of AuNPs. Interestingly, the AuNP-functionalized graphene underwent fluorescence restoration as well as significant enhancement upon adding Pb(2+), which was attributed to the fact that Pb(2+) could accelerate the leaching rate of the AuNPs on graphene surfaces in the presence of both thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Consequently, this could be utilized as the basis for selective detection of Pb(2+). With the optimum conditions chosen, the relative fluorescence intensity showed good linearity versus logarithm concentration of Pb(2+) in the range of 50-1000 nM (R = 0.9982), and a detection limit of 10 nM. High selectivity over common coexistent metal ions was also demonstrated. The practical application had been carried out for determination of Pb(2+) in tap water and mineral water samples. The Pb(2+)-specific "turn-on" fluorescence sensor, based on Pb(2+) accelerated leaching of AuNPs on the surface of graphene, provided new opportunities for highly sensitive and selective Pb(2+) detection in aqueous media.
A molecular-sized optical logic circuit for digital modulation of a fluorescence signal
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun
2018-03-01
Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.
A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.
Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin
2017-08-01
In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.
New highly sensitive and selective fluorescent terbium complex for the detection of aluminium ions
NASA Astrophysics Data System (ADS)
Anwar, Zeinab M.; Ibrahim, Ibrahim A.; Kamel, Rasha M.; Abdel-Salam, Enas T.; El-Asfoury, Mahmoud H.
2018-02-01
A highly sensitive and selective spectrofluorimetric method has been developed for the rapid determination of aluminium ions. The method is based on the fluorescence enhancement of Tb complex with 3,4-dimetyl-thieno[2,3 b] thiophene-2,5-dicarboxylic acid (LN) after addition trace amount of aluminium ions. The fluorescence of the probe is monitored at the characteristic an emission wavelength of Tb3+ at 545 nm with excitation at 300 nm. Optimum detection was obtained in DMSO-H2O (2:8, v/v) and at pH 6.0 using MOPSO buffer. Under the optimum conditions linear calibration curves were obtained from 0.5 μ mol L-1 to 20 μ mol L-1 with detection limit of 0.1 μ mol L-1. Effect of interference of other ions was studied.
Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2015-06-15
This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays. Copyright © 2014 Elsevier B.V. All rights reserved.
Luo, Zewei; Wang, Yimin; Lu, Xiaoyong; Chen, Junman; Wei, Fujing; Huang, Zhijun; Zhou, Chen; Duan, Yixiang
2017-09-01
Antibiotic abuse has been bringing serious pollution in water, which is closely related to human health. It is desirable to develop a new strategy for antibiotic detection. To address this problem, a sensitive fluorescent aptasensor for antibiotic detection was developed by utilizing gold nanoparticles modified magnetic bead composites (AuNPs/MBs) and nicking enzyme. AuNPs/MBs were synthesized with the help of polyethylenimine (PEI). The prepared AuNPs/MBs acted as dual-functional scaffolds that owned excellent magnetic separation capacity and strong covalent bio-conjugation. The non-specifically absorbed aptamers in AuNPs/MBs were less than that in MBs. Hence, the fluorescent aptasensor based on AuNPs/MBs show a better signal to background ratio than that based on carboxyl modified magnetic beads (MBs). In this work, ampicillin was employed as a model analyte. In the presence of ampicillin, the specific binding between ampicillin and aptamer induced structure-switching that led to the release of partial complementary DNA (cDNA) of aptamer. Then, the released cDNA initiated the cycle of nicking enzyme assisted signal amplification (NEASA). Therefore, a large amount of taqman probes were cleaved and fluorescence signal was amplified. The prepared fluorescent aptasensor bring sensitive detection in range of 0.1-100 ng mL -1 with the limit of detection of 0.07 ng mL -1 . Furthermore, this aptasensor was also successfully applied in real sample detection with acceptable accuracy. The fluorescent aptasensor provides a promising method for efficient, rapid and sensitive antibiotic detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Zhenzhen; Wu, Yongmei; He, Shizhen; Xu, Yuanyuan; Li, Gaiping; Ye, Baoxian
2018-07-19
This work focused on the development of a novel ratiometric fluorescence sensor for detection of Hg 2+ by using dye-doped lanthanide infinite coordination polymer (Ln-ICP) particles. The dye-doped Ln-ICP used herein was prepared by self-assemble of adenosine monophosphate (AMP) with Ce 3+ and Tb 3+ (Ce/Tb-AMP) through self-adaptive chemistry, in which the fluorescent dye coumarin was encapsulated during the assembly process as a guest molecule. Under 310 nm irradiation, the obtained coumarin@Ce/Tb-AMP itself emitted characteristic green luminescence of Tb 3+ , accompanied with a weak fluorescence at 445 nm originated from coumarin encapsulated in the Ce/Tb-AMP networks. The fluorescence emission of coumarin became strong when it was released to the solution. In the presence of Hg 2+ , the coumarin@Ce/Tb-AMP was destroyed due to the specific coordination interaction between AMP and Hg 2+ , which leaded to the release of coumarin to the solution meanwhile. Consequently, the fluorescence of Ce/Tb-AMP was quenched, while that of coumarin enhanced. On the basis of this strategy, we developed a novel ratiometric fluorescent sensor for the detection of Hg 2+ by measuring the ratio of fluorescent intensity of the coumarin@Ce/Tb-AMP suspension, which showed a wide linear range from 0.08 to 1000 nM and detection limit of 0.03 nM with high selectivity and sensitivity. Furthermore, the constructed ratiometric fluorescent sensor was successfully applied in detecting Hg 2+ in drinking water and human blood serum (HBS) with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Miao; Lu, Yang; Tan, Zhenjiang
2017-06-01
In this work, a novel and facile ratiometric fluorescence probe was prepared for the visual detection of dopamine (DA). In this detection system, red-emission CdTe@SiO 2 (r-QDs@SiO 2 ) was used as steady core of the probe and inverse microemulsion method was applied to synthesize uniform r-QDs@SiO 2 , this step could protect CdTe from contacting with human skin directly. Polydopamine (PDA) acted as response signal to detect DA, a very handy method which just combined polyethyleneimine (PEI) with DA together to synthesize PDA, this way for synthesis of PDA was much time-saving and non-toxic than any other methods. Differently from traditional analysis processes, the products of this experiment were also the analysis substances in final. Under optimum measurement conditions, the dual-emission ratiometric fluorescence probe was used for detections of DA in a concentration ranged from 10μM to 80μM with a detection limit of 0.12μM, with addition of DA the color of the probe changed from red to green watched by naked eyes. In addition, the developed probe was also used for detections of DA in human serum samples successfully. This study provides a simple, time-saving and non-toxic approach for detections of DA without the requirement of complex equipment. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe
NASA Astrophysics Data System (ADS)
He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing
2011-11-01
The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.
Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li
2018-05-15
Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel dichromate-sensitive fluorescent nano-chemosensor using new functionalized SBA-15.
Hosseini, Morteza; Gupta, Vinod Kumar; Ganjali, Mohammad Reza; Rafiei-Sarmazdeh, Zahra; Faridbod, Farnoush; Goldooz, Hassan; Badiei, Ali Reza; Norouzi, Parviz
2012-02-17
A novel fluorescence nano-chemosensor for Cr(2)O(7)(2-) anion has been developed by assembly of fluorescent aluminum complex of 8-hydroxyquinoline (AlQ(x)) within the channels of modified SBA-15. SBA-SPS-AlQ(x) shows a fluorescence emission at 486 nm. The observed remarkable fluorescence of SBA-SPS-AlQ(x) quenches in presence of Cr(2)O(7)(2-) anion. The results showed that this fluorescent nano-material can be a useful chemo-sensor for determination of dichromate anions in aqueous solutions. The linear detecting range of fluorescent nano-chemosensor for Cr(2)O(7)(2-) anion was 0.16-2.9 μmol L(-1). The lowest limit of detection (LDL) was also found to be 0.2 ng mL(-1) in aqueous solutions. SBA-SPS-AlQ(x) showed selectively and sensitively fluorescent quenching response toward Cr(2)O(7)(2-) ion in comparison with I(3)(-), NO(3)(-), CN(-), CO(3)(2-), Br(-), Cl(-), F(-), H(2)PO(4)(-) and SO(4)(2-) ions, which was because of the higher stability of its inorganic complex with dichromate ion. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhan, Yuanjin; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Yuhong; Li, Juan; Chen, Guonan; Lin, Zhenyu
2017-11-22
Hypochlorite (ClO - ) is one of the most important reactive oxygen species (ROS), which plays an important role in sustaining human innate immunity during microbial invasion. Moreover, ClO - is a powerful oxidizer for water treatment. The safety of drinking water is closely related to its content. Herein, m-phenylenediamine (mPD) is used as a precursor to prepare carbon dots (named m-CDs) with highly fluorescent quantum yield (31.58% in water), and our investigation shows that the strong fluorescent emission of m-CDs can be effectively quenched by ClO - . Based on these findings, we developed a novel fluorescent nanoprobe (m-CDs) for highly selective detection of ClO - . The linear range was from 0.05 to 7 μM (R 2 = 0.998), and the limit of detection (S/N = 3) was as low as 0.012 μM. Moreover, a portable agarose hydrogel solid matrix-based ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy) 3 ] 2+ ) sensor was subsequently developed for visual on-site detection of ClO - with the naked eyes under a UV lamp, suggesting its potential in practical application with low cost and excellent performance in water quality monitoring. Additionally, intracellular detection of exogenous ClO - was demonstrated via ratiometric imaging microscopy.
NASA Astrophysics Data System (ADS)
Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian
2017-04-01
A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.
The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water.
Valero-Navarro, Angel; Salinas-Castillo, Alfonso; Fernández-Sánchez, Jorge F; Segura-Carretero, Antonio; Mallavia, Ricardo; Fernández-Gutiérrez, Alberto
2009-03-15
To enhance the advantages of fluorescent flow-through sensing for drinking water we have designed a novel sensing matrix based on molecularly imprinted polymers (MIPs). The synergic combination of a tailor-made MIP recognition with a selective room temperature fluorescence detection is a novel concept for optosensing devices and is assessed here for the simple and selective determination of pollutants in water. We describe a simple approach to preparing synthetic receptors for monoamine naphthalene compounds (MA-NCs) using non-covalent molecular imprinting techniques and naphthalene as template. We examine in detail the binding characteristics of the imprinted polymer and describe the flow-through sensor of MA-NCs by solid-surface fluorescence. Its detection limits for recognizing 1-naphthylamine (1-NA) and 2-naphthylamine (2-NA) separately are 26 ngmL(-1) and 50 ngmL(-1), respectively, and it also determines 1-NA and 2-NA simultaneously with a detection limit of 45 ngmL(-1). All the instrumental, chemical and flow variables were carefully optimized and an interference study was carried out to demonstrate its applicability and selectivity. Finally, we applied it to the analysis of 1-NA and 2-NA in tap and mineral waters, obtaining a 98% average recovery rate.
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN(-)) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu(2+) and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu(2+) complex can act as an effective OFF-ON type fluorescent probe for sensing CN(-) anion. Due to the strong binding affinity of CN(-) to Cu(2+), CN(-) can extract Cu(2+) from C-GGH-Cu(2+) complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu(2+) allowed detection of CN(-) in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN(-) in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN(-) towards other anions, including F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), N3 (-), NO3 (-), AcO(-), SO4 (2-), and CO3 (2-).
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185
Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.
2009-01-01
An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546
CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics
Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek
2014-01-01
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460
Liu, Ting; Li, Na; Dong, Jiang Xue; Zhang, Ying; Fan, Yu Zhu; Lin, Shu Min; Luo, Hong Qun; Li, Nian Bing
2017-01-15
A bidimensional optical sensing platform which combines the advantages of fluorescence and colorimetry has been designed for arginine (Arg) detection. The system was established by monitoring the influence of Arg on the growth of gold nanoparticles/carbon quantum dots (Au/CQDs) composite, and the CQDs synthesized by ethylene glycol were used as the reducing and stabilizing agent in this paper. Considering that Arg is the only amino acid with guanidine group and has the highest isoelectric point (pI) value at 10.76, Arg would carry positive charges at pH 7.4. Consequently, the positively charged guanidine group of Arg could attract AuCl 4 - and CQDs through electrostatic interaction, which inhibited the growth of Au/CQDs composite. Thereby, the color of the system almost did not change and the fluorescence quenching of CQDs was prevented in the presence of Arg. Based on the color change a low detection limit for Arg was 37nM, and a detection limit of 450nM was obtained by fluorescence spectroscopy. Moreover, this dual-signal sensor also revealed excellent selectivity toward Arg over other amino acids. Besides, Arg can be detected in urine samples with satisfactory results, which demonstrate the potential applications for real analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W
2015-11-01
The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.
Zhi, Lihua; Zeng, Xiaofan; Wang, Hao; Hai, Jun; Yang, Xiangliang; Wang, Baodui; Zhu, Yanhong
2017-07-18
The development of sensitive and reliable methods to monitor the presence of mercuric ions in cells and organisms is of great importance to biological research and biomedical applications. In this work, we propose a strategy to construct a solar-driven nanoprobe using a 3D Au@MoS 2 heterostructure as a photocatalyst and rhodamine B (RB) as a fluorescent and color change reporter molecule for monitoring Hg 2+ in living cells and animals. The sensing mechanism is based on the photoinduced electron formation of gold amalgam in the 3D Au@MoS 2 heterostructure under visible light illumination. This formation is able to remarkably inhibit the photocatalytic activity of the heterostructure toward RB decomposition. As a result, "OFF-ON" fluorescence and color change are produced. Such characteristics enable this new sensing platform to sensitively and selectively detect Hg 2+ in water by fluorescence and colorimetric methods. The detection limits of the fluorescence assay and colorimetric assay are 0.22 and 0.038 nM for Hg 2+ , respectively; these values are well below the acceptable limits in drinking water standards (10 nM). For the first time, such photocatalysis-based sensing platform is successfully used to monitor Hg 2+ in live cells and mice. Our work therefore opens a promising photocatalysis-based analysis methodology for highly sensitive and selective in vivo Hg 2+ bioimaging studies.
Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Zhu, Debin; Dai, Jiaxing; Zheng, Minshi
2018-02-15
The rapid detection of antibiotic residual in everyday life is very important for food safety. In order to realize the on-site and visual detection of antibiotic, a POCT method was established by using digital image colorimetry based on smartphone. Streptomycin was taken as the analyte model of antibiotics, streptomycin aptamer preferentially recognized analyte, and the excess aptamer hybridized with the complementary DNA to form the dsDNA. SYBR Green I combined with the dsDNA and then emitted obvious green fluorescence, thus the fluorescence intensity decreased with the increasing of streptomycin concentration. Then a smartphone-based device was constructed as the fluorescence readout. The smartphone camera acquired the images of the fluorescence derived from the samples, and the Touch Color APP installed in smartphone read out the RGB values of the images. There was a linear relationship between the G values and the streptomycin concentrations in the range of 0.1-100µM. The detection limit was 94nM, which was lower than the maximum residue limit defined by World Health Organization. The POCT method was applied for determining streptomycin in chicken and milk samples with recoveries in 94.1-110%. This method had the advantages of good selectivity, simple operation and on-site visualization. Copyright © 2017 Elsevier B.V. All rights reserved.
Hayama, Tadashi; Katoh, Kenji; Aoki, Takayoshi; Itoyama, Miki; Todoroki, Kenichiro; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi
2012-11-28
A method to measure the concentrations of microcystins (MCs) in water samples has been developed by incorporating pre-column fluorescence derivatization and liquid chromatography (LC). A solid-phase extraction for pretreatment was used to extract the MCs in water samples. The MCs were derivatized with excimer-forming 4-(1-pyrene)butanoic acid hydrazide (PBH). The MCs could then be detected by fluorescence after separation with a pentafluorophenyl (PFP)-modified superficially porous (core shell) particle LC column. The derivatization reactions of MCs with PBH proceeded easily in the presence of 4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium (DMT-MM) as a condensation reagent, and the resulting derivatives could be easily separated on the PFP column. The derivatives were selectively detected at excimer fluorescence wavelengths (440-540 nm). The instrument detection limit and the instrument quantification limit of the MCs standards were 0.4-1.2 μg L(-1) and 1.4-3.9 μg L(-1), respectively. The method was validated at 0.1 and 1.0 μg L(-1) levels in tap and pond water samples, and the recovery of MCs was between 67 and 101% with a relative standard deviation of 11%. The proposed method can be used to quantify trace amounts of MCs in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Park, Chul Soon; Ha, Tai Hwan; Kim, Moonil; Raja, Naren; Yun, Hui-Suk; Sung, Mi Jeong; Kwon, Oh Seok; Yoon, Hyeonseok; Lee, Chang-Soo
2018-05-15
Alkaline phosphatase (ALP) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of ALP. ALP cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified ALP activity from 0 to 1.0UmL -1 with a 10 -5 -10 -3 UmL -1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe ALP activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous ALP in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based ALP detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored ALP signal changes using a confocal imaging system. Our results suggest the possibility of early-stage ALP detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds. Copyright © 2018 Elsevier B.V. All rights reserved.
Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry
2011-05-01
Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.
Piñeiro, Zulema; Cantos-Villar, Emma; Palma, Miguel; Puertas, Belen
2011-11-09
A validated HPLC method with fluorescence detection for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines is described. Detection conditions for both compounds were optimized (excitation at 279 and 278 and emission at 631 and 598 nm for hydroxytyrosol and tyrosol, respectively). The validation of the analytical method was based on selectivity, linearity, robustness, detection and quantification limits, repeatability, and recovery. The detection and quantification limits in red wines were set at 0.023 and 0.076 mg L(-1) for hydroxytyrosol and at 0.007 and 0.024 mg L(-1) for tyrosol determination, respectively. Precision values, both within-day and between-day (n = 5), remained below 3% for both compounds. In addition, a fractional factorial experimental design was developed to analyze the influence of six different conditions on analysis. The final optimized HPLC-fluorescence method allowed the analysis of 30 nonpretreated Spanish red wines to evaluate their hydroxytyrosol and tyrosol contents.
Gallo, Pasquale; Di Marco Pisciottano, Ilaria; Esposito, Francesco; Fasano, Evelina; Scognamiglio, Gelsomina; Mita, Gustavo Damiano; Cirillo, Teresa
2017-04-01
A new method for simultaneous determination of five bisphenols in canned energy drinks by UPLC with fluorescence detection, after clean up on molecularly imprinted polymers, is herein described. The method was validated at two concentration levels, calculating trueness, repeatability and within-laboratory reproducibility, specificity, linearity of detector response, the limits of quantifications and the limits of detection for each bisphenol. The method is specific, reliable and very sensitive, allowing for determination of bisphenol F diglycidyl ether (BFDGE), bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol A diglycidyl ether (BADGE) down to 0.50ng/mL; it was employed to determine contamination levels from these bisphenols in forty energy drinks of different brands, collected from the market in Naples. BPA was detected in 17 out of 40 samples (42.5%); in some energy drinks also BPF, BADGE and BFDGE were determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microscale Concentration Measurements Using Laser Light Scattering Methods
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Miller, Fletcher
2004-01-01
The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.
Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung
2016-03-15
Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao
2017-05-01
A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.
Occurrence of ivermectin in bovine milk from the Brazilian retail market.
Lobato, V; Rath, S; Reyes, F G R
2006-07-01
High-performance liquid chromatography (HPLC) with fluorescence detection was used for the quantification of ivermectin residues in bovine milk intended for human consumption. After liquid-liquid extraction of ivermectin and purification of the extract, the compound was derivatized with 1-methylimidazol in N,N-dimethyl formamide to form a fluorescent derivative, which was separated by HPLC, using reversed-phase C18, with methanol : water (96 : 4 v/v) mobile phase at a flow rate 0.7 ml min-1. The excitation and emission wavelengths of the fluorescence detector were adjusted at 360 and 470 nm, respectively. The linearity of the method was in the range 10-100 ng ivermectin ml-1. Based on a sample of 5.0 ml, the limit of detection and the limit of quantification for ivermectin in milk were 0.6 and 2 ng ml-1, respectively. The recovery rate varied from 76.4 to 87.2%, with an average of 77.9 +/- 3.2%, at four fortification levels. The inter-day precision of the method was 13% (n = 5). Of 168 samples analysed, 17.8% contained ivermectin above the limit of quantification. Nevertheless, none of the samples contained ivermectin above the maximum residue limit (10 ng ml-1) established by the Brazilian Ministry of Agriculture.
Takada, Tadao; Yamaguchi, Kosato; Tsukamoto, Suguru; Nakamura, Mitsunobu; Yamana, Kazushige
2014-08-21
Here we study the binding behavior of perylenediimide () derivatives to a hydrophobic pocket created inside DNA and their photochemical properties capable of designing a light-up fluorescent sensor for short single-stranded DNA or RNA. The perylenediimide derivative with alkoxy groups () suppressing electron transfer quenching was examined. The bound randomly to DNA showed negligible fluorescence due to the aggregation-induced quenching, whereas the bound to the pocket as a monomeric form showed more than 100-fold fluorescence enhancement. Switching the binding states of the corresponded to a change in the fluorescence response for the hybridization event, which allowed us to design a fluorescent sensor of nucleic acids with a nanomolar detection limit.
Design, properties and application of a facile fluorescence switch for Cu(II).
Diao, Haipeng; Niu, Weiping; Liu, Wen; Feng, Liheng; Xie, Jun
2017-01-05
A facile fluorescence switch based on Schiff base 2,2'-[1,3-phenylenbis- (methylidynenitrilo)]bis[benzenethiol] (PMBB) has been developed and used to sensing metal ions. UV-vis absorption and fluorescence emission spectra show that the PMBB receptor has high selectivity and sensitivity for Cu(II) ions. Based on the photoinduced electron transfer (PET) and chelation enhanced fluorescence (CHEF) mechanisms, the receptor exhibits an fluorescence "turn-on" switch signal for Cu(II). The 1:1 binding mode of PMBB and Cu (II) ions can be obtained by the Job-plot and ESI-Mass spectra data. Noticeably, the color changes (from colorless to yellow) of PMBB solutions for Cu(II) sensing can be observed by naked eyes in the sunlight. The detection limit of the receptor for Cu(II) may reach 10(-7)mol/L with a good linear relation in the lower concentrations of Cu(II). To develop the practical application, the Cu(II) ions in swimming pool water samples were detected. Results show that PMBB receptor as a fluorescent probe can use to detect the trace level of Cu(II) in the environmental samples. This work contributes to providing a facile strategy for designing efficient probes and developing their practical application value. Copyright © 2016 Elsevier B.V. All rights reserved.
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin
2016-03-15
We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.
Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki
2016-01-01
Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876
One-step synthesis of fluorescent carbon dots for sensitive and selective detection of hyperin.
Liu, Lizhen; Mi, Zhi; Hu, Qin; Li, Caiqing; Li, Xiaohua; Feng, Feng
2018-08-15
In this article, we presented a new rapid, sensitive and selective method for the determination of hyperin (Hyp) based on the fluorescence quenching of fluorescent carbon dots (CDs). The CDs were prepared by simply mixing an aqueous solution of citric acid with diphosphorus pentoxide. This one-step synthetic route is fast and simple with neither high temperature nor complicated synthesis steps is involved. When Hyp was added to CDs solution, the fluorescence intensity of the CDs significantly decreased. The CDs display high selectivity for Hyp over many potentially interfering substances. Under the optimized conditions, a good linear relationship between the fluorescence intensity ratio F o /F and the concentration of Hyp is obtained in a range of 0.22-55 µM with a detection limit (S/N = 3) of 78.3 nM. The method was successfully applied for the determination of Hyp in fufangmuji granules and human serum samples with recoveries in a range of 93.3-107.0%. This paper highlights the usefulness of CDs as an effective fluorescence probe for the Hyp detection due to its easy preparation, low-cost, excellent photostability, favorable biocompatibility and low cytotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi
2014-07-15
A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.
Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid
Govindaraju, Saravanan; Ankireddy, Seshadri Reddy; Viswanath, Buddolla; Kim, Jongsung; Yun, Kyusik
2017-01-01
Since the last two decades, protein conjugated fluorescent gold nanoclusters (NCs) owe much attention in the field of medical and nanobiotechnology due to their excellent photo stability characteristics. In this paper, we reported stable, nontoxic and red fluorescent emission BSA-Au NCs for selective detection of L-dopamine (DA) in cerebrospinal fluid (CSF). The evolution was probed by various instrumental techniques such as UV-vis spectroscopy, High resolution transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL). The synthesised BSA-Au NCs were showing 4–6 nm with high fluorescent ~8% Quantum yield (QY). The fluorescence intensity of BSA-Au NCs was quenched upon the addition of various concentrations of DA via an electron transfer mechanism. The decrease in BSA-Au NCs fluorescence intensity made it possible to determine DA in PBS buffer and the spiked DA in CSF in the linear range from 0 to 10 nM with the limit of detection (LOD) 0.622 and 0.830 nM respectively. Best of our knowledge, as-prepared BSA-Au NCs will gain possible strategy and good platform for biosensor, drug discovery, and rapid disease diagnosis such as Parkinson’s and Alzheimer diseases. PMID:28067307
Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng
2016-01-01
A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876
Wang, Ning; Wang, Yiting; Guo, Tingting; Yang, Ting; Chen, Mingli; Wang, Jianhua
2016-11-15
A simple one-step hydrothermal green approach was reported for the preparation of carbon dots (CDs) without any further decoration or modification with papaya powder as natural carbon source. In this economical and eco-friendly system, deionized water or 90% ethanol was used as solvent to produce water-soluble or ethanol-soluble CDs, respectively, termed as W-CDs and E-CDs. The quantum yield (QY) for W-CDs was 18.98%, while that for E-CDs was 18.39%. The potentials of the prepared carbon dots toward diverse applications were thoroughly investigated. W-CDs and E-CDs provide promising probes for fluorescence detection of Fe(3+), offering limits of detection of 0.48μmolL(-1) and 0.29μmolL(-1), respectively. W-CDs was further demonstrated to be a promising probe for fluorescence sensing of Escherichia coli O157: H7, along with a limit of detection of 9.5×10(4)cfumL(-1). Meanwhile, both W-CDs and E-CDs exhibit favorable biocompatibility, and demonstrated to be efficient for Hela cell imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-01
A novel photochromic diarylethene with a triazole-containing 2-(2‧-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526 nm to 566 nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al3+, resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al3+ and the diarylethene is reversible with the binding constant of 2.73 × 103 L mol-1. The limit of detection (LOD) of Al3+ was determined to be 5.94 × 10-8 mol L-1. Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572 nm as the output and the combined stimuli of Al3+/EDTA and UV/Vis as the inputs.
Lu, Linlin; Feng, Chongchong; Xu, Jie; Wang, Fengyang; Yu, Haijun; Xu, Zhiai; Zhang, Wen
2017-06-15
Copper is closely related to liver damage, therefore, it is essential to develop a simple and sensitive strategy to detect copper ions (Cu 2+ ) in liver cells. A hydrophobic carbon dots (HCDs)-based dual-emission fluorescent probe for Cu 2+ was prepared by encapsulating HCDs in micelles formed by self-assembly of amphiphilic polymer DSPE-PEG and tetrakis (4-carboxyphenyl) porphyrin (TCPP)-modified DSPE-PEG. The obtained probe showed characteristic fluorescence emissions of HCDs and TCPP with large emission shift of 170nm with single-wavelength excitation. In the presence of Cu 2+ , the fluorescence of TCPP was quenched and that of HCDs remained unchanged, displaying ratiometric fluorescence response to Cu 2+ . The developed probe exhibited high sensitivity (detection limit down to 36nM) and selectivity to Cu 2+ over other substances, and the probe was used to image the changes of Cu 2+ level in liver cells successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.
Hosseini, Morteza; Mehrabi, Fatemeh; Ganjali, Mohammad Reza; Norouzi, Parviz
2016-11-01
A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer-templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA-AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as-prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC. The fluorescence ratio of the DNA-AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.5 nM to 100 nM with a detection limit of 0.1 nM. This proposed nanobiosensor was demonstrated to be sensitive, selective, and simple, introducing a viable alternative for rapid determination of toxin OTC in honey and water samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom
2015-06-10
A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).
Development of a low-cost detection method for miRNA microarray.
Li, Wei; Zhao, Botao; Jin, Youxin; Ruan, Kangcheng
2010-04-01
MicroRNA (miRNA) microarray is a powerful tool to explore the expression profiling of miRNA. The current detection method used in miRNA microarray is mainly fluorescence based, which usually requires costly detection system such as laser confocal scanner of tens of thousands of dollars. Recently, we developed a low-cost yet sensitive detection method for miRNA microarray based on enzyme-linked assay. In this approach, the biotinylated miRNAs were captured by the corresponding oligonucleotide probes immobilized on microarray slide; and then the biotinylated miRNAs would capture streptavidin-conjugated alkaline phosphatase. A purple-black precipitation on each biotinylated miRNA spot was produced by the enzyme catalytic reaction. It could be easily detected by a charge-coupled device digital camera mounted on a microscope, which lowers the detection cost more than 100 fold compared with that of fluorescence method. Our data showed that signal intensity of the spot correlates well with the biotinylated miRNA concentration and the detection limit for miRNAs is at least 0.4 fmol and the detection dynamic range spans about 2.5 orders of magnitude, which is comparable to that of fluorescence method.
Near-infrared surface-enhanced fluorescence using silver nanoparticles in solution
NASA Astrophysics Data System (ADS)
Furtaw, Michael D.
Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmon-active nanostructures of dye-labeled protein and silver nanoparticles in solution, with the intent of providing a simple solution that may be readily adopted by current fluorescence users in the life science research community. First, it is shown that inner-filtering, re-absorption of the emitted photons, can red-shift the optimal fluorophore spectrum away from the resonant frequency of the plasmon-active nanostructure. It is also shown that, under certain conditions, the quality factor may be a better indicator of SEF than the commonly accepted overlap of the fluorophore spectrum with the plasmon resonance of the nanostructure. Next, it is determined that streptavidin is the best choice for carrier protein, among the most commonly used dye-labeled detection antibodies, to enable the largest fluorescence enhancement when labeled with IRDye 800CW and used in combination with silver nanoparticles in solution. It is shown that the relatively small and symmetric geometry of streptavidin enables substantial electromagnetic-field confinement when bound to silver nanoparticles, leading to strong and reproducible enhancement. The role of silver nanoparticle aggregation is demonstrated in a droplet-based microfluidic chip and further optimized in a standard microtiter-plate format. A NIR-SEF technology based on aggregation with optimized salt concentration demonstrates a fluorescence signal enhancement up to 2530-fold while improving the limit-of-detection over 1000-fold. Finally, the NIR-SEF technology is applied to demonstrate 42-fold improvement in sensitivity of the clinically-relevant biomarker, alpha-fetoprotein, along with a 16-fold improvement in limit-of-detection.
Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.
2011-01-01
Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological analysis. Conclusions Fluorescence-guided resection may be a useful adjunct in the resection of skull base meningiomas. The use of a quantitative intraoperative probe to detect PpIX concentration allows more accurate determination of neoplastic tissue in meningiomas than visible fluorescence and is readily applicable in areas, such as the skull base, where complete resection is critical but difficult because of the vital structures surrounding the pathology. PMID:21529179
Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin
2015-07-01
To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.
Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham
2016-05-17
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.
Hao, Chenxia; Zhou, Tao; Liu, Shaopu; Wang, Linlin; Huang, Bowen; Kuang, Nianxi; He, Youqiu
2016-06-15
A dual-channel optical sensing platform which combines the advantages of dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) and fluorescence has been designed for the detection of diminazene aceturate (DA). It is based on the use of thioglycolic acid-wrapped CdTe/CdS quantum dots (Q-dots). In the absence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots exhibit the high fluorescence spectrum and low RRS spectrum, so are selected to develop an easy-to-get system. In the presence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots and DA form a complex through electrostatic interaction, which result in the RRS intensity getting enhanced significantly with new RRS peaks appearing at 317 and 397 nm; the fluorescence is powerfully quenched. Under optimum conditions, the scattering intensities of the two peaks are proportional to the concentration of DA in the range of 0.0061-3.0 μg mL(-1). The detection limits for the two single peaks are 4.1 ng mL(-1) and 3.3 ng mL(-1), while that of the DWO-RRS method is 1.8 ng mL(-1), indicating that the DWO-RRS method has high sensitivity. Besides, the fluorescence also exhibits good linear range from 0.0354 to 10.0 μg mL(-1) with a detection limit of 10.6 ng mL(-1). In addition, the system has been applied to the detection of DA in milk samples with satisfactory results. Copyright © 2016 Elsevier Inc. All rights reserved.
Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham
2016-01-01
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933
Hemoglobin detection using carbon dots as a fluorescence probe.
Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid
2015-09-15
Herein, we have described the application of high fluorescent carbon dots (CDs) without any surface modification as a simple and fast responding fluorescence probe for sensitive and selective determination of hemoglobin (Hb) in the presence of H2O2. Although Hb itself was able to quench the fluorescence of CDs, based on the inner filter effect (IFE) of the protein that affects both excitation and emission spectra of CDs, the presence of H2O2 resulted in further improvement of the sensitivity of Hb detection. The assay is based on the reaction of Hb with H2O2 that generates reactive oxygen species including hydroxyl (OH•) and superoxide (O2(•-)) radicals under heme degradation and/or iron release from Hb and the subsequent reaction of hydroxyl radicals, as strong oxidizing agents, with CDs resulting in high fluorescence quenching. The proposed probe was used for determination of Hb in concentration range of 1-100 nM with a detection limit of 0.4 nM. The method was successfully applied to the determination of Hb in human blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun
2014-11-07
A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F(-)) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the "Turn-On" fluorescent response of probe 1 to F(-) was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F(-) in the range of 0.1-1mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of "Turn-On" fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F(-) in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yang; Ma, Zhong-Ying; Zhang, De-Long; Deng, Jia-Li; Chen, Xiong; Xie, Cheng-Zhi; Qiao, Xin; Li, Qing-Zhong; Xu, Jing-Yuan
2018-04-15
A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL 1 ) has been conveniently synthesized and characterized. HL 1 exhibited a highly selective and pronounced enhancement for Al 3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al 3+ with 41 fold intensity enhancement at 545 nm. HL 1 displays good linear relationship with Al 3+ in the low concentration and the limit of detection is 8.08 × 10 -8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL 1 could be used to detect Al 3+ ions in real sample by fluorescence spectrometry and Al 3+ ions in cells by bioimaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results
NASA Astrophysics Data System (ADS)
Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean
2010-06-01
Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.
A fluorescent microplate assay for diarrheic shellfish toxins.
Vieytes, M R; Fontal, O I; Leira, F; Baptista de Sousa, J M; Botana, L M
1997-06-01
A fluorescent enzyme inhibition assay for okadaic acid using 4-methylumbelliferyl phosphate and fluorescein diphosphate as substrates for the enzyme phosphatase 2A was developed. In the inhibition assay, performed in a microtiter plate, the PP2A was inhibited by adding okadaic acid and the resulting fluorescence enhancement derived from enzymatic hydrolysis of the substrate was quantified in a fluorescence plate reader. The measurable range of okadaic acid was 3.2 to 3200 pg/ml with an IC50 = 0.1 nM. The detection limit of okadaic acid was 2.56 pg/well in buffer solutions and 12.8 ng/g hepatopancreas in shellfish extracts. The coefficient of variation (CV, n = 22) for each point ranged from 18.80 to 37.90% (mean 28.35%). The proposed method is very convenient, rapid, and sensitive by using the enzyme inhibition assay system and fluorescent reaction as a detection system. This work demonstrates that the fluorescent assay can be used to quantify the amount of okadaic acid in shellfish samples and also is valid for very dilute samples, such as phytoplankton samples.
Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao
2014-10-17
Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV-vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg(2+) on the basis of the interactions between Hg(2+) and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg(2+) in a linear range of 1.0×10(-7) mol L(-1)×10(-3) mol L(-1), with a detection limit of 2.4×10(-8) mol L(-1) at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Longhua; Yang, Hongmei; Ge, Shenguang; Yu, Jinghua
2018-03-01
A simple and effective fluorescent assay for the determination of vitamin B12 was developed. In this study, carbon dots (CDs) were prepared by one-pot hydrothermal method and directly used as a fluorophore in the inner filter effect (IFE). Both of the maximum absorption peak of vitamin B12 and excitation maxima of CDs are located at 360 nm, hence, the excited light of CDs can be absorbed by vitamin B12, resulting in the fluorescence reduction of CDs. And the fluorescence intensity of CDs decreases with the increasing concentration of vitamin B12. This IFE-based sensing strategy shows a good linear relationship between the normalized fluorescence intensity and the concentration of vitamin B12 ranging from 0 to 60 μM, with a limit of detection (LOD) of 0.1 μM at a signal-to-noise ratio of 3. Furthermore, this proposed approach was successfully applied to vitamin B12 sensing in injections. This IFE sensing platform based on various fluorescent nanomaterials has a high promise for the detection of other biomolecules due to its inherent convenience.
Lu, Hongzhi; Xu, Shoufang
2017-06-15
Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors. Copyright © 2017 Elsevier B.V. All rights reserved.