Sample records for fluorescence imaging device

  1. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  2. Development of fluorescence based handheld imaging devices for food safety inspection

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Kim, Moon S.; Chao, Kuanglin; Lefcourt, Alan M.; Chan, Diane E.

    2013-05-01

    For sanitation inspection in food processing environment, fluorescence imaging can be a very useful method because many organic materials reveal unique fluorescence emissions when excited by UV or violet radiation. Although some fluorescence-based automated inspection instrumentation has been developed for food products, there remains a need for devices that can assist on-site inspectors performing visual sanitation inspection of the surfaces of food processing/handling equipment. This paper reports the development of an inexpensive handheld imaging device designed to visualize fluorescence emissions and intended to help detect the presence of fecal contaminants, organic residues, and bacterial biofilms at multispectral fluorescence emission bands. The device consists of a miniature camera, multispectral (interference) filters, and high power LED illumination. With WiFi communication, live inspection images from the device can be displayed on smartphone or tablet devices. This imaging device could be a useful tool for assessing the effectiveness of sanitation procedures and for helping processors to minimize food safety risks or determine potential problem areas. This paper presents the design and development including evaluation and optimization of the hardware components of the imaging devices.

  3. Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients.

    PubMed

    Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-02-01

    The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P < 0.001). The repurposed device also successfully identified positive margins. The open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Near-infrared (NIR) fluorescence imaging of head and neck squamous cell carcinoma for fluorescence-guided surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moore, Lindsay; Warram, Jason M.; de Boer, Esther; Carroll, William R.; Morlandt, Anthony; Withrow, Kirk P.; Rosenthal, Eben L.

    2016-03-01

    During fluorescence-guided surgery, a cancer-specific optical probe is injected and visualized using a compatible device intraoperatively to provide visual contrast between diseased and normal tissues to maximize resection of cancer and minimize the resection of precious adjacent normal tissues. Six patients with squamous cell carcinomas of the head and neck region (oral cavity (n=4) or cutaneous (n=2)) were injected with an EGFR-targeting antibody (Cetuximab) conjugated to a near-infrared (NIR) fluorescent dye (IRDye800) 3, 4, or 7 days prior to surgical resection of the cancer. Each patient's tumor was then imaged using a commercially available, open-field NIR fluorescence imaging device each day prior to surgery, intraoperatively, and post-operatively. The mean fluorescence intensity (MFI) of the tumor was calculated for each specimen at each imaging time point. Adjacent normal tissue served as an internal anatomic control for each patient to establish a patient-matched "background" fluorescence. Resected tissues were also imaged using a closed-field NIR imaging device. Tumor to background ratios (TBRs) were calculated for each patient using both devices. Fluorescence histology was correlated with traditional pathology assessment to verify the specificity of antibody-dye conjugate binding. Peak TBRs using the open-field device ranged from 2.2 to 11.3, with an average TBR of 4.9. Peak TBRs were achieved between days 1 and 4. This study demonstrated that a commercially available NIR imaging device suited for intraoperative and clinical use can successfully be used with a fluorescently-labeled dye to delineate between diseased and normal tissue in this single cohort human study, illuminated the potential for its use in fluoresence-guided surgery.

  5. Comparison between two portable devices for widefield PpIX fluorescence during cervical intraepithelial neoplasia treatment

    NASA Astrophysics Data System (ADS)

    Carbinatto, Fernanda M.; Inada, Natalia Mayumi; Lombardi, Welington; Cossetin, Natália Fernandez; Varoto, Cinthia; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2015-06-01

    The use of portable electronic devices, in particular mobile phones such as smartphones is increasing not only for all known applications, but also for diagnosis of diseases and monitoring treatments like topical Photodynamic Therapy. The aim of the study is to evaluate the production of the photosensitizer Protoporphyrin IX (PpIX) after topical application of a cream containing methyl aminolevulinate (MAL) in the cervix with diagnosis of Cervical Intraepithelial Neoplasia (CIN) through the fluorescence images captured after one and three hours and compare the images using two devices (a Sony Xperia® mobile and an Apple Ipod®. Was observed an increasing fluorescence intensity of the cervix three hours after cream application, in both portable electronic devices. However, because was used a specific program for the treatment of images using the Ipod® device, these images presented better resolution than observed by the Sony cell phone without a specific program. One hour after cream application presented a more selective fluorescence than the group of three hours. In conclusion, the use of portable devices to obtain images of PpIX fluorescence shown to be an effective tool and is necessary the improvement of programs for achievement of better results.

  6. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  7. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  8. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    PubMed Central

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-01-01

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637

  9. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu

    2014-02-15

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less

  10. Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Sevick-Muraca, Eva M.

    2013-02-01

    Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.

  11. Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics

    NASA Astrophysics Data System (ADS)

    Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.

    2010-02-01

    We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.

  12. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    PubMed Central

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  13. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  14. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.

    PubMed

    Jiang, Shihong; Walker, John

    2010-01-20

    We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.

  15. Setting Standards for Reporting and Quantification in Fluorescence-Guided Surgery.

    PubMed

    Hoogstins, Charlotte; Burggraaf, Jan Jaap; Koller, Marjory; Handgraaf, Henricus; Boogerd, Leonora; van Dam, Gooitzen; Vahrmeijer, Alexander; Burggraaf, Jacobus

    2018-05-29

    Intraoperative fluorescence imaging (FI) is a promising technique that could potentially guide oncologic surgeons toward more radical resections and thus improve clinical outcome. Despite the increase in the number of clinical trials, fluorescent agents and imaging systems for intraoperative FI, a standardized approach for imaging system performance assessment and post-acquisition image analysis is currently unavailable. We conducted a systematic, controlled comparison between two commercially available imaging systems using a novel calibration device for FI systems and various fluorescent agents. In addition, we analyzed fluorescence images from previous studies to evaluate signal-to-background ratio (SBR) and determinants of SBR. Using the calibration device, imaging system performance could be quantified and compared, exposing relevant differences in sensitivity. Image analysis demonstrated a profound influence of background noise and the selection of the background on SBR. In this article, we suggest clear approaches for the quantification of imaging system performance assessment and post-acquisition image analysis, attempting to set new standards in the field of FI.

  16. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    NASA Astrophysics Data System (ADS)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  17. X ray sensitive area detection device

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  18. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer

    PubMed Central

    He, Jun; Yang, Leping; Yi, Wenjun; Fan, Wentao; Wen, Yu; Miao, Xiongying; Xiong, Li

    2017-01-01

    Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS. PMID:28849712

  19. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    USDA-ARS?s Scientific Manuscript database

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by ...

  20. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    NASA Astrophysics Data System (ADS)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  1. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  2. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  4. Motion-gated acquisition for in vivo optical imaging

    PubMed Central

    Gioux, Sylvain; Ashitate, Yoshitomo; Hutteman, Merlijn; Frangioni, John V.

    2009-01-01

    Wide-field continuous wave fluorescence imaging, fluorescence lifetime imaging, frequency domain photon migration, and spatially modulated imaging have the potential to provide quantitative measurements in vivo. However, most of these techniques have not yet been successfully translated to the clinic due to challenging environmental constraints. In many circumstances, cardiac and respiratory motion greatly impair image quality and∕or quantitative processing. To address this fundamental problem, we have developed a low-cost, field-programmable gate array–based, hardware-only gating device that delivers a phase-locked acquisition window of arbitrary delay and width that is derived from an unlimited number of pseudo-periodic and nonperiodic input signals. All device features can be controlled manually or via USB serial commands. The working range of the device spans the extremes of mouse electrocardiogram (1000 beats per minute) to human respiration (4 breaths per minute), with timing resolution ⩽0.06%, and jitter ⩽0.008%, of the input signal period. We demonstrate the performance of the gating device, including dramatic improvements in quantitative measurements, in vitro using a motion simulator and in vivo using near-infrared fluorescence angiography of beating pig heart. This gating device should help to enable the clinical translation of promising new optical imaging technologies. PMID:20059276

  5. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  6. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-12-01

    All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.

  7. Optical imaging for the diagnosis of oral cancer and oral potentially malignant disorders

    NASA Astrophysics Data System (ADS)

    Yoshida, K.

    2016-03-01

    Optical Imaging is being conducted as a therapeutic non-invasive. Many kinds of the light source are selected for this purpose. Recently the oral cancer screening is conducted by using light-induced tissue autofluorescence examination such as several kinds of handheld devices. However, the mechanism of its action is still not clear. Therefore basic experimental research was conducted. One of auto fluorescence Imaging (AFI) device, VELscopeTM and near-infrared (NIR) fluorescence imaging using ICG-labeled antibody as a probe were compared using oral squamous cell carcinoma (OSCC) mouse models. The experiments revealed that intracutaneous tumor was successfully visualized as low density image by VELscopeTM and high density image by NIR image. In addition, VELscopeTM showed higher sensitivity and lower specificity than that of NIR fluorescence imaging and the sensitivity of identification of carcinoma areas with the VELscopeTM was good results. However, further more studies were needed to enhance the screening and diagnostic uses, sensitivity and specificity for detecting malignant lesions and differentiation from premalignant or benign lesions. Therefore, additional studies were conducted using a new developed near infrared (NIR) fluorescence imaging method targeting podoplanine (PDPN) which consists of indocyanine green (ICG)-labeled anti-human podoplanin antibody as a probe and IVIS imaging system or a handy realtime ICG imaging device that is overexpressed in oral malignant neoplasm to improve imaging for detection of early oral malignant neoplasm. Then evaluated for its sensitivity and specificity for detection of oral malignant neoplasm in xenografted mice model and compared with VELscopeTM. The results revealed that ICG fluorescence imaging method and VELscopeTM had the almost the same sensitivity for detection of oral malignant neoplasm. The current topics of optical imaging about oral malignant neoplasm were reviewed.

  8. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    NASA Astrophysics Data System (ADS)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  9. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  10. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  11. A novel multiwavelength fluorescence image-guided surgery imaging system

    NASA Astrophysics Data System (ADS)

    Volpi, D.; Tullis, I. D. C.; Laios, A.; Pathiraja, P. N. J.; Haldar, K.; Ahmed, A. A.; Vojnovic, B.

    2014-02-01

    We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.

  12. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts

    PubMed Central

    Ozbay, Baris N.; Losacco, Justin T.; Cormack, Robert; Weir, Richard; Bright, Victor M.; Gopinath, Juliet T.; Restrepo, Diego; Gibson, Emily A.

    2015-01-01

    We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2 g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ~12 µm and an axial scan range of ~80 µm. The lateral field-of-view is 300 µm, and the lateral resolution is 1.8 µm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP). PMID:26030555

  13. Performance evaluation of integrating detectors for near-infrared fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-05-01

    Although there has been a plethora of devices advanced for clinical translation, there has been no standards to compare and determine the optical device for fluorescence molecular imaging. In this work, we compare different CCD configurations using a solid phantom developed to mimic pM - fM concentrations of near-infrared fluorescent dyes in tissues. Our results show that intensified CCD systems (ICCDs) offer greater contrast at larger signal-tonoise ratios (SNRs) in comparison to their un-intensified CCD systems operated at clinically reasonable, sub-second acquisition times. Furthermore, we compared our investigational ICCD device to the commercial NOVADAQ SPY system, demonstrating different performance in both SNR and contrast.

  14. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  15. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  16. Trimodal detection of early childhood caries using laser light scanning and fluorescence spectroscopy: clinical prototype

    PubMed Central

    Kim, Amy S.; Ridge, Jeremy S.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2013-01-01

    Abstract. There is currently a need for a safe and effective way to detect and diagnose early stages of childhood caries. A multimodal optical clinical prototype for diagnosing caries demineralization in vivo has been developed. The device can be used to quickly image and screen for any signs of demineralized enamel by obtaining high-resolution and high-contrast surface images using a 405-nm laser as the illumination source, as well as obtaining autofluorescence and bacterial fluorescence images. When a suspicious region of demineralization is located, the device also performs dual laser fluorescence spectroscopy using 405- and 532-nm laser excitation. An autofluorescence ratio of the two excitation lasers is computed and used to quantitatively diagnose enamel health. The device was tested on five patients in vivo as well as on 28 extracted teeth with clinically diagnosed carious lesions. The device was able to provide detailed images that highlighted the lesions identified by the clinicians. The autofluorescence spectroscopic ratios obtained from the extracted teeth successfully quantitatively discriminated between sound and demineralized enamel. PMID:23986369

  17. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    NASA Astrophysics Data System (ADS)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between biofilms and granite surfaces. This investigation demonstrated that biofilm formations on food processing surfaces, even for background materials with heterogeneous fluorescence responses, can be detected. Furthermore, a multispectral approach in developing handheld inspection devices may be needed to inspect surface materials that exhibit non-uniform fluorescence.

  18. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  19. Understanding the Biological Basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue

    PubMed Central

    Pavlova, Ina; Williams, Michelle; El-Naggar, Adel; Richards-Kortum, Rebecca; Gillenwater, Ann

    2009-01-01

    Purpose Autofluorescence imaging is increasingly used to noninvasively identify neoplastic oral cavity lesions. Improving the diagnostic accuracy of these techniques requires a better understanding of the biological basis for optical changes associated with neoplastic transformation in oral tissue. Experimental Design A total of 49 oral biopsies were considered in this study. The autofluorescence patterns of viable normal, benign, and neoplastic oral tissue were imaged using high-resolution confocal fluorescence microscopy. Results The autofluorescence properties of oral tissue vary significantly based on anatomic site and pathologic diagnosis. In normal oral tissue, most of the epithelial autofluorescence originates from the cytoplasm of cells in the basal and intermediate regions, whereas structural fibers are responsible for most of the stromal fluorescence. A strongly fluorescent superficial layer was observed in tissues from the palate and the gingiva, which contrasts with the weakly fluorescent superficial layer found in other oral sites. Upon UV excitation, benign inflammation shows decreased epithelial fluorescence, whereas dysplasia displays increased epithelial fluorescence compared with normal oral tissue. Stromal fluorescence in both benign inflammation and dysplasia drops significantly at UV and 488 nm excitation. Conclusion Imaging oral lesions with optical devices/probes that sample mostly stromal fluorescence may result in a similar loss of fluorescence intensity and may fail to distinguish benign from precancerous lesions. Improved diagnostic accuracy may be achieved by designing optical probes/devices that distinguish epithelial fluorescence from stromal fluorescence and by using excitation wavelengths in the UV range. PMID:18413830

  20. Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Kim, Soo Heyon; Miyazawa, Kazuya; Takehara, Hironari; Noda, Toshihiko; Tokuda, Takashi; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-03-01

    Digital enzyme linked immunosorbent assay (ELISA) is an ultra-sensitive technology for detecting biomarkers and viruses etc. As a conventional ELISA technique, a target molecule is bonded to an antibody with an enzyme by antigen-antibody reaction. In this technology, a femto-liter droplet chamber array is used as reaction chambers. Due to its small volume, the concentration of fluorescent product by single enzyme can be sufficient for detection by a fluorescent microscopy. In this work, we demonstrate a miniaturized lensless imaging device for digital ELISA by using a custom image sensor. The pixel array of the sensor is coated with a 20 μm-thick yellow filter to eliminate excitation light at 470 nm and covered by a fiber optic plate (FOP) to protect the sensor without resolution degradation. The droplet chamber array formed on a 50μm-thick glass plate is directly placed on the FOP. In the digital ELISA, microbeads coated with antibody are loaded into the droplet chamber array, and the ratio of the fluorescent to the non-fluorescent chambers with the microbeads are observed. In the fluorescence imaging, the spatial resolution is degraded by the spreading through the glass plate because the fluorescence is irradiated omnidirectionally. This degradation is compensated by image processing and the resolution of ~35 μm was achieved. In the bright field imaging, the projected images of the beads with collimated illumination are observed. By varying the incident angle and image composition, microbeads were successfully imaged.

  1. A portable near-infrared fluorescence image overlay device for surgical navigation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McWade, Melanie A.

    2016-03-01

    A rise in the use of near-infrared (NIR) fluorescent dyes or intrinsic fluorescent markers for surgical guidance and tissue diagnosis has triggered the development of NIR fluorescence imaging systems. Because NIR wavelengths are invisible to the naked eye, instrumentation must allow surgeons to visualize areas of high fluorescence. Current NIR fluorescence imaging systems have limited ease-of-use because they display fluorescent information on remote display monitors that require surgeons to divert attention away from the patient to identify the location of tissue fluorescence. Furthermore, some systems lack simultaneous visible light imaging which provides valuable spatial context to fluorescence images. We have developed a novel, portable NIR fluorescence imaging approach for intraoperative surgical guidance that provides information for surgical navigation within the clinician's line of sight. The system utilizes a NIR CMOS detector to collect excited NIR fluorescence from the surgical field. Tissues with NIR fluorescence are overlaid with visible light to provide information on tissue margins directly on the surgical field. In vitro studies have shown this versatile imaging system can be applied to applications with both extrinsic NIR contrast agents such as indocyanine green and weaker sources of biological fluorescence such as parathyroid gland tissue. This non-invasive, portable NIR fluorescence imaging system overlays an image directly on tissue, potentially allowing surgical decisions to be made quicker and with greater ease-of-use than current NIR fluorescence imaging systems.

  2. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.

    PubMed

    Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei

    2013-06-01

    We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

  3. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.

    PubMed

    Bednarkiewicz, Artur; Whelan, Maurice P

    2008-01-01

    Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.

  4. Multi-scale spectrally resolved quantitative fluorescence imaging system: towards neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.

  5. 3D in-vivo imaging of GFP-expressing T-cells in mice with non-contact fluorescence molecular tomography (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Garofalakis, Anikitos; Meyer, Heiko; Zacharakis, Giannis; Economou, Eleftherios N.; Mamalaki, Clio; Papamatheakis, Joseph; Ntziachristos, Vasilis; Ripoll, Jorge

    2005-06-01

    Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores in-vivo. Due to this fact, there has been great interest in developing imaging systems offering quantitative information on the location and concentration of chromophores and fluorescent probes. In this study we present a novel imaging system that enables three dimensional (3D) imaging of fluorescent signals in bodies of arbitrary shapes in a non-contact geometry, in combination with a 3D surface reconstruction algorithm, which is appropriate for in-vivo small animal imaging of fluorescent probes. The system consists of a rotating sample holder and a lens coupled Charge Coupled Device (CCD) camera in combination with a fiber coupled laser scanning device. An Argon ion laser is used as the source and different filters are used for the detection of various fluorophores or fluorescing proteins. With this new setup a large measurements dataset can be achieved while the use of inversion models give a high capacity for quantitative 3D reconstruction of fluorochrome distributions as well as high spatial resolution. The system has already been tested in the observation of the distribution of Green Fluorescent Protein (GFP) expressing T-lymphocytes in order to study the function of the immune system in a murine model, which can then be related to the function of the human immune system.

  6. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  7. A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer.

    PubMed

    Sensarn, Steven; Zavaleta, Cristina L; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S; Bogyo, Matthew; Contag, Christopher H

    2016-12-01

    Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection.

  8. Traceable working standards with SI units of radiance for characterizing the measurement performance of investigational clinical NIRF imaging devices

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni; Sevick-Muraca, Eva M.

    2017-03-01

    All medical devices for Food and Drug market approval require specifications of performance based upon International System of Units (SI) or units derived from SI for reasons of traceability. Recently, near-infrared fluorescence (NIRF) imaging devices of a variety of designs have emerged on the market and in investigational clinical studies. Yet the design of devices used in the clinical studies vary widely, suggesting variable device performance. Device performance depends upon optimal excitation of NIRF imaging agents, rejection of backscattered excitation and ambient light, and selective collection of fluorescence emanating from the fluorophore. There remains no traceable working standards with SI units of radiance to enable prediction that a given molecular imaging agent can be detected in humans by a given NIRF imaging device. Furthermore, as technologies evolve and as NIRF imaging device components change, there remains no standardized means to track device improvements over time and establish clinical performance without involving clinical trials, often costly. In this study, we deployed a methodology to calibrate luminescent radiance of a stable, solid phantom in SI units of mW/cm2/sr for characterizing the measurement performance of ICCD and IsCMOS camera based NIRF imaging devices, such as signal-to-noise ratio (SNR) and contrast. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS system; comparable contrast of ICCD and IsCMOS depending upon binning strategies.

  9. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  10. A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery.

    PubMed

    Warram, Jason M; de Boer, Esther; Moore, Lindsay S; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L

    2015-07-01

    Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However, a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n = 11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. © 2015 Wiley Periodicals, Inc.

  11. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

    PubMed Central

    Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic

    2015-01-01

    In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218

  12. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  13. Use of a portable fluorescence imaging device to facilitate cleaning of deli slicers

    USDA-ARS?s Scientific Manuscript database

    Cross-contamination is a recognized food safety concern for deli departments, and deli slicers remain a particular concern. Our laboratory previously demonstrated that deli commodity residues can be detected using fluorescence imaging, and that the efficacy of cleaning and sanitation in produce proc...

  14. Design of a portable imager for near-infrared visualization of cutaneous wounds

    PubMed Central

    Peng, Zhaoqiang; Zhou, Jun; Dacy, Ashley; Zhao, Deyin; Kearney, Vasant; Zhou, Weidong; Tang, Liping; Hu, Wenjing

    2017-01-01

    Abstract. A portable imager developed for real-time imaging of cutaneous wounds in research settings is described. The imager consists of a high-resolution near-infrared CCD camera capable of detecting both bioluminescence and fluorescence illuminated by an LED ring with a rotatable filter wheel. All external components are integrated into a compact camera attachment. The device is demonstrated to have competitive performance with a commercial animal imaging enclosure box setup in beam uniformity and sensitivity. Specifically, the device was used to visualize the bioluminescence associated with increased reactive oxygen species activity during the wound healing process in a cutaneous wound inflammation model. In addition, this device was employed to observe the fluorescence associated with the activity of matrix metalloproteinases in a mouse lipopolysaccharide-induced infection model. Our results support the use of the portable imager design as a noninvasive and real-time imaging tool to assess the extent of wound inflammation and infection. PMID:28114448

  15. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating

    NASA Astrophysics Data System (ADS)

    Hui, Yuen Yung; Su, Long-Jyun; Chen, Oliver Yenjyh; Chen, Yit-Tsong; Liu, Tzu-Ming; Chang, Huan-Cheng

    2014-07-01

    Nanodiamonds containing high density ensembles of negatively charged nitrogen-vacancy (NV-) centers are promising fluorescent biomarkers due to their excellent photostability and biocompatibility. The NV- centers in the particles have a fluorescence lifetime of up to 20 ns, which distinctly differs from those (<10 ns) of cell and tissue autofluorescence, making it possible to achieve background-free detection in vivo by time gating. Here, we demonstrate the feasibility of using fluorescent nanodiamonds (FNDs) as optical labels for wide-field time-gated fluorescence imaging and flow cytometric analysis of cancer cells with a nanosecond intensified charge-coupled device (ICCD) as the detector. The combined technique has allowed us to acquire fluorescence images of FND-labeled HeLa cells in whole blood covered with a chicken breast of ~0.1-mm thickness at the single cell level, and to detect individual FND-labeled HeLa cells in blood flowing through a microfluidic device at a frame rate of 23 Hz, as well as to locate and trace FND-labeled lung cancer cells in the blood vessels of a mouse ear. It opens a new window for real-time imaging and tracking of transplanted cells (such as stem cells) in vivo.

  16. Wireless fluorescence capsule for endoscopy using single photon-based detection

    NASA Astrophysics Data System (ADS)

    Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.

    2015-12-01

    Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.

  17. A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer

    PubMed Central

    Sensarn, Steven; Zavaleta, Cristina L.; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S.; Bogyo, Matthew; Contag, Christopher H.

    2017-01-01

    Purpose Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. Procedures We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. Results This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. Conclusions The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection. PMID:27154508

  18. An ex vivo rat eye model to aid development of high-resolution retina imaging devices for rodents

    NASA Astrophysics Data System (ADS)

    van Oterendorp, Christian; Martin, Keith R.; Zhong, Jiang Jian; Diaz-Santana, Luis

    2010-09-01

    High resolution in vivo retinal imaging in rodents is becoming increasingly important in eye research. Development of suitable imaging devices currently requires many lengthy animal procedures. We present an ex vivo rat model eye with fluorescently labelled retinal ganglion cells (RGC) and nerve fibre bundles that reduces the need for animal procedures while preserving key properties of the living rat eye. Optical aberrations and scattering of four model eyes and eight live rat eyes were quantified using a Shack-Hartmann sensor. Fluorescent images from RGCs were obtained using a prototype scanning laser ophthalmoscope. The wavefront aberration root mean square value without defocus did not significantly differ between model and living eyes. Higher order aberrations were slightly higher but RGC image quality was comparable to published in vivo work. Overall, the model allows a large reduction in number and duration of animal procedures required to develop new in vivo retinal imaging devices.

  19. A Ratiometric Threshold for Determining Presence of Cancer During Fluorescence-guided Surgery

    PubMed Central

    Warram, Jason M; de Boer, Esther; Moore, Lindsay S.; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L

    2015-01-01

    Background&Objective Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Methods Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n=11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. Results During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Conclusion Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. PMID:26074273

  20. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    PubMed

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.

  1. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-12-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.

  2. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    PubMed

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  3. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green–Labeled Podoplanin Antibody

    PubMed Central

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)–labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma–xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression–dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings. PMID:29649929

  4. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  5. Spectroscopic imaging using acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice

    2007-07-01

    We report on novel hyper-spectral imaging filter-modules based on acousto-optic tuneable filters (AOTF). The AOTF functions as a full-field tuneable bandpass filter which offers fast continuous or random access tuning with high filtering efficiency. Due to the diffractive nature of the device, the unfiltered zero-order and the filtered first-order images are geometrically separated. The modules developed exploit this feature to simultaneously route both the transmitted white-light image and the filtered fluorescence image to two separate cameras. Incorporation of prisms in the optical paths and careful design of the relay optics in the filter module have overcome a number of aberrations inherent to imaging through AOTFs, leading to excellent spatial resolution. A number of practical uses of this technique, both for in vivo auto-fluorescence endoscopy and in vitro fluorescence microscopy were demonstrated. We describe the operational principle and design of recently improved prototype instruments for fluorescence-based diagnostics and demonstrate their performance by presenting challenging hyper-spectral fluorescence imaging applications.

  6. Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy

    PubMed Central

    Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.

    2014-01-01

    In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248

  7. A cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kaittanis, Charalambos; Santra, Santimukul; Asati, Atul; Perez, J. Manuel

    2012-03-01

    Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues.Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c2nr11956k

  8. Use of a night vision intensifier for direct visualization by eye of far-red and near-infrared fluorescence through an optical microscope.

    PubMed

    Siddiqi, M A; Kilduff, G M; Gearhart, J D

    2003-11-01

    We describe the design, construction and testing of a prototype device that allows the direct visualization by eye of far-red and near-infrared (NIR) fluorescence through an optical microscope. The device incorporates a gallium arsenide (GaAs) image intensifier, typically utilized in low-light or 'night vision' applications. The intensifier converts far-red and NIR light into electrons and then into green light, which is visible to the human eye. The prototype makes possible the direct, real-time viewing by eye of normally invisible far-red and NIR fluorescence from a wide variety of fluorophores, using the full field of view of the microscope to which it is applied. The high sensitivity of the image intensifier facilitates the viewing of a wide variety of photosensitive specimens, including live cells and embryos, at vastly reduced illumination levels in both fluorescence and bright-field microscopy. Modifications to the microscope are not required in order to use the prototype, which is fully compatible with all current fluorescence techniques. Refined versions of the prototype device will have broad research and clinical applications.

  9. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  10. Advanced fluorescence imaging endoscopy using an acousto-optic tuneable filter

    NASA Astrophysics Data System (ADS)

    Whelan, Maurice P.; Bouhifd, Mounir; Aprahamian, Marc

    2004-07-01

    Two novel prototype instruments for in vivo fluorescence-based medical diagnostics are described. The devices are based on an acousto-optic tuneable filter (AOTF) and can be easily attached to the eyepiece of most commercially available endoscopes. The instruments developed offer significant advantages over typical fixed-filter or filter-wheel fluorescence imaging systems in terms of flexibility, performance and diagnostic potential. Any filtering center-wavelength in the range from 450 to 700 nm can be rapidly selected either by random access or sequential tuning using simple commands delivered over a PC serial interface. In addition, both filtered and unfiltered light can be imaged to facilitate the direct association of fluorescence signals with specific anatomical sites. To demonstrate the system in vivo, a study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on rats. The aim was to detect extremely low-levels of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response. Results show clearly that the device is effective in diagnosing mild pancreatitis in rats without the necessity of administering PpIX promoting agents such as ALA. Planning of human clinical trials is currently underway to demonstrate its potential as a tool for non-invasive early diagnosis of gastroenterological diseases.

  11. Caries Detection around Restorations Using ICDAS and Optical Devices.

    PubMed

    Diniz, Michele Baffi; Eckert, George Joseph; González-Cabezas, Carlos; Cordeiro, Rita de Cássia Loiola; Ferreira-Zandona, Andrea Gonçalves

    2016-01-01

    Secondary caries is the major reason for replacement of restorations in operative dentistry. New detection methods and technology have the potential to improve the accuracy for diagnosis of secondary carious lesions. This in vitro study evaluated the performance of the ICDAS (International Caries Detection and Assessment System) visual criteria and optical devices for detecting secondary caries around amalgam and composite resin restorations in permanent teeth. A total of 180 extracted teeth with Class I amalgam (N = 90) and resin composite (N = 90) restorations were selected. Two examiners analyzed the teeth twice using the visual criteria (ICDAS), laser fluorescence (LF), light-emitting diode device (MID), quantitative light-induced fluorescence system (QLF), and a prototype system based on the Fluorescence Enamel Imaging technique (Professional Caries Detection System, PCDS). The gold standard was determined by means of confocal laser scanning microscopy. High-reproducibility values were shown for all methods, except for MID in the amalgam group. For both groups the QLF and PCDS were the most sensitive methods, whereas the other methods presented better specificity (p < 0.05). All methods, except the MID device appeared to be potential methods for detecting secondary caries only around resin composite restorations, whereas around amalgam restorations all methods seemed to be questionable. Using Internal Caries Detection and Assessment System (ICDAS), an LF device, quantitative light-induced fluorescence and a novel method based on Fluorescence Enamel Imaging technique may be effective for evaluating secondary caries around composite resin restorations. © 2016 Wiley Periodicals, Inc.

  12. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    PubMed

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  13. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    PubMed Central

    Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials. PMID:27699098

  14. Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus

    PubMed Central

    Komar, Katarzyna; Stremplewski, Patrycjusz; Motoczyńska, Marta; Szkulmowski, Maciej; Wojtkowski, Maciej

    2013-01-01

    In this paper we present a multimodal device for imaging fundus of human eye in vivo which combines functionality of autofluorescence by confocal SLO with Fourier domain OCT. Native fluorescence of human fundus was excited by modulated laser beam (λ = 473 nm, 20 MHz) and lock-in detection was applied resulting in improving sensitivity. The setup allows for acquisition of high resolution OCT and high contrast AF images using fluorescence excitation power of 50-65 μW without averaging consecutive images. Successful functioning of constructed device have been demonstrated for 8 healthy volunteers of different age ranging from 24 to 83 years old. PMID:24298426

  15. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    PubMed

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  16. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  17. Sensitivity and Specificity of Cetuximab-IRDye800CW to Identify Regional Metastatic Disease in Head and Neck Cancer.

    PubMed

    Rosenthal, Eben L; Moore, Lindsay S; Tipirneni, Kiranya; de Boer, Esther; Stevens, Todd M; Hartman, Yolanda E; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-08-15

    Purpose: Comprehensive cervical lymphadenectomy can be associated with significant morbidity and poor quality of life. This study evaluated the sensitivity and specificity of cetuximab-IRDye800CW to identify metastatic disease in patients with head and neck cancer. Experimental Design: Consenting patients scheduled for curative resection were enrolled in a clinical trial to evaluate the safety and specificity of cetuximab-IRDye800CW. Patients ( n = 12) received escalating doses of the study drug. Where indicated, cervical lymphadenectomy accompanied primary tumor resection, which occurred 3 to 7 days following intravenous infusion of cetuximab-IRDye800CW. All 471 dissected lymph nodes were imaged with a closed-field, near-infrared imaging device during gross processing of the fresh specimens. Intraoperative imaging of exposed neck levels was performed with an open-field fluorescence imaging device. Blinded assessments of the fluorescence data were compared to histopathology to calculate sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). Results: Of the 35 nodes diagnosed pathologically positive, 34 were correctly identified with fluorescence imaging, yielding a sensitivity of 97.2%. Of the 435 pathologically negative nodes, 401 were correctly assessed using fluorescence imaging, yielding a specificity of 92.7%. The NPV was determined to be 99.7%, and the PPV was 50.7%. When 37 fluorescently false-positive nodes were sectioned deeper (1 mm) into their respective blocks, metastatic cancer was found in 8.1% of the recut nodal specimens, which altered staging in two of those cases. Conclusions: Fluorescence imaging of lymph nodes after systemic cetuximab-IRDye800CW administration demonstrated high sensitivity and was capable of identifying additional positive nodes on deep sectioning. Clin Cancer Res; 23(16); 4744-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. A multiprojection noncontact fluorescence tomography setup for imaging arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Garofalakis, A.; Zacharakis, G.; Economou, E. N.; Mamalaki, C.; Kioussis, D.; Ntziachristos, V.; Ripoll, J.

    2005-04-01

    Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores in-vivo. Due to this fact, there has been great interest in developing imaging systems offering quantitative information on the location and concentration of chromophores and fluorescent probes. However, most imaging systems currently used in research make use of fiber technology for delivery and detection, which restricts the size of the photon collecting arrays leading to insufficient spatial sampling and field of view. To enable large data sets and full 360o angular measurements, we developed a novel imaging system that enables 3D imaging of fluorescent signals in bodies of arbitrary shapes in a non-contact geometry in combination with a 3D surface reconstruction algorithm. The system consists of a rotating subject holder and a lens coupled Charge Coupled Device (CCD) camera in combination with a fiber coupled laser scanning device. An Argon ion laser is used as the source and different filters are used for the detection of various fluorophores or fluorescing proteins. With this new setup a large measurements dataset can be achieved while the use of inversion models give a high capacity for quantitative 3D reconstruction of fluorochrome distributions as well as high spatial resolution. The system is currently being tested in the observation of the distribution of Green Fluorescent Protein (GFP) expressing T-lymphocytes in order to study the function of the immune system in a murine model.

  19. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  20. Electroosmotic flow analysis of a branched U-turn nanofluidic device.

    PubMed

    Parikesit, Gea O F; Markesteijn, Anton P; Kutchoukov, Vladimir G; Piciu, Oana; Bossche, Andre; Westerweel, Jerry; Garini, Yuval; Young, Ian T

    2005-10-01

    In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.

  1. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  2. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health.

    PubMed

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-05-17

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.

  3. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health

    PubMed Central

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-01-01

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933

  4. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    NASA Astrophysics Data System (ADS)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  5. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  6. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    PubMed

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  7. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.

  8. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  9. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in Yoghurt and Egg.

    PubMed

    Zeinhom, Mohamed Maarouf Ali; Wang, Yijia; Song, Yang; Zhu, Mei-Jun; Lin, Yuehe; Du, Dan

    2018-01-15

    The detection of E. coli O157:H7 in foods has held the attention of many researchers because of the seriousness attributed to this pathogen. In this study, we present a simple, sensitive, rapid and portable smartphone based fluorescence device for E. coli O157:H7 detection. This field-portable fluorescent imager on the smartphone involves a compact laser-diode-based photosource, a long-pass (LP) thin-film interference filter and a high-quality insert lenses. The design of the device provided a low noise to background imaging system. Based on a sandwich ELISA and the specific recognition of antibody to E. coli O157:H7, the sensitive detection of E. coli O157:H7 were realized both in standard samples and real matrix in yoghurt and egg on our device. The detection limit are 1 CFU/mL and 10 CFU/mL correspondingly. Recovery percentages of spiked yogurt and egg samples with 10 3 , 10 4 and 10 5 CFU/mL E. coli O157:H7 were 106.98, 96.52 and 102.65 (in yogurt) and 107.37, 105.64 and 93.84 (in egg) samples using our device, respectively. Most importantly, the entire process could be quickly completed within two hours. This smartphone based device provides a simple, rapid, sensitive detection platform for fluorescent imaging which applied in pathogen detection for food safety monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy.

    PubMed Central

    Viles, C L; Sieracki, M E

    1992-01-01

    Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183

  11. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy.

    PubMed

    Shanmugam, Akshaya; Usmani, Mohammad; Mayberry, Addison; Perkins, David L; Holcomb, Daniel E

    2018-01-01

    Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples.

  12. Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton

    2004-08-01

    We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.

  13. Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao

    2018-03-01

    This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.

  14. A fluorescence-based imaging approach to pharmacokinetic analysis of intracochlear drug delivery.

    PubMed

    Ayoob, Andrew M; Peppi, Marcello; Tandon, Vishal; Langer, Robert; Borenstein, Jeffrey T

    2018-04-05

    Advances in microelectromechanical systems (MEMS) technologies are enhancing the development of intracochlear delivery devices for the treatment of hearing loss with emerging pharmacological therapies. Direct intracochlear delivery addresses the limitations of systemic and intratympanic delivery. However, optimization of delivery parameters for these devices requires pharmacokinetic assessment of the spatiotemporal drug distribution inside the cochlea. Robust methods of measuring drug concentration in the perilymph have been developed, but lack spatial resolution along the tonotopic axis or require complex physiological measurements. Here we describe an approach for quantifying distribution of fluorescent drug-surrogate probe along the cochlea's sensory epithelium with high spatial resolution enabled by confocal fluorescence imaging. Fluorescence from FM 1-43 FX, a fixable endocytosis marker, was quantified using confocal fluorescence imaging of whole mount sections of the organ of Corti from cochleae resected and fixed at several time points after intracochlear delivery. Intracochlear delivery of FM 1-43 FX near the base of the cochlea produces a base-apex gradient of fluorescence in the row of inner hair cells after 1 h post-delivery that is consistent with diffusion-limited transport along the scala tympani. By 3 h post-delivery there is approximately an order of magnitude decrease in peak average fluorescence intensity, suggesting FM 1-43 FX clearance from both the perilymph and inner hair cells. The increase in fluorescence intensity at 72 h post-delivery compared to 3 h post-delivery may implicate a potential radial transport pathway into the scala media. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sentinel lymph nodes fluorescence detection and imaging using Patent Blue V bound to human serum albumin

    PubMed Central

    Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick

    2012-01-01

    Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922

  16. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device.

    PubMed

    Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun

    2018-06-15

    We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.

  17. A surgical confocal microlaparoscope for real-time optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony Amir

    The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.

  18. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    NASA Astrophysics Data System (ADS)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.

    2005-03-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations—such as gels—applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150mm long by 360° azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [˜10mm diameter; formulations are labeled with 0.1%w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.

  19. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  20. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  1. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    PubMed Central

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461

  5. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    PubMed

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  6. Using hyperspectral fluorescence spectra of deli commodities to select wavelengths for surveying deli food contact surfaces

    USDA-ARS?s Scientific Manuscript database

    Problems with assessing the efficacy of cleaning and sanitation procedures in delicatessen departments is a recognized food safety concern. Our laboratory demonstrated that cleaning procedures in produce processing plants can be enhanced using a portable fluorescence imaging device. To explore the f...

  7. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  8. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy

    PubMed Central

    Mayberry, Addison; Perkins, David L.; Holcomb, Daniel E.

    2018-01-01

    Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples. PMID:29509786

  9. Laser-induced dental caries and plaque diagnosis on patients by sensitive autofluorescence spectroscopy and time-gated video imaging: preliminary studies

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert

    1994-09-01

    The laser-induced in vivo autofluorescence of human teeth was investigated by means of time- resolved/time-gated fluorescence techniques. The aim of these studies was non-contact caries and plaque detection. Carious lesions and dental plaque fluoresce in the red spectral region. This autofluorescence seems to be based on porphyrin-producing bacteria. We report on preliminary studies on patients using a novel method of autofluorescence imaging. A special device was constructed for time-gated video imaging. Nanosecond laser pulses for fluorescence excitation were provided by a frequency-doubled, Q-switched Nd:YAG laser. Autofluorescence was detected in an appropriate nanosecond time window using a video camera with a time-gated image intensifier (minimal time gate: 5 ns). Laser-induced autofluorescence based on porphyrin-producing bacteria seems to be an appropriate tool for detecting dental lesions and for creating `caries-images' and `dental plaque' images.

  10. Design of a smartphone-camera-based fluorescence imaging system for the detection of oral cancer

    NASA Astrophysics Data System (ADS)

    Uthoff, Ross

    Shown is the design of the Smartphone Oral Cancer Detection System (SOCeeDS). The SOCeeDS attaches to a smartphone and utilizes its embedded imaging optics and sensors to capture images of the oral cavity to detect oral cancer. Violet illumination sources excite the oral tissues to induce fluorescence. Images are captured with the smartphone's onboard camera. Areas where the tissues of the oral cavity are darkened signify an absence of fluorescence signal, indicating breakdown in tissue structure brought by precancerous or cancerous conditions. With this data the patient can seek further testing and diagnosis as needed. Proliferation of this device will allow communities with limited access to healthcare professionals a tool to detect cancer in its early stages, increasing the likelihood of cancer reversal.

  11. Development of a widefield reflectance and fluorescence imaging device for the detection of skin and oral cancer

    NASA Astrophysics Data System (ADS)

    Pratavieira, S.; Santos, P. L. A.; Bagnato, V. S.; Kurachi, C.

    2009-06-01

    Oral and skin cancers constitute a major global health problem that cause great impact in patients. The most common screening method for oral cancer is visual inspection and palpation of the mouth. Visual examination relies heavily on the experience and skills of the physician to identify and delineate early premalignant and cancer changes, which is not simple due to the similar characteristics of early stage cancers and benign lesions. Optical imaging has the potential to address these clinical challenges. Contrast between normal and neoplastic areas may be increased, distinct to the conventional white light, when using illumination and detection conditions. Reflectance imaging can detect local changes in tissue scattering and absorption and fluorescence imaging can probe changes in the biochemical composition. These changes have shown to be indicatives of malignant progression. Widefield optical imaging systems are interesting because they may enhance the screening ability in large regions allowing the discrimination and the delineation of neoplastic and potentially of occult lesions. Digital image processing allows the combination of autofluorescence and reflectance images in order to objectively identify and delineate the peripheral extent of neoplastic lesions in the skin and oral cavity. Combining information from different imaging modalities has the potential of increasing diagnostic performance, due to distinct provided information. A simple widefiled imaging device based on fluorescence and reflectance modes together with a digital image processing was assembled and its performance tested in an animal study.

  12. A projective surgical navigation system for cancer resection

    NASA Astrophysics Data System (ADS)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  13. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  14. The video fluorescent device for diagnostics of cancer of human reproductive system

    NASA Astrophysics Data System (ADS)

    Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.

    2008-06-01

    Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).

  15. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  16. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone

    PubMed Central

    Wei, Qingshan; Qi, Hangfei; Luo, Wei; Tseng, Derek; Ki, So Jung; Wan, Zhe; Göröcs, Zoltán; Bentolila, Laurent A.; Wu, Ting-Ting; Sun, Ren; Ozcan, Aydogan

    2014-01-01

    Optical imaging of nanoscale objects, whether it is based on scattering or fluorescence, is a challenging task due to reduced detection signal-to-noise ratio and contrast at subwavelength dimensions. Here, we report a field-portable fluorescence microscopy platform installed on a smart phone for imaging of individual nanoparticles as well as viruses using a lightweight and compact opto-mechanical attachment to the existing camera module of the cell phone. This hand-held fluorescent imaging device utilizes (i) a compact 450 nm laser diode that creates oblique excitation on the sample plane with an incidence angle of ~75°, (ii) a long-pass thin-film interference filter to reject the scattered excitation light, (iii) an external lens creating 2× optical magnification, and (iv) a translation stage for focus adjustment. We tested the imaging performance of this smart-phone-enabled microscopy platform by detecting isolated 100 nm fluorescent particles as well as individual human cytomegaloviruses that are fluorescently labeled. The size of each detected nano-object on the cell phone platform was validated using scanning electron microscopy images of the same samples. This field-portable fluorescence microscopy attachment to the cell phone, weighing only ~186 g, could be used for specific and sensitive imaging of subwavelength objects including various bacteria and viruses and, therefore, could provide a valuable platform for the practice of nanotechnology in field settings and for conducting viral load measurements and other biomedical tests even in remote and resource-limited environments. PMID:24016065

  17. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  18. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  19. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  20. Near-infrared fluorescence image quality test methods for standardized performance evaluation

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua

    2017-03-01

    Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.

  1. Non-invasive imaging of prostate cancer progression in nude mice using iRFP gene reporter

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Wu, Grace; Robinson, Holly; Wilganowski, Nathaniel; Sevick-Muraca, Eva M.

    2013-03-01

    Prostate cancer (PCa) is the second most common cancer in US men. Metastasis is the final step of tumor progression and remains the primary cause of PCa death. Hence preclinical, orthotopic models of PCa metastasis are necessary to develop new therapeutics against metastatic disease. Yet unlike irrelevant subcutaneous tumor models, the deployment of orthotopic models of cancer metastasis in drug research and development is limited by the inability to longitudinally monitor cancer progression/regression in response to administration of experimental pharmaceuticals. Recently, a nearinfrared fluorescent protein (iRFP) was created for deeper imaging [1]. Imaging prostate tumor growth and lymph node metastasis in nude mice therefore becomes possible using this new fluorescent gene reporter. In this study, we first developed an intensified CCD (ICCD)-based iRFP fluorescence imaging device. Then human PCa PC3 cell lines expressing iRFP gene reporter were orthotopically implanted in male Nu/Nu mice at 8-10 weeks old. After 6-10 weeks, in vivo, in situ and ex vivo fluorescence imaging was performed. In vivo iRFP fluorescence imaging showed that the detected fluorescence concentrated at the prostate and became stronger over time, indicating the growth of implanted PCa. Fluorescence was non-invasively detected at locations of prostate-draining lymph nodes as early as 5 weeks post implantation, indicating the metastasis to lymph nodes. In situ and ex vivo fluorescence imaging demonstrated that the detected signals from PCa and lymph nodes were correlated with cancer positive status of tissues as assessed through standard pathology.

  2. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study.

    PubMed

    De Leeuw, Frederic; Breuskin, Ingrid; Abbaci, Muriel; Casiraghi, Odile; Mirghani, Haïtham; Ben Lakhdar, Aïcha; Laplace-Builhé, Corinne; Hartl, Dana

    2016-09-01

    Parathyroid glands (PGs) can be particularly hard to distinguish from surrounding tissue and thus can be damaged or removed during thyroidectomy. Postoperative hypoparathyroidism is the most common complication after thyroidectomy. Very recently, it has been found that the parathyroid tissue shows near-infrared (NIR) auto-fluorescence which could be used for intraoperative detection, without any use of contrast agents. The work described here presents a histological validation ex vivo of the NIR imaging procedure and evaluates intraoperative PG detection by NIR auto-fluorescence using for the first time to our knowledge a commercially available clinical NIR imaging device. Ex vivo study on resected operative specimens combined with a prospective in vivo study of consecutive patients who underwent total or partial thyroid, or parathyroid surgery at a comprehensive cancer center. During surgery, any tissue suspected to be a potential PG by the surgeon was imaged with the Fluobeam 800 (®) system. NIR imaging was compared to conventional histology (ex vivo) and/or visual identification by the surgeon (in vivo). We have validated NIR auto-fluorescence with an ex vivo study including 28 specimens. Sensitivity and specificity were 94.1 and 80 %, respectively. Intraoperative NIR imaging was performed in 35 patients and 81 parathyroids were identified. In 80/81 cases, the fluorescence signal was subjectively obvious on real-time visualization. We determined that PG fluorescence is 2.93 ± 1.59 times greater than thyroid fluorescence in vivo. Real-time NIR imaging based on parathyroid auto-fluorescence is fast, safe, and non-invasive and shows very encouraging results, for intraoperative parathyroid identification.

  3. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  4. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  5. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    PubMed

    Nuñez, Isaac; Matute, Tamara; Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy; Federici, Fernán

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under open source licenses.

  6. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering

    PubMed Central

    Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under open source licenses. PMID:29140977

  7. High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-01

    We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.

  8. The use of in vivo fluorescence image sequences to indicate the occurrence and propagation of transient focal depolarizations in cerebral ischemia.

    PubMed

    Strong, A J; Harland, S P; Meldrum, B S; Whittington, D J

    1996-05-01

    A method for the detection and tracking of propagated fluorescence transients as indicators of depolarizations in focal cerebral ischemia is described, together with initial results indicating the potential of the method. The cortex of the right cerebral hemisphere was exposed for nonrecovery experiments in five cats anesthetized with chloralose and subjected to permanent middle cerebral artery (MCA) occlusion. Fluorescence with 370-nm excitation (attributed to the degree of reduction of the NAD/H couple) was imaged with an intensified charge-coupled device camera and digitized. Sequences of images representing changes in gray level from a baseline image were examined, together with the time courses of mean gray levels in specified regions of interest. Spontaneous increases in fluorescence occurred, starting most commonly at the edge of areas of core ischemia; they propagated usually throughout the periinfarct zone and resolved to varying degrees and at varying rates, depending on proximity of the locus to the MCA input. When a fluorescence transient reached the anterior cerebral artery territory, its initial polarity reversed from an increase to a decrease in fluorescence. An initial increase in fluorescence in response to the arrival of a transient may characterize cortex that will become infarcted, if pathophysiological changes in the periinfarct zone are allowed to evolve naturally.

  9. An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers

    NASA Astrophysics Data System (ADS)

    Wagnières, Georges A.; Studzinski, André P.; van den Bergh, Hubert E.

    1997-01-01

    We describe the design and performance tested during six years of clinical trials of a fluorescence endoscope for the detection and delineation of cancers in several hollow organs. The apparatus is based on the imaging of the laser-induced fluorescence that differs between a tumor and its surrounding normal tissue. The tests are carried out in the upper aerodigestive tract, the tracheobronchial tree, the esophagus, and the colon. In the three former cases an exogenous dye is used (Photofrin II), whereas in the latter case fluorescein molecules conjugated with monoclonal antibodies directed against carcinoembryonic antigen are injected. The decrease of native tissue autofluorescence observed in early cancers is also used for detecting lesions in the tracheobronchial tree. The fluorescence contrast between the tumor and surrounding normal tissue is enhanced by real time image processing. This is done by simultaneously recording the fluorescence image in two spectral domains, after which these two images are digitized and manipulated with a mathematical operator (look-up table) at video frequency. Moreover, the device that is described below allows for an immediate observation of the endoscopic area under white light illumination during fluorescence detection in order to localize the origin of the "positive" fluorescence signals. Typical results obtained in the tracheobronchial tree and in the colon are presented and the sources of false positives and false negatives are evaluated in terms of the fluorescent dye, tissue optical properties, and illumination optics.

  10. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  11. High sensitive fundus autofluorescence imaging combined with speckle-free optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Stremplewski, Patrycjusz; Komar, Katarzyna; Szkulmowski, Maciej; Motoczyńska, Marta; Wojtkowski, Maciej

    2013-03-01

    Scattering and fluorescence images provide complementary information about the health condition of the human eye, so getting them in a single measurement, using a single device may significantly improve a quality of diagnosis as it has been already demonstrated in Spectralis (Heidelberg Eng.) OCT instrument. There is still challenge to improve quality of fundus autofluorescence (FAF) images. The biggest obstacle in obtaining in vivo images of sufficient quality is very low fluorescence signal. For eye safety reasons, and because of patient comfort, using highpower fluorescence excitation is not an adequate solution to the low signal problem. In this contribution we show a new detection method in the retinal autofluorescence imaging, which may improve the sensitivity. We used a fast modulated (up to 500 MHz) diode laser of wavelength 473 nm and detected fluorescence in the spectral range 500-680 nm by photomultiplier and lock-in amplifier. Average power of the collimated blue beam on the cornea used for FAF measurements was set to 50 μW, 10 μW, and even 4.5 μW.

  12. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    PubMed

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  13. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  14. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    NASA Astrophysics Data System (ADS)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  15. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  16. Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone

    PubMed Central

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. ~ 10 μm over a very large field-of-view of ~ 81 mm2. This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  17. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  18. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.

    2005-03-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations - such as gels - applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150 mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150 mm longmore » by 360 deg. azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [{approx}10 mm diameter; formulations are labeled with 0.1% w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5 mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.« less

  19. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  20. Evaluation of resin infiltration using quantitative light-induced fluorescence technology.

    PubMed

    Min, Ji-Hyun; Inaba, Daisuke; Kim, Baek-Il

    2016-09-01

    To determine whether quantitative light-induced fluorescence (QLF) technology can be used to classify the colour of teeth specimens before and after resin infiltration (RI) treatment, and calculate the correlation between the ΔF value and colour difference (ΔE) in fluorescence images of the specimens obtained using a QLF-digital (QLF-D) device. Sixty sound bovine permanent teeth specimens were immersed in demineralized solution. Two exposed windows were formed in each specimen, and RI treatment was applied to one of them. The ΔE values were obtained for the differences between a sound tooth surface (SS), an early dental caries surface (ECS) and an ECS treated with RI (RS) in white-light and fluorescence images obtained using QLF-D, respectively. The ΔF value was obtained from fluorescence images using dedicated software for QLF-D. The mean differences between the ΔE values obtained from the white-light and fluorescence images were analyzed by paired t-test. Pearson correlation analysis and Bland-Altman plots were applied to the differences between the ΔF value for ECS (ΔFSS-ECS) and the ΔE value between SS and ECS (ΔESS-ECS), and between the ΔF value for RS (ΔFSS-RS) and the ΔE value between SS and RS (ΔESS-RS) in fluorescence images. The ΔE values obtained from fluorescence images were three times higher than the ΔE values obtained from white-light images (p<0.001). Significant correlations were confirmed between ΔESS-ECS and ΔFSS-ECS (r=-0.492, p<0.001) and between ΔESS-RS and ΔFSS-RS (r=-0.661, p<0.001). QLF technology can be used to confirm the presence of RI in teeth. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer

    PubMed Central

    Elliott, Amicia D.; Gao, Liang; Ustione, Alessandro; Bedard, Noah; Kester, Robert; Piston, David W.; Tkaczyk, Tomasz S.

    2012-01-01

    Summary The development of multi-colored fluorescent proteins, nanocrystals and organic fluorophores, along with the resulting engineered biosensors, has revolutionized the study of protein localization and dynamics in living cells. Hyperspectral imaging has proven to be a useful approach for such studies, but this technique is often limited by low signal and insufficient temporal resolution. Here, we present an implementation of a snapshot hyperspectral imaging device, the image mapping spectrometer (IMS), which acquires full spectral information simultaneously from each pixel in the field without scanning. The IMS is capable of real-time signal capture from multiple fluorophores with high collection efficiency (∼65%) and image acquisition rate (up to 7.2 fps). To demonstrate the capabilities of the IMS in cellular applications, we have combined fluorescent protein (FP)-FRET and [Ca2+]i biosensors to measure simultaneously intracellular cAMP and [Ca2+]i signaling in pancreatic β-cells. Additionally, we have compared quantitatively the IMS detection efficiency with a laser-scanning confocal microscope. PMID:22854044

  2. A palm-sized high-sensitivity near-infrared fluorescence imager for laparotomy surgery.

    PubMed

    Dorval, Paul; Mangeret, Norman; Guillermet, Stephanie; Atallah, Ihab; Righini, Christian; Barabino, Gabriele; Coll, Jean-Luc; Rizo, Philippe; Poulet, Patrick

    2016-01-01

    In laparotomy surgery guided by near-infrared fluorescence imaging, the access to the field of operation is limited by the illumination and/or the imaging field. The side of cavities or organs such as the liver or the heart cannot be examined with the systems available on the market, which are too large and too heavy. In this article, we describe and evaluate a palm sized probe, whose properties, weight, size and sensitivity are adapted for guiding laparotomy surgery. Different experiments have been performed to determine its main characteristics, both on the illumination and imaging sides. The device has been tested for fluorescent molecular probe imaging in preclinical procedures, to prove its ability to be used in cancer nodule detection during surgery. This system is now CE certified for clinical procedures and Indocyanine Green imaging has been performed during clinical investigations: lymphedema and surgical resection of liver metastases of colorectal cancers. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. A low-cost method for visible fluorescence imaging.

    PubMed

    Tarver, Crissy L; Pusey, Marc

    2017-12-01

    A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.

  4. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  5. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.

    PubMed

    Engelbrecht, Christoph J; Johnston, Richard S; Seibel, Eric J; Helmchen, Fritjof

    2008-04-14

    We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope's headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.

  6. Online Multitasking Line-Scan Imaging Techniques for Simultaneous Safety and Quality Evaluation of Apples

    NASA Astrophysics Data System (ADS)

    Kim, Moon Sung; Lee, Kangjin; Chao, Kaunglin; Lefcourt, Alan; Cho, Byung-Kwan; Jun, Won

    We developed a push-broom, line-scan imaging system capable of simultaneous measurements of reflectance and fluorescence. The system allows multitasking inspections for quality and safety attributes of apples due to its dynamic capabilities in simultaneously capturing fluorescence and reflectance, and selectivity in multispectral bands. A multitasking image-based inspection system for online applications has been suggested in that a single imaging device that could perform a multitude of both safety and quality inspection needs. The presented multitask inspection approach in online applications may provide an economically viable means for a number of food processing industries being able to adapt to operate and meet the dynamic and specific inspection and sorting needs.

  7. Alignment and absolute wavelength calibration of imaging Bragg spectrometers.

    PubMed

    Bertschinger, G; Marchuk, O; Barnsley, R

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  8. Microscale Concentration Measurements Using Laser Light Scattering Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Miller, Fletcher

    2004-01-01

    The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.

  9. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    NASA Astrophysics Data System (ADS)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  10. Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy

    PubMed Central

    Stewart, Fraser R.; Qiu, Yongqiang; Newton, Ian P.; Cox, Benjamin F.; Al-Rawhani, Mohammed A.; Beeley, James; Liu, Yangminghao; Huang, Zhihong; Cumming, David R. S.; Näthke, Inke

    2017-01-01

    Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work. PMID:28671642

  11. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  12. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  13. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  14. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  15. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  16. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  17. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  18. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  19. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  20. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  1. Three-dimensional refractive index and fluorescence tomography using structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.

  2. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  3. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Pierce, Mark C.

    2014-08-01

    A compact handpiece combining high resolution fluorescence (HRF) imaging with optical coherence tomography (OCT) was developed to provide real-time assessment of oral lesions. This multimodal imaging device simultaneously captures coregistered en face images with subcellular detail alongside cross-sectional images of tissue microstructure. The HRF imaging acquires a 712×594 μm2 field-of-view at the sample with a spatial resolution of 3.5 μm. The OCT images were acquired to a depth of 1.5 mm with axial and lateral resolutions of 9.3 and 8.0 μm, respectively. HRF and OCT images are simultaneously displayed at 25 fps. The handheld device was used to image a healthy volunteer, demonstrating the potential for in vivo assessment of the epithelial surface for dysplastic and neoplastic changes at the cellular level, while simultaneously evaluating submucosal involvement. We anticipate potential applications in real-time assessment of oral lesions for improved surveillance and surgical guidance.

  4. Guided fluorescence diagnosis of childhood caries: preliminary measures correlate with depth of carious decay

    NASA Astrophysics Data System (ADS)

    Timoshchuk, Mari-Alina; Zhang, Liang; Dickinson, Brian A.; Ridge, Jeremy S.; Kim, Amy S.; Baltuck, Camille T.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2014-02-01

    The current rise in childhood caries worldwide has increased the demand for portable technologies that can quickly and accurately detect and diagnose early stage carious lesions. These lesions, if identified at an early stage, can be reversed with remineralization treatments, education, and improvements in home care. A multi-modal optical prototype for detecting and diagnosing occlusal caries demineralization in vivo has been developed and pilot tested. The device uses a 405-nm laser as a scanned illumination source to obtain high resolution and high surface contrast reflectance images, which allows the user to quickly image and screen for any signs of demineralized enamel. When a suspicious region is located, the device can be switched to perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitations. These spectra are used to compute an auto-fluorescence (AF) ratio of the suspicious region and the percent difference of AF ratios from a healthy region of the same tooth. The device was tested on 7 children's teeth in vivo with clinically diagnosed carious lesions. Lesion depth was then visually estimated from the video image using the 405-nm scanned light source, and within a month the maximum drill depth was assessed by a clinician. The researcher and clinicians were masked from previous measurements in a blinded study protocol. Preliminary results show that the ratiometric percent difference measurement of the AF spectrum of the tooth correlates with the severity of the demineralization as assessed by the clinician after drilling.

  5. High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging

    PubMed Central

    Daily, Neil J.; Du, Zhong-Wei

    2017-01-01

    Abstract Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments. PMID:28525289

  6. Sentinel lymph nodes detection with an imaging system using Patent Blue V dye as fluorescent tracer

    NASA Astrophysics Data System (ADS)

    Tellier, F.; Steibel, J.; Chabrier, R.; Rodier, J. F.; Pourroy, G.; Poulet, P.

    2013-03-01

    Sentinel lymph node biopsy is the gold standard to detect metastatic invasion from primary breast cancer. This method can help patients avoid full axillary chain dissection, thereby decreasing the risk of morbidity. We propose an alternative to the traditional isotopic method, to detect and map the sentinel lymph nodes. Indeed, Patent Blue V is the most widely used dye in clinical routine for the visual detection of sentinel lymph nodes. A Recent study has shown the possibility of increasing the fluorescence quantum yield of Patent Blue V, when it is bound to human serum albumin. In this study we present a preclinical fluorescence imaging system to detect sentinel lymph nodes labeled with this fluorescent tracer. The setup is composed of a black and white CCD camera and two laser sources. One excitation source with a laser emitting at 635 nm and a second laser at 785 nm to illuminate the region of interest. The prototype is operated via a laptop. Preliminary experiments permitted to determine the device sensitivity in the μmol.L-1 range as regards the detection of PBV fluorescence signals. We also present a preclinical evaluation performed on Lewis rats, during which the fluorescence imaging setup detected the accumulation and fixation of the fluorescent dye on different nodes through the skin.

  7. Proximal sensing of plant-pathogen interactions in spring barley with three fluorescence techniques.

    PubMed

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-06-24

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the 'Blue-to-Far-Red Fluorescence Ratio' and the 'Simple Fluorescence Ratio'. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation-emission channels to better understand and evaluate plant-physiological alterations due to pathogen infections.

  8. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope

    PubMed Central

    Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok

    2017-01-01

    Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world’s tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high–frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies. PMID:29226243

  9. Optofluidic Fluorescent Imaging Cytometry on a Cell Phone

    PubMed Central

    Zhu, Hongying; Mavandadi, Sam; Coskun, Ahmet F.; Yaglidere, Oguzhan; Ozcan, Aydogan

    2012-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in remote and resource-poor settings. PMID:21774454

  10. Optofluidic fluorescent imaging cytometry on a cell phone.

    PubMed

    Zhu, Hongying; Mavandadi, Sam; Coskun, Ahmet F; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in remote and resource-poor settings.

  11. Video-rate volumetric neuronal imaging using 3D targeted illumination.

    PubMed

    Xiao, Sheng; Tseng, Hua-An; Gritton, Howard; Han, Xue; Mertz, Jerome

    2018-05-21

    Fast volumetric microscopy is required to monitor large-scale neural ensembles with high spatio-temporal resolution. Widefield fluorescence microscopy can image large 2D fields of view at high resolution and speed while remaining simple and costeffective. A focal sweep add-on can further extend the capacity of widefield microscopy by enabling extended-depth-of-field (EDOF) imaging, but suffers from an inability to reject out-of-focus fluorescence background. Here, by using a digital micromirror device to target only in-focus sample features, we perform EDOF imaging with greatly enhanced contrast and signal-to-noise ratio, while reducing the light dosage delivered to the sample. Image quality is further improved by the application of a robust deconvolution algorithm. We demonstrate the advantages of our technique for in vivo calcium imaging in the mouse brain.

  12. Full-field fan-beam x-ray fluorescence computed tomography system design with linear-array detectors and pinhole collimation: a rapid Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang

    2017-11-01

    We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.

  13. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  14. Solution-based single molecule imaging of surface-immobilized conjugated polymers.

    PubMed

    Dalgarno, Paul A; Traina, Christopher A; Penedo, J Carlos; Bazan, Guillermo C; Samuel, Ifor D W

    2013-05-15

    The photophysical behavior of conjugated polymers used in modern optoelectronic devices is strongly influenced by their structural dynamics and conformational heterogeneity, both of which are dependent on solvent properties. Single molecule studies of these polymer systems embedded in a host matrix have proven to be very powerful to investigate the fundamental fluorescent properties. However, such studies lack the possibility of examining the relationship between conformational dynamics and photophysical response in solution, which is the phase from which films for devices are deposited. By developing a synthetic strategy to incorporate a biotin moiety as a surface attachment point at one end of a polyalkylthiophene, we immobilize it, enabling us to make the first single molecule fluorescence measurements of conjugated polymers for long periods of time in solution. We identify fluctuation patterns in the fluorescence signal that can be rationalized in terms of photobleaching and stochastic transitions to reversible dark states. Moreover, by using the advantages of solution-based imaging, we demonstrate that the addition of oxygen scavengers improves optical stability by significantly decreasing the photobleaching rates.

  15. A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging.

    PubMed

    Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R

    2010-06-23

    Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.

  16. A comparison of imaging methods for use in an array biosensor

    NASA Technical Reports Server (NTRS)

    Golden, Joel P.; Ligler, Frances S.

    2002-01-01

    An array biosensor has been developed which uses an actively-cooled, charge-coupled device (CCD) imager. In an effort to save money and space, a complementary metal-oxide semiconductor (CMOS) camera and photodiode were tested as replacements for the cooled CCD imager. Different concentrations of CY5 fluorescent dye in glycerol were imaged using the three different detection systems with the same imaging optics. Signal discrimination above noise was compared for each of the three systems.

  17. Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope

    NASA Astrophysics Data System (ADS)

    Zhu, Liangfu; Wang, Yong; Zhang, Douguo; Wang, Ruxue; Qiu, Dong; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Lakowicz, Joseph R.

    2017-09-01

    Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.

  18. Detection of oral squamous-cell cancer and precancerous lesions by fluorescence imaging in a hamster cheek-pouch model

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; Kluftinger, A. M.; Hung, J.; Davis, N. L.; Quenville, N. F.; Palcic, Branko

    1993-03-01

    The role of non-skin phototoxic dose of Photofrin in the detection of dysplasia and carcinoma in situ was assessed in a small animal model of oral squamous cell cancer (SCC). Nine,10-dimethyl 1,2-benzanthracene (DMBA) impregnated cotton sutures, covered with a silicone sheath, were sewn into the hamster cheek pouch to produce dysplasia, carcinoma in situ, and invasive cancer. The yield of SCC was 83% by 20 weeks. Fluorescence imaging was performed using a specially designed device that exploits differences of fluorescence properties of normal, precancerous, and cancerous tissues with and without Photofrin. The fluorescence was induced by a helium-cadmium laser (442 nm) and then measured at two different wavelengths by an image intensified camera. Computed images using a mathematical transformation of fluorescence data were then displayed on a video monitor. Areas with dysplasia and both in situ and invasive cancers could be clearly delineated from the adjacent normal tissues. Lesions as small as 2 mm in diameter could be identified. Because of the presence of endogenous porphyrins, the addition of a non-skin phototoxic dose of Photofrin (0.25 mg/kg iv) did not enhance the signal to noise ratio. Our results suggest that fluorescence imaging can accurately detect both precancerous and cancerous lesions in the oral mucosa without exogenous porphyrins. It may have an important role as a non-invasive, clinical diagnostic tool in oropharyngeal cancer.

  19. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    NASA Astrophysics Data System (ADS)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.

  20. Increased metabolic activity detected by FLIM in human breast cancer cells with desmoplastic reaction: a pilot study

    NASA Astrophysics Data System (ADS)

    Natal, Rodrigo de Andrade; Pelegati, Vitor B.; Bondarik, Caroline; Mendonça, Guilherme R.; Derchain, Sophie F.; Lima, Carmen P.; Cesar, Carlos L.; Sarian, Luís. O.; Vassallo, José

    2015-07-01

    Introduction: In breast cancer (BC), desmoplastic reaction, assembled primarily by fibroblasts, is associated with unfavorable prognosis, but the reason of this fact remains still unclear. In this context, nonlinear optics microscopy, including Fluorescence Lifetime Imaging Microscopy (FLIM), has provided advancement in cellular metabolism research. In this paper, our purpose is to differentiate BC cells metabolism with or without contact to desmoplastic reaction. Formalin fixed, paraffin embedded samples were used at different points of hematoxylin stained sections. Methodology: Sections from 14 patients with invasive ductal breast carcinoma were analyzed with FLIM methodology to NAD(P)H and FAD fluorescence lifetime on a Confocal Upright LSM780 NLO device (Carl Zeiss AG, Germany). Quantification of the fluorescence lifetime and fluorescence intensity was evaluated by SPC Image software (Becker &Hickl) and ImageJ (NIH), respectively. Optical redox ratio was calculated by dividing the FAD fluorescence intensity by NAD(P)H fluorescence intensity. Data value for FLIM measurements and fluorescence intensities were calculated using Wilcoxon test; p< 0.05 was considered significant. Results: BC cells in contact with desmoplastic reaction presented a significantly lower NAD(P)H and FAD fluorescence lifetime. Furthermore, optical redox ratio was also lower in these tumor cells. Conclusion: Our results suggest that contact of BC cells with desmoplastic reaction increase their metabolic activity, which might explain the adverse prognosis of cases associated with higher peritumoral desmoplastic reaction.

  1. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    PubMed Central

    Lipowicz, Michelle; Garcia, Antonio

    2015-01-01

    The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays. PMID:28955016

  2. Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach.

    PubMed

    Masuo, Sadahiro; Sato, Wataru; Yamaguchi, Yuji; Suzuki, Mitsuharu; Nakayama, Ken-ichi; Yamada, Hiroko

    2015-05-01

    Recently, a unique 'photoprecursor approach' was reported as a new option to fabricate a p-i-n triple-layer organic photovoltaic device (OPV) through solution processes. By fabricating the p-i-n architecture using two kinds of photoprecursors and a [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as the donor and the acceptor, the p-i-n OPVs afforded a higher photovoltaic efficiency than the corresponding p-n devices and i-devices, while the photovoltaic efficiency of p-i-n OPVs depended on the photoprecursors. In this work, the charge transfer efficiency of the i-devices composed of the photoprecursors and PC71BM was investigated using high-sensitivity fluorescence microspectroscopy combined with a time-correlated single photon counting technique to elucidate the photovoltaic efficiency depending on the photoprecursors and the effects of the p-i-n architecture. The spatially resolved fluorescence images and fluorescence lifetime measurements clearly indicated that the compatibility of the photoprecursors with PC71BM influences the charge transfer and the photovoltaic efficiencies. Although the charge transfer efficiency of the i-device was quite high, the photovoltaic efficiency of the i-device was much lower than that of the p-i-n device. These results imply that the carrier generation and carrier transportation efficiencies can be increased by fabricating the p-i-n architecture.

  3. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device.

    PubMed

    Schlimpert, Susan; Flärdh, Klas; Buttner, Mark

    2016-02-28

    Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series.

  4. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  5. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device

    PubMed Central

    Schlimpert, Susan; Flärdh, Klas; Buttner, Mark

    2016-01-01

    Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series. PMID:26967231

  6. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.

  7. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert

    2012-10-01

    A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.

  8. Radiation sensitive area detection device and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  9. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  10. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  11. Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    PubMed

    Rome, Claire; Gravier, Julien; Morille, Marie; Divita, Gilles; Bolcato-Bellemin, Anne-Laure; Josserand, Véronique; Coll, Jean-Luc

    2013-01-01

    Noninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice.

  12. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  13. A simple microfluidic device for live cell imaging of Arabidopsis cotyledons, leaves, and seedlings.

    PubMed

    Vang, Shia; Seitz, Kati; Krysan, Patrick J

    2018-06-01

    One of the challenges of performing live-cell imaging in plants is establishing a system for securing the sample during imaging that allows for the rapid addition of treatments. Here we report how a commercially available device called a HybriWell ™ can be repurposed to create an imaging chamber suitable for Arabidopsis seedlings, cotyledons and leaves. Liquid in the imaging chamber can be rapidly exchanged to introduce chemical treatments via microfluidic passive pumping. When used in conjunction with fluorescent biosensors, this system can facilitate live-cell imaging studies of signal transduction pathways triggered by different treatments. As a demonstration, we show how the HybriWell can be used to monitor flg22-induced calcium transients using the R-GECO1 calcium indicator in detached Arabidopsis leaves.

  14. Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots

    PubMed Central

    Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio

    2010-01-01

    Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631

  15. A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.

    PubMed

    Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William C

    2016-01-01

    The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.

  16. Single cell magnetic imaging using a quantum diamond microscope

    PubMed Central

    Park, H.; Weissleder, R.; Yacoby, A.; Lukin, M. D.; Lee, H.; Walsworth, R. L.; Connolly, C. B.

    2015-01-01

    We apply a quantum diamond microscope to detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and two orders of magnitude larger field of view (~1 mm2) than previous NV imaging technologies, enabling practical applications. To illustrate, we quantify cancer biomarkers expressed by rare tumor cells in a large population of healthy cells. PMID:26098019

  17. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases

    PubMed Central

    Yang, Meng; Baranov, Eugene; Jiang, Ping; Sun, Fang-Xian; Li, Xiao-Ming; Li, Lingna; Hasegawa, Satoshi; Bouvet, Michael; Al-Tuwaijri, Maraya; Chishima, Takashi; Shimada, Hiroshi; Moossa, A. R.; Penman, Sheldon; Hoffman, Robert M.

    2000-01-01

    We have imaged, in real time, fluorescent tumors growing and metastasizing in live mice. The whole-body optical imaging system is external and noninvasive. It affords unprecedented continuous visual monitoring of malignant growth and spread within intact animals. We have established new human and rodent tumors that stably express very high levels of the Aequorea victoria green fluorescent protein (GFP) and transplanted these to appropriate animals. B16F0-GFP mouse melanoma cells were injected into the tail vein or portal vein of 6-week-old C57BL/6 and nude mice. Whole-body optical images showed metastatic lesions in the brain, liver, and bone of B16F0-GFP that were used for real time, quantitative measurement of tumor growth in each of these organs. The AC3488-GFP human colon cancer was surgically implanted orthotopically into nude mice. Whole-body optical images showed, in real time, growth of the primary colon tumor and its metastatic lesions in the liver and skeleton. Imaging was with either a trans-illuminated epifluorescence microscope or a fluorescence light box and thermoelectrically cooled color charge-coupled device camera. The depth to which metastasis and micrometastasis could be imaged depended on their size. A 60-μm diameter tumor was detectable at a depth of 0.5 mm whereas a 1,800-μm tumor could be visualized at 2.2-mm depth. The simple, noninvasive, and highly selective imaging of growing tumors, made possible by strong GFP fluorescence, enables the detailed imaging of tumor growth and metastasis formation. This should facilitate studies of modulators of cancer growth including inhibition by potential chemotherapeutic agents. PMID:10655509

  18. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability.

    PubMed

    Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E

    2009-06-01

    Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.

  19. Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux.

    PubMed

    Aarts, M P J; Rosemann, A L P

    2018-08-01

    For treating affective disorders like SAD, light therapy is used although the underlying mechanism explaining this success remains unclear. To accelerate the research on defining the light characteristics responsible for inducing a specific effect a uniform manner for specifying the irradiance at the eye should be defined. This allows a genuine comparison between light-affect studies. An important factor impacting the irradiance at the eye are the radiant characteristics of the used light therapy device. In this study the radiant fluxes of five different light therapy devices were measured. The values were weighted against the spectral sensitivity of the five photopigments present in the human eye. A measurement was taken every five minutes to control for a potential stabilizing effect. The results show that all five devices show large differences in radiant flux. The devices equipped with blue LED lights have a much lower spectral radiant flux than the devices equipped with a fluorescent light source or a white LED. The devices with fluorescent lamps needed 30 min to stabilize to a constant radiant flux. In this study only five devices were measured. Radiant flux is just the first step to identify uniform specifications for light therapy devices. It is recommended to provide all five α-opic radiant fluxes. Preferably, the devices should come with a spectral power distribution of the radiant flux. For the devices equipped with a fluorescent lamp it is recommended to provide information on the stabilization time. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Use of Panitumumab-IRDye800 to Image Microscopic Head and Neck Cancer in an Orthotopic Surgical Model

    PubMed Central

    Heath, C. Hope; Deep, Nicholas L.; Sweeny, Larissa; Zinn, Kurt R; Rosenthal, Eben L.

    2013-01-01

    Background Fluorescence imaging hardware (SPY) has recently been developed for intraoperative assessment of blood flow via detection of probes emitting in the near-infrared (NIR) spectrum. This study sought to determine if this imaging system was capable of detecting micrometastatic head and neck squamous cell carcinoma (HNSCC) in preclinical models. Methods A NIR fluorescent probe (IRDye800CW) was covalently linked to a monoclonal antibody targeting EGFR (panitumumab) or non-specific IgG. HNSCC flank (SCC-1) and orthotopic (FADU and OSC19) xenografts were imaged 48-96hrs following systemic injection of labeled panitumumab or IgG. The primary tumor and regional lymph nodes were dissected using fluorescence guidance with the SPY system and grossly assessed with a charge-coupled NIR system (Pearl). Histologic slides were also imaged with a NIR charged-coupled device (Odyssey) and fluorescence intensity was correlated with pathologic confirmation of disease. Results Orthotopic tongue tumors were clearly delineated from normal tissue with tumor-to-background ratios of 2.9(Pearl) and 2.3(SPY). Disease detection was significantly improved with panitumumab-IRDye compared to IgG-IRDye800 (P<0.05). Tissue biopsies (average size=3.7mm) positive for fluorescence were confirmed for pathologic disease by histology and immunohistochemistry (n=25/25). Biopsies of non-fluorescent tissue were proven to be negative for malignancy (n=28/28). The SPY was able to detect regional lymph node metastasis (<1.0mm) and microscopic areas of disease. Standard histological assessment in both frozen and paraffin-embedded histologic specimens was augmented using the Odyssey. Conclusions Panitumumab-IRDye800 may have clinical utility in detection and removal of microscopic HNSCC using existing intraoperative optical imaging hardware and may augment analysis of frozen and permanent pathology. PMID:22669455

  1. Active substrates improving sensitivity in biomedical fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2005-08-01

    Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.

  2. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model.

    PubMed

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-09-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer's principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer's principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer's principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality.

  3. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Laser fluorescence caries detection device. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries detection device. (a) Identification. A laser fluorescence caries detection device is a laser, a...

  4. Digital micromirror devices: principles and applications in imaging.

    PubMed

    Bansal, Vivek; Saggau, Peter

    2013-05-01

    A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.

  5. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    PubMed

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores. This flexibility and excitation accuracy is key to multicolour applications and future adaptation of the instrument to address the application requirements and newly emerging dyes.

  6. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    PubMed

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  7. A novel hNIS/tdTomato fusion reporter for visualizing the relationship between the cellular localization of sodium iodide symporter and its iodine uptake function under heat shock treatment.

    PubMed

    Yeom, Chan Joo; Chung, Taemoon; Youn, Hyewon; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2015-01-01

    The function of membrane-localized sodium iodide symporter (NIS) determines the efficacy of radioiodine therapy in thyroid cancer. Here, we describe a dual mode reporter fused with human NIS (hNIS) and a red fluorescent protein named tandem dimeric Tomato (tdTomato) for the in vitro and in vivo imaging of hNIS protein expression, localization, and iodide uptake function. Human cervical epithelial adenocarcinoma cell line (HeLa)-hNIS/tdTomato cells were established by transducing a fusion gene expressing hNIS/tdTomato under the control of a cytomegalovirus promoter. Fluorescence imaging, confocal microscopy, and an 125I uptake assay were performed to validate the integrity of the fusion protein. Actinomycin D and cycloheximide were used to block newly synthesized hNIS proteins. In vivo images were acquired using a gamma camera and a Maestro fluorescence imaging device. The fluorescence intensity of membrane-localized hNIS and 125I uptake both were increased after heat shock. Scintigraphy and fluorescence imaging indicated specific accumulation of the hNIS/tdTomato fusion protein in xenografted tumors, supporting the utility of this system for in vivo monitoring of hNIS expression and activity. We developed a novel hNIS/tdTomato dual mode reporter that enables visualization of the expression, localization, and iodine uptake function of hNIS in vitro and in vivo.

  8. Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy.

    PubMed

    Barton, Jennifer Kehlet; Guzman, Francisco; Tumlinson, Alexandre

    2004-01-01

    We develop a dual-modality device that combines the anatomical imaging capabilities of optical coherence tomography (OCT) with the functional capabilities of laser-induced fluorescence (LIF) spectroscopy. OCT provides cross-sectional images of tissue structure to a depth of up to 2 mm with approximately 10-microm resolution. LIF spectroscopy provides histochemical information in the form of emission spectra from a given tissue location. The OCT subsystem utilizes a superluminescent diode with a center wavelength of 1300 nm, whereas a helium cadmium laser provides the LIF excitation source at wavelengths of 325 and 442 nm. Preliminary data are obtained on eight postmortem aorta samples, each 10 mm in length. OCT images and LIF spectra give complementary information from normal and atherosclerotic portions of aorta wall. OCT images show structures such as intima, media, internal elastic lamina, and fibrotic regions. Emission spectra ratios of 520/490 (325-nm excitation) and 595/635 (442-nm excitation) could be used to identify normal and plaque regions with 97 and 91% correct classification rates, respectively. With miniaturization of the delivery probe and improvements in system speed, this dual-modality device could provide a valuable tool for identification and characterization of atherosclerotic plaques. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  9. Near-infrared optical imaging of nucleic acid nanocarriers in vivo

    PubMed Central

    Rome, Claire; Gravier, Julien; Morille, Marie; Divita, Gilles; Bolcato-Bellemin, Anne-Laure; Josserand, Véronique; Coll, Jean-Luc

    2013-01-01

    Summary Non-invasive, real time optical imaging methods are particularly well suited for the in vivo follow up of the distribution of nucleic acids nanocarriers, their dissociation and finally the resulting gene expression or inhibition. Indeed, most small animal imaging devices are performing bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid and cost effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks. Here we propose to help the reader choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for FRET assays, reporter genes as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules, and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice. PMID:23070763

  10. Laser induced fluorescence as a diagnostic tool integrated into a scanning fiber endoscope for mouse imaging

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Maggio-Price, Lillian; Seibel, Eric J.

    2007-02-01

    Scanning fiber endoscope (SFE) technology has shown promise as a minimally invasive optical imaging tool. To date, it is capable of capturing full-color 500-line images, at 15 Hz frame rate in vivo, as a 1.6 mm diameter endoscope. The SFE uses a singlemode optical fiber actuated at mechanical resonance to scan a light spot over tissue while backscattered or fluorescent light at each pixel is detected in time series using several multimode optical fibers. We are extending the capability of the SFE from a RGB reflectance imaging device to a diagnostic tool by imaging laser induced fluorescence (LIF) in tissue, allowing for correlation of endogenous fluorescence to tissue state. Design of the SFE for diagnostic imaging is guided by a comparison of single point spectra acquired from an inflammatory bowel disease (IBD) model to tissue histology evaluated by a pathologist. LIF spectra were acquired by illuminating tissue with a 405 nm light source and detecting intrinsic fluorescence with a multimode optical fiber. The IBD model used in this study was mdr1a-/- mice, where IBD was modulated by infection with Helicobacter bilis. IBD lesions in the mouse model ranged from mild to marked hyperplasia and dysplasia, from the distal colon to the cecum. A principle components analysis (PCA) was conducted on single point spectra of control and IBD tissue. PCA allowed for differentiation between healthy and dysplastic tissue, indicating that emission wavelengths from 620 - 650 nm were best able to differentiate diseased tissue and inflammation from normal healthy tissue.

  11. Novel fiber optic-based needle redox imager for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  12. Noninvasive and real-time monitoring of molecular targeting therapy for lymph node and peritoneal metastasis in nude mice bearing xenografts of human colorectal cancer cells tagged with GFP and DsRed

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hayao; Hara, Masayasu; Ikehara, Yuzuru; Tatematsu, Masae

    2007-02-01

    We have developed an in vivo imaging system consisting of GFP- and DsRed-tagged human colonic cancer cell line, which has peritoneal and lymph node metastatic potential and show high sensitivity to EGFR targeting drugs, and convenient detection devices for GFP and DsRed. The latter includes a small handy fluorescence detection device for external monitoring of the therapeutic effect of the drug and a convenient stereo fluorescent microscope for internal visualization of micrometastases. We applied this imaging system to investigate anti-metastatic effects of EGFR targeting drugs such as gefitinib (Iressa). This system allowed sensitive detection of the development of peritoneal and lymph node metastases from the micrometastasis stage at the cellular level and also permited noninvasive, non-anesthetic monitoring of anti-metastatic effect of the drug in an animal facility without any pretreatment. Significant decreases in the intraabdominal metastatic tumor growth and prevention of inguinal lymph node metastasis by gefitinib treatment could be clearly monitored. These results suggest that convenient, low-cost, true real-time monitoring of therapeutic effect using such a fluorescence-mediated whole body imaging system seems to enhance the speed of preclinical study for novel anti-cancer agents and will allow us to understand the action mechanism of molecular targeting drugs.

  13. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  14. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  15. Fluorescence diagnosis of upper respiratory tract infections

    NASA Astrophysics Data System (ADS)

    Blanco, Kate C.; Inada, Natalia M.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2015-06-01

    The pharyngitis and laryngitis are respiratory tract infections highly common. Pharyngitis can be accompanied by fever, especially if caused by a systemic infection. Laryngitis is an inflammation of your voice box (larynx) from irritation or infection. The conventional treatment is the antibiotics administration, which may be responsible by an increase of identification of bacterial strains resistant to drug. This fact associated to high incidence of these infections become important to develop new technologies for diagnosis. This study aims to evaluate the use of widefield fluorescence imaging for the characterization of oropharynx infections, in order to diagnose the bacteria colonization. The imaging system for wide field fluorescence visualization is Evince® (MMOptics, São Carlos, SP, Brazil) coupled to an Apple iPhone® cell phone device. The system consists of Light Emitting Diodes (LEDs) operating in the violet blue region centered at green-red spectrum 450 nm and optical filters that allow viewing of fluorescence. A tongue depressor was adapted to Evince® for mouth opening. The same images were captured with white light and fluorescence with an optical system. The red fluorescence may be a bacterial marker for physiological monitoring of oropharynx infection processes. The bacterial biofilm on tissue were assigned to the presence of protoporphyrin IX. This work indicates that the autofluorescence of the tissue may be used as a non-invasive technique to aid in the oropharynx infection diagnostic.

  16. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope.

    PubMed

    Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C

    2015-10-01

    Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.

  17. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2015-10-01

    Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.

  18. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.

    1999-01-01

    Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.

  19. Alstonine as a potential fluorescent marker for tiny tumor detection and imaging

    NASA Astrophysics Data System (ADS)

    Viallet, Pierre M.; Vo-Dinh, Tuan; Salmon, Jean-Marie; Watts, Wendi; Rocchi, Emmanuelle; Isola, Narayana R.; Rebillard, Xavier

    1997-06-01

    3,4,5,6,16,17-Hexadehydro-16-(methoxycarbolyl)-19(alpha) - methyl-20(alpha) -oxyohimbanium (alstonine) is a fluorescent alcaloid which is known to stain tumor cells more efficiently than normal. The interactions between alstonine and biological macromolecules were first investigated to provide the rationale for preferential labelling. Molecular filtration and spectrosfluorometric techniques with different macromolecules and isopolynucleotides have demonstrated that binding occurs only in the presence of uridyl rings. For the binding affect only the fluorescence intensity of alstonine it can be assumed that it involves only the side chain of the fluorescent compound. The capability for preferential staining was verified in culture using SK-OV-3 cells and rat hepatocarcinoma cells as tumor cells and Mouse fibroblasts or rat liver cells as controls. Techniques of image analysis have demonstrated the efficiency of cellular labelling even in aggregates of rat hepatocarcinoma. These experiments lead the way to the detection of tiny tumors developed on thin visceral walls, using a fiber optic device.

  20. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D. G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  1. Single LED-based device to perform widefield fluorescence imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Grecco, Clovis; Buzzá, Hilde H.; Stringasci, Mirian D.; Andrade, Cintia T.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Zanchin, Anderson L.; Tuboy, Aparecida M.; Bagnato, Vanderlei S.

    2015-06-01

    Photodynamic therapy (PDT) is a treatment modality that can be indicated for several cancer types and pre-cancer lesions. One of the main applications of PDT is the treatment of superficial skin lesions such as basal cell carcinoma, Bowen's disease and actinic keratosis. Three elements are necessary in PDT, a photosensitizer (PS); light at specific wavelength to be absorbed by the PS, and molecular oxygen. A typical PS used for skin lesion is protoporphyrin IX (PpIX), which is an intrinsic PS; its production is stimulated by a pro-drug, such as 5-aminolevulinic acid (ALA). Before starting a treatment, it is very important to follow up the PpIX production (to ensure that enough PS was produced prior to a PDT application) and, during a PDT session, to monitor its photodegradation (as it is evidence of the photodynamic effect taking place). The aim of this paper is to present a unique device, LINCE (MMOptics - São Carlos, Brazil), that brings together two probes that can, respectively, allow for fluorescence imaging and work as a light source for PDT treatment. The fluorescence probe of the system is optically based on 400 nm LED (light emitting diodes) arrays that allow observing the fluorescence emission over 450 nm. The PDT illumination probe options are constituted of 630 nm LED arrays for small areas and, for large areas, of both 630 nm and 450 nm LED arrays. Joining both functions at the same device makes PDT treatment simpler, properly monitorable and, hence, more clinically feasible. LINCE has been used in almost 1000 PDT treatments of superficial skin lesions in Brazil, with 88.4% of clearance of superficial BCC.

  2. Portable real-time fluorescence cytometry of microscale cell culture analog devices

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.

    2006-02-01

    A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.

  3. High sensitivity optical molecular imaging system

    NASA Astrophysics Data System (ADS)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  4. A Novel Imaging System Distinguishes Neoplastic from Normal Tissue During Resection of Soft Tissue Sarcomas and Mast Cell Tumors in Dogs.

    PubMed

    Bartholf DeWitt, Suzanne; Eward, William C; Eward, Cindy A; Lazarides, Alexander L; Whitley, Melodi Javid; Ferrer, Jorge M; Brigman, Brian E; Kirsch, David G; Berg, John

    2016-08-01

    To assess the ability of a novel imaging system designed for intraoperative detection of residual cancer in tumor beds to distinguish neoplastic from normal tissue in dogs undergoing resection of soft tissue sarcoma (STS) and mast cell tumor (MCT). Non-randomized prospective clinical trial. 12 dogs with STS and 7 dogs with MCT. A fluorescent imaging agent that is activated by proteases in vivo was administered to the dogs 4-6 or 24-26 hours before tumor resection. During surgery, a handheld imaging device was used to measure fluorescence intensity within the cancerous portion of the resected specimen and determine an intensity threshold for subsequent identification of cancer. Selected areas within the resected specimen and tumor bed were then imaged, and biopsies (n=101) were obtained from areas that did or did not have a fluorescence intensity exceeding the threshold. Results of intraoperative fluorescence and histology were compared. The imaging system correctly distinguished cancer from normal tissue in 93/101 biopsies (92%). Using histology as the reference, the sensitivity and specificity of the imaging system for identification of cancer in biopsies were 92% and 92%, respectively. There were 10/19 (53%) dogs which exhibited transient facial erythema soon after injection of the imaging agent which responded to but was not consistently prevented by intravenous diphenhydramine. A fluorescence-based imaging system designed for intraoperative use can distinguish canine soft tissue sarcoma (STS) and mast cell tumor (MCT) tissue from normal tissue with a high degree of accuracy. The system has potential to assist surgeons in assessing the adequacy of tumor resections during surgery, potentially reducing the risk of local tumor recurrence. Although responsive to antihistamines, the risk of hypersensitivity needs to be considered in light of the potential benefits of this imaging system in dogs. © Copyright 2016 by The American College of Veterinary Surgeons.

  5. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer.

    PubMed

    Toh, U; Iwakuma, N; Mishima, M; Okabe, M; Nakagawa, S; Akagi, Y

    2015-09-01

    A new sensitive fluorescence imaging system was developed for the real-time identification of sentinel lymph nodes (SLNs) in patients with early breast cancer. The purpose of this study was to evaluate the utility of a color charge-coupled device camera system for the intraoperative detection of SLNs and to determine its clinical efficacy and sensitivity in patients with operable breast cancer. We assessed a total of 168 patients diagnosed with or suspected of having early-stage breast cancer without metastasis in SLNs. The intraoperative detection of SLNs was performed using the conventional Indigo Carmine dye (indigotindisulfonate sodium) technique combined with a new Indocyanine green (ICG) imaging system (HyperEye Medical System: HEMS, MIZUHO IKAKOGYO, Japan) to map SLNs, in which the lymphatic vessels and SLNs were visualized transcutaneously with illuminating ICG fluorescence. Between January 2012 and May 2013, SLNs were successfully identified in all 168 patients (detection rate: 100%). By histopathology, the sensitivity was 93.8% for the detection of the metastatic involvement of SLNs (15 of 16 nodal-positive patients). After a median follow-up of 30.5 months, none of the patients presented with axillary recurrence. These results suggest that the HEMS imaging system is a feasible and effective method for the detection of SLNs in breast cancer. Furthermore, the HEMS device permitted the transcutaneous visualization of lymphatic vessels under light conditions, thus facilitating the identification and detection of SLNs without affecting the surgical procedure, together with a high sensitivity and specificity.

  6. Particle velocity measurements with macroscopic fluorescence imaging in lymph tissue mimicking microfluidic phantoms

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.

    2011-03-01

    Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.

  7. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model

    PubMed Central

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer’s principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer’s principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer’s principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality. PMID:27699092

  8. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries... fluorescence detector housed in a dental handpiece, and a control console that performs device calibration, as...

  9. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries... fluorescence detector housed in a dental handpiece, and a control console that performs device calibration, as...

  10. Fluorescence-guided surgery for cancer patients: a proof of concept study on human xenografts in mice and spontaneous tumors in pets

    PubMed Central

    Mery, Eliane; Golzio, Muriel; Guillermet, Stephanie; Lanore, Didier; Naour, Augustin Le; Thibault, Benoît; Tilkin-Mariamé, Anne Françoise; Bellard, Elizabeth; Delord, Jean Pierre; Querleu, Denis; Ferron, Gwenael; Couderc, Bettina

    2017-01-01

    Surgery is often the first treatment option for patients with cancer. Patient survival essentially depends on the completeness of tumor resection. This is a major challenge, particularly in cases of peritoneal carcinomatosis, where tumors are widely disseminated in the large peritoneal cavity. Any development to help surgeons visualize these residual cells would improve the completeness of the surgery. For non-disseminated tumors, imaging could be used to ensure that the tumor margins and the draining lymph nodes are free of tumor deposits. Near-infrared fluorescence imaging has been shown to be one of the most convenient imaging modalities. Our aim was to evaluate the efficacy of a near-infrared fluorescent probe targeting the αvβ3 integrins (Angiostamp™) for intraoperative detection of tumors using the Fluobeam® device. We determined whether different human tumor nodules from various origins could be detected in xenograft mouse models using both cancer cell lines and patient-derived tumor cells. We found that xenografts could be imaged by fluorescent staining irrespective of their integrin expression levels. This suggests imaging of the associated angiogenesis of the tumor and a broader potential utilization of Angiostamp™. We therefore performed a veterinary clinical trial in cats and dogs with local tumors or with spontaneous disseminated peritoneal carcinomatosis. Our results demonstrate that the probe can specifically visualize both breast and ovarian nodules, and suggest that Angiostamp™ is a powerful fluorescent contrast agent that could be used in both human and veterinary clinical trials for intraoperative detection of tumors. PMID:29312629

  11. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing.

    PubMed

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-08-21

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800-850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM.

  12. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing

    PubMed Central

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-01-01

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800–850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM. PMID:23997934

  13. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  14. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  15. Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool to assess plaque accumulation and enamel demineralization in orthodontics.

    PubMed

    Miller, Cara C; Burnside, Girvan; Higham, Susan M; Flannigan, Norah L

    2016-11-01

      To assess the use of Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool during orthodontic treatment.   In this prospective, randomized clinical trial, 33 patients undergoing fixed orthodontic appliance treatment were randomly allocated to receive oral hygiene reinforcement at four consecutive appointments using either white light (WL) or Quantitative Light-induced Fluorescence-Digital (QLF) images, taken with a device, as visual aids. Oral hygiene was recorded assessing the QLF images for demineralization, by fluorescence loss (ΔF), and plaque coverage (ΔR30). A debriefing questionnaire ascertained patient perspectives.   There were no significant differences in demineralization (P  =  .56) or plaque accumulation (P  =  .82) between the WL and QLF groups from T0 to T4. There was no significant reduction in demineralization, ΔF, in the WL, or the QLF group from T0-T4 (P > .05); however, there was a significant reduction in ΔR30 plaque scores (P < .05). All the participants found being shown the images helpful, with 100% of the QLF group reflecting that it would be useful to have oral hygiene reinforcement for the full duration of treatment compared with 81% of the WL group (OR 2.3; P < .05).   Quantitative Light-induced Fluorescence-Digital can be used to detect and monitor demineralization and plaque during orthodontics. Oral hygiene reinforcement at consecutive appointments using WL or QLF images as visual aids is effective in reducing plaque coverage. In terms of clinical benefits, QLF and WL images are of similar effectiveness; however, patients preferred the QLF images.

  16. Determining the Performance of Fluorescence Molecular Imaging Devices using Traceable Working Standards with SI Units of Radiance

    PubMed Central

    Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni

    2017-01-01

    To date, no emerging preclinical or clinical near-infrared fluorescence (NIRF) imaging devices for non-invasive and/or surgical guidance have their performances validated on working standards with SI units of radiance that enable comparison or quantitative quality assurance. In this work, we developed and deployed a methodology to calibrate a stable, solid phantom for emission radiance with units of mW · sr−1 · cm−2 for use in characterizing the measurement sensitivity of ICCD and IsCMOS detection, signal-to-noise ratio, and contrast. In addition, at calibrated radiances, we assess transverse and lateral resolution of ICCD and IsCMOS camera systems. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS camera system and superior resolution of the IsCMOS over the ICCD camera system. Contrast depended upon the camera settings (binning and integration time) and gain of intensifier. Finally, because of architecture of CMOS and CCD camera systems resulting in vastly different performance, we comment on the utility of these systems for small animal imaging as well as clinical applications for non-invasive and surgical guidance. PMID:26552078

  17. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.

    PubMed

    Rangel-Fonseca, Piero; Gómez-Vieyra, Armando; Malacara-Hernández, Daniel; Wilson, Mario C; Williams, David R; Rossi, Ethan A

    2013-12-01

    Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.

  19. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

    PubMed Central

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I.C.O; Artigas, David; Loza-Alvarez, Pablo

    2011-01-01

    We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599

  20. Deployment of a Prototype Plant GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project.

    PubMed

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Braham, Stephen; Neron, Philip; Murdoch, Trevor; Graham, Thomas; Ferl, Robert J

    2008-04-18

    The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP) as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG) an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.

  1. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone.

    PubMed

    Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Zhu, Debin; Dai, Jiaxing; Zheng, Minshi

    2018-02-15

    The rapid detection of antibiotic residual in everyday life is very important for food safety. In order to realize the on-site and visual detection of antibiotic, a POCT method was established by using digital image colorimetry based on smartphone. Streptomycin was taken as the analyte model of antibiotics, streptomycin aptamer preferentially recognized analyte, and the excess aptamer hybridized with the complementary DNA to form the dsDNA. SYBR Green I combined with the dsDNA and then emitted obvious green fluorescence, thus the fluorescence intensity decreased with the increasing of streptomycin concentration. Then a smartphone-based device was constructed as the fluorescence readout. The smartphone camera acquired the images of the fluorescence derived from the samples, and the Touch Color APP installed in smartphone read out the RGB values of the images. There was a linear relationship between the G values and the streptomycin concentrations in the range of 0.1-100µM. The detection limit was 94nM, which was lower than the maximum residue limit defined by World Health Organization. The POCT method was applied for determining streptomycin in chicken and milk samples with recoveries in 94.1-110%. This method had the advantages of good selectivity, simple operation and on-site visualization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Kyung oh; Biomedical Sciences, Seoul National University College of Medicine; Cancer Research Institute, Seoul National University College of Medicine

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescencemore » signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.« less

  3. Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection

    NASA Astrophysics Data System (ADS)

    Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan

    2013-05-01

    There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface. The fluorescence of these detection arrays is imaged using a simple set-up based on a digital consumer camera. Image processing for spot detection and intensity calculation is accomplished using customized software. Using this combined TIRF excitation and imaging based detection approach allowes for effective suppression of background fluorescence from the sample, multiplexed detection in an array format, as well as internal calibration and background correction.

  4. A solution-based single-molecule study of surface-bound PBIs: solvent-mediated environmental effects on molecular flexibility.

    PubMed

    Lee, Ji-Eun; Han, Ye Ri; Ham, Sujin; Jun, Chul-Ho; Kim, Dongho

    2017-11-08

    We have investigated the fundamental photophysical properties of surface-bound perylene bisimide (PBI) molecules in a solution-phase at the single-molecule level. By efficient immobilization of single PBIs on glass, we were able to simultaneously monitor fluorescence intensity trajectories, fluorescence lifetimes, and emission spectra of individual PBIs in organic and aqueous media using confocal microscopy. We showed that the fluorescence dynamics of single PBIs in the solution phase is highly dependent on their local and chemical environments. Furthermore, we visualized different spatial-fluctuations of surface-bound PBIs using defocused wide-field imaging. While PBIs show more steric flexibility in organic media, the flexible motion of PBI molecules in aqueous solution is relatively prohibited due to a cage effect by a hydrogen bonding network, which is previously unobserved. Our method opens up a new possibility to investigate the photophysical properties of multi-chromophoric systems in various solvents at the single-molecule level for developing optimal molecular devices such as water-proof devices.

  5. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.

    PubMed

    Stockwell, Simon R; Mittnacht, Sibylle

    2014-12-16

    Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software(1) to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.

  6. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.

    PubMed

    Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang

    2011-07-10

    We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America

  7. Hyperspectral imaging technique for detection of poultry fecal residues on food processing equipments

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan; Kim, Moon S.; Chen, Yud-Ren

    2005-11-01

    Emerging concerns about safety and security in current mass production of food products necessitate rapid and reliable inspection for contaminant-free products. Diluted fecal residues on poultry processing plant equipment surface, not easily discernable from water by human eye, are contamination sources for poultry carcasses. Development of sensitive detection methods for fecal residues is essential to ensure safe production of poultry carcasses. Hyperspectral imaging techniques have shown good potential for detecting of the presence of fecal and other biological substances on food and processing equipment surfaces. In this study, use of high spatial resolution hyperspectral reflectance and fluorescence imaging (with UV-A excitation) is presented as a tool for selecting a few multispectral bands to detect diluted fecal and ingesta residues on materials used for manufacturing processing equipment. Reflectance and fluorescence imaging methods were compared for potential detection of a range of diluted fecal residues on the surfaces of processing plant equipment. Results showed that low concentrations of poultry feces and ingesta, diluted up to 1:100 by weight with double distilled water, could be detected using hyperspectral fluorescence images with an accuracy of 97.2%. Spectral bands determined in this study could be used for developing a real-time multispectral inspection device for detection of harmful organic residues on processing plant equipment.

  8. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  9. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  10. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II)

    PubMed Central

    Marcinkiewicz, Cezary; Li, Jie; Shiloh, Aaron O; Sternberg, Mark

    2017-01-01

    The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100–10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device. PMID:29200855

  11. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

    PubMed

    Slusarewicz, Paul; Pagano, Stefanie; Mills, Christopher; Popa, Gabriel; Chow, K Martin; Mendenhall, Michael; Rodgers, David W; Nielsen, Martin K

    2016-07-01

    Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  12. Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Deal, Joshua; Hill, Shante; Martin, Will A.; Lall, Malvika; Lopez, Carmen; Rider, Paul F.; Rich, Thomas C.; Boudreaux, Carole W.

    2018-02-01

    Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices - likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data, but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.

  13. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  14. Assessment of a handheld fluorescence imaging device as a visual-aid for detection of food residues on processing surfaces

    USDA-ARS?s Scientific Manuscript database

    Contamination of food with pathogenic bacteria can lead to foodborne illnesses. Food processing surfaces can serve as a medium for cross-contamination if sanitization procedures are inadequate. Ensuring that food processing surfaces are correctly cleaned and sanitized is important in the food indust...

  15. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  16. Imaging of Lymph Flow in Breast Cancer Patients after Microdose Administration of a Near-Infrared Fluorophore: Feasibility Study1

    PubMed Central

    Sevick-Muraca, Eva M.; Sharma, Ruchi; Rasmussen, John C.; Marshall, Milton V.; Wendt, Juliet A.; Pham, Hoang Q.; Bonefas, Elizabeth; Houston, Jessica P.; Sampath, Lakshmi; Adams, Kristen E.; Blanchard, Darlene Kay; Fisher, Ronald E.; Chiang, Stephen B.; Elledge, Richard; Mawad, Michel E.

    2011-01-01

    Purpose To prospectively demonstrate the feasibility of using indocyanine green, a near-infrared (NIR) fluorophore at the minimum dose needed for noninvasive optical imaging of lymph nodes (LNs) in breast cancer patients undergoing sentinel lymph node mapping (SLNM). Materials and Methods Informed consent was obtained from 24 women (age range, 30–85 years) who received intradermal subcutaneous injections of 0.31–100 μg indocyanine green in the breast in this IRB-approved, HIPAA-compliant, dose escalation study to find the minimum microdose for imaging. The breast, axilla, and sternum were illuminated with NIR light and the fluorescence generated in the tissue was collected with an NIR-sensitive intensified charged-coupled device. Lymphoscintigraphy was also performed. Resected LNs were evaluated for the presence of radioactivity, blue dye accumulation, and fluorescence. The associations between the resected LNs that were fluorescent and (a) the time elapsed between NIR fluorophore administration and resection and (b) the dosage of NIR fluorophores were tested with the Spearman rank and Pearson product moment correlation tests, respectively. Results Lymph imaging consistently failed with indocyanine green microdosages between 0.31 and 0.77 μg. When indocyanine green dosages were 10 μg or higher, lymph drainage pathways from the injection site to LNs were imaged in eight of nine women; lymph propulsion was observed in seven of those eight. When propulsion in the breast and axilla regions was present, the mean apparent velocities ranged from 0.08 to 0.32 cm/sec, the time elapsed between “packets” of propelled fluid varied from 14 to 92 seconds. In patients who received 10 μg of indocyanine green or more, a weak negative correlation between the fluorescence status of resected LNs and the time between NIR fluorophore administration and LN resection was found. No statistical association was found between the fluorescence status of resected LNs and the dose of NIR fluorophore. Conclusion NIR fluorescence imaging of lymph function and LNs is feasible in humans at microdoses that would be needed for future molecular imaging of cancer-positive LNs. PMID:18223125

  17. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  18. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE PAGES

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  19. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  20. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2012-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings.

  1. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings. PMID:23990697

  2. Computed Tomography-guided Time-domain Diffuse Fluorescence Tomography in Small Animals for Localization of Cancer Biomarkers

    PubMed Central

    Tichauer, Kenneth M.; Holt, Robert W.; Samkoe, Kimberley S.; El-Ghussein, Fadi; Gunn, Jason R.; Jermyn, Michael; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W.

    2012-01-01

    Small animal fluorescence molecular imaging (FMI) can be a powerful tool for preclinical drug discovery and development studies1. However, light absorption by tissue chromophores (e.g., hemoglobin, water, lipids, melanin) typically limits optical signal propagation through thicknesses larger than a few millimeters2. Compared to other visible wavelengths, tissue absorption for red and near-infrared (near-IR) light absorption dramatically decreases and non-elastic scattering becomes the dominant light-tissue interaction mechanism. The relatively recent development of fluorescent agents that absorb and emit light in the near-IR range (600-1000 nm), has driven the development of imaging systems and light propagation models that can achieve whole body three-dimensional imaging in small animals3. Despite great strides in this area, the ill-posed nature of diffuse fluorescence tomography remains a significant problem for the stability, contrast recovery and spatial resolution of image reconstruction techniques and the optimal approach to FMI in small animals has yet to be agreed on. The majority of research groups have invested in charge-coupled device (CCD)-based systems that provide abundant tissue-sampling but suboptimal sensitivity4-9, while our group and a few others10-13 have pursued systems based on very high sensitivity detectors, that at this time allow dense tissue sampling to be achieved only at the cost of low imaging throughput. Here we demonstrate the methodology for applying single-photon detection technology in a fluorescence tomography system to localize a cancerous brain lesion in a mouse model. The fluorescence tomography (FT) system employed single photon counting using photomultiplier tubes (PMT) and information-rich time-domain light detection in a non-contact conformation11. This provides a simultaneous collection of transmitted excitation and emission light, and includes automatic fluorescence excitation exposure control14, laser referencing, and co-registration with a small animal computed tomography (microCT) system15. A nude mouse model was used for imaging. The animal was inoculated orthotopically with a human glioma cell line (U251) in the left cerebral hemisphere and imaged 2 weeks later. The tumor was made to fluoresce by injecting a fluorescent tracer, IRDye 800CW-EGF (LI-COR Biosciences, Lincoln, NE) targeted to epidermal growth factor receptor, a cell membrane protein known to be overexpressed in the U251 tumor line and many other cancers18. A second, untargeted fluorescent tracer, Alexa Fluor 647 (Life Technologies, Grand Island, NY) was also injected to account for non-receptor mediated effects on the uptake of the targeted tracers to provide a means of quantifying tracer binding and receptor availability/density27. A CT-guided, time-domain algorithm was used to reconstruct the location of both fluorescent tracers (i.e., the location of the tumor) in the mouse brain and their ability to localize the tumor was verified by contrast-enhanced magnetic resonance imaging. Though demonstrated for fluorescence imaging in a glioma mouse model, the methodology presented in this video can be extended to different tumor models in various small animal models potentially up to the size of a rat17. PMID:22847515

  3. Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers.

    PubMed

    Tichauer, Kenneth M; Holt, Robert W; Samkoe, Kimberley S; El-Ghussein, Fadi; Gunn, Jason R; Jermyn, Michael; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W

    2012-07-17

    Small animal fluorescence molecular imaging (FMI) can be a powerful tool for preclinical drug discovery and development studies. However, light absorption by tissue chromophores (e.g., hemoglobin, water, lipids, melanin) typically limits optical signal propagation through thicknesses larger than a few millimeters. Compared to other visible wavelengths, tissue absorption for red and near-infrared (near-IR) light absorption dramatically decreases and non-elastic scattering becomes the dominant light-tissue interaction mechanism. The relatively recent development of fluorescent agents that absorb and emit light in the near-IR range (600-1000 nm), has driven the development of imaging systems and light propagation models that can achieve whole body three-dimensional imaging in small animals. Despite great strides in this area, the ill-posed nature of diffuse fluorescence tomography remains a significant problem for the stability, contrast recovery and spatial resolution of image reconstruction techniques and the optimal approach to FMI in small animals has yet to be agreed on. The majority of research groups have invested in charge-coupled device (CCD)-based systems that provide abundant tissue-sampling but suboptimal sensitivity, while our group and a few others have pursued systems based on very high sensitivity detectors, that at this time allow dense tissue sampling to be achieved only at the cost of low imaging throughput. Here we demonstrate the methodology for applying single-photon detection technology in a fluorescence tomography system to localize a cancerous brain lesion in a mouse model. The fluorescence tomography (FT) system employed single photon counting using photomultiplier tubes (PMT) and information-rich time-domain light detection in a non-contact conformation. This provides a simultaneous collection of transmitted excitation and emission light, and includes automatic fluorescence excitation exposure control, laser referencing, and co-registration with a small animal computed tomography (microCT) system. A nude mouse model was used for imaging. The animal was inoculated orthotopically with a human glioma cell line (U251) in the left cerebral hemisphere and imaged 2 weeks later. The tumor was made to fluoresce by injecting a fluorescent tracer, IRDye 800CW-EGF (LI-COR Biosciences, Lincoln, NE) targeted to epidermal growth factor receptor, a cell membrane protein known to be overexpressed in the U251 tumor line and many other cancers. A second, untargeted fluorescent tracer, Alexa Fluor 647 (Life Technologies, Grand Island, NY) was also injected to account for non-receptor mediated effects on the uptake of the targeted tracers to provide a means of quantifying tracer binding and receptor availability/density. A CT-guided, time-domain algorithm was used to reconstruct the location of both fluorescent tracers (i.e., the location of the tumor) in the mouse brain and their ability to localize the tumor was verified by contrast-enhanced magnetic resonance imaging. Though demonstrated for fluorescence imaging in a glioma mouse model, the methodology presented in this video can be extended to different tumor models in various small animal models potentially up to the size of a rat.

  4. An intraoperative spectroscopic imaging system for quantification of Protoporphyrin IX during glioma surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Angulo-Rodríguez, Leticia M.; Laurence, Audrey; Jermyn, Michael; Sheehy, Guillaume; Sibai, Mira; Petrecca, Kevin; Roberts, David W.; Paulsen, Keith D.; Wilson, Brian C.; Leblond, Frédéric

    2016-03-01

    Cancer tissue often remains after brain tumor resection due to the inability to detect the full extent of cancer during surgery, particularly near tumor boundaries. Commercial systems are available for intra-operative real-time aminolevulenic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence imaging. These are standard white-light neurosurgical microscopes adapted with optical components for fluorescence excitation and detection. However, these instruments lack sensitivity and specificity, which limits the ability to detect low levels of PpIX and distinguish it from tissue auto-fluorescence. Current systems also cannot provide repeatable and un-biased quantitative fluorophore concentration values because of the unknown and highly variable light attenuation by tissue. We present a highly sensitive spectroscopic fluorescence imaging system that is seamlessly integrated onto a neurosurgical microscope. Hardware and software were developed to achieve through-microscope spatially-modulated illumination for 3D profilometry and to use this information to extract tissue optical properties to correct for the effects of tissue light attenuation. This gives pixel-by-pixel quantified fluorescence values and improves detection of low PpIX concentrations. This is achieved using a high-sensitivity Electron Multiplying Charge Coupled Device (EMCCD) with a Liquid Crystal Tunable Filter (LCTF) whereby spectral bands are acquired sequentially; and a snapshot camera system with simultaneous acquisition of all bands is used for profilometry and optical property recovery. Sensitivity and specificity to PpIX is demonstrated using brain tissue phantoms and intraoperative human data acquired in an on-going clinical study using PpIX fluorescence to guide glioma resection.

  5. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

    PubMed Central

    Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.

    2014-01-01

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513

  6. Cell-phone-based platform for biomedical device development and education applications.

    PubMed

    Smith, Zachary J; Chu, Kaiqin; Espenson, Alyssa R; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-03-02

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350x microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150 x 50 with no image processing, and approximately 350 x 350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field.

  7. Cell-Phone-Based Platform for Biomedical Device Development and Education Applications

    PubMed Central

    Smith, Zachary J.; Chu, Kaiqin; Espenson, Alyssa R.; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M.; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-01-01

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350× microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150×150 with no image processing, and approximately 350×350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field. PMID:21399693

  8. Paper-polymer composite devices with minimal fluorescence background.

    PubMed

    Wang, Chang-Ming; Chen, Chong-You; Liao, Wei-Ssu

    2017-04-22

    Polymer film incorporated paper-based devices show advantages in simplicity and rugged backing. However, their applications are restricted by the high fluorescence background interference of conventional laminating pouches. Herein, we report a straightforward approach for minimal fluorescence background device fabrication, in which filter paper was shaped and laminated in between two biaxially oriented polypropylene (OPP) and polyvinyl butyral (PVB) composite films. This composite film provides mechanical strength for enhanced device durability, protection from environmental contamination, and prevents reagent degradation. This approach was tested by the determination of copper ions with a fluorescent probe, while the detection of glucose was used to illustrate the improved device durability. Our results show that lamination by the polymer composite lengthens device lifetime, while allowing for fluorescence detection methods combination with greatly reduced fluorescent background widely present in commercially available lamination pouches. By the combination of rapid device prototyping with low cost materials, we believe that this composite design would further expand the potential of paper-based devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Confocal microendoscopy: Characterization of imaging bundles, fluorescent contrast agents, and early clinical results

    NASA Astrophysics Data System (ADS)

    Udovich, Joshua Anthony

    Ovarian cancer is the fifth leading cause of cancer related deaths among women. Early detection improves the chances of survival following diagnosis, and new imaging modalities have the potential to reduce deaths due to this disease. The confocal microendoscope (CME) is a non-destructive in-vivo imaging device for visualization of the ovaries that operates in real-time. Two components of the CME system are evaluated in this paper, and initial results from an ongoing clinical trial are presented. Fiber-optic imaging bundles are used in the CME imaging catheter to relay images over distances of up to 20 feet. When detecting fluorescent signals from investigated tissue, any fluorescence in the system can potentially reduce contrast in images. The emission and transmission properties of three commercially available fiber optic imaging bundles were evaluated. Emission maps of fluorescence from bundles were generated at multiple excitation wavelengths to determine the profile and amount of fluorescence present in bundles manufactured by Sumitomo, Fujikura, and Schott. Results are also presented that show the variation of transmittance as a function of illumination angle in these bundles. Users of high-resolution fiber-optic imaging bundles should be aware of these properties and take them into account during system design. Contrast is improved in images obtained with the CME through the application of topical dyes. Acridine orange (AO) and SYTO 16 are two fluorescent stains that are used to show the size, shape, and distribution of cell nuclei. Unfortunately, little is known about the effects of these dyes on living tissues. This study was undertaken to evaluate the effects of dye treatment on peritoneal tissues in mice. Seventy-five Balb/c mice were split into five groups of fifteen and given peritoneal injections of dye or saline. The proportions of negative outcomes for the control and test groups were compared using confidence intervals and the Fisher's exact test. No significant difference was determined between the groups. These data provide preliminary results on determining the effect of these dyes on living tissues. Preliminary results of a clinical trial are presented showing in-vivo use of the CME for imaging of the ovaries. This is the first portion of a two part study to demonstrate the clinical diagnosis potential of the CME system. A mobile version of the bench-top CME was modified to be used in the clinic. Fluorescein sodium is used as an initial contrast agent in these studies to demonstrate fluorescence imaging. Twenty patients were successfully imaged, and results of this study have allowed progression to a clinical validation study showing the diagnostic capabilities of the CME.

  10. Confocal Microscopy Imaging with an Optical Transition Edge Sensor

    NASA Astrophysics Data System (ADS)

    Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.

    2018-05-01

    Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.

  11. Multistep fluorescence gated proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Weisskopf, Martin C.

    1990-01-01

    A proportional counter is introduced in which the levels of energy and spatial resolutions and background rejection permit the application of the device to X-ray astronomy. A multistep approach is employed in which photons cause a signal that triggers the system and measures the energy of the incident photon. The multistep approach permits good energy resolution from parallel geometry and from the imaging stage due to coupling of the imaging and amplification stages. The design also employs fluorescence gating to reduce background, a method that is compatible with the multistep technique. Use of the proportional counter is reported for NASA's supernova campaign, and the pair background is below 0.0001 counts/sq cm sec keV at the xenon k-edge. Potential improvements and applications are listed including the CASES, POF, and EXOSS mission programs.

  12. Multispectral, Fluorescent and Photoplethysmographic Imaging for Remote Skin Assessment

    PubMed Central

    Spigulis, Janis

    2017-01-01

    Optical tissue imaging has several advantages over the routine clinical imaging methods, including non-invasiveness (it does not change the structure of tissues), remote operation (it avoids infections) and the ability to quantify the tissue condition by means of specific image parameters. Dermatologists and other skin experts need compact (preferably pocket-size), self-sustaining and easy-to-use imaging devices. The operational principles and designs of ten portable in-vivo skin imaging prototypes developed at the Biophotonics Laboratory of Institute of Atomic Physics and Spectroscopy, University of Latvia during the recent five years are presented in this paper. Four groups of imaging devices are considered. Multi-spectral imagers offer possibilities for distant mapping of specific skin parameters, thus facilitating better diagnostics of skin malformations. Autofluorescence intensity and photobleaching rate imagers show a promising potential for skin tumor identification and margin delineation. Photoplethysmography video-imagers ensure remote detection of cutaneous blood pulsations and can provide real-time information on cardiovascular parameters and anesthesia efficiency. Multimodal skin imagers perform several of the abovementioned functions by taking a number of spectral and video images with the same image sensor. Design details of the developed prototypes and results of clinical tests illustrating their functionality are presented and discussed. PMID:28534815

  13. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.

    PubMed

    Shah, Kamal G; Singh, Vidhi; Kauffman, Peter C; Abe, Koji; Yager, Paul

    2018-05-14

    Paper-based diagnostic tests based on the lateral flow immunoassay concept promise low-cost, point-of-care detection of infectious diseases, but such assays suffer from poor limits of detection. One factor that contributes to poor analytical performance is a reliance on low-contrast chromophoric optical labels such as gold nanoparticles. Previous attempts to improve the sensitivity of paper-based diagnostics include replacing chromophoric labels with enzymes, fluorophores, or phosphors at the expense of increased fluidic complexity or the need for device readers with costly optoelectronics. Several groups, including our own, have proposed mobile phones as suitable point-of-care readers due to their low cost, ease of use, and ubiquity. However, extant mobile phone fluorescence readers require costly optical filters and were typically validated with only one camera sensor module, which is inappropriate for potential point-of-care use. In response, we propose to couple low-cost ultraviolet light-emitting diodes with long Stokes-shift quantum dots to enable ratiometric mobile phone fluorescence measurements without optical filters. Ratiometric imaging with unmodified smartphone cameras improves the contrast and attenuates the impact of excitation intensity variability by 15×. Practical application was shown with a lateral flow immunoassay for influenza A with nucleoproteins spiked into simulated nasal matrix. Limits of detection of 1.5 and 2.6 fmol were attained on two mobile phones, which are comparable to a gel imager (1.9 fmol), 10× better than imaging gold nanoparticles on a scanner (18 fmol), and >2 orders of magnitude better than gold nanoparticle-labeled assays imaged with mobile phones. Use of the proposed filter-free mobile phone imaging scheme is a first step toward enabling a new generation of highly sensitive, point-of-care fluorescence assays.

  14. Imaging B. anthracis heme catabolism in mice using the IFP1.4 gene reporter

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Robinson, Holly; Wilganowski, Nathaniel; Nobles, Christopher L.; Sevick-Muraca, Eva; Maresso, Anthony

    2012-03-01

    B. anthracis is a gram-positive, spore-forming bacterium which likes all pathogenic bacteria, survive by sequestering heme from its host. To image B. anthracis heme catabolism in vivo, we stably transfect new red excitable fluorescent protein, IFP1.4, that requires the heme catabolism product biliverdin (BV). IFP1.4 reporter has favorable excitation and emission characteristics, which has an absorption peak at 685 nm and an emission peak at 708 nm. Therefore, IFP1.4 reporter can be imaged deeply into the tissue with less contamination from tissue autofluorescence. However, the excitation light "leakage" through optical filters can limit detection and sensitivity of IFP1.4 reporter due to the small Stoke's shift of IFP1.4 fluorescence. To minimize the excitation light leakage, an intensified CCD (ICCD) based infrared fluorescence imaging device was optimized using two band pass filters separated by a focus lens to increase the optical density at the excitation wavelength. In this study, a mouse model (DBA/J2) was first injected with B. anthracis bacteria expressing IFP1.4, 150 μl s.c., on the ventral side of the left thigh. Then mouse was given 250 μl of a 1mM BV solution via I.V. injection. Imaging was conducted as a function of time after infection under light euthanasia, excised tissues were imaged and IFP1.4 fluorescence correlated with standard culture measurements of colony forming units (CFU). The work demonstrates the use of IFP1.4 as a reporter of bacterial utilization of host heme and may provide an important tool for understanding the pathogenesis of bacterial infection and developing new anti-bacterial therapeutics.

  15. Imaging fluorescence-correlation spectroscopy for measuring fast surface diffusion at liquid/solid interfaces.

    PubMed

    Cooper, Justin T; Harris, Joel M

    2014-08-05

    The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.

  16. Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging

    PubMed Central

    Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.

    2013-01-01

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554

  17. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  18. Possibility for new PolyCO imaging: stroboscopic imaging based on vibrating capillary optics

    NASA Astrophysics Data System (ADS)

    Liedl, A.; Dabagov, S. B.; Della Ventura, G.; Hampai, D.; Polese, C.

    2015-08-01

    Polycapillary lenses are well known optical devices for radiation and charged particles. These lenses consist of thousands channels through which the signal is transmitted by total external reflection phenomenon. Their application have made possible technical improvements in different fields such as imaging, fluorescence analysis, channeling studies etc. In particular, the application of this optics coupled with conventional sources such as X-ray tubes has opened a new season for potential applications of desktop instrumentations. For instance, the usage of such lenses has enhanced the spatial coherence and the brilliance over the sample allowing better resolution and contrast for imaging purposes. In addiction, improved focusing power and confocal configuration of other lenses has improved the resolution, from both the energy and the spatial points of view, in fluorescence mapping. A recent work has addressed the behavior of the transmitted radiation through a single capillary in vibrating regime. In this work a test of using a vibrating capillary for stroboscopic imaging is presented. A sample characterized by a known periodic event is studied with a synchronized vibrating capillary.

  19. The MSFC large-area imaging multistep proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Weisskopf, M. C.; Joy, M. K.

    1989-01-01

    A large-area multistep imaging proportional counter that is being currently developed at the Marshall Space Flight Center is described. The device, known as a multistep fluorescence gated detector, consists of a multiwire proportional counter (MWPC) with a preamplification region. The MWCP features superior spatial resolution with a very high degree of background rejection. It is ideally suited for use in X-ray astronomy in 20-100 keV energy range. The paper includes the MWPC schematic and a list of instrument specifications.

  20. Use of stereo vision and 24-bit false-color imagery to enhance visualization of multimodal confocal images

    NASA Astrophysics Data System (ADS)

    Beltrame, Francesco; Diaspro, Alberto; Fato, Marco; Martin, I.; Ramoino, Paola; Sobel, Irwin E.

    1995-03-01

    Confocal microscopy systems can be linked to 3D data oriented devices for the interactive navigation of the operator through a 3D object space. Sometimes, such environments are named `virtual reality' or `augmented reality' systems. We consider optical confocal laser scanning microscopy images, in fluorescence with various excitations and emissions, and versus time The aim of our study has been the quantitative spatial analysis of confocal data using the false-color composition technique. Starting from three 2D confocal fluorescent images at the same slice location in a given biological specimen, a new single image representation of all three parameters has been generated by the false-color technique on a HP 9000/735 workstation, connected to the confocal microscope. The color composite result of the mapping of the three parameters is displayed using a resolution of 24 bits per pixel. The operator may independently vary the mix of each of the three components in the false-color composite via three (R, G, B) mixing sliders. Furthermore, by using the pixel data in the three fluorescent component images, a 3D space containing the density distribution of these three parameters has been constructed. The histogram has been displayed in stereo: it can be used for clustering purposes from the operator, through an original thresholding algorithm.

  1. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  2. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  3. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  4. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.

    PubMed

    Blake, E; Allen, J; Thorn, C; Shore, A; Curnow, A

    2013-05-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of precancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength, and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment, localized oxygen depletion occurs and is thought to contribute to decreased efficacy. The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to noninvasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area, respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally, no significant difference in PpIX photobleaching or clinical outcome at 3 months between the groups of patients was observed, although the group that received standard MAL-PDT demonstrated a significant increase (p<0.05) in PpIX fluorescence initially and both groups produced a significant decrease (p<0.05) after light irradiation. In conclusion, with this sample size, this OPI device was not found to be an effective method with which to improve tissue oxygenation during MAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.

  5. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.

    PubMed

    Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca

    2002-10-01

    We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.

  6. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  7. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.

    PubMed

    Yih, Jenq-Nan; Hu, Yvonne Yuling; Sie, Yong Da; Cheng, Li-Chung; Lien, Chi-Hsiang; Chen, Shean-Jen

    2014-06-01

    This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable with that of a setup incorporating a 600  lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing; additionally, it generates arbitrary patterns. Since the DMD is placed on the image-conjugate plane of the objective lens' focal plane, the MPE pattern can be projected on the focal plane precisely.

  8. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    PubMed

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  9. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots.

    PubMed

    Doi, K; Fromes, B; Rossmann, K

    1975-01-01

    A new device has been developed with which the focal spot distribution can be measured accurately. The alignment and localization of the focal spot relative to the device are accomplished by adjustment of three micrometer screws in three orthogonal directions and by comparison of red reference light spots with green fluorescent pinhole images at five locations. The standard deviations for evaluating the reproducibility of the adjustments in the horizontal and vertical directions were 0.2 and 0.5 mm, respectively. Measurements were made of the pinhole images as well as of the line-spread functions (LSFs) and modulation transfer functions (MTFs) for an x-ray tube with focal spots of 1-mm and 50-mum nominal size. The standard deviations for the LSF and MTF of the 1-mm focal spot were 0.017 and 0.010, respectively.

  10. Developing a compact multiple laser diode combiner with a single fiber stub output for handheld IoT devices

    NASA Astrophysics Data System (ADS)

    Lee, Minseok; June, Seunghyeok; Kim, Sehwan

    2018-01-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.

  11. Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector

    PubMed Central

    Colyer, R.; Siegmund, O.; Tremsin, A.; Vallerga, J.; Weiss, S.; Michalet, X.

    2011-01-01

    Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach. PMID:21625298

  12. Towards automated early cancer detection: Non-invasive, fluorescence-based approaches for quantitative assessment of cells and tissue to identify pre-cancers

    NASA Astrophysics Data System (ADS)

    Levitt, Jonathan Michael

    Cancer is the second leading cause of death globally, second only to heart disease. As in many diseases, patient survival is directly related to how early lesions are detected. Using conventional screening methods, the early changes associated with cancer, which occur on the microscopic scale, can easily go overlooked. Due to the inherent drawbacks of conventional techniques we present non-invasive, optically based methods to acquire high resolution images from live samples and assess cellular function associated with the onset of disease. Specifically, we acquired fluorescence images from NADH and FAD to quantify morphology and metabolic activity. We first conducted studies to monitor monolayers of keratinocytes in response to apoptosis which has been shown to be disrupted during cancer progression. We found that as keratinocytes undergo apoptosis there are populations of mitochondria that exhibit a higher metabolic activity that become progressively confined to a gradually smaller perinuclear region. To further assess the changes associated with early cancer growth we developed automated methods to rapidly quantify fluorescence images and extract morphological and metabolic information from life tissue. In this study, we simultaneously quantified mitochondrial organization, metabolic activity, nuclear size distribution, and the localization of the structural protein keratin, to differentiate between normal and pre-cancerous engineered tissues. We found the degree mitochondrial organization, as determined from the fractal derived Hurst parameter, was well correlated to level of cellular differentiation. We also found that the metabolic activity in the pre-cancerous cells was greater and more consistent throughout tissue depths in comparison to normal tissue. Keratin localization, also quantified from the fluorescence images, we found it to be confined to the uppermost layers of normal tissue while it was more evenly distributed in the precancerous tissues. To allow for evaluation of the early cancerous changes in vivo, we developed video-rate confocal reflectance/multi-photon fluorescence microscope as a clinical prototype. This device was specifically designed to rapidly acquire and assess non-invasively acquire fluorescence images using the automated methods we have developed. We have demonstrated the ability of this microscope to simultaneously acquire fluorescence, confocal reflectance, and second-harmonic generation images as well as assess blood flow in vivo.

  13. A novel multimodal optical imaging system for early detection of oral cancer

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Cheng, Shuna; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Jo, Javier A.; Maitland, Kristen C.

    2015-01-01

    Objectives Several imaging techniques have been advocated as clinical adjuncts to improve identification of suspicious oral lesions. However, these have not yet shown superior sensitivity or specificity over conventional oral examination techniques. We developed a multimodal, multi-scale optical imaging system that combines macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM) for early detection of oral cancer. We tested our system on excised human oral tissues. Study Design A total of four tissue specimen were imaged. These specimens were diagnosed as one each: clinically normal, oral lichen planus, gingival hyperplasia, and superficially-invasive squamous cell carcinoma (SCC). The optical and fluorescence lifetime properties of each specimen were recorded. Results Both quantitative and qualitative differences between normal, benign and SCC lesions can be resolved with FLIM-RCM imaging. The results demonstrate that an integrated approach based on these two methods can potentially enable rapid screening and evaluation of large areas of oral epithelial tissue. Conclusions Early results from ongoing studies of imaging human oral cavity illustrate the synergistic combination of the two modalities. An adjunct device based on such optical characterization of oral mucosa can potentially be used to detect oral carcinogenesis in early stages. PMID:26725720

  14. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106(8), pp. 1588-1595, 2014

  15. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    PubMed Central

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-01-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications. PMID:25965295

  16. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models.

    PubMed

    Hempstead, Joshua; Jones, Dustin P; Ziouche, Abdelali; Cramer, Gwendolyn M; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P

    2015-05-12

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  17. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-05-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  18. The fluorescence theatre: a cost-effective device using theatre gels for fluorescent protein and dye screening.

    PubMed

    Heil, John R; Nordeste, Ricardo F; Charles, Trevor C

    2011-04-01

    Here we report a simple cost-effective device for screening colonies on plates for expression of the monomeric red fluorescent protein mRFP1 and the fluorescent dye Nile red. This device can be built from any simple light source, in our case a Quebec Colony Counter, and cost-effective theatre gels. The device can be assembled in as little as 20 min, and it produces excellent results when screening a large number of colonies.

  19. Protein recognition by a pattern-generating fluorescent molecular probe.

    PubMed

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  20. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level

    PubMed Central

    Baubet, Valérie; Le Mouellic, Hervé; Campbell, Anthony K.; Lucas-Meunier, Estelle; Fossier, Philippe; Brûlet, Philippe

    2000-01-01

    Monitoring calcium fluxes in real time could help to understand the development, the plasticity, and the functioning of the central nervous system. In jellyfish, the chemiluminescent calcium binding aequorin protein is associated with the green fluorescent protein and a green bioluminescent signal is emitted upon Ca2+ stimulation. We decided to use this chemiluminescence resonance energy transfer between the two molecules. Calcium-sensitive bioluminescent reporter genes have been constructed by fusing green fluorescent protein and aequorin, resulting in much more light being emitted. Chemiluminescent and fluorescent activities of these fusion proteins have been assessed in mammalian cells. Cytosolic Ca2+ increases were imaged at the single-cell level with a cooled intensified charge-coupled device camera. This bifunctional reporter gene should allow the investigation of calcium activities in neuronal networks and in specific subcellular compartments in transgenic animals. PMID:10860991

  1. Protein recognition by a pattern-generating fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  2. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.

  3. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  4. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  5. Precision platform for convex lens-induced confinement microscopy

    NASA Astrophysics Data System (ADS)

    Berard, Daniel; McFaul, Christopher M. J.; Leith, Jason S.; Arsenault, Adriel K. J.; Michaud, François; Leslie, Sabrina R.

    2013-10-01

    We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.

  6. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  7. Sample holder for axial rotation of specimens in 3D microscopy.

    PubMed

    Bruns, T; Schickinger, S; Schneckenburger, H

    2015-10-01

    In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Caries detection: current status and future prospects using lasers

    NASA Astrophysics Data System (ADS)

    Longbottom, Christopher

    2000-03-01

    Caries detection currently occupies a good deal of attention in the arena of dental research for a number of reasons. In searching for caries detection methods with greater accuracy than conventional technique researchers have used a variety of optical methods and have increasingly turned to the use of lasers. Several laser-based methods have been and are being assessed for both imaging and disease quantification techniques. The phenomenon of fluorescence of teeth and caries in laser light and the different effects produced by different wavelengths has been investigated by a number of workers in Europe. With an argon ion laser excitation, QLF (Quantified Laser Fluorescence) demonstrated a high correlation between loss of fluorescence intensity and enamel mineral loss in white spot lesions in free smooth surface lesions, both in vitro and in vivo. Recent work with a red laser diode source (655 nm), which appears to stimulate bacterial porphyrins to fluoresce, has demonstrated that a relatively simple device based on this phenomenon can provide sensitivity and specificity values of the order of 80% in vitro and in vivo for primary caries at occlusal sites. In vitro studies using a simulated in vivo methodology indicate that the device can produce sensitivity values of the order of 90% for primary caries at approximal sites.

  9. In vivo molecular imaging of gastric cancer in human-murine xenograft models with confocal laser endomicroscopy using a tumor vascular homing peptide.

    PubMed

    Liu, Lijuan; Yin, Jipeng; Liu, Changhao; Guan, Guofeng; Shi, Doufei; Wang, Xiaojuan; Xu, Bing; Tian, Zuhong; Zhao, Jing; Nie, Yongzhan; Wang, Biaoluo; Liang, Shuhui; Wu, Kaichun; Ding, Jie

    2015-01-28

    The early detection of premalignant lesions and cancers are very important for improving the survival of patients with gastric malignancies. Confocal laser endomicroscopy (CLE) is a novel imaging tool for achieving real-time microscopy during the ongoing endoscopy at subcellular resolution. In the present study, to evaluate the feasibility of real-time molecular imaging of GEBP11 by CLE in gastric cancer, CLE was performed on two types of tumor-bearing mice models, as well as surgical specimens of patients with gastric cancer, after the application of GEBP11. A whole-body fluorescent imaging device was first used to screen for the strongest specific fluorescent signal in xenograft models. Next, the tumor sites, as well as human tissues, were scanned with CLE. After this, targeted specimens were obtained for fluorescence microscopy and histology. We confirmed that GEBP11 could specifically bind to co-HUVECs by means of CLE in cell experiments. Thereafter, a specific signal was observed in both subcutaneous and orthotopic xenograft models in vivo after the injection of FITC-GEBP11 via tail vein, whereas the group injected with FITC-URP showed no fluorescent signals. In human tissues, a specific signal of GEBP11 was observed in 26/28 neoplastic specimens and in 8/28 samples of non-neoplastic specimens from the patients (p < 0.01). The findings from ex vivo immunofluorescence microscopy of cryostat sections correlated well with that obtained by CLE. These findings indicate that the peptide, GEBP11, might be a potential candidate for the molecular imaging of gastric cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  11. Controlled power delivery for super-resolution imaging of biological samples using digital micromirror device

    NASA Astrophysics Data System (ADS)

    Valiya Peedikakkal, Liyana; Cadby, Ashley

    2017-02-01

    Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.

  12. Generation of nondiffracting Bessel beam using digital micromirror device.

    PubMed

    Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei

    2013-07-01

    We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

  13. Prospective Trial with Optical Molecular Imaging for Percutaneous Interventions in Focal Hepatic Lesions

    PubMed Central

    Sheth, Rahul A.; Arellano, Ronald S.; Uppot, Raul N.; Samir, Anthony E.; Goyal, Lipika; Zhu, Andrew X.; Gervais, Debra A.

    2015-01-01

    Purpose To demonstrate the clinical translation of optical molecular imaging (OMI) for the localization of focal hepatic lesions during percutaneous hepatic interventions. Materials and Methods Institutional review board approval was obtained for this prospective, single-center, HIPAA-compliant trial. Patients who were suspected of having hepatocellular carcinoma or liver metastases from colorectal cancer and were scheduled for percutaneous liver biopsy or thermal ablation were eligible for this study. Patients (n = 5) received 0.5 mg per kilogram of body weight of indocyanine green (ICG) intravenously 24 hours prior to their scheduled procedure in this study. Intraprocedurally, a handheld device composed of an endoscope that fits coaxially through a standard 17-gauge introducer needle was advanced into the liver, and real-time measurements of ICG fluorescence were obtained. A point-of-care fluorescence imaging system was used to image ICG fluorescence in biopsy samples. Target-to-background ratios (TBRs) were calculated by dividing the mean fluorescence intensity in the lesion by the mean fluorescence intensity in the adjacent liver parenchyma. The reference standard for determination of proper needle positioning in patients undergoing biopsy was final pathologic analysis of biopsy specimens or follow-up imaging. Results Intraprocedural OMI was successfully performed in six lesions (two lesions in patient 3) in five patients. The median size of the targeted lesions was 16 mm (range, 10–21 mm). Four of five biopsies (80%) yielded an accurate pathologic diagnosis, and one biopsy specimen showed benign liver parenchyma; both ablated lesions showed no residual disease 1 month after the procedure. The median overall added procedure time to perform OMI was 2 minutes. ICG was found to localize with TBRs greater than 2.0 (median, 7.9; range, 2.4–13.4) in all target lesions. No trial-related adverse events were reported. Conclusion The clinical translation of OMI to percutaneous hepatic interventions was demonstrated. © RSNA, 2014 Online supplemental material is available for this article. PMID:25302707

  14. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II).

    PubMed

    Gerstenhaber, Jonathan A; Barone, Frank C; Marcinkiewicz, Cezary; Li, Jie; Shiloh, Aaron O; Sternberg, Mark; Lelkes, Peter I; Feuerstein, Giora

    2017-01-01

    The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDP NV ) and N-V-N color centers and sizes (100-10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDP NV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDP NV -loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl 3 in the carotid artery bifurcation. Following systemic infusions of F-NDP NV -Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDP NV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDP NV -Bit associate with vascular blood clots, presumably by binding of F-NDP NV -Bit to activated platelets within the blood clot. We posit that F-NDP NV -Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device.

  15. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent...

  16. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent...

  17. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent...

  18. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent...

  19. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent...

  20. Dual-modality smartphone endoscope for cervical pre-cancer detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hong, Xiangqian; Yu, Bing

    2017-02-01

    Early detection is the key to the prevention of cervical cancer. There is an urgent need for a portable, affordable, and easy-to-use device for cervical pre-cancer detection, especially in low-resource settings. We have developed a dual-modality fiber-optic endoscope system (SmartME) that integrates high-resolution fluorescence imaging (FLI) and quantitative diffuse reflectance spectroscopy (DRS) onto a smartphone platform. The SmartME consists of a smartphone, a miniature fiber-optic endoscope, a phone attachment containing imaging optics, and a smartphone application (app). FLI is obtained by painting the tissue with a contrast agent (e.g., proflavine), illuminating the tissue and collecting its fluorescence images through an imaging bundle that is coupled to the phone camera. DRS is achieved by using a white LED, attaching additional source and detection fibers to the imaging bundle, and converting the phone camera into a spectrometer. The app collects images/spectra and transmits them to a remote server for analysis to extract the tissue parameters, including nuclear-to-cytoplasm ratio (calculated from FLI), concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) as well as scattering (measured by DRS). These parameters can be used to detect cervical dysplasia. Our preliminary studies have demonstrated that the SmartME can clearly visualize the nuclei in living cells and in vivo biological samples, with a high spatial resolution of 3.1μm. The device can also measure tissue absorption and scattering properties with comparable accuracy to those of a benchtop DRS system. The SmartME has great potential to provide a compact, affordable, and `smart' solution for early detection of neoplastic changes in cervix.

  1. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing

    PubMed Central

    Wang, Zhaojun; Lei, Ming; Yao, Baoli; Cai, Yanan; Liang, Yansheng; Yang, Yanlong; Yang, Xibin; Li, Hui; Xiong, Daxi

    2015-01-01

    Autofocusing is a routine technique in redressing focus drift that occurs in time-lapse microscopic image acquisition. To date, most automatic microscopes are designed on the distance detection scheme to fulfill the autofocusing operation, which may suffer from the low contrast of the reflected signal due to the refractive index mismatch at the water/glass interface. To achieve high autofocusing speed with minimal motion artifacts, we developed a compact multi-band fluorescent microscope with an electrically tunable lens (ETL) device for autofocusing. A modified searching algorithm based on equidistant scanning and curve fitting is proposed, which no longer requires a single-peak focus curve and then efficiently restrains the impact of external disturbance. This technique enables us to achieve an autofocusing time of down to 170 ms and the reproductivity of over 97%. The imaging head of the microscope has dimensions of 12 cm × 12 cm × 6 cm. This portable instrument can easily fit inside standard incubators for real-time imaging of living specimens. PMID:26601001

  2. Early Localization of Bronchogenic Carcinoma

    PubMed Central

    Macaulay, C.; Leriche, J. C.; Ikeda, N.; Palcic, B.

    1994-01-01

    The performance of a fluorescence imaging device was compared with conventional white-light bronchoscopy in 100 patients with lung cancer, 46 patients with resected stage I non-small cell lung cancer, 10 patients with head and neck cancer, and 67 volunteers who had smoked at least 1 pack of cigarettes per day for 25 years or more. Using differences in tissue autofluorescence between premalignant, malignant, and normal tissues, fluorescence bronchoscopy was found to detect significantly more areas with moderate/severe dysplasia or carcinoma in situ than conventional white-light bronchoscopy with a similar specificity. Multiple foci of dysplasia or cancer were found in 13–24% of these individuals. Fluorescence bronchoscopy may be an important adjunct to conventional bronchoscopic examination to improve our ability to detect and localize premalignant and early lung cancer lesions. PMID:18493345

  3. Clinical confocal microlaparoscope for real-time in vivo optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Udovich, Joshua A.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2009-07-01

    Successful treatment of cancer is highly dependent on the stage at which it is diagnosed. Early diagnosis, when the disease is still localized at its origin, results in very high cure rates-even for cancers that typically have poor prognosis. Biopsies are often used for diagnosis of disease. However, because biopsies are destructive, only a limited number can be taken. This leads to reduced sensitivity for detection due to sampling error. A real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. It has a 3-μm lateral resolution and a 25-μm axial resolution. Initial in vivo clinical testing using the device to image human ovaries has been done in 21 patients. Results indicate that the device can successfully image organs in vivo without complications. Results with excised tissue demonstrate that the instrument can resolve sufficient cellular detail to visualize the cellular changes associated with the onset of cancer.

  4. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  5. An epifluorescent attachment improves whole-plant digital photography of Arabidopsis thaliana expressing red-shifted green fluorescent protein

    PubMed Central

    Baker, Stokes S.; Vidican, Cleo B.; Cameron, David S.; Greib, Haittam G.; Jarocki, Christine C.; Setaputri, Andres W.; Spicuzza, Christopher H.; Burr, Aaron A.; Waqas, Meriam A.; Tolbert, Danzell A.

    2012-01-01

    Background and aims Studies have shown that levels of green fluorescent protein (GFP) leaf surface fluorescence are directly proportional to GFP soluble protein concentration in transgenic plants. However, instruments that measure GFP surface fluorescence are expensive. The goal of this investigation was to develop techniques with consumer digital cameras to analyse GFP surface fluorescence in transgenic plants. Methodology Inexpensive filter cubes containing machine vision dichroic filters and illuminated with blue light-emitting diodes (LED) were designed to attach to digital single-lens reflex (SLR) camera macro lenses. The apparatus was tested on purified enhanced GFP, and on wild-type and GFP-expressing arabidopsis grown autotrophically and heterotrophically. Principal findings Spectrum analysis showed that the apparatus illuminates specimens with wavelengths between ∼450 and ∼500 nm, and detects fluorescence between ∼510 and ∼595 nm. Epifluorescent photographs taken with SLR digital cameras were able to detect red-shifted GFP fluorescence in Arabidopsis thaliana leaves and cotyledons of pot-grown plants, as well as roots, hypocotyls and cotyledons of etiolated and light-grown plants grown heterotrophically. Green fluorescent protein fluorescence was detected primarily in the green channel of the raw image files. Studies with purified GFP produced linear responses to both protein surface density and exposure time (H0: β (slope) = 0 mean counts per pixel (ng s mm−2)−1, r2 > 0.994, n = 31, P < 1.75 × 10−29). Conclusions Epifluorescent digital photographs taken with complementary metal-oxide-semiconductor and charge-coupled device SLR cameras can be used to analyse red-shifted GFP surface fluorescence using visible blue light. This detection device can be constructed with inexpensive commercially available materials, thus increasing the accessibility of whole-organism GFP expression analysis to research laboratories and teaching institutions with small budgets. PMID:22479674

  6. A novel 3D micron-scale DPTV (Defocused Particle Tracking Velocimetry) and its applications in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Roberts, John

    2005-11-01

    The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.

  7. A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching

    NASA Astrophysics Data System (ADS)

    Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham

    2017-04-01

    An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.

  8. Time-gated FLIM microscope for corneal metabolic imaging

    NASA Astrophysics Data System (ADS)

    Silva, Susana F.; Batista, Ana; Domingues, José Paulo; Quadrado, Maria João.; Morgado, António Miguel

    2016-03-01

    Detecting corneal cells metabolic alterations may prove a valuable tool in the early diagnosis of corneal diseases. Nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent metabolic co-factors that allow the assessment of metabolic changes through non-invasive optical methods. These co-factors exhibit double-exponential fluorescence decays, with well-separated short and lifetime components, which are related to their protein-bound and free-states. Corneal metabolism can be assessed by measuring the relative contributions of these two components. For that purpose, we have developed a wide-field time-gated fluorescence lifetime microscope based on structured illumination and one-photon excitation to record FAD lifetime images from corneas. NADH imaging was not considered as its UV excitation peak is regarded as not safe for in vivo measurements. The microscope relies on a pulsed blue diode laser (λ=443 nm) as excitation source, an ultra-high speed gated image intensifier coupled to a CCD camera to acquire fluorescence signals and a Digital Micromirror Device (DMD) to implement the Structured Illumination technique. The system has a lateral resolution better than 2.4 μm, a field of view of 160 per 120 μm and an optical sectioning of 6.91 +/- 0.45 μm when used with a 40x, 0.75 NA, Water Immersion Objective. With this setup we were able to measure FAD contributions from ex-vivo chicken corneas collected from a local slaughterhouse..

  9. A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings

    PubMed Central

    Lu, Qiang; Liu, Guanghui; Xiao, Chuanli; Hu, Chuanzhen; Zhang, Shiwu; Xu, Ronald X.; Chu, Kaiqin; Xu, Qianming

    2018-01-01

    In this paper we report the development of a cost-effective, modular, open source, and fully automated slide-scanning microscope, composed entirely of easily available off-the-shelf parts, and capable of bright field and fluorescence modes. The automated X-Y stage is composed of two low-cost micrometer stages coupled to stepper motors operated in open-loop mode. The microscope is composed of a low-cost CMOS sensor and low-cost board lenses placed in a 4f configuration. The system has approximately 1 micron resolution, limited by the f/# of available board lenses. The microscope is compact, measuring just 25×25×30 cm, and has an absolute positioning accuracy of ±1 μm in the X and Y directions. A Z-stage enables autofocusing and imaging over large fields of view even on non-planar samples, and custom software enables automatic determination of sample boundaries and image mosaicking. We demonstrate the utility of our device through imaging of fluorescent- and transmission-dye stained blood and fecal smears containing human and animal parasites, as well as several prepared tissue samples. These results demonstrate image quality comparable to high-end commercial microscopes at a cost of less than US$400 for a bright-field system, with an extra US$100 needed for the fluorescence module. PMID:29543835

  10. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    PubMed

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  11. Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein

    PubMed Central

    Pickup, John C.; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J. S.

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously. PMID:23439161

  12. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less

  13. Telemetric Technologies for the Assay of Gene Expression

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Neron, Philip; Graham, Thomas; Ferl, Robert

    Telemetric data collection has been widely used in spaceflight applications where human participation is limited (orbital mission payloads) or unfeasible (planetary landers, satellites, and probes). The transmission of digital data from electronic sensors of typical environmental parameters, growth patterns and physical properties of materials is routine telemetry, and even the collection and transmission of deep space images is a standard tool of astrophysics. But telemetric imaging for current biological payloads has thus far been limited to the collection of standard white-light photography that is largely confined to reporting the surface characteristics of the specimens involved. Advances in imaging technologies that facilitate the collection of a variety of light wavelengths will expand the science return on biological payloads to include evaluations of the molecular genetic response of organisms to the spaceflight or extraterrestrial environment, with minimal or no human intervention. Advanced imaging technology in combination with biologically engineered sensor organisms can create a system that can report via telemetry on the patterns of gene expression required to adapt to a novel environment. The utilization of genetically engineered plants as biosensors has made elegant strides in the recent years, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. Moreover, molecular responses to gravitational vectors have been elegantly analyzed with fluorescent tools. Green Fluorescence Protein (GFP) and other fluorophores have made it possible for analyses of gene expression and biological responses to occur telemetrically, with the information potentially delivered to the investigator over large distances as simple, preprocessed fluorescence images. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wish to develop both the plants and the imaging devices required to conduct such fluorescence imaging experiments robotically, without direct operator intervention, within the operational constraints of extraterrestrial environments. This requires the development of an autonomous and remotely operated plant fluorescence imaging system and concomitant development of the infrastructure to manage dataflow. Here we report the results of the deployment of our spaceflight prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG), an autonomously operated greenhouse located within the Haughton Mars Project in the High Canadian Arctic (75° 22'N Latitude: 89° 41'W Longitude). Results demonstrate both the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.

  14. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs Surgeons.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Rajadhyaksha, Milind; Nehal, Kishwer; Bennassar, Antoni; Pellacani, Giovanni; Malvehy Guilera, Josep

    2016-10-01

    Confocal microscopy is a modern imaging device that has been extensively applied in skin oncology. More specifically, for tumor margin assessment, it has been used in two modalities: reflectance mode (in vivo on skin patient) and fluorescence mode (on freshly excised specimen). Although in vivo reflectance confocal microscopy is an add-on tool for lentigo maligna mapping, fluorescence confocal microscopy is far superior for basal cell carcinoma and squamous cell carcinoma margin assessment in the Mohs setting. This article provides a comprehensive overview of the use of confocal microscopy for skin cancer margin evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.

    PubMed

    Alves, Frauke; Dullin, Christian; Napp, Joanna; Missbach-Guentner, Jeannine; Jannasch, Katharina; Mathejczyk, Julia; Pardo, Luis A; Stühmer, Walter; Tietze, Lutz-F

    2009-05-01

    Conventional chemotherapy of cancer has its limitations, especially in advanced and disseminated disease and suffers from lack of specificity. This results in a poor therapeutic index and considerable toxicity to normal organs. Therefore, many efforts are made to develop novel therapeutic tools against cancer with the aim of selectively targeting the drug to the tumour site. Drug delivery strategies fundamentally rely on the identification of good-quality biomarkers, allowing unequivocal discrimination between cancer and healthy tissue. At present, antibodies or antibody fragments have clearly proven their value as carrier molecules specific for a tumour-associated molecular marker. This present review draws attention to the use of near-infrared fluorescence (NIRF) imaging to investigate binding specificity and kinetics of carrier molecules such as monoclonal antibodies. In addition, flat-panel volume computed tomography (fpVCT) will be presented to monitor anatomical structures in tumour mouse models over time in a non-invasive manner. Each imaging device sheds light on a different aspect; functional imaging is applied to optimise the dose schedule and the concept of selective tumour therapies, whereas anatomical imaging assesses preclinically the efficacy of novel tumour therapies. Both imaging techniques in combination allow the visualisation of functional information obtained by NIRF imaging within an adequate anatomic framework.

  16. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.

    PubMed

    Shi, Mingjian; Majumdar, Devi; Gao, Yandong; Brewer, Bryson M; Goodwin, Cody R; McLean, John A; Li, Deyu; Webb, Donna J

    2013-08-07

    Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.

  17. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.

    PubMed

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M

    2015-05-20

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.

  18. In situ optical measurements for characterization of flame species and remote sensing

    NASA Astrophysics Data System (ADS)

    Cullum, Brian Michael

    1998-12-01

    The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.

  19. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  20. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    PubMed

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  1. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts.

    PubMed

    Cui, Lin-Song; Ruan, Shi-Bin; Bencheikh, Fatima; Nagata, Ryo; Zhang, Lei; Inada, Ko; Nakanotani, Hajime; Liao, Liang-Sheng; Adachi, Chihaya

    2017-12-21

    Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.

  2. Safety and Tumor-specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer

    PubMed Central

    Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Chung, Thomas K; Korb, Melissa L; Brandwein-Gensler, Margie; Strong, Theresa V; Schmalbach, Cecelia E; Morlandt, Anthony B; Agarwal, Garima; Hartman, Yolanda E; Carroll, William R; Richman, Joshua S; Clemons, Lisa K; Nabell, Lisle M; Zinn, Kurt R

    2016-01-01

    Purpose Positive margins dominate clinical outcomes after surgical resections in most solid cancer types including head and neck squamous cell carcinoma. Unfortunately, surgeons remove cancer in the same manner they have for a century with complete dependence on subjective tissue changes to identify cancer in the operating room. To effect change, we hypothesize that epidermal growth factor receptor (EGFR) can be targeted for safe and specific real-time localization of cancer. Experimental design A dose escalation study of cetuximab conjugated to IRDye800 was performed in patients (n=12) undergoing surgical resection of squamous cell carcinoma arising in the head and neck. Safety and pharmacokinetic data were obtained out to 30 days post-infusion. Multi-instrument fluorescence imaging was performed in the operating room and in surgical pathology. Results There were no grade 2 or higher adverse events attributable to cetuximab-IRDye800. Fluorescence imaging with an intraoperative, wide-field device successfully differentiated tumor from normal tissue during resection with an average tumor-to-background ratio of 5.2 in the highest dose range. Optical imaging identified opportunity for more precise identification of tumor during the surgical procedure and during the pathological analysis of tissues ex-vivo. Fluorescence levels positively correlated with EGFR levels. Conclusion We demonstrate for the first time that commercially available antibodies can be fluorescently labeled and safely administered to humans to identify cancer with sub-millimeter resolution, which has the potential to improve outcomes in clinical oncology. PMID:25904751

  3. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips

    NASA Astrophysics Data System (ADS)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-04-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  4. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  5. qF-SSOP: real-time optical property corrected fluorescence imaging

    PubMed Central

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  6. Autofluorescence guided diagnostic evaluation of suspicious oral mucosal lesions: opportunities, limitations, and pitfalls

    NASA Astrophysics Data System (ADS)

    Vigneswaran, Nadarajah

    2011-03-01

    Wide-filed autofluorescence examination is currently considered as a standard of care for screening and diagnostic evaluation of early neoplastic changes of the skin, cervix, lung, bladder, gastrointestinal tract and oral cavity. Naturally occurring fluorophores within the tissue absorb UV and visible light and can re-emit some of this light at longer wavelengths in the form of fluorescence. This non-invasive tissue autofluorescence imaging is used in optical diagnostics, especially in the early detection of cancer. Usually, malignant transformation is associated with thickening of the epithelium, enhanced cellular density due to increased nuclear cytoplasmic ratio which may attenuate the excitation leading to a decrease in collagen autofluorescence. Hence, dysplastic and cancerous tissues often exhibit decreased blue-green autofluorescence and appear darker compared to uninvolved mucosa. Currently, there are three commercially available devices to examine tissue autofluorescence in the oral cavity. In this study we used the oral cancer screening device IdentafiTM 3000 to examine the tissue reflectance and autofluorescence of PML and confounding lesions of the oral cavity. Wide-field autofluorescence imaging enables rapid inspection of large mucosal surfaces, to aid in recognition of suspicious lesions and may also help in discriminate the PML (class 1) from some of the confounding lesions (class II). However, the presence of inflammation or pigments is also associated with loss of stromal autofluorescence, and may give rise to false-positive results with widefield fluorescence imaging. Clinicians who use these autofluorescence based oral cancer screening devices should be aware about the benign oral mucosal lesions that may give false positivity so that unnecessary patient's anxiety and the need for scalpel biopsy can be eliminated.

  7. Low cost quantitative digital imaging as an alternative to qualitative in vivo bioassays for analysis of active aflatoxin B1

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin B1 (AFB1) producing fungi contaminate food and feed and are a major health concern. To minimize the sources and incidence of AFB1 illness there is a need to develop affordable, sensitive mobile devices for detection of active AFB1. In the present study we used a low cost fluorescence detec...

  8. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  9. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  10. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.

    PubMed

    Haass-Koffler, Carolina L; Naeemuddin, Mohammad; Bartlett, Selena E

    2012-08-31

    The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology even in complex tissue sections. Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells, however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

  11. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  12. Miniaturized integration of a fluorescence microscope

    PubMed Central

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  13. Miniaturized integration of a fluorescence microscope.

    PubMed

    Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J

    2011-09-11

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.

  14. Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection

    PubMed Central

    Tummers, Willemieke S.; Warram, Jason M.; Tipirneni, Kiranya E.; Fengler, John; Jacobs, Paula; Shankar, Lalitha; Henderson, Lori; Ballard, Betsy; Pogue, Brian W.; Weichert, Jamey P.; Bouvet, Michael; Sorger, Jonathan; Contag, Christopher H.; Frangioni, John V.; Tweedle, Michael F.; Basilion, James P.; Gambhir, Sanjiv S.; Rosenthal, Eben L.

    2017-01-01

    Considerable advances in cancer-specific optical imaging have improved the precision of tumor resection. In comparison to traditional imaging modalities, this technology is unique in its ability to provide real-time feedback to the operating surgeon. Given the significant clinical implications of optical imaging, there is an urgent need to standardize surgical navigation tools and contrast agents to facilitate swift regulatory approval. Because fluorescence-enhanced surgery requires a combination of both device and drug, each may be developed in conjunction, or separately, which are important considerations in the approval process. This report is the result of a one-day meeting held on May 4, 2016 with officials from the National Cancer Institute, the FDA, members of the American Society of Image-Guided Surgery, and members of the World Molecular Imaging Society, which discussed consensus methods for FDA-directed human testing and approval of investigational optical imaging devices as well as contrast agents for surgical applications. The goal of this workshop was to discuss FDA approval requirements and the expectations for approval of these novel drugs and devices, packaged separately or in combination, within the context of optical surgical navigation. In addition, the workshop acted to provide clarity to the research community on data collection and trial design. Reported here are the specific discussion items and recommendations from this critical and timely meeting. PMID:28428283

  15. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    PubMed Central

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-01-01

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256

  16. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.

    PubMed

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-10-31

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  17. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130

  18. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.

  19. Radioisotope Detection Device and Methods of Radioisotope Collection

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Oertel, Christopher P [Idaho Falls, ID; Giles, John R [Pocatello, ID; Mann, Nicholas R [Rigby, ID; McIlwain, Michael E [Idaho Falls, ID

    2011-04-12

    A device for collection of radionuclides includes a mixture of a polymer, a fluorescent organic scintillator and a chemical extractant. A radionuclide detector system includes a collection device comprising a mixture of a polymer, a fluorescent agent and a selective ligand. The system includes at least one photomultiplier tube (PMT). A method of detecting radionuclides includes providing a collector device comprising a mixture comprising a polymer, a fluorescent organic scintillator and a chemical extractant. An aqueous environment is exposed to the device and radionuclides are collected from the environment. Radionuclides can be concentrated within the device.

  20. A high resolution Passive Flux Meter approach based on colorimetric responses

    NASA Astrophysics Data System (ADS)

    Chardi, K.; Dombrowski, K.; Cho, J.; Hatfield, K.; Newman, M.; Annable, M. D.

    2016-12-01

    Subsurface water and contaminant mass flux measurements are critical in determining risk, optimizing remediation strategies, and monitoring contaminant attenuation. The standard Passive Flux Meter, hereafter knows as a (PFM), is a well-developed device used for determining and monitoring rates of groundwater and contaminant mass flux in screened wells. The current PFM is a permeable device that contains granular activated carbon impregnated with alcohol tracers which is deployed in a flow field for a designated period of time. Once extracted, sampling requires laboratory analysis to quantify Darcy flux, which can be time consuming and have significant cost. To expedite test results, a modified PFM based on the image analysis of colorimetric responses, herein referred to as a colorimetric Passive Flux Meter (cPFM), was developed. Various dyes and sorbents were selected and evaluated to determine colorimetric response to water flow. Rhodamine, fluorescent yellow, fluorescent orange, and turmeric were the dye candidates while 100% wool and a 35% wool blend with 65% rayon were the sorbent candidates selected for use in the cPFM. Ultraviolet light image analysis was used to calculate average color intensity using ImageJ, a Java-based image processing program. These results were then used to quantify Darcy flux. Error ranges evaluated for Darcy flux using the cPFM are comparable to those with the standard, activated carbon based, PFM. The cPFM has the potential to accomplish the goal of obtaining high resolution Darcy flux data while eliminating high costs and analysis time. Implications of groundwater characteristics, such as PH and contaminant concentrations, on image analysis are to be tested through laboratory analysis followed by field testing of the cPFM.

  1. Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils.

    PubMed

    Ringkob, T P; Swartz, D R; Greaser, M L

    2004-05-01

    Image analysis procedures for immunofluorescence microscopy were developed to measure muscle thin filament lengths of beef, rabbit, and chicken myofibrils. Strips of beef cutaneous trunci, rectus abdominis, psoas, and masseter; chicken pectoralis; and rabbit psoas muscles were excised 5 to 30 min postmortem. Fluorescein phalloidin and rhodamine myosin subfragment-1 (S1) were used to probe the myofibril structure. Digital images were recorded with a cooled charge-coupled device controlled with IPLab Spectrum software (Signal Analytics Corp.) on a Macintosh operating system. The camera was attached to an inverted microscope, using both the phase-contrast and fluorescence illumination modes. Unfixed myofibrils incubated with fluorescein phalloidin showed fluorescence primarily at the Z-line and the tips of the thin filaments in the overlap region. Images were processed using IPLab and the National Institutes of Health's Image software. A region of interest was selected and scaled by a factor of 18.18, which enlarged the image from 11 pixels/microm to approximately 200 pixels/microm. An X-Y plot was exported to Spectrum 1.1 (Academic Software Development Group), where the signal was processed with a second derivative routine, so a cursor function could be used to measure length. Fixation before phalloidin incubation resulted in greatest intensity at the Z lines but a more-uniform staining over the remainder of the thin filament zone. High-resolution image capture and processing showed that thin filament lengths were significantly different (P < 0.01) among beef, rabbit, and chicken, with lengths of 1.28 to 1.32 microm, 1.16 microm, and 1.05 microm, respectively. Measurements using the S1 signal confirmed the phalloidin results. Fluorescent probes may be useful to study sarcomere structure and help explain species and muscle differences in meat texture.

  2. Design rules for quantum imaging devices: experimental progress using CMOS single-photon detectors

    NASA Astrophysics Data System (ADS)

    Charbon, Edoardo; Gunther, Neil J.; Boiko, Dmitri L.; Beretta, Giordano B.

    2006-08-01

    We continue our previous program1 where we introduced a set of quantum-based design rules directed at quantum engineers who design single-photon quantum communications and quantum imaging devices. Here, we report on experimental progress using SPAD (single photon avalanche diode) arrays of our design and fabricated in CMOS (complementary metal oxide semiconductor) technology. Emerging high-resolution imaging techniques based on SPAD arrays have proven useful in a variety of disciplines including bio-fluorescence microscopy and 3D vision systems. They have also been particularly successful for intra-chip optical communications implemented entirely in CMOS technology. More importantly for our purposes, a very low dark count allows SPADs to detect rare photon events with a high dynamic range and high signal-to-noise ratio. Our CMOS SPADs support multi-channel detection of photon arrivals with picosecond accuracy, several million times per second, due to a very short detection cycle. The tiny chip area means they are suitable for highly miniaturized quantum imaging devices and that is how we employ them in this paper. Our quantum path integral analysis of the Young-Afshar-Wheeler interferometer showed that Bohr's complementarity principle was not violated due the previously overlooked effect of photon bifurcation within the lens--a phenomenon consistent with our quantum design rules--which accounts for the loss of which-path information in the presence of interference. In this paper, we report on our progress toward the construction of quantitative design rules as well as some proposed tests for quantum imaging devices using entangled photon sources with our SPAD imager.

  3. Stability and degradation of organic photovoltaics fabricated, aged, and characterized by the ISOS 3 inter-laboratory collaboration

    NASA Astrophysics Data System (ADS)

    Tanenbaum, David M.; Hermenau, Martin; Voroshazi, Eszter; Lloyd, Matthew T.; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F.; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Lira-Cantu, Monica; Teran-Escobar, Gerardo; Dupuis, Aurélie; Bussière, Pierre-Olivier; Rivaton, Agnès.; Uzunoglu, Gülsah Y.; Germack, David; Andreasen, Birgitta; Madsen, Morten V.; Norrman, Kion; Bundgaard, Eva; Krebs, Frederik C.

    2012-09-01

    Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage with daily measurement under full sun simulation. Three nominally identical devices were used in each experiment both to provide an assessment of the homogeneity of the samples and to distribute samples for a variety of post soaking analytical measurements at six distinct laboratories enabling comparison at various stages in the degradation of the devices. Characterization includes current-voltage curves, light beam induced current (LBIC) imaging, dark lock-in thermography (DLIT), photoluminescence (PL), electroluminescence (EL), in situ incident photon-to-electron conversion efficiency (IPCE), time of flight secondary ion mass spectrometry (TOF-SIMS), cross sectional electron microscopy (SEM), UV visible spectroscopy, fluorescence microscopy, and atomic force microscopy (AFM). Over 100 devices with more than 300 cells were used in the study. We present here design of the device sets, results both on individual devices and uniformity of device sets from the wide range of characterization methods applied at different stages of aging under the three illumination conditions. We will discuss how these data can help elucidate the degradation mechanisms as well as the benefits and challenges associated with the unprecedented size of the collaboration.

  4. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  5. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics

    PubMed Central

    Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł

    2017-01-01

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316

  6. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.

    PubMed

    Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł

    2017-03-21

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.

  7. Multispectral open-air intraoperative fluorescence imaging.

    PubMed

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  8. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.

    PubMed

    Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel

    2017-04-01

    In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. Copyright © 2017 American Society for Microbiology.

  9. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  10. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content

    PubMed Central

    Nogueira, Enrique; López-Urrutia, Ángel

    2017-01-01

    ABSTRACT In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. PMID:28115378

  11. In situ characterization of the brain-microdevice interface using Device Capture Histology

    PubMed Central

    Woolley, Andrew J.; Desai, Himanshi A.; Steckbeck, Mitchell A.; Patel, Neil K.; Otto, Kevin J.

    2011-01-01

    Accurate assessment of brain-implantable microdevice bio-integration remains a formidable challenge. Prevailing histological methods require device extraction prior to tissue processing, often disrupting and removing the tissue of interest which had been surrounding the device. The Device-Capture Histology method, presented here, overcomes many limitations of the conventional Device-Explant Histology method, by collecting the device and surrounding tissue intact for subsequent labeling. With the implant remaining in situ, accurate and precise imaging of the morphologically preserved tissue at the brain/microdevice interface can then be collected and quantified. First, this article presents the Device-Capture Histology method for obtaining and processing the intact, undisturbed microdevice-tissue interface, and images using fluorescent labeling and confocal microscopy. Second, this article gives examples of how to quantify features found in the captured peridevice tissue. We also share histological data capturing 1) the impact of microdevice implantation on tissue, 2) the effects of an experimental anti-inflammatory coating, 3) a dense grouping of cell nuclei encapsulating a long-term implant, and 4) atypical oligodendrocyte organization neighboring a longterm implant. Data sets collected using the Device-Capture Histology method are presented to demonstrate the significant advantages of processing the intact microdevice-tissue interface, and to underscore the utility of the method in understanding the effects of the brain-implantable microdevices on nearby tissue. PMID:21802446

  12. Biofluidic Intelligent Processors for Preparative Manipulations of Biological Warfare Agents at the Attomole Level

    DTIC Science & Technology

    2005-11-01

    micromixing and microreactor concept. OPA by itself is non- fluorescent, but it reacts with primary amine groups in the presence of β-mercaptoethanol to form...hybrid microchannel/nanopore-membrane devices can serve as efficient micromixers and microreactors, and (2) microscopic kinetics can be obtained from...single image measurements. An immediate application which extended from the micromixing and microreactor concept was microsensing. Calcium ions

  13. Imaging Neuronal Seal Resistance on Silicon Chip using Fluorescent Voltage-Sensitive Dye

    PubMed Central

    Braun, Dieter; Fromherz, Peter

    2004-01-01

    The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across the attached cell membrane with a fluorescent voltage-sensitive dye. The phase map of voltage change was fitted with a planar core-coat conductor model using the sheet resistance as a free parameter. For nerve cells from rat brain on polylysine as well as for HEK293 cells and MDCK cells on fibronectin we find a similar sheet resistance of 10 MΩ. Taking into account the independently measured distance of 50 nm between chip and membrane for these cells, we obtain a specific resistance of 50 Ωcm that is indistinguishable from bulk electrolyte. On the other hand, the sheet resistance for erythrocytes on polylysine is far higher, at ∼1.5 GΩ. Considering the distance of 10 nm, the specific resistance in the narrow cleft is enhanced to 1500 Ωcm. We find this novel optical method to be a convenient tool to optimize the interface between cells and chips for bioelectronic devices. PMID:15298937

  14. Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye.

    PubMed

    Braun, Dieter; Fromherz, Peter

    2004-08-01

    The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across the attached cell membrane with a fluorescent voltage-sensitive dye. The phase map of voltage change was fitted with a planar core-coat conductor model using the sheet resistance as a free parameter. For nerve cells from rat brain on polylysine as well as for HEK293 cells and MDCK cells on fibronectin we find a similar sheet resistance of 10 MOmega. Taking into account the independently measured distance of 50 nm between chip and membrane for these cells, we obtain a specific resistance of 50 Omegacm that is indistinguishable from bulk electrolyte. On the other hand, the sheet resistance for erythrocytes on polylysine is far higher, at approximately 1.5 GOmega. Considering the distance of 10 nm, the specific resistance in the narrow cleft is enhanced to 1500 Omegacm. We find this novel optical method to be a convenient tool to optimize the interface between cells and chips for bioelectronic devices.

  15. Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos

    PubMed Central

    Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.

    2016-01-01

    Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296

  16. Infrared-laser-based fundus angiography

    NASA Astrophysics Data System (ADS)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  17. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  18. Optofluidic microscope with 3D spatial resolution.

    PubMed

    Vig, Asger Laurburg; Marie, Rodolphe; Jensen, Eric; Kristensen, Anders

    2010-03-01

    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position in the plane perpendicular to the flow direction and the velocity along the flow direction of separated fluorescent labeled polystyrene microspheres with diameters of 1 microm , 2.1 microm , 3 microm and 4 microm is determined by the OFM. These results are bench marked against those obtained with a PFF device using conventional fluorescence microscope readout. The size separated microspheres are detected by OFM with an accuracy of

  19. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  20. An Inexpensive Device for Capillary Electrophoresis with Fluorescence Detection

    ERIC Educational Resources Information Center

    Anderson, Greg; Thompson, Jonathan E.; Shurrush, Khriesto

    2006-01-01

    We describe an inexpensive device for performing capillary electrophoresis (CE) separations with fluorescence detection. As a demonstration of the device's utility we have determined the mass of riboflavin in a commercially available dietary supplement. The device allows for separation of riboflavin in [asymptotically equivalent to] 100 s with a…

  1. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  2. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  3. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.

    PubMed Central

    Sund, S E; Axelrod, D

    2000-01-01

    Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025

  4. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  5. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.

  6. Simple device for the direct visualization of oral-cavity tissue fluorescence

    NASA Astrophysics Data System (ADS)

    Lane, Pierre M.; Gilhuly, Terence; Whitehead, Peter D.; Zeng, Haishan; Poh, Catherine; Ng, Samson; Williams, Michelle; Zhang, Lewei; Rosin, Miriam; MacAulay, Calum E.

    2006-03-01

    Early identification of high-risk disease could greatly reduce both mortality and morbidity due to oral cancer. We describe a simple handheld device that facilitates the direct visualization of oral-cavity fluorescence for the detection of high-risk precancerous and early cancerous lesions. Blue excitation light (400 to 460 nm) is employed to excite green-red fluorescence from fluorophores in the oral tissues. Tissue fluorescence is viewed directly along an optical axis collinear with the axis of excitation to reduce inter- and intraoperator variability. This robust, field-of-view device enables the direct visualization of fluorescence in the context of surrounding normal tissue. Results from a pilot study of 44 patients are presented. Using histology as the gold standard, the device achieves a sensitivity of 98% and specificity of 100% when discriminating normal mucosa from severe dysplasia/carcinoma in situ (CIS) or invasive carcinoma. We envisage this device as a suitable adjunct for oral cancer screening, biopsy guidance, and margin delineation.

  7. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  8. Real-time intraoperative fluorescence imaging system using light-absorption correction.

    PubMed

    Themelis, George; Yoo, Jung Sun; Soh, Kwang-Sup; Schulz, Ralf; Ntziachristos, Vasilis

    2009-01-01

    We present a novel fluorescence imaging system developed for real-time interventional imaging applications. The system implements a correction scheme that improves the accuracy of epi-illumination fluorescence images for light intensity variation in tissues. The implementation is based on the use of three cameras operating in parallel, utilizing a common lens, which allows for the concurrent collection of color, fluorescence, and light attenuation images at the excitation wavelength from the same field of view. The correction is based on a ratio approach of fluorescence over light attenuation images. Color images and video is used for surgical guidance and for registration with the corrected fluorescence images. We showcase the performance metrics of this system on phantoms and animals, and discuss the advantages over conventional epi-illumination systems developed for real-time applications and the limits of validity of corrected epi-illumination fluorescence imaging.

  9. Direct observation of single flexible polymers using single stranded DNA†

    PubMed Central

    Brockman, Christopher; Kim, Sun Ju

    2012-01-01

    Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981

  10. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  11. Azimuthal phase retardation microscope for visualizing actin filaments of biological cells

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Shin, Sang-Mo

    2011-09-01

    We developed a new theory-based azimuthal phase retardation microscope to visualize distributions of actin filaments in biological cells without having them with exogenous dyes, fluorescence labels, or stains. The azimuthal phase retardation microscope visualizes distributions of actin filaments by measuring the intensity variations of each pixel of a charge coupled device camera while rotating a single linear polarizer. Azimuthal phase retardation δ between two fixed principal axes was obtained by calculating the rotation angles of the polarizer at the intensity minima from the acquired intensity data. We have acquired azimuthal phase retardation distributions of human breast cancer cell, MDA MB 231 by our microscope and compared the azimuthal phase retardation distributions with the fluorescence image of actin filaments by the commercial fluorescence microscope. Also, we have observed movement of human umbilical cord blood derived mesenchymal stem cells by measuring azimuthal phase retardation distributions.

  12. An open source, wireless capable miniature microscope system

    NASA Astrophysics Data System (ADS)

    Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.

    2017-08-01

    Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.

  13. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

    PubMed

    Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T

    2018-04-24

    Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

  14. A hybrid microfluidic device for on-demand orientation and multidirectional imaging of C. elegans organs and neurons

    PubMed Central

    Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya

    2016-01-01

    C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213

  15. Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection.

    PubMed

    Tummers, Willemieke S; Warram, Jason M; Tipirneni, Kiranya E; Fengler, John; Jacobs, Paula; Shankar, Lalitha; Henderson, Lori; Ballard, Betsy; Pogue, Brian W; Weichert, Jamey P; Bouvet, Michael; Sorger, Jonathan; Contag, Christopher H; Frangioni, John V; Tweedle, Michael F; Basilion, James P; Gambhir, Sanjiv S; Rosenthal, Eben L

    2017-05-01

    Considerable advances in cancer-specific optical imaging have improved the precision of tumor resection. In comparison to traditional imaging modalities, this technology is unique in its ability to provide real-time feedback to the operating surgeon. Given the significant clinical implications of optical imaging, there is an urgent need to standardize surgical navigation tools and contrast agents to facilitate swift regulatory approval. Because fluorescence-enhanced surgery requires a combination of both device and drug, each may be developed in conjunction, or separately, which are important considerations in the approval process. This report is the result of a one-day meeting held on May 4, 2016 with officials from the National Cancer Institute, the FDA, members of the American Society of Image-Guided Surgery, and members of the World Molecular Imaging Society, which discussed consensus methods for FDA-directed human testing and approval of investigational optical imaging devices as well as contrast agents for surgical applications. The goal of this workshop was to discuss FDA approval requirements and the expectations for approval of these novel drugs and devices, packaged separately or in combination, within the context of optical surgical navigation. In addition, the workshop acted to provide clarity to the research community on data collection and trial design. Reported here are the specific discussion items and recommendations from this critical and timely meeting. Cancer Res; 77(9); 2197-206. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  17. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    NASA Astrophysics Data System (ADS)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  18. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  19. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  20. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  1. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  2. Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices

    NASA Astrophysics Data System (ADS)

    Kamei, Toshihiro; Wada, Takehito

    2006-09-01

    A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.

  3. [Development of fluorescent probes for bone imaging in vivo ~Fluorescent probes for intravital imaging of osteoclast activity~.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    Fluorescent molecules are widely used as a tool to directly visualize target biomolecules in vivo. Fluorescent probes have the advantage that desired function can be rendered based on rational design. For bone-imaging fluorescent probes in vivo, they should be delivered to bone tissue upon administration. Recently, a fluorescent probe for detecting osteoclast activity was developed. The fluorescent probe has acid-sensitive fluorescence property, specific delivery to bone tissue, and durability against laser irradiation, which enabled real-time intravital imaging of bone-resorbing osteoclasts for a long period of time.

  4. Hyperspectral Imaging and Spectroscopy of Fluorescently Coupled Acyl-CoA: Cholesterol Acyltransferase in Insect Cells

    NASA Technical Reports Server (NTRS)

    Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.

  5. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma

    NASA Astrophysics Data System (ADS)

    Chamma, Emilie; Qiu, Jimmy; Lindvere-Teene, Liis; Blackmore, Kristina M.; Majeed, Safa; Weersink, Robert; Dickie, Colleen I.; Griffin, Anthony M.; Wunder, Jay S.; Ferguson, Peter C.; DaCosta, Ralph S.

    2015-07-01

    Standard clinical management of extremity soft tissue sarcomas includes surgery with radiation therapy. Wound complications (WCs) arising from treatment may occur due to bacterial infection and tissue breakdown. The ability to detect changes in these parameters during treatment may lead to earlier interventions that mitigate WCs. We describe the use of a new system composed of an autofluorescence imaging device and an optical three-dimensional tracking system to detect and coregister the presence of bacteria with radiation doses. The imaging device visualized erythema using white light and detected bacterial autofluorescence using 405-nm excitation light. Its position was tracked relative to the patient using IR reflective spheres and registration to the computed tomography coordinates. Image coregistration software was developed to spatially overlay radiation treatment plans and dose distributions on the white light and autofluorescence images of the surgical site. We describe the technology, its use in the operating room, and standard operating procedures, as well as demonstrate technical feasibility and safety intraoperatively. This new clinical tool may help identify patients at greater risk of developing WCs and investigate correlations between radiation dose, skin response, and changes in bacterial load as biomarkers associated with WCs.

  6. Real-Time Detection of Telomerase in a Microelectromechanical Systems Platform

    DTIC Science & Technology

    2005-05-01

    contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 147 19a...Telomerase accomplishes this by alleviating the “end-replication problem” (6,10,14,23,33,43). First described by Hayflick in 1965, the end-replication...were produced to determine the minimum detection limit of the ABI Prism 7000 as an optical fluorescent detection device. In addition, I wanted to

  7. Interpretative Guidelines and Possible Indications for Indocyanine Green Fluorescence Imaging in Robot-Assisted Sphincter-Saving Operations.

    PubMed

    Kim, Jin Cheon; Lee, Jong Lyul; Park, Seong Ho

    2017-04-01

    Since the introduction of indocyanine green angiography more than 25 years ago, few studies have presented interpretative guidelines for indocyanine green fluorescent imaging. We aimed to provide interpretative guidelines for indocyanine green fluorescent imaging through quantitative analysis and to suggest possible indications for indocyanine green fluorescent imaging during robot-assisted sphincter-saving operations. This is a retrospective observational study. This study was conducted at a single center. A cohort of 657 patients with rectal cancer who consecutively underwent curative robot-assisted sphincter-saving operations was enrolled between 2010 and 2016, including 310 patients with indocyanine green imaging (indocyanine green fluorescent imaging+ group) and 347 patients without indocyanine green imaging (indocyanine green fluorescent imaging- group). We tried to quantitatively define the indocyanine green fluorescent imaging findings based on perfusion (mesocolic and colic) time and perfusion intensity (5 grades) to provide probable indications. The anastomotic leakage rate was significantly lower in the indocyanine green fluorescent imaging+ group than in the indocyanine green fluorescent imaging- group (0.6% vs 5.2%) (OR, 0.123; 95% CI, 0.028-0.544; p = 0.006). Anastomotic stricture was closely correlated with anastomotic leakage (p = 0.002) and a short descending mesocolon (p = 0.003). Delayed perfusion (>60 s) and low perfusion intensity (1-2) were more frequently detected in patients with anastomotic stricture and marginal artery defects than in those without these factors (p ≤ 0.001). In addition, perfusion times greater than the mean were more frequently observed in patients aged >58 years, whereas low perfusion intensity was seen more in patients with short descending mesocolon and high ASA classes (≥3). The 300 patients in the indocyanine green fluorescent imaging- group underwent operations 3 years before indocyanine green fluorescent imaging. Quantitative analysis of indocyanine green fluorescent imaging may help prevent anastomotic complications during robot-assisted sphincter-saving operations, and may be of particular value in high-class ASA patients, older patients, and patients with a short descending mesocolon.

  8. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  9. Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging

    PubMed Central

    Lee, Cameron M.; Engelbrecht, Christoph J.; Soper, Timothy D.; Helmchen, Fritjof; Seibel, Eric J.

    2011-01-01

    In modern endoscopy, wide field of view and full color are considered necessary for navigating inside the body, inspecting tissue for disease and guiding interventions such as biopsy or surgery. Current flexible endoscope technologies suffer from reduced resolution when device diameter shrinks. Endoscopic procedures today using coherent fiber bundle technology, on the scale of 1 mm, are performed with such poor image quality that the clinician’s vision meets the criteria for legal blindness. Here, we review a new and versatile scanning fiber imaging technology and describe its implementation for ultrathin and flexible endoscopy. This scanning fiber endoscope (SFE) or catheterscope enables high quality, laser-based, video imaging for ultrathin clinical applications while also providing new options for in vivo biological research of subsurface tissue and high resolution fluorescence imaging. PMID:20336702

  10. Integration of Novel Low-Cost Colorimetric, Laser Photometric, and Visual Fluorescent Techniques for Rapid Identification of Falsified Medicines in Resource-Poor Areas: Application to Artemether–Lumefantrine

    PubMed Central

    Green, Michael D.; Hostetler, Dana M.; Nettey, Henry; Swamidoss, Isabel; Ranieri, Nicola; Newton, Paul N.

    2015-01-01

    The availability of falsified antimalarial drugs can be reduced with effective drug regulatory agencies and proper enforcement. Fundamental to these agencies taking action, rapid identification must be made as soon as they appear in the market place. Since falsified antimalarials occur mostly in developing countries, performing drug analysis presents itself with unique challenges. A fundamental factor in choosing a useful technique is affordability and simplicity. Therefore, we suggest a three-tiered drug evaluation strategy for identifying a falsified drug in resource-poor areas. Tier I is a simple comparison of a tablet's weight and dimensions with official specifications. Tier II uses inexpensive photometric devices (laser and fluorescence) to evaluate a tablet. Suspicious samples from Tier I and II assessments are then subjected to a colorimetric assay for active ingredients identification and quantification. In this article, we evaluate a novel colorimetric assay for the simultaneous assessment of both lumefantrine and artemether in co-formulated Coartem™ tablets, and integrate the method with two novel, low-cost, fluorescence and laser photometric devices. Image analysis software is used for the assessments. Although artemether–lumefantrine is used as an example, the strategy may be adapted to other medicines. PMID:25897066

  11. Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter

    NASA Astrophysics Data System (ADS)

    Ratzke, Wolfram; Bange, Sebastian; Lupton, John M.

    2018-05-01

    We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of <0.2 % , changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms.

  12. Microsecond resolved single-molecule FRET time series measurements based on the line confocal optical system combined with hybrid photodetectors.

    PubMed

    Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi

    2018-01-31

    Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.

  13. Integration of novel low-cost colorimetric, laser photometric, and visual fluorescent techniques for rapid identification of falsified medicines in resource-poor areas: application to artemether-lumefantrine.

    PubMed

    Green, Michael D; Hostetler, Dana M; Nettey, Henry; Swamidoss, Isabel; Ranieri, Nicola; Newton, Paul N

    2015-06-01

    The availability of falsified antimalarial drugs can be reduced with effective drug regulatory agencies and proper enforcement. Fundamental to these agencies taking action, rapid identification must be made as soon as they appear in the market place. Since falsified antimalarials occur mostly in developing countries, performing drug analysis presents itself with unique challenges. A fundamental factor in choosing a useful technique is affordability and simplicity. Therefore, we suggest a three-tiered drug evaluation strategy for identifying a falsified drug in resource-poor areas. Tier I is a simple comparison of a tablet's weight and dimensions with official specifications. Tier II uses inexpensive photometric devices (laser and fluorescence) to evaluate a tablet. Suspicious samples from Tier I and II assessments are then subjected to a colorimetric assay for active ingredients identification and quantification. In this article, we evaluate a novel colorimetric assay for the simultaneous assessment of both lumefantrine and artemether in co-formulated Coartem™ tablets, and integrate the method with two novel, low-cost, fluorescence and laser photometric devices. Image analysis software is used for the assessments. Although artemether-lumefantrine is used as an example, the strategy may be adapted to other medicines. © The American Society of Tropical Medicine and Hygiene.

  14. Sensorless adaptive optics for isoSTED nanoscopy

    NASA Astrophysics Data System (ADS)

    Antonello, Jacopo; Hao, Xiang; Allgeyer, Edward S.; Bewersdorf, Joerg; Rittscher, Jens; Booth, Martin J.

    2018-02-01

    The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.

  15. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    PubMed Central

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  16. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  17. Mechanical Damage Detection of Indonesia Local Citrus Based on Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Siregar, T. H.; Ahmad, U.; Sutrisno; Maddu, A.

    2018-05-01

    Citrus experienced physical damage in peel will produce essential oils that contain polymethoxylated flavone. Polymethoxylated flavone is fluorescence substance; thus can be detected by fluorescence imaging. This study aims to study the fluorescence spectra characteristic and to determine the damage region in citrus peel based on fluorescence image. Pulung citrus from Batu district, East Java, as a famous citrus production area in Indonesia, was used in the experiment. It was observed that the image processing could detect the mechanical damage region. Fluorescence imaging can be used to classify the citrus into two categories, sound and defect citruses.

  18. Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry.

    PubMed

    Lee, Ji-Won; Iimura, Tadahiro

    2017-02-01

    Digitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed.

  19. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    The following dissertation describes the development of methods for performing standoff and in- situ Raman and fluorescence spectroscopy for chemical imaging and non-imaging analytical applications. The use of Raman spectroscopy for the in- situ identification of crack cocaine and cocaine.HCl using a fiberoptic Raman probe and a portable Raman spectrograph has been demonstrated. We show that the Raman spectra of both forms of cocaine are easily distinguishable from common cutting agents and impurities such as benzocaine and lidocaine. We have also demonstrated the use of Raman spectroscopy for in-situ identification of drugs separated by thin layer chromatography. We have investigated the use of small, transportable, Raman systems for standoff Raman spectroscopy (e.g. <20 m). For this work, acousto-optical (AOTF) and liquid crystal tunable filters (LCTF) are being used both with, and in place of dispersive spectrographs and fixed filtering devices. In addition, we improved the flexibility of the system by the use of a modified holographic fiber-optic probe for light and image collection. A comparison of tunable filter technologies for standoff Raman imaging is discussed along with the merits of image transfer devices using small diameter image guides. A standoff Raman imaging system has been developed that utilizes a unique polymer collection mirror. The techniques used to produce these mirrors make it easy to design low f/# polymer mirrors. The performance of a low f/# polymer mirror system for standoff Raman chemical imaging has been demonstrated and evaluated. We have also demonstrated remote Raman hyperspectral imaging using a dimension-reduction, 2-dimensional (2-D) to 1-dimensional (1-D), fiber optic array. In these studies, a modified holographic fiber-optic probe was combined with the dimension-reduction fiber array for remote Raman imaging. The utility of this setup for standoff Raman imaging is demonstrated by monitoring the polymerization of dibromostyrene. To further demonstrate the utility of in- situ spectral imaging, we have shown that small diameter (350 μm) image guides can be used for in-situ measurements of analyte transport in thin membranes. This has been applied to the measurement of H2O diffusion in Nafion™ membranes using the luminescent compound, [Ru(phen)2dppz] 2+, which is a H2O indicator.

  20. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    PubMed

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  1. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.

    2010-12-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  2. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    PubMed Central

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  3. Small-animal research imaging devices.

    PubMed

    Fine, Eugene J; Herbst, Lawrence; Jelicks, Linda A; Koba, Wade; Theele, Daniel

    2014-01-01

    The scientific study of living animals may be dated to Aristotle's original dissections, but modern animal studies are perhaps a century in the making, and advanced animal imaging has emerged only during the past few decades. In vivo imaging now occupies a growing role in the scientific research paradigm. Imaging of small animals has been particularly useful to help understand human molecular biology and pathophysiology using rodents, especially using genetically engineered mice (GEM) with spontaneous diseases that closely mimic human diseases. Specific examples of GEM models of veterinary diseases exist, but in general, GEM for veterinary research has lagged behind human research applications. However, the development of spontaneous disease models from GEM may also hold potential for veterinary research. The imaging techniques most widely used in small-animal research are CT, PET, single-photon emission CT, MRI, and optical fluorescent and luminescent imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Enhancing in vivo tumor boundary delineation with structured illumination fluorescence molecular imaging and spatial gradient mapping

    NASA Astrophysics Data System (ADS)

    Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.

    2016-08-01

    Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.

  5. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron-scale, fluorescence, and bright field image data. Here we describe our image preprocessing, analysis, and visualization techniques. Processing improves axial resolution, reduces subsurface fluorescence by 97%, and enables single cell detection and counting. High quality 3D volume renderings enable us to evaluate cell distribution patterns. Applications include the myriad of biomedical experiments using fluorescent reporter gene and exogenous fluorophore labeling of cells in applications such as stem cell regenerative medicine, cancer, tissue engineering, etc.

  6. KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel

    NASA Technical Reports Server (NTRS)

    Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.

    1992-01-01

    Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.

  7. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    NASA Astrophysics Data System (ADS)

    Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki

    2016-06-01

    A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  8. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  9. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  10. Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-02-01

    A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.

  11. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activatedmore » fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.« less

  12. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  13. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  15. Statistical image segmentation for the detection of skin lesion borders in UV fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Ortega-Martinez, Antonio; Padilla-Martinez, Juan Pablo; Franco, Walfre

    2016-04-01

    The skin contains several fluorescent molecules or fluorophores that serve as markers of structure, function and composition. UV fluorescence excitation photography is a simple and effective way to image specific intrinsic fluorophores, such as the one ascribed to tryptophan which emits at a wavelength of 345 nm upon excitation at 295 nm, and is a marker of cellular proliferation. Earlier, we built a clinical UV photography system to image cellular proliferation. In some samples, the naturally low intensity of the fluorescence can make it difficult to separate the fluorescence of cells in higher proliferation states from background fluorescence and other imaging artifacts -- like electronic noise. In this work, we describe a statistical image segmentation method to separate the fluorescence of interest. Statistical image segmentation is based on image averaging, background subtraction and pixel statistics. This method allows to better quantify the intensity and surface distributions of fluorescence, which in turn simplify the detection of borders. Using this method we delineated the borders of highly-proliferative skin conditions and diseases, in particular, allergic contact dermatitis, psoriatic lesions and basal cell carcinoma. Segmented images clearly define lesion borders. UV fluorescence excitation photography along with statistical image segmentation may serve as a quick and simple diagnostic tool for clinicians.

  16. 5-ALA induced fluorescent image analysis of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo

    2010-02-01

    In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.

  17. Confocal bioimaging the living cornea with autofluorescence and specific fluorescent probes

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.; Paddock, Stephen W.

    1990-08-01

    Confocal bioimaging of the fine structure of the living rabbit cornea with both reflected light and fluorescent light has been demonstrated with a laser scanning confocal imaging system. Kalman averaging was used to reduce the noise in the images. Superficial epithelial, basal epithelial cells, stromal keratocytes, and endothelial cells were imaged. These cells and their subcellular structures were imaged in the two modes for comparison. The superficial epithelial cells were imaged by their autofluorescence (488/520 nm). This fluorescence signal may be due to the mitochondrial flavoproteins and can be used as a noninvasive indicator of cellular oxidative function. Thiazole orange was used to stain cell nuclei for fluorescence imaging. DiOC6 was used to stain the endoplasmic reticulum for fluorescence imaging. Fluorescein- conjugated phalloidin was used to stain actin for fluorescence imaging.

  18. Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy.

    PubMed

    Hammer, Martin; Königsdörffer, Ekkehart; Liebermann, Christiane; Framme, Carsten; Schuch, Günter; Schweitzer, Dietrich; Strobel, Jürgen

    2008-01-01

    Post-translational protein modification by lipid peroxidation products or glycation is a feature of aging as well as pathologic processes in postmitotic cells at the ocular fundus exposed to an oxidative environment. The accumulation of modified proteins such as those found in lipofuscin and advanced glycation end products (AGEs) contribute greatly to the fundus auto-fluorescence. The distinct fluorescence spectra of lipofuscin and AGE enable their differentiation in multispectral fundus fluorescence imaging. A dual-centre consecutive case series of 78 pseudo-phacic patients is reported. Digital colour fundus photographs as well as auto-fluorescence images were taken from 33 patients with age related macular degeneration (AMD), 13 patients with diabetic retinopathy (RD), or from 32 cases without pathologic findings (controls). Fluorescence was excited at 475-515 nm or 476-604 nm and recorded in the emission bands 530-675 nm or 675-715 nm, respectively. Fluorescence images excited at 475-515 nm were taken by a colour CCD-camera (colour-fluorescence imaging) enabling the separate recording of green and red fluorescence. The ratio of green versus red fluorescence was calculated within a representative region of each image. The 530-675 nm auto-fluorescence in AMD patients was dominated by the red emission (green vs. red ratio, g/r = 0.861). In comparison, the fluorescence of the diabetics was green-shifted (g/r = 0.946; controls: g/r = 0.869). Atrophic areas (geographic atrophy, laser scars) showed massive hypo-fluorescence in both emission bands. Hyper-fluorescent drusen and exudates, unobtrusive in the colour fundus images as well as in the fluorescence images with emission >667 nm, showed an impressive green-shift in the colour-fluorescence image. Lipofuscin is the dominant fluorophore at long wavelengths (>675 nm or red channel of the colour fluorescence image). In the green spectral region, we found an additional emission of collagen and elastin (optic disc, sclera) as well as deposits in drusen and exudates. The green shift of the auto-fluorescence in RD may be a hint of increased AGE concentrations.

  19. Medical devices; hematology and pathology devices; classification of early growth response 1 gene fluorescence in-situ hybridization test system for specimen characterization. Final order.

    PubMed

    2014-09-03

    The Food and Drug Administration (FDA) is classifying early growth response 1 (EGR1) gene fluorescence in-situ hybridization (FISH) test system for specimen characterization into class II (special controls). The special controls that will apply to this device are identified in this order and will be part of the codified language for the early growth response 1 (EGR1) gene fluorescence in-site hybridization (FISH) test system for specimen characterization classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  20. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  1. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  2. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter.

    PubMed

    Hossain, Md Arafat; Canning, John; Yu, Zhikang; Ast, Sandra; Rutledge, Peter J; Wong, Joseph K-H; Jamalipour, Abbas; Crossley, Maxwell J

    2017-05-30

    A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λ ex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn 2+ is observed to accelerate with an increasing rate constant, k = 1.94 min -1 at T = 15 °C and k = 3.64 min -1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

  3. Periscope for noninvasive two-photon imaging of murine retina in vivo

    PubMed Central

    Stremplewski, Patrycjusz; Komar, Katarzyna; Palczewski, Krzysztof; Wojtkowski, Maciej; Palczewska, Grazyna

    2015-01-01

    Two-photon microscopy allows visualization of subcellular structures in the living animal retina. In previously reported experiments it was necessary to apply a contact lens to each subject. Extending this technology to larger animals would require fitting a custom contact lens to each animal and cumbersome placement of the living animal head on microscope stage. Here we demonstrate a new device, periscope, for coupling light energy into mouse eye and capturing emitted fluorescence. Using this periscope we obtained images of the RPE and their subcellular organelles, retinosomes, with larger field of view than previously reported. This periscope provides an interface with a commercial microscope, does not require contact lens and its design could be modified to image retina in larger animals. PMID:26417507

  4. Real-time assessment of corneal endothelial cell damage following graft preparation and donor insertion for DMEK

    PubMed Central

    Bhogal, Maninder; Lwin, Chan N.; Seah, Xin-Yi; Murugan, Elavazhagan; Adnan, Khadijah; Lin, Shu-Jun; Mehta, Jodhbir S.

    2017-01-01

    Purpose To establish a method for assessing graft viability, in-vivo, following corneal transplantation. Methods Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques. Results Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1%) and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7–35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage. Conclusions In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo. PMID:28977017

  5. Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging

    PubMed Central

    Quang, Tri T.; Kim, Hye-Yeong; Bao, Forrest Sheng; Papay, Francis A.; Edwards, W. Barry; Liu, Yang

    2017-01-01

    Fluorescence imaging is a powerful technique with diverse applications in intraoperative settings. Visualization of three dimensional (3D) structures and depth assessment of lesions, however, are oftentimes limited in planar fluorescence imaging systems. In this study, a novel Fluorescence Imaging Topography Scanning (FITS) system has been developed, which offers color reflectance imaging, fluorescence imaging and surface topography scanning capabilities. The system is compact and portable, and thus suitable for deployment in the operating room without disturbing the surgical flow. For system performance, parameters including near infrared fluorescence detection limit, contrast transfer functions and topography depth resolution were characterized. The developed system was tested in chicken tissues ex vivo with simulated tumors for intraoperative imaging. We subsequently conducted in vivo multimodal imaging of sentinel lymph nodes in mice using FITS and PET/CT. The PET/CT/optical multimodal images were co-registered and conveniently presented to users to guide surgeries. Our results show that the developed system can facilitate multimodal intraoperative imaging. PMID:28437441

  6. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The wavelength interval between adjacent pixels (and, thus, the spectral resolution) would typically be chosen by design to be approximately equal to the width of the total fluorescence wavelength range of interest divided by the number of pixels. The unitary structure comprising the photodetector array overlaid with the matching filter array would be denoted a hyperspectral mosaic detector (HMD) array.

  7. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    NASA Astrophysics Data System (ADS)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the catheter and fluorescing agents chemically bonded to plaques on walls of the arteries.

  8. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    PubMed Central

    Elson, D S; Jo, J A

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues. PMID:19503759

  9. Development of an integrated endoscopic device for multiplexed low coherence interferometry measurements of microbicide gel coating thickness

    NASA Astrophysics Data System (ADS)

    Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.

    2009-02-01

    Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.

  10. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  11. Fluorescence lifetime imaging of skin cancer

    NASA Astrophysics Data System (ADS)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  12. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  13. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  14. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  15. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  16. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  17. Simultaneous Visualization of Hydrogen Peroxide and Water Concentrations Using Photofragmentation Laser-Induced Fluorescence.

    PubMed

    Larsson, Kajsa; Aldén, Marcus; Bood, Joakim

    2017-09-01

    A concept based on photofragmentation laser-induced fluorescence (PFLIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H 2 O 2 ) and water (H 2 O) vapor in various mixtures containing the two constituents in a bath of argon gas. A photolysis laser pulse at 248 nm dissociates H 2 O 2 into OH fragments, whereupon a probe pulse, delayed 100 ns and tuned to an absorption line in the A 2 Σ + (v = 1) ← X 2 Π(v = 0) band of OH near 282 nm, induces fluorescence. The total OH fluorescence reflects the H 2 O 2 concentration, while its spectral shape is utilized to determine the H 2 O concentration via a model predicting the ratio between the fluorescence intensities of the A 2 Σ + (v = 1) → X 2 Π(v = 1) and the A 2 Σ + (v = 0) → X 2 Π(v = 0) bands. The H 2 O detection scheme requires that the bath gas has a collisional cross-section with OH(A) that is significantly lower than that of H 2 O, which is the case for argon. Spectrally dispersed OH fluorescence spectra were recorded for five different H 2 O 2 /H 2 O/Ar mixtures; the H 2 O 2 concentration in the range of 30-500 ppm and the H 2 O concentration in the range of 0-3%. Fluorescence intensity ratios predicted by the model for these mixtures agree very well with corresponding experimental data, which thus validates the model. The concept was also demonstrated for two-dimensional imaging, using two intensified charge-coupled device (CCD) cameras for signal detection. Water content was here sensed through the different temporal characteristics of the two fluorescence bands by triggering the two cameras so that one captures the total OH fluorescence while the other one captures only the early part, which mainly stems from A 2 Σ + (v = 1) → X 2 Π(v = 1) fluorescence. Hence, the H 2 O 2 concentration is reflected by the image of the camera recording the total OH fluorescence, whereas H 2 O concentration is extracted from the ratio between the two camera images. Quantification of the concentrations was carried out based on calibration measurements performed in known mixtures of H 2 O 2 (30-500 ppm) and H 2 O (0-3%) in bulk argon. The detection limits for single-shot imaging are estimated to be 20 ppm for H 2 O 2 and 0.05% for H 2 O. The authors believe that the concept provides a valuable asset in, for example, pharmaceutical or aseptic food packaging applications, where H 2 O 2 /H 2 O vapor is routinely used for sterilization.

  18. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  19. Development of and Clinical Experience with a Simple Device for Performing Intraoperative Fluorescein Fluorescence Cerebral Angiography: Technical Notes.

    PubMed

    Ichikawa, Tsuyoshi; Suzuki, Kyouichi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2016-01-01

    To perform intraoperative fluorescence angiography (FAG) under a microscope without an integrated FAG function with reasonable cost and sufficient quality for evaluation, we made a small and easy to use device for fluorescein FAG (FAG filter). We investigated the practical use of this FAG filter during aneurysm surgery, revascularization surgery, and brain tumor surgery. The FAG filter consists of two types of filters: an excitatory filter and a barrier filter. The excitatory filter excludes all wavelengths except for blue light and the barrier filter passes long waves except for blue light. By adding this FAG filter to a microscope without an integrated FAG function, light from the microscope illuminating the surgical field becomes blue, which is blocked by the barrier filter. We put the FAG filter on the objective lens of the operating microscope correctly and fluorescein sodium was injected intravenously or intra-arterially. Fluorescence (green light) from vessels in the surgical field and the dyed tumor were clearly observed through the microscope and recorded by a memory device. This method was easy and could be performed in a short time (about 10 seconds). Blood flow of small vessels deep in the surgical field could be observed. Blood flow stagnation could be evaluated. However, images from this method were inferior to those obtained by currently commercially available microscopes with an integrated FAG function. In brain tumor surgery, a stained tumor on the brain surface could be observed using this method. FAG could be performed with a microscope without an integrated FAG function easily with only this FAG filter.

  20. Development of and Clinical Experience with a Simple Device for Performing Intraoperative Fluorescein Fluorescence Cerebral Angiography: Technical Notes

    PubMed Central

    ICHIKAWA, Tsuyoshi; SUZUKI, Kyouichi; WATANABE, Yoichi; SATO, Taku; SAKUMA, Jun; SAITO, Kiyoshi

    2016-01-01

    To perform intraoperative fluorescence angiography (FAG) under a microscope without an integrated FAG function with reasonable cost and sufficient quality for evaluation, we made a small and easy to use device for fluorescein FAG (FAG filter). We investigated the practical use of this FAG filter during aneurysm surgery, revascularization surgery, and brain tumor surgery. The FAG filter consists of two types of filters: an excitatory filter and a barrier filter. The excitatory filter excludes all wavelengths except for blue light and the barrier filter passes long waves except for blue light. By adding this FAG filter to a microscope without an integrated FAG function, light from the microscope illuminating the surgical field becomes blue, which is blocked by the barrier filter. We put the FAG filter on the objective lens of the operating microscope correctly and fluorescein sodium was injected intravenously or intra-arterially. Fluorescence (green light) from vessels in the surgical field and the dyed tumor were clearly observed through the microscope and recorded by a memory device. This method was easy and could be performed in a short time (about 10 seconds). Blood flow of small vessels deep in the surgical field could be observed. Blood flow stagnation could be evaluated. However, images from this method were inferior to those obtained by currently commercially available microscopes with an integrated FAG function. In brain tumor surgery, a stained tumor on the brain surface could be observed using this method. FAG could be performed with a microscope without an integrated FAG function easily with only this FAG filter. PMID:26597335

  1. The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong

    2017-01-01

    Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666

  2. Fluorescence lifetime imaging ophthalmoscopy.

    PubMed

    Dysli, Chantal; Wolf, Sebastian; Berezin, Mikhail Y; Sauer, Lydia; Hammer, Martin; Zinkernagel, Martin S

    2017-09-01

    Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  4. Quantification of tumor fluorescence during intraoperative optical cancer imaging.

    PubMed

    Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil

    2015-11-13

    Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.

  5. Optical switch probes and optical lock-in detection (OLID) imaging microscopy: high-contrast fluorescence imaging within living systems.

    PubMed

    Yan, Yuling; Marriott, M Emma; Petchprayoon, Chutima; Marriott, Gerard

    2011-02-01

    Few to single molecule imaging of fluorescent probe molecules can provide information on the distribution, dynamics, interactions and activity of specific fluorescently tagged proteins during cellular processes. Unfortunately, these imaging studies are made challenging in living cells because of fluorescence signals from endogenous cofactors. Moreover, related background signals within multi-cell systems and intact tissue are even higher and reduce signal contrast even for ensemble populations of probe molecules. High-contrast optical imaging within high-background environments will therefore require new ideas on the design of fluorescence probes, and the way their fluorescence signals are generated and analysed to form an image. To this end, in the present review we describe recent studies on a new family of fluorescent probe called optical switches, with descriptions of the mechanisms that underlie their ability to undergo rapid and reversible transitions between two distinct states. Optical manipulation of the fluorescent and non-fluorescent states of an optical switch probe generates a modulated fluorescence signal that can be isolated from a larger unmodulated background by using OLID (optical lock-in detection) techniques. The present review concludes with a discussion on select applications of synthetic and genetically encoded optical switch probes and OLID microscopy for high-contrast imaging of specific proteins and membrane structures within living systems.

  6. Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters

    PubMed Central

    Roberts, David W.; Valdés, Pablo A.; Harris, Brent T.; Fontaine, Kathryn M.; Hartov, Alexander; Fan, Xiaoyao; Ji, Songbai; Lollis, S. Scott; Pogue, Brian W.; Leblond, Frederic; Tosteson, Tor D.; Wilson, Brian C.; Paulsen, Keith D.

    2010-01-01

    Object The aim of this study was to investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters in 11 cases of newly diagnosed glioblastoma multiforme (GBM) treated using protoporphyrin IX (PpIX) fluorescence-guided resection. Methods In 11 patients with a newly diagnosed GBM, δ-aminolevulinic acid (ALA) was administered to enhance endogenous synthesis of the fluorophore PpIX. The patients then underwent fluorescence-guided resection, coregistered with conventional neuronavigational image guidance. Biopsy specimens were collected at different times during surgery and assigned a fluorescence level of 0–3 (0, no fluorescence; 1, low fluorescence; 2, moderate fluorescence; or 3, high fluorescence). Contrast enhancement on MR imaging was quantified using two image metrics: 1) Gd-enhanced signal intensity (GdE) on T1-weighted subtraction MR image volumes, and 2) normalized contrast ratios (nCRs) in T1-weighted, postGd-injection MR image volumes for each biopsy specimen, using the biopsy-specific image-space coordinate transformation provided by the navigation system. Subsequently, each GdE and nCR value was grouped into one of two fluorescence categories, defined by its corresponding biopsy specimen fluorescence assessment as negative fluorescence (fluorescence level 0) or positive fluorescence (fluorescence level 1, 2, or 3). A single neuropathologist analyzed the H & E–stained tissue slides of each biopsy specimen and measured three neuropathological parameters: 1) histopathological score (0–IV); 2) tumor burden score (0–III); and 3) necrotic burden score (0–III). Results Mixed-model analyses with random effects for individuals show a highly statistically significant difference between fluorescing and nonfluorescing tissue in GdE (mean difference 8.33, p = 0.018) and nCRs (mean difference 5.15, p < 0.001). An analysis of association demonstrated a significant relationship between the levels of intraoperative fluorescence and histopathological score (χ2 = 58.8, p < 0.001), between fluorescence levels and tumor burden (χ2 = 42.7, p < 0.001), and between fluorescence levels and necrotic burden (χ2 = 30.9, p < 0.001). The corresponding Spearman rank correlation coefficients were 0.51 (p < 0.001) for fluorescence and histopathological score, and 0.49 (p < 0.001) for fluorescence and tumor burden, suggesting a strongly positive relationship for each of these variables. Conclusions These results demonstrate a significant relationship between contrast enhancement on preoperative MR imaging and observable intraoperative PpIX fluorescence. The finding that preoperative MR image signatures are predictive of intraoperative PpIX fluorescence is of practical importance for identifying candidates for the procedure. Furthermore, this study provides evidence that a strong relationship exists between tumor aggressiveness and the degree of tissue fluorescence that is observable intraoperatively, and that observable fluorescence has an excellent positive predictive value but a low negative predictive value. PMID:20380535

  7. Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX

    PubMed Central

    Kepshire, Dax; Davis, Scott C.; Dehghani, Hamid; Paulsen, Keith D.; Pogue, Brian W.

    2009-01-01

    Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue. PMID:18545571

  8. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications.

    PubMed

    Lim, C; Vibert, E; Azoulay, D; Salloum, C; Ishizawa, T; Yoshioka, R; Mise, Y; Sakamoto, Y; Aoki, T; Sugawara, Y; Hasegawa, K; Kokudo, N

    2014-04-01

    Imaging detection of liver cancers and identification of the bile ducts during surgery, based on the fluorescence properties of indocyanine green, has recently been developed in liver surgery. The principle of this imaging technique relies on the intravenous administration of indocyanine green before surgery and the illumination of the surface of the liver by an infrared camera that simultaneously induces and collects the fluorescence. Detection by fluorescence is based on the contrast between the (fluorescent) tumoral or peri-tumoral tissues and the healthy (non-fluorescent) liver. Results suggest that indocyanine green fluorescence imaging is capable of identification of new liver cancers and enables the characterization of known hepatic lesions in real time during liver resection. The purpose of this paper is to present the fundamental principles of fluorescence imaging detection, to describe successively the practical and technical aspects of its use and the appearance of hepatic lesions in fluorescence, and to expose the diagnostic and therapeutic perspectives of this innovative imaging technique in liver surgery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Image-guided intervention in the human bile duct using scanning fiber endoscope system

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Jo, Javier A.; Melville, C. David; Johnston, Richard S.; Naumann, Christopher R.; Saunders, Michael D.

    2012-01-01

    Bile duct cancers are increasing in frequency while being difficult to diagnose. Currently available endoscopic imaging devices used in the biliary tree are low resolution with poor image quality, leading to inadequate evaluation of indeterminate biliary strictures. However, a new ultrathin and flexible cholangioscope system has been successfully demonstrated in a human subject. This mini-cholangioscope system uses a scanning fiber endoscope (SFE) as a forward-imaging guidewire, dimensions of 1.2-mm diameter and 3-m length. Full color video (500-line resolution at 30Hz) is the standard SFE imaging mode using spiral scanning of red, green, and blue laser light at low power. Image-guided operation of the biopsy forceps was demonstrated in healthy human bile ducts with and without saline flushing. The laser-based video imaging can be switched to various modes to enhance tissue markers of disease, such as widefield fluorescence and enhanced spectral imaging. In parallel work, biochemical discrimination of tissue health in pig bile duct has been accomplished using fiberoptic delivery of pulsed UV illumination and time-resolved autofluorescence spectroscopic measurements. Implementation of time-resolved fluorescence spectroscopy for biochemical assessment of the bile duct wall is being done through a secondary endoscopic channel. Preliminary results indicate that adequate SNR levels (> 30 dB) can be achieved through a 50 micron fiber, which could serve as an optical biopsy probe. The SFE is an ideal mini-cholangioscope for integration of both tissue and molecular specific image contrast in the future. This will provide the physician with unprecedented abilities to target biopsy locations and perform endoscopically-guided therapies.

  11. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fluorescence detector housed in a dental handpiece, and a control console that performs device calibration, as...) Properly sterilize the emitter-detector handpick before each use, and (iv) Properly maintain and handle the...

  12. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fluorescence detector housed in a dental handpiece, and a control console that performs device calibration, as...) Properly sterilize the emitter-detector handpick before each use, and (iv) Properly maintain and handle the...

  13. Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter

    PubMed Central

    Xiong, Tou Cheu; Ronzier, Elsa; Sanchez, Frédéric; Corratgé-Faillie, Claire; Mazars, Christian; Thibaud, Jean-Baptiste

    2014-01-01

    Calcium (Ca2+) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca2+ signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca2+ signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca2+ signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca2+ imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca2+ sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca2+-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca2+ signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca2+ dynamics in intact plants. We describe a simple method to image Ca2+ signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca2+ signals. It is shown that Ca2+ signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins. PMID:24600459

  14. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    PubMed

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  15. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  16. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  17. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  18. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    PubMed

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  19. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma.

    PubMed

    Yamamichi, Taku; Oue, Takaharu; Yonekura, Takeo; Owari, Mitsugu; Nakahata, Kengo; Umeda, Satoshi; Nara, Keigo; Ueno, Takehisa; Uehara, Shuichiro; Usui, Noriaki

    2015-05-01

    Although the usefulness of intraoperative indocyanine green (ICG) fluorescent imaging for the resection of hepatocellular carcinoma has been reported, its usefulness for the resection of hepatoblastoma remains unclear. This study clarifies the feasibility of intraoperative ICG fluorescent imaging for the resection of hepatoblastoma. In three hepatoblastoma patients, a primary tumor, recurrent tumor, and lung metastatic lesions were intraoperatively examined using a near-infrared fluorescence imaging system after the preoperative administration of ICG. ICG fluorescent imaging was useful for the surgical navigation in hepatoblastoma patients. In the first case, the primary hepatoblastoma exhibited intense fluorescence during right hepatectomy, but no fluorescence was detected in the residual liver. In the second case, a recurrent tumor exhibited fluorescence between the residual liver and diaphragm. A complete resection of the residual liver, with a partial resection of the diaphragm, followed by liver transplantation was performed. In the third case with multiple lung metastases, each metastatic lesion showed positive fluorescence, and all were completely resected. These fluorescence-positive lesions were pathologically proven to be viable hepatoblastoma cells. Intraoperative ICG fluorescence imaging for patients with hepatoblastoma was feasible and useful for identifying small viable lesions and confirming that no remnant tumor remained after resection. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2015-10-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.

  1. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  2. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  3. Use of Indocyanine Green for Detecting the Sentinel Lymph Node in Breast Cancer Patients: From Preclinical Evaluation to Clinical Validation

    PubMed Central

    Chi, Chongwei; Ye, Jinzuo; Ding, Haolong; He, De; Huang, Wenhe; Zhang, Guo-Jun; Tian, Jie

    2013-01-01

    Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups. In this paper, we introduce a novel surgical navigation system to detect SLN with ICG. This system contains two charge-coupled devices (CCD) to simultaneously capture real-time color and fluorescent video images through two different bands. During surgery, surgeons only need to follow the fluorescence display. In addition, the system saves data automatically during surgery enabling surgeons to find the registration point easily according to image recognition algorithms. To test our system, 5 mice and 10 rabbits were used for the preclinical setting and 22 breast cancer patients were utilized for the clinical evaluation in our experiments. The detection rate was 100% and an average of 2.7 SLNs was found in 22 patients. Our results show that the usage of our surgical navigation system with ICG to detect SLNs in breast cancer patients is technically feasible. PMID:24358319

  4. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.

  5. Multispectral fluorescence imaging technique for discrimination of cucumber (Cucumis Sativus) seed viability

    USDA-ARS?s Scientific Manuscript database

    In this study, we developed a nondestructive method for discriminating viable cucumber (Cucumis sativus) seeds based on hyperspectral fluorescence imaging. The fluorescence spectra of cucumber seeds in the 420–700 nm range were extracted from hyperspectral fluorescence images obtained using 365 nm u...

  6. Selective functionalization of carbon nanotube tips allowing fabrication of new classes of nanoscale sensing and manipulation tools

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor); Shapiro, Ian R. (Inventor); Bittner, Jr., Vern Garrett (Inventor); Collier, Charles Patrick (Inventor); Esplandiu, Maria J. (Inventor); Giapis, Konstantinos P. (Inventor)

    2009-01-01

    Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes ''nanowired'' to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.

  7. Radiation Dosimetry via Automated Fluorescence Microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth R.; Schulze, Mark

    2005-01-01

    A developmental instrument for assessment of radiation-induced damage in human lymphocytes includes an automated fluorescence microscope equipped with a one or more chargecoupled- device (CCD) video camera(s) and circuitry to digitize the video output. The microscope is also equipped with a three-axis translation stage that includes a rotation stage, and a rotary tray that holds as many as thirty specimen slides. The figure depicts one version of the instrument. Once the slides have been prepared and loaded into the tray, the instrument can operate unattended. A computer controls the operation of the stage, tray, and microscope, and processes the digital fluorescence-image data to recognize and count chromosomes that have been broken, presumably by radiation. The design and method of operation of the instrument exploit fluorescence in situ hybridization (FISH) of metaphase chromosome spreads, which is a technique that has been found to be valuable for monitoring the radiation dose to circulating lymphocytes. In the specific FISH protocol used to prepare specimens for this instrument, metaphase lymphocyte cultures are chosen for high mitotic index and highly condensed chromosomes, then several of the largest chromosomes are labeled with three of four differently colored whole-chromosome-staining dyes. The three dyes, which are used both individually and in various combinations, are fluorescein isothiocyanate (FITC), Texas Red (or equivalent), and Cy5 (or equivalent); The fourth dye 4',6-diamidino- 2-phenylindole (DAPI) is used as a counterstain. Under control by the computer, the microscope is automatically focused on the cells and each slide is scanned while the computer analyzes the DAPI-fluorescence images to find the metaphases. Each metaphase field is recentered in the field of view and refocused. Then a four-color image (more precisely, a set of images of the same view in the fluorescent colors of the four dyes) is acquired. By use of pattern-recognition software developed specifically for this instrument, the images in the various colors are processed to recognize the metaphases and count the chromosome fragments of each color within the metaphases. The intermediate results are then further processed to estimate the proportion of cells that have suffered genetic damage. The prototype instrument scans at an average areal rate of 4.7 mm2/h in unattended operation, finding about 14 metaphases per hour. The false-alarm rate is typically less than 3 percent, and the metaphase-miss rate has been estimated to be less than 5 percent. The counts of chromosomes and fragments thereof are 50 to 70 percent accurate.

  8. Multispectral laser-induced fluorescence imaging system for large biological samples

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2003-07-01

    A laser-induced fluorescence imaging system developed to capture multispectral fluorescence emission images simultaneously from a relatively large target object is described. With an expanded, 355-nm Nd:YAG laser as the excitation source, the system captures fluorescence emission images in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 678, and 730 nm, respectively, from a 30-cm-diameter target area in ambient light. Images of apples and of pork meat artificially contaminated with diluted animal feces have demonstrated the versatility of fluorescence imaging techniques for potential applications in food safety inspection. Regions of contamination, including sites that were not readily visible to the human eye, could easily be identified from the images.

  9. Video-Rate Confocal Microscopy for Single-Molecule Imaging in Live Cells and Superresolution Fluorescence Imaging

    PubMed Central

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-01-01

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712

  10. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  11. Image-based evaluations of distribution and cytotoxicity of Irinotecan (CPT-11) in a multi-compartment micro-cell coculture device.

    PubMed

    Nakayama, Hidenari; Kimura, Hiroshi; Fujii, Teruo; Sakai, Yasuyuki

    2014-06-01

    We recently developed a polydimethylsiloxane (PDMS)-based three-compartment microfluidic cocultivation device enabling real-time interactions of different cell populations as an advanced physiologically-relevant cell-based assay. This device had valves and small magnetic stirrer-based internal pumps for easy and flexible perfusion operations. In this study, we applied this device for the evaluation of Irinotecan (CPT-11) toxicity to the lung, because it is detoxified by the liver and accumulated in the fat in humans. We successfully cultured representative three different tissue model cells in each compartment under the individual culture conditions and also in entire perfusion. Growth inhibition of rat lung epithelial cell line L-2, was measured when administered with 50 μM CPT-11 under various cocultivation conditions with respect to the presences and absence of primary rat hepatocytes (liver tissue model) and adipocyte-like cells (fat tissue model) induced from a mouse fibroblast cell line, 3T3-L1. Although CPT-11 showed moderate toxicity to the pure culture of L-2 cells in the device after 72 h of perfusion culture, this was lowered mainly in the presence of the liver tissue. Inhibition of the L-2 cell growth agreed with the area under curve (AUC) values obtained from fluorescent image-based analyses in each compartment. These results demonstrate that developed simple and flexible microfluidic cocultivation device, with appropriate image-based analyses, can be used in evaluating toxicokinetic behaviors of drug candidates in systemic levels. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Single DNA imaging and length quantification through a mobile phone microscope

    NASA Astrophysics Data System (ADS)

    Wei, Qingshan; Luo, Wei; Chiang, Samuel; Kappel, Tara; Mejia, Crystal; Tseng, Derek; Chan, Raymond Yan L.; Yan, Eddie; Qi, Hangfei; Shabbir, Faizan; Ozkan, Haydar; Feng, Steve; Ozcan, Aydogan

    2016-03-01

    The development of sensitive optical microscopy methods for the detection of single DNA molecules has become an active research area which cultivates various promising applications including point-of-care (POC) genetic testing and diagnostics. Direct visualization of individual DNA molecules usually relies on sophisticated optical microscopes that are mostly available in well-equipped laboratories. For POC DNA testing/detection, there is an increasing need for the development of new single DNA imaging and sensing methods that are field-portable, cost-effective, and accessible for diagnostic applications in resource-limited or field-settings. For this aim, we developed a mobile-phone integrated fluorescence microscopy platform that allows imaging and sizing of single DNA molecules that are stretched on a chip. This handheld device contains an opto-mechanical attachment integrated onto a smartphone camera module, which creates a high signal-to-noise ratio dark-field imaging condition by using an oblique illumination/excitation configuration. Using this device, we demonstrated imaging of individual linearly stretched λ DNA molecules (48 kilobase-pair, kbp) over 2 mm2 field-of-view. We further developed a robust computational algorithm and a smartphone app that allowed the users to quickly quantify the length of each DNA fragment imaged using this mobile interface. The cellphone based device was tested by five different DNA samples (5, 10, 20, 40, and 48 kbp), and a sizing accuracy of <1 kbp was demonstrated for DNA strands longer than 10 kbp. This mobile DNA imaging and sizing platform can be very useful for various diagnostic applications including the detection of disease-specific genes and quantification of copy-number-variations at POC settings.

  13. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging

    PubMed Central

    Kim, Sung Won; Lee, Hyoung Shin

    2017-01-01

    Surgeons have cited difficulties in identifying the parathyroid glands (PG) during thyroidectomy. To overcome the limitation of naked eye, many studies on near-infrared fluorescence imaging of PGs have been introduced and suggested that fluorescence imaging is useful for both localizing PGs and evaluating their function. This imaging technique has been reported in two ways: (I) imaging using a fluorescent material called indocyanine green (ICG); and (II) autofluorescence using intrinsic fluorophores. These innovative and novel techniques are expected to have a significant impact on performing thyroid or parathyroid surgery. In this article, current papers that describe ICG fluorescence and autofluorescence imaging of PG during thyroid and parathyroid surgery are reviewed. PMID:29142843

  14. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  15. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  16. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been utilized to assess, in real-time, the response of plants to novel environments including various spaceflight analogs, including several parabolic flight environments as well as hypobaric plant growth chambers. Basic performance results obtained under these operational environments, as well as laboratory-based tests are described. The Flex Imager has also been designed to be compatible with emerging suborbital platforms.

  17. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  18. Modeling in vivo fluorescence of small animals using TracePro software

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Rajwa, Bartek; Freniere, Edward R.; Smith, Linda; Hassler, Richard; Robinson, J. Paul

    2007-02-01

    The theoretical modeling of fluorescence excitation, emission, and propagation within living tissue has been a limiting factor in the development and calibration of in vivo small animal fluorescence imagers. To date, no definitive calibration standard, or phantom, has been developed for use with small animal fluorescence imagers. Our work in the theoretical modeling of fluorescence in small animals using solid modeling software is useful in optimizing the design of small animal imaging systems, and in predicting their response to a theoretical model. In this respect, it is also valuable in the design of a fluorescence phantom for use in in vivo small animal imaging. The use of phantoms is a critical step in the testing and calibration of most diagnostic medical imaging systems. Despite this, a realistic, reproducible, and informative phantom has yet to be produced for use in small animal fluorescence imaging. By modeling the theoretical response of various types of phantoms, it is possible to determine which parameters are necessary for accurately modeling fluorescence within inhomogenous scattering media such as tissue. Here, we present the model that has been developed, the challenges and limitations associated with developing such a model, and the applicability of this model to experimental results obtained in a commercial small animal fluorescence imager.

  19. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  20. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

Top