Science.gov

Sample records for fluorescence intensity multiple

  1. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  2. Multiple frequency fluorescence lifetime imaging microscopy.

    PubMed

    Squire, A; Verveer, P J; Bastiaens, P I

    2000-02-01

    fitting algorithms were tested on a simulated data set and were successful in disentangling two populations having 1 ns and 4 ns fluorescence lifetimes. Spatial invariance of the lifetimes was exploited to improve the accuracy significantly. Multiple frequency fluorescence lifetime imaging microscopy was then successfully applied to resolve the fluorescence lifetimes and fluorescence intensity contributions in a rhodamine dye mixture in solution, and green fluorescent protein variants co-expressed in live cells.

  3. A model for multiexponential tryptophan fluorescence intensity decay in proteins.

    PubMed Central

    Bajzer, Z; Prendergast, F G

    1993-01-01

    Tryptophan fluorescence intensity decay in proteins is modeled by multiexponential functions characterized by lifetimes and preexponential factors. Commonly, multiple conformations of the protein are invoked to explain the recovery of two or more lifetimes from the experimental data. However, in many proteins the structure seems to preclude the possibility of multiple conformers sufficiently different from one another to justify such an inference. We present here another plausible multiexponential model based on the assumption that an energetically excited donor surrounded by N acceptor molecules decays by specific radiative and radiationless relaxation processes, and by transferring its energy to acceptors present in or close to the protein matrix. If interactions between the acceptors themselves and back energy transfer are neglected, we show that the intensity decay function contain 2N exponential components characterized by the unperturbed donor lifetime, by energy transfer rates and a probability of occurrence for the corresponding process. We applied this model to the fluorescence decay of holo- and apoazurin, ribonuclease T1, and the reduced single tryptophan mutant (W28F) of thioredoxin. Use of a multiexponential model for the analysis of the fluorescence intensity decay can therefore be justified, without invoking multiple protein conformations. Images FIGURE 1 PMID:8312471

  4. Fluorescence wavelength and intensity variations of cave waters

    NASA Astrophysics Data System (ADS)

    Baker, A.; Genty, D.

    1999-04-01

    The fluorescence properties of groundwaters percolating into four cave systems have been monitored over the period 1997-1998. Fluorescence was excited between 220 and 400 nm and the emission measured from 300 to 500 nm using a fluorescence spectrophotometer. Three fluorescence centres were observed; one at the excitation-emission pair of 290-340:395-430 nm, (humic-like, probably fulvic acid), one at 265-280:300-370 nm (protein like) and a less defined region of high fluorescence at 230-280:310-420 nm (humic and/or protein like). The most consistent fluorescence intensity was observed in the excitation-emission pair of 290-340:395-430 nm, attributed to a fulvic acid source. Subtle differences (±5%) in the fluorescence excitation and emission wavelength of this fluorescence peak in the groundwater were observed between the four sites, and the fluorescence intensity varied considerably (×60) between the four sites. Both the wavelength and the intensity variations in fluorescence are caused by the differences in the vegetation cover, soil type and humification. Data from the most intensely monitored site (Brown's Folly Mine, England; 9 sample stations, 10-20 days frequency sampling) revealed no spatial variability in the 290-340:395-430 nm (fulvic acid) fluorescence; in contrast time-series analysis suggests that the seasonal variations do occur, with a decrease in the emission wavelength correlating with the first (autumn) peak in fluorescence intensity, and a decrease in the excitation wavelength correlating with a second (winter) fluorescence intensity peak. Results demonstrate the potential of utilising fluorescence wavelength variations in sourcing karst groundwaters, and as a possible palaeoenvironmental proxy of the overlying soil conditions if trapped within the cave speleothems.

  5. Phycobiliprotein fusion proteins: versatile intensely fluorescent constructs

    NASA Astrophysics Data System (ADS)

    Glazer, Alexander N.; Cai, Yuping A.; Tooley, Aaron J.

    2004-06-01

    Since 1982, phycobiliproteins have served as fluorescent labels in a wide variety of cell and molecule analyses. The exceptional spectroscopic properties of these labels include very high absorbance coefficients and quantum yields, and large Stokes shifts. The spectroscopic diversity of these reagents is restricted to a subset of naturally occurring phycobiliproteins with stable assembly states in vitro, whose target specificity is generated by chemical conjugation to proteins or small molecules. The latter step generates heterogeneity. These limitations have been overcome by expressing various recombinant phycobiliprotein constructs in the cyanobacterium Anabaena sp. PCC7120. Modular recombinant phycobiliprotein-based labels were constructed with some or all of the following features (a) an affinity purification tag; (b) a stable oligomerization domain (to maintain stable higher order assemblies of the phycobiliprotein monomers at very low protein concentration); (c) a biospecific recognition domain. Such phycobiliprotein constructs are readily purified from crude cell extracts by affinity chromatography and used directly as fluorescent labels. To generate constructs for intracellular in vivo labeling, the entire pathways for the biosynthesis of the His-tagged holo- α (phycocyanobilin-bearing) subunit of phycocyanin (emission max. 641 nm) and of the His-tagged holo-α (phycobiliviolin-bearing) subunit of phycoerythrocyanin (emission max. 582 nm) were reconstituted in Escherichia coli.

  6. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu²⁺ with zero background signals.

    PubMed

    Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi

    2016-02-18

    The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells.

  7. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu²⁺ with zero background signals.

    PubMed

    Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi

    2016-02-18

    The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells. PMID:26826684

  8. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study.

    PubMed

    Takahashi, Marcos Kenzo; Vieira, Sergio; Rached, Rodrigo Nunes; de Almeida, Janaina Bertoncelo; Aguiar, Marcelo; de Souza, Evelise Machado

    2008-01-01

    This study quantitatively evaluated the fluorescence intensity of resin composites with different opacities and translucencies and determined changes in fluorescence after accelerated aging, using human enamel and dentin as controls. Six microhybrid and nanofilled composites, each in three different shades, were tested. Ten sound human incisors were used to obtain enamel and dentin specimens separately. Fluorescence measurements were obtained with a fluorescence spectrophotometer before (baseline) and after accelerated aging at 150 kJ energy for 120 hours. One-way analysis of variance (ANOVA) and Games-Howell multiple comparison tests were performed at a significance level of 0.05. Student's t-test was also used for comparison before and after aging. At baseline, there was no statistically significant difference (p>0.05) between the fluorescence intensity of dentin and any of the shades of Charisma or Opallis, Esthet-X dentin shade or Vit-l-escence enamel, or the translucent shades. After accelerated aging, all shades of the 4 Seasons, enamel and the translucent shades of Esthet-X had fluorescence intensities statistically similar to that of aged dentin (p>0.05). A significant reduction in fluorescence after aging (p<0.05) was observed for all the materials, except for human enamel and translucent Filtek Supreme XT. Accelerated aging reduced fluorescence in most of the composites evaluated.

  9. Zeeman degeneracy effects in collisional intense-field resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Ballagh, R. J.; Burnett, K.

    1980-01-01

    Resonance fluorescence due to intense laser fields from a Zeeman degenerate atom being perturbed by collisional interactions is calculated in the impact regime by using the quantum-fluctuation-regression theorem. Various interesting effects are found. For example, the scattered intensity spectrum for a J = 0 to J = 1 transition for polarization parallel to the laser polarization is essentially an asymmetric triplet, whereas for a perpendicular polarization due to collisions the spectrum is essentially a doublet (whose frequencies do not correspond with any of those of the triplet). Further, the width of the fluorescent component (whose frequency is close to the unperturbed frequency) actually decreases with increasing laser power.

  10. Fluorescence intensity enhancement mechanism in presence of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Sumana; Javvaji, Brahmanandam; Villa, Krishna H.; Arikady, Akshata; Hegde, Gopalkrishna M.; Mahapatra, D. R.

    2016-03-01

    Plasmonic nanoparticles have several applications ranging from catalysis to super-resolution imaging and information storage. Maximum density of optical states is confined on the nanoparticle surface, which are collectively excited by electromagnetic wave and are called surface plasmons. Using nanoparticle based plasmonic interaction with biological cells in an optical fiber integrated microfluidic chip, we show enhancement of fluorescence intensity. Signal from in situ imaging is analyzed with various controls to understand the mechanism. The present study is focused on nanoparticle interaction with cells and on optimization strategies to maximize the fluorescence enhancement at the vicinity of the nanoparticles, for important applications such as fluorescence-based biochip platforms. Result is also correlated ZnO nanoparticle effect on fluorescence enhancement, which has different optoelectronic properties compared to gold nanoparticles. Electromagnetic wave field model is employed to simulate the effect of gold and ZnO nanoparticle on cell with the assumption that the nanoparticles are a collection of discrete dipoles, which are ordered with the fluorescence molecules on cell wall. Simulation model shows enhancement of fluorescence intensity is occurred in presence of gold nanoparticles rather than ZnO nanoparticles, which is confirmed with experimental data.

  11. Intensely fluorescent azobenzenes: synthesis, crystal structures, effects of substituents, and application to fluorescent vital stain.

    PubMed

    Yoshino, Junro; Furuta, Akiko; Kambe, Tetsuya; Itoi, Hiroaki; Kano, Naokazu; Kawashima, Takayuki; Ito, Yuzuru; Asashima, Makoto

    2010-05-01

    2-[Bis(pentafluorophenyl)boryl]azobenzenes bearing hydrogen, methoxy, dimethylamino, trifluoromethyl, fluoro, n-butyl, and tert-butyldimethylsiloxy groups at the 4'-position or methoxy and bromo groups at the 4-position have been synthesized. The 4-bromo group of the 2-boryl-4-bromoazobenzene derivative was converted to phenyl and diphenylamino groups by palladium-catalyzed reactions. The absorption and fluorescence properties have been investigated using UV/Vis and fluorescence spectroscopy. The 2-borylazobenzenes emitted an intense green, yellow, and orange fluorescence, in marked contrast to the usual azobenzene fluorescence. The 4'-siloxy derivative showed the highest fluorescence quantum yield (0.90) among those reported for azobenzenes to date. The correlation between the substituent and the fluorescence properties was elucidated by studying the effect of the substituent on the relaxation process and from DFT and TD-DFT calculations. An electron-donating group at the 4'-position was found to be important for an intense emission. Application of fluorescent azobenzenes as a fluorescent vital stain for the visualization of living tissues was also investigated by microinjection into Xenopus embryos, suggesting these compounds are nontoxic towards embryos. PMID:20394087

  12. Dipyrrolylquinoxaline difluoroborates with intense red solid-state fluorescence.

    PubMed

    Yu, Changjiang; Hao, Erhong; Li, Tingting; Wang, Jun; Sheng, Wanle; Wei, Yun; Mu, Xiaolong; Jiao, Lijuan

    2015-08-21

    A set of organic fluorescent dyes of dipyrrolylquinoxalines (PQs ) and their BF2 complexes (BPQs ) were synthesized from commercial reagents, and were characterized by their X-ray structural analysis, and optical and electrochemical properties. BPQs showed intense broad absorption in the visible region in the solution-state. In comparison with that of PQs , there is an over 110 nm red-shift of the absorption maximum in the BPQs (up to 583 nm). Interestingly, dyes all exhibit red solid-state fluorescence with moderate to high fluorescence quantum yields except for PQ which showed bright yellow solid-state fluorescence. X-ray structures of BPQs showed the planar structure of quinoxaline with one pyrrole unit via the BF2 chelation and the almost perpendicular orientation of the uncoordinated pyrrole to the NBN core plane (the dihedral angle of 70-73°). The extended π-conjugation was in good agreement with the observed red-shift of the spectra. These dyes formed well-ordered intermolecular packing structures via the intermolecular hydrogen bonding between the N atoms of quinoxaline moieties and the NH units of adjacent pyrroles. The lack of π-π stacking in their crystal packing structures may explain the interestingly intense solid-state fluorescence of these dyes.

  13. Multispectral excitation based multiple fluorescent targets resolving in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Bai, Jing; Luo, Jianwen

    2016-04-01

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and resolve multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. An algorithm based on independent component analysis (ICA) for multispectral excited FMT is proposed to resolve multiple fluorescent targets in this study. Fluorescent targets are excited by multispectral excitation, and the three-dimensional distribution of fluorescent yields under the excitation spectrum is reconstructed by an iterative Tikhonov regularization algorithm. Subsequently, multiple fluorescent targets are resolved from mixed fluorescence signals by employing ICA. Simulations were performed and the results demonstrate that multiple adjacent fluorescent targets can be resolved if the number of excitation wavelengths is not smaller than that of fluorescent targets with different concentrations. The algorithm obtains both independent components that provide spatial information of different fluorescent targets and spectral courses that reflect variation trends of fluorescent yields along with the excitation spectrum. By using this method, it is possible to visualize the metabolism status of drugs in different structure organs, and quantitatively depict the variation trends of fluorescent yields of each functional organ under the excitation spectrum. This method may provide a pattern for tumor detection, drug delivery and treatment monitoring in vivo.

  14. Intensity calibration and flat-field correction for fluorescence microscopes.

    PubMed

    Model, Michael

    2014-01-01

    Standardization in fluorescence microscopy involves calibration of intensity in reproducible units and correction for spatial nonuniformity of illumination (flat-field or shading correction). Both goals can be achieved using concentrated solutions of fluorescent dyes. When a drop of a highly concentrated fluorescent dye is placed between a slide and a coverslip it produces a spatially uniform field, resistant to photobleaching and with reproducible quantum yield; it can be used as a brightness standard for wide-field and confocal microscopes. For wide-field microscopes, calibration can be further extended to absolute molecular units. This can be done by imaging a solution of known concentration and known depth; the latter can be prepared by placing a small spherical lens in a diluted solution of the same fluorophore that is used in the biological specimen.

  15. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  16. Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Nitsche, Michael; Mittler, Silvia; Armstrong, Souzan; Dixon, Jeff; Langbein, Uwe

    2008-06-01

    We demonstrate an inexpensive alternative to total internal reflection fluorescence microscopy. A method for imaging ultrathin films and living cells located on waveguides—illuminated with their evanescent fields—is introduced. An extensive analysis of ion-exchanged waveguides focusing on their application as microscopy substrates for studying interfacial phenomena is presented. Experimental results are in excellent agreement with the simulations. As an application osteoblasts (bone matrix forming cells) and ultrathin Langmuir-Blodgett films were imaged. The fluorescence intensity has been used to determine the cell attachment.

  17. Unmixing multiple adjacent fluorescent targets with multispectral excited fluorescence molecular tomography.

    PubMed

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Luo, Jianwen

    2016-06-20

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and unmix multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. A method based on independent component analysis for multispectral excited FMT was proposed in our previous study. It showed that double fluorescent targets with certain edge-to-edge distance (EED) could be unmixed by the method. In this study, the situation is promoted to unmix multiple adjacent fluorescent targets (i.e., more than two fluorescent targets and EED=0). Phantom experiments on the resolving ability of the proposed algorithm demonstrate that the algorithm performs well in unmixing multiple adjacent fluorescent targets in both lateral and axial directions. And also, we recovered the locational information of each independent fluorescent target and described the variable trends of the corresponding fluorescent targets under the excitation spectrum. This method is capable of unmixing multiple fluorescent targets with small EED but labeled with the same fluorochrome, and may be used in imaging of nonspecific probe targeting and metabolism of drugs. PMID:27409108

  18. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Gao, Fei; Qiu, Yishen; Feng, Xiaohua; Zheng, Yuanjin

    2016-07-01

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  19. Analysis on fluorescence intensity reverse photonic phenomenon between red and green fluorescence of oxyfluoride nanophase vitroceramics.

    PubMed

    Chen, Xiaobo; Song, Zengfu; Zhang, Junjie; Hu, Lili; Wen, Lei; Wang, Ce; Li, Song

    2007-10-01

    An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range Sigma of intensity reverse between red and green fluorescence of Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32x10(2). It is calculated that the phonon-assistant energy transfer rate of the electric multi-dipole interaction of {(4)G(11/2)(Er(3+))?(4)F(9/2)(Er(3+)), (2)F(7/2)(Yb(3+))?(2)F(5/2)(Yb(3+))} energy transfer of Er(0.5)Yb(3):FOV is around 1.380x10(8)s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20x10(5)s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194x10(5)s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er(0.5)Yb(3):FOV.

  20. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A.

    PubMed Central

    Bezanilla, F; Horowicz, P

    1975-01-01

    1. Extrinsic fluorescence intensity changes were studied in frog semitendinosus muscles stained with Nile Blue A in response to electrical stimulation. Muscles were stretched and put into hypertonic solutions to prevent movement. The muscles were illuminated at 90 degrees to their long axis with a narrow beam of light at a central wave-length of 6250 . Fluorescence emission was measured at 90 degrees to the exciting light using a filter which absorbed light of wave-lengths shorter than 6400 . 2. In response to a single stimulus the fluorescence intensity increases briefly. The fluorescence response is propagated at a constant velocity of about 1.5 m/sec. The average ratio of the maximum fluorescence intensity change to the resting fluorescence is 4.5 times 10-3 for supramaximal shocks. The fluorescence intensity change starts early in the falling phase of the action potential. 3. The fluorescence intensity change increases when nitrate replaces chloride and decreases when D2O replaces H2O. The rates of rise and fall of the fluorescence change was unaffected by nitrate replacement of chloride but are slowed where D2O replaces H2O. The rates of rise and fall of the fluorescence change increase with increasing temperature for all solutions used. The peak fluorescence intensity change, however, goes through a maximum at about 17 degrees C for aqueous chloride and nitrate solutions in the range of 10-25 degrees C. With D2O solutions, the peak fluorescence intensity increases monotonically in this range of temperatures. 4. The fluorescence intensity change in response to trains of action potentials are not additive. 5. Depolarization of muscles treated with tetrodotoxin using triangular-shaped fluid electrodes produces an increase in fluorescence at about the same threshold values required to elicit tension in preparations that are not fully stretched. The fluorescence intensity change precedes in time tension development. Near threshold depolarizations, the delay in

  1. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    NASA Astrophysics Data System (ADS)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  2. Protein-like fluorescence intensity as a possible tool for determining river water quality

    NASA Astrophysics Data System (ADS)

    Baker, Andy; Inverarity, Roger

    2004-10-01

    The results of a comparison between chemical water quality determinants and river water fluorescence on the River Tyne, NE England, demonstrate that tryptophan-like fluorescence intensity shows statistically significant relationships between nitrate, phosphate, ammonia, biochemical oxygen demand (BOD) and dissolved oxygen. Tryptophan-like fluorescence intensity at the 280 nm excitation/350 nm emission wavelength fluorescence centre correlates with both phosphate (r = 0.80) and nitrate (r = 0.87), whereas tryptophan-like fluorescence intensity at the 220 nm excitation/350 nm emission wavelength centre correlates with BOD (r = 0.85), ammonia (r = 0.70) and dissolved oxygen (r = -0.65). The strongest correlations are between tryptophan-like fluorescence intensity and nitrate and phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The correlation between BOD and the tryptophan-like fluorescence intensity suggests that this fluorescence centre is related to the bioavailable or labile dissolved organic matter pool. The weakest correlations are observed between tryptophan-like fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with ammonia is due to removal of the ammonia signal by wastewater treatment, and that with dissolved oxygen due to the natural aeration of the river such that this is not a good indicator of water quality. The observed correlations only hold true when treated sewage, sewerage overflows or cross connections, or agricultural organic pollutants dominate the water quality - this is not true for two sites where airport deicer (propylene glycol, which is non-fluorescent) or landfill leachate (which contains high concentrations of humic and fulvic-like fluorescent DOM) dominate the dissolved organic matter in the river. Mean annual tryptophan-like fluorescence intensity agrees well with the General Water Quality Assessment as determined by the England and Wales

  3. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  4. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  5. Redecision Family Therapy: Its Use with Intensive Multiple Family Groups.

    ERIC Educational Resources Information Center

    Kadis, Leslie B.; McClendon, Ruth Ann

    1981-01-01

    Describes intensive multiple family group therapy which combines the advantages of group therapy with those of time-limited, goal-oriented approaches. Using the Redecision Family Therapy model further refines the technique by integrating the seemingly disparate methods of intra- psychic and systemic therapy. (Author)

  6. Theory of light quenching: effects of fluorescence polarization, intensity, and anisotropy decays.

    PubMed Central

    Kuśba, J; Bogdanov, V; Gryczynski, I; Lakowicz, J R

    1994-01-01

    Experimental studies have recently demonstrated that fluorescence emission can be quenched by laser light pulses from modern high repetition rate lasers, a phenomenon we call "light quenching." We now describe the theory of light quenching and some of its effects on the steady-state and time-resolved intensity and anisotropy decays of fluorophores. Light quenching can decrease or increase the steady-state or time-zero anisotropy. Remarkably, the light quenching can break the usual z axis symmetry of the excited-state population, and the emission polarization can range from -1 to +1 under selected conditions. The measured anisotropy (or polarization) depends upon whether the observation axis is parallel or perpendicular to the propagation direction of the light quenching beam. The effects of light quenching are different for a single pulse, which results in both excitation and quenching, as compared with a time-delayed quenching pulse. Time-delayed light quenching pulses can result in step-like changes in the time-dependent intensity or anisotropy and are predicted to cause oscillations in the frequency-domain intensity and anisotropy decays. The increasing availability of pulsed laser sources offers the opportunity for a new class of two-pulse or multiple-pulse experiments where the sample is prepared by an excitation pulse, the excited state population is modified by the quenching pulse(s), followed by time- or frequency-domain measurements of the resulting emission. PMID:7858140

  7. Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe.

    PubMed

    Zeng, Xiaodan; Zhang, Xiaoling; Yang, Wen; Jia, Hongying; Li, Yamin

    2012-05-01

    An aptamer-molecular beacon (MB) multiple fluorescent probe for adenosine triphosphate (ATP) assay is proposed in this article. The ATP aptamer was used as a molecular recognition part, and an oligonucleotide (short strand, SS) partially complementary with the aptamer and an MB was used as the other part. In the presence of ATP, the aptamer bound with it, accompanied by the hybridization of MB and SS and the fluorescence recovering. Wherever there is only very weak fluorescence can be measured in the absence of ATP. Based on the relationship of recovering fluorescence and the concentration of ATP, a method for quantifying ATP has been developed. The fluorescence intensity was proportional to the concentration of ATP in the range of 10 to 500 nM with a detection limit of 0.1 nM. Moreover, this method was able to detect ATP with high selectivity in the presence of guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP). This method is proved to be simple with high sensitivity, selectivity, and specificity.

  8. A precise Boltzmann distribution law for the fluorescence intensity ratio of two thermally coupled levels

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Zhang, Zhiguo; Cao, Wenwu

    2016-06-01

    Noncontact monitoring temperature is very important in modern medicine, science, and technologies. The fluorescence intensity ratio (FIR) technique based on the Boltzmann distribution law exhibits excellent application potential, but the observed FIR deviates from the Boltzmann distribution law in the low temperature range. We propose a fluorescence intensity ratio relation FIR* = ηFIR by introducing a quantity η representing thermal population degree, which can be obtained from measured fluorescence decay curves of the upper emitting level. Using Eu3+ as an example, the method is confirmed that the deviated FIR is able to be corrected and return to follow the Boltzmann law.

  9. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  10. Quantitating Fluorescence Intensity From Fluorophores: Practical Use of MESF Values.

    PubMed

    Wang, Lili; Gaigalas, Adolfas K; Abbasi, Fatima; Marti, Gerald E; Vogt, Robert F; Schwartz, Abe

    2002-01-01

    The present work uses fluorescein as the model fluorophore and points out critical steps in the use of MESF (Molecules of Equivalent Soluble Fluorophores) values for quantitative flow cytometric measurements. It has been found that emission spectrum matching between a reference solution and an analyte and normalization by the corresponding extinction coefficient are required for quantifying fluorescence signals using flow cytometers. Because of the use of fluorescein, the pH value of the medium is also critical for accurate MESF assignments. Given that the emission spectrum shapes of microbead suspensions and stained biological cells are not significantly different, the percentage of error due to spectrum mismatch is estimated. We have also found that the emission spectrum of a microbead with a seven-methylene linker between the fluorescein and the bead surface (bead7) provides the best match with the spectra from biological cells. Therefore, bead7 is potentially a better calibration standard for flow cytometers than the existing one that is commercially available and used in the present study.

  11. Sensitive fluorescence detection of lysozyme using a tris(bipyridine)ruthenium(II) complex containing multiple cyclodextrins.

    PubMed

    Zhang, Fan; Zhao, Ying-Ying; Chen, Hong; Wang, Xiu-Hua; Chen, Qiong; He, Pin-Gang

    2015-04-18

    A new series of photoactive metallocyclodextrins with increased fluorescence intensity upon binding with ssDNAs/aptamers has been demonstrated to sensitively and selectively detect lysozyme. The detection mechanism relies on the formation of an aptamer-lysozyme complex, which leads to reduction of fluorescence intensity.

  12. Note: Measurement of saturable absorption by intense vacuum ultraviolet free electron laser using fluorescent material

    SciTech Connect

    Inubushi, Y.; Kumagai, T.; Morimoto, S.; Tanaka, T.; Kodama, R.; Yoneda, H.; Higashiya, A.; Ishikawa, T.; Nagasono, M.; Tono, K.; Yabashi, M.; Kimura, H.; Ohashi, H.; Togashi, T.; Sato, F.; Yamaguchi, Y.

    2010-03-15

    Advances in free electron lasers (FELs) which generate high energy photons are expected to open novel nonlinear optics in the x-ray and vacuum ultraviolet (VUV) regions. In this paper, we report a new method for performing VUV-FEL focusing experiments. A VUV-FEL was focused with Kirkpatrick-Baez optics on a multilayer target, which contains fused silica as a fluorescent material. By measuring the fluorescence, a 5.6x4.9 {mu}m{sup 2} focal spot was observed in situ. Fluorescence was used to measure the saturable absorption of VUV pulses in the tin layer. The transmission increases nonlinearly higher with increasing laser intensity.

  13. Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern.

    PubMed

    Hoffmann, Katrin; Spieles, Monika; Bremser, Wolfram; Resch-Genger, Ute

    2015-07-21

    The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass includes the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength, and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, and photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PMID:26077510

  14. Multiphoton fluorescence microscopy: behavior of biological specimens under high-intensity illumination

    NASA Astrophysics Data System (ADS)

    Cheng, Ping C.; Lin, Bai-Ling; Kao, Fu-Jen; Sun, Chi-Kuang

    2000-07-01

    Recent development in multi-photon fluorescence microscopy, second and third harmonic generation microscopy (SHG and THG) and CARS open new dimensions in biological studies. Not only the technologies allow probing the biological specimen both functionally and structurally with increasing spatial and temporal resolution, but also raise the interest in how biological specimens respond to high intensity illumination commonly used in these types of microscopy. We have used maize leaf protoplast as a model system to evaluate the photo-induced response of living sample under high intensity illumination. It was found that cells can be seriously damaged by high intensity NIR irradiation even the linear absorption coefficient in low in these wavelengths. Micro-spectroscopy of single chloroplast also allows us to gain insight on the possible photo-damage mechanism. In addition to fluorescence emission, second harmonic generation was observed in the maize protoplasts.

  15. Preparation of Novel Europium Complex Doped Ag@SiO2 Nanoparticles with Intense Fluorescence.

    PubMed

    Liu, Bing; Yin, Dongguang; Song, Kailin; Yang, Juan Ou; Wang, Chengcheng; Wu, Minghong

    2015-01-01

    In this study, a new europium complex of 4,4'-bis (1",1",1",2",2",3",3"-heptafluoro-4",6"- hexanedion-6"-yl)-o-terpheny-Eu(3+)-4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid-(3-aminopropyl) trimethoxysilane (BHHT-Eu(3+)-DPPDA-APTMS) was prepared first. Then novel core-shell Ag@SiO2 nanoparticles with BHHT-Eu(3+)-DPPDA-APTMS doped in shell were synthesized by a facile water-in-oil microemulsion method. The properties of the prepared complex and nanoparticles, and the effect of metal enhanced fluorescence for the nanoparticles were investigated. The prepared nanopartilces exhibited intense fluorescence, uniform morphology and good water-solubility. The fluorescent intensities of silver core-present nanopartciles were significant higher than that of silver core-absent nanoparticles owing to the metal enhanced fluorescence of silver core. It is expectable that the as-prepared nanoparticles can serve as a potential fluorescent nanoprobe, applying in high sensitive biological and medical detections.

  16. Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy.

    PubMed Central

    Olveczky, B P; Periasamy, N; Verkman, A S

    1997-01-01

    The decay of evanescent field intensity beyond a dielectric interface depends upon beam incident angle, enabling the 3-d distribution of fluorophores to be deduced from total internal reflection fluorescence microscopy (TIRFM) images obtained at multiple incident angles. Instrumentation was constructed for computer-automated multiple angle-TIRFM (MA-TIRFM) using a right angle F2 glass prism (n(r) 1.632) to create the dielectric interface. A laser beam (488 nm) was attenuated by an acoustooptic modulator and directed onto a specified spot on the prism surface. Beam incident angle was set using three microstepper motors controlling two rotatable mirrors and a rotatable optical flat. TIRFM images were acquired by a cooled CCD camera in approximately 0.5 degree steps for >15 incident angles starting from the critical angle. For cell studies, cells were grown directly on the glass prisms (without refractive index-matching fluid) and positioned in the optical path. Images of the samples were acquired at multiple angles, and corrected for angle-dependent evanescent field intensity using "reference" images acquired with a fluorophore solution replacing the sample. A theory was developed to compute fluorophore z-distribution by inverse Laplace transform of angle-resolved intensity functions. The theory included analysis of multiple layers of different refractive index for cell studies, and the anisotropic emission from fluorophores near a dielectric interface. Instrument performance was validated by mapping the thickness of a film of dihexyloxacarbocyanine in DMSO/water (n(r) 1.463) between the F2 glass prism and a plano-convex silica lens (458 mm radius, n(r) 1.463); the MA-TIRFM map accurately reproduced the lens spherical surface. MA-TIRFM was used to compare with nanometer z-resolution the geometry of cell-substrate contact for BCECF-labeled 3T3 fibroblasts versus MDCK epithelial cells. These studies establish MA-TIRFM for measurement of submicroscopic distances between

  17. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices.

    PubMed

    Sang, Chen-Hsiang; Chou, Shu-Jen; Pan, F M; Sheu, Jeng-Tzong

    2016-01-15

    In this study, different morphological ZnO nanostructures, those of sharp nanowires (NWs), rod NWs, and hexahedral-puncheon nanostructures, were grown in microfluidic channels on the same glass substrate. Characterizations of correspondent biomolecule binding properties were simulated and demonstrated. The surface was modified using 3-ammineopropyl-triethoxysilane (3-APTES) and biotin-N-hydroxysuccinimide ester (NHS-biotin). Different concentrations (4.17pM to 41.7nM) of dye-conjugated streptavidin were simultaneously infused through the second microfluidic channels, which lie 90° from the first microfluidic channels. The florescent intensity at the crossover areas showed good agreement with simulations, with sharp ZnO NWs exhibiting the largest dynamic range and the highest fluorescent intensity. We further characterize correspondent protein detection using sharp ZnO NWs. The surfaces of these ZnO NWs were modified with mouse immunoglobulin G (IgG), infused through the second microfluidic channels with dye-conjugated (Alexa 546) anti-mouse IgG in different concentrations. Concentrations ranging from 417fM to 41.7nM can be resolved using sharp ZnO NWs. Finally, multiple protein detection was demonstrated using a five-by-eight microfluidic channel array. Fluorescence images present clear multiple detections at the crossover areas when using the sharp ZnO NWs for simultaneous dye-conjugated anti-mouse IgG and dye-conjugated anti-rabbit IgG (Alexa 647) detection. PMID:26322591

  18. Fluorescent and high intensity discharge lamp recycling and disposal in Illinois

    SciTech Connect

    1998-12-01

    This report outlines some of the regulatory issues and problems associated with used fluorescent and high intensity discharge lamps that are processed or disposed of as part of mixed solid waste. It includes recommendations for encouraging the creation of recycling facilities in Illinois as well as appendices listing the current known recycling facilities in the United States, and a fact sheet on how to handle the lamps in the business and residential sectors. The report also outlines the Agency`s efforts to inform the public and industry about the environmentally friendly disposal of fluorescent and HID lamps.

  19. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  20. Intra- and Inter-annual Fluorescence Intensity Variations in Drip Water, Heshang Cave, Central China: Implications for Speleothem Palaeoclimatology

    NASA Astrophysics Data System (ADS)

    Jin, L.; Hu, C.; Li, X.; Ruan, J.; Hartland, A.

    2015-12-01

    Cave drip water acts as a signal carrier for the soil-rock-air system leading to the capture of climatic and environmental information in stalagmites. This paper seeks to develop an understanding of the environmental and climatic factors which control fluorescence variations in dripwater from in Heshang Cave, Central China. This information is essential to unravelling the significance of organic fluorescence in stalagmites and its utility in quantitative paleoclimate reconstructions. On the seasonal time scale, drip water fluorescence is largely controlled by the decomposition and translocation of dissolved organic matter in the soil, related to climate factors like temperature and precipitation. On the inter-annual time scale, longer duration monitoring data in scarce, yet this is needed to fully comprehend the influence of climate in stalagmite fluorescence time series. This study presents nine consecutive years of monthly drip water fluorescence intensity and drip rate data from two perennial drip sites in Heshang Cave. Drip water fluorescence was generally characterized by intensities in spring/summer and low intensities in autumn/winter. In dry hydrologic years, little seasonality in fluorescence signals was observed, but the opposite was observed in wet years. On the inter-annual time scale, the annual mean intensities of drip water fluorescence positively correlated with local annual rainfall with a 1-year lag (R2HS4=0.94; R2HS6=0.74). This indicates that rainfall is the main control on total drip water fluorescence (integrating across a hydrologic year), despite significant degrees of intra-annual fluorescence variation being observed between wet and dry years. These findings are of direct relevance for paleoclimate reconstruction using fluorescence intensities in stalagmites from the Asian monsoon region. Key words: fluorescence; dissolved organic matter; drip water rates; seasonality; precipitation

  1. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  2. Effect of quencher and temperature on fluorescence intensity of laser dyes: DETC and C504T.

    PubMed

    Jana, Basavaraja; Inamdar, S R; H M, Suresh Kumar

    2017-01-01

    Fluorescence quenching of 7- Diethylamino-3-thenoylcoumarin (DETC) and 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl11-oxo-1H,5H,11H- [1]benzopyrano[6,7,8-ij]quinolizine-10-carboxylic acid, ethyl ester (C504T) by aniline(AN), dimethylaniline (DMA) and diethylaniline (DEA) was investigated in toluene by steady state and transient methods. The quenching parameters like frequency of encounter (kd), probability of quenching per encounter (p), quenching rate parameters (kq) and activation energy of quenching (Ea) were determined experimentally. The kq values determined by steady state and time-resolved methods for the both dyes were found to be same, indicating the dynamic nature of interaction. Magnitudes of p and Ea suggested that the quenching reaction is predominantly controlled by material diffusion. The quenching mechanism is rationalized in terms of electron transfer (ET) from donors (aromatic amines) to the acceptors (coumarin derivatives) confirmed by correlating kq with free energy changes (ΔG°). Further, an effect of temperature on fluorescence intensity was carried out in toluene and methanol solvents. Fluorescence intensity of both the dyes decreases with increase in temperature. Temperature quenching in case of C504T is due to intersystem crossing S1→T2, whereas for DETC, quenching is due to intersystem crossing S1→T2 and ICT→TICT transition. PMID:27423111

  3. Effect of quencher and temperature on fluorescence intensity of laser dyes: DETC and C504T.

    PubMed

    Jana, Basavaraja; Inamdar, S R; H M, Suresh Kumar

    2017-01-01

    Fluorescence quenching of 7- Diethylamino-3-thenoylcoumarin (DETC) and 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl11-oxo-1H,5H,11H- [1]benzopyrano[6,7,8-ij]quinolizine-10-carboxylic acid, ethyl ester (C504T) by aniline(AN), dimethylaniline (DMA) and diethylaniline (DEA) was investigated in toluene by steady state and transient methods. The quenching parameters like frequency of encounter (kd), probability of quenching per encounter (p), quenching rate parameters (kq) and activation energy of quenching (Ea) were determined experimentally. The kq values determined by steady state and time-resolved methods for the both dyes were found to be same, indicating the dynamic nature of interaction. Magnitudes of p and Ea suggested that the quenching reaction is predominantly controlled by material diffusion. The quenching mechanism is rationalized in terms of electron transfer (ET) from donors (aromatic amines) to the acceptors (coumarin derivatives) confirmed by correlating kq with free energy changes (ΔG°). Further, an effect of temperature on fluorescence intensity was carried out in toluene and methanol solvents. Fluorescence intensity of both the dyes decreases with increase in temperature. Temperature quenching in case of C504T is due to intersystem crossing S1→T2, whereas for DETC, quenching is due to intersystem crossing S1→T2 and ICT→TICT transition.

  4. Accounting for photophysical processes and specific signal intensity changes in fluorescence-detected sedimentation velocity.

    PubMed

    Zhao, Huaying; Ma, Jia; Ingaramo, Maria; Andrade, Eric; MacDonald, Jeff; Ramsay, Glen; Piszczek, Grzegorz; Patterson, George H; Schuck, Peter

    2014-09-16

    Fluorescence detected sedimentation velocity (FDS-SV) has emerged as a powerful technique for the study of high-affinity protein interactions, with hydrodynamic resolution exceeding that of diffusion-based techniques, and with sufficient sensitivity for binding studies at low picomolar concentrations. For the detailed quantitative analysis of the observed sedimentation boundaries, it is necessary to adjust the conventional sedimentation models to the FDS data structure. A key consideration is the change in the macromolecular fluorescence intensity during the course of the experiment, caused by slow drifts of the excitation laser power, and/or by photophysical processes. In the present work, we demonstrate that FDS-SV data have inherently a reference for the time-dependent macromolecular signal intensity, resting on a geometric link between radial boundary migration and plateau signal. We show how this new time-domain can be exploited to study molecules exhibiting photobleaching and photoactivation. This expands the application of FDS-SV to proteins tagged with photoswitchable fluorescent proteins, organic dyes, or nanoparticles, such as those recently introduced for subdiffraction microscopy and enables FDS-SV studies of their interactions and size distributions. At the same time, we find that conventional fluorophores undergo minimal photobleaching under standard illumination in the FDS. These findings support the application of a high laser power density for the detection, which we demonstrate can further increase the signal quality.

  5. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  6. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles.

    PubMed

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C(14)H(6)O(8)), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0×10(-10) to 4.0×10(-5) mol L(-1); and the detection limits are 3.2×10(-10) mol L(-1) and 5.9×10(-10) mol L(-1) excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  7. Theory of time-dependent intense-field collisional resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Kleiber, P. D.; Cooper, J.; Burnett, K.; Kunasz, C. V.; Raymer, M. G.

    1983-01-01

    The time-dependent theory of Courtens and Szoke (1977) is generalized using the approach of Burnett et al. (1982) to derive time-dependent spectral intensities of resonance fluorescence from atoms driven by a pulsed laser in the presence of collisions. These results are valid both for laser detunings inside and outside the usual impact region of the spectrum, including Zeeman degeneracy effects. This theory is applied to a simple but important example (J = 0 to J = 1) to obtain quantitative predictions for the observable scattered-light spectrum which can be directly compared with recent experiments.

  8. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    SciTech Connect

    Furuyama, S.; Yaita, J.; Kondo, M.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Kodera, T.; Hatano, M.

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  9. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    NASA Astrophysics Data System (ADS)

    Furuyama, S.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Yaita, J.; Kondo, M.; Kodera, T.; Hatano, M.

    2015-10-01

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  10. Mapping tillage intensity by integrating multiple remote sensing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage practices play an important role in the sustainable agriculture system. Conservative tillage practice can help to reduce soil erosion, increase soil fertility and improve water quality. Tillage practices could be applied at different times with different intensity depending on the local weat...

  11. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, T.N.

    1993-05-04

    Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.

  12. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, Tudor N.

    1993-01-01

    Apparatus and method for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochomes in the sample.

  13. Mapping fast protein folding with multiple-site fluorescent probes

    PubMed Central

    Prigozhin, Maxim B.; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V.; Gruebele, Martin

    2015-01-01

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6–85 by engineering into it three fluorescent tryptophan–tyrosine contact probes. The probes report on distances between three different helix pairs: 1–2, 1–3, and 3–2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1–3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same “slow” and “fast” distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1–2 and 3–2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test. PMID:26080403

  14. Mapping fast protein folding with multiple-site fluorescent probes.

    PubMed

    Prigozhin, Maxim B; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V; Gruebele, Martin

    2015-06-30

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test. PMID:26080403

  15. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. PMID:26838391

  16. Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans.

    PubMed

    Papageorgiou, G; Govindjee

    1967-07-01

    The intensity of the "steady-state" fluorescence of "aerobic" Anacystis nidulans is variable under prolonged illumination with orange (590 mmu) or blue (440 mmu) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196 degrees C in light, the light-induced changes in the "steady-state" fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mmu) and a minor peak located at about 693 mmu.

  17. Structural and permeability sensitivity of cells to low intensity ultrasound: Infrared and fluorescence evidence in vitro.

    PubMed

    Domenici, Fabio; Giliberti, Claudia; Bedini, Angelico; Palomba, Raffaele; Udroiu, Ion; Di Giambattista, Lucia; Pozzi, Deleana; Morrone, Stefania; Bordi, Federico; Congiu Castellano, Agostina

    2014-04-01

    This work is focused on the in vitro study of the effects induced by medical ultrasound (US) in murine fibroblast cells (NIH-3T3) at a low-intensity of exposure (spatial peak temporal average intensity Ita<0.1Wcm(-2)). Conventional 1MHz and 3MHz US devices of therapeutic relevance were employed with varying intensity and exposure time parameters. In this framework, upon cells exposure to US, structural changes at the molecular level were evaluated by infrared spectroscopy; alterations in plasma membrane permeability were monitored in terms of uptake efficiency of small cell-impermeable model drug molecules, as measured by fluorescence microscopy and flow cytometry. The results were related to the cell viability and combined with the statistical PCA analysis, confirming that NIH-3T3 cells are sensitive to therapeutic US, mainly at 1MHz, with time-dependent increases in both efficiency of uptake, recovery of wild-type membrane permeability, and the size of molecules entering 3T3. On the contrary, the exposures from US equipment at 3MHz show uptakes comparable with untreated samples.

  18. Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F(0) fluorescence in leaves of Arabidopsis thaliana and Zea mays.

    PubMed

    Pfündel, Erhard E; Klughammer, Christof; Meister, Armin; Cerovic, Zoran G

    2013-03-01

    The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F(0) and F(M), respectively) and at the end of each light step (F'(0) and F'(M), respectively). Calculated F'(0) values derived from F(0), F(M) and F'(M) fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured F'(0) values. Based on the concept that calculated F'(0) values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured F'(0). This method yields fluorometer-specific PSI data as its input data (F(0), F(M), F'(0) and F'(M)) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F (0) fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F(0) - 1/F(M), up to 50 % in A. thaliana and up to 400 % in Z. mays.

  19. X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence

    SciTech Connect

    Curry, John J.; Lapatovich, Walter P.; Henins, Albert

    2011-12-09

    We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

  20. Using water raman intensity to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding ...

  1. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    PubMed

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion. PMID:25416508

  2. Application of a fluorescence intensity ratio technique for the intrinsic determination of pH using an optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Thotath, Bhadra; Nguyen, T. Hien; Zhang, Weiwei; Wren, Stephen P.; Baxter, Gregory W.; Sun, Tong; Collins, Stephen F.; Grattan, Kenneth T. V.

    2015-09-01

    An intensity ratio technique has been used for characterizing fluorescence spectra from novel coumarin dyes for pH sensing, in the range of 0.5 - 6, providing results that are independent of possible fluctuations in the intensity of the excitation source, deterioration of the indicator and changes in optical coupling. The arrangement was determined to have a sensitivity of 25% per unit pH change (at a pH of 4).

  3. Effect of Host Medium on the Fluorescence Emission Intensity of Rhodamine B in Liquid and Solid Phase

    NASA Astrophysics Data System (ADS)

    Fikry, M.; Omar, M. M.; Ismail, Lotfi Z.

    2011-06-01

    In this work, we study the effect of concentration, host medium, PH, ions complex and phase states on the fluorescence emission from the laser dye, Rhodamine B, pumping by UV laser as exited source. The polymethylmethacrylate PMMA used as host medium in case of solid phase samples while, ethanol and Tetrahydrofuran (THF) are used in case of liquid one. The Laser Induced Fluorescence (LIF) technique was used to study the fluorescence properties of the both cases liquid and thin film solid-state samples. In addition, the Dual Thermal Lens (DTL) technique was used to study the quantum yield of these samples. The maximum fluorescence emission observed at concentration of Rhodamine B C=3×10-4M. At this concentration of Rhodamine B, the type of solvent and polarity of the medium affect on the fluorescence emission intensity of Rhodamine B with. The measurements revile that, the behavior of both phases state was analogous and Rhodamine B/PMMA thin film sample by ratio of 4:1 and thickness 0.12 mm is the best photostability sample and its quantum yield about ≈ 0.82. Also, the fluorescence emission intensity of Rhodamine B was quenched by complex formation of Co, Al, Cu and iodide ions with Rhodamine B due to the increase of the charge density of the ions.

  4. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images. PMID:27699094

  5. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images.

  6. Amplification of the signal intensity of fluorescence-based fiber-optic biosensors using a Fabry-Perot resonator structure.

    PubMed

    Hsieh, Meng-Chang; Chiu, Yi-Hsin; Lin, Sheng-Fu; Chang, Jenq-Yang; Chang, Chia-Ou; Chiang, Huihua Kenny

    2015-01-01

    Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector. PMID:25690548

  7. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  8. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes

    PubMed Central

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A.; Troemel, Emily R.; Liu, Zhaowei

    2016-01-01

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D ‘object plane’. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume. PMID:27527813

  9. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  10. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A.; Troemel, Emily R.; Liu, Zhaowei

    2016-08-01

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D ‘object plane’. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  11. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-01-01

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume. PMID:27527813

  12. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  13. Changes of cytosolic Ca(2+) fluorescence intensity and plasma membrane calcium channels of maize root tip cells under osmotic stress.

    PubMed

    Liu, Zihui; Ma, Zhenyu; Guo, Xiulin; Shao, Hongbo; Cui, Qiuhua; Song, Weiyi

    2010-01-01

    The changes of cytosolic Ca(2+) fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid (ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca(2+) fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca(2+) participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca(2+) increase induced by PEG treatments, N,N,N',N'-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca(2+) fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca(2+) fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca(2+) current (I(Ca)) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca(2+) participated in the signals transduction process of osmotic stress, and the cytosolic free Ca(2+) increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.

  14. Fluctuations of light intensity scattered from multiple glints in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Li, Yaqing; Gao, Ming; Lei, Gong

    2016-01-01

    As targets in space are usually very far from the ground, some targets containing smooth reflecting components can be seen to be composed of a single or multiple glints when they are detected by a Lidar (laser radar) system located on the ground. The received intensity of the detector fluctuates, which caused significant noise on the system, for two reasons. One is the randomness of positions of the glints and the other is the perturbations of the atmospheric turbulence. The formulation of the scintillation index of the reflected intensity is derived by using incoherent superposition of the reflected field. The results show that the scintillation index can be divided into two parts, corresponding to the two sources that cause the intensity fluctuations. The results show that the target composed by multiple glints has two different effects on the fluctuation of the reflected intensity, one is the amplification effect of the incoherent superposition, and the other is some similar aperture averaging effect.

  15. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  16. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel.

  17. Picosecond fluorescence of cryptomonad biliproteins. Effects of excitation intensity and the fluorescence decay times of phycocyanin 612, phycocyanin 645, and phycoerythrin 545.

    PubMed Central

    Guard-Friar, D; MacColl, R; Berns, D S; Wittmershaus, B; Knox, R S

    1985-01-01

    The fluorescence of purified biliproteins (phycocyanin 645, phycocyanin 612, and phycoerythrin 545) from three cryptomonads, Chroomonas species, Hemiselmis virescens, and Rhodomonas lens, and C-phycocyanin from Anacystis nidulans has been time resolved in the picosecond region with a streak camera system having less than or equal to 2-ps jitter. The fluorescence lifetimes of phycocyanins from Chroomonas species and Hemiselmis virescens are 1.5 +/- 0.2 ns and 2.3 +/- 0.2 ns, respectively, regardless of the fluence of the 30 ps, 532-nm excitation pulse. (Fluence [or photons/cm2] = f intensity [photons/cm2s]dt.). In contrast, that of C-phycocyanin is 2.3 +/- 0.2 ns when the excitation fluence is 8.2 X 10(11) photons/cm2 and decreases to a decay approximated by an exponential decay time of 0.65 +/- 0.1 ns at 7.2 X 10(16) photons/cm2. The cryptomonad phycoerythrin fluorescence decay lifetime is also dependent on intensity, having a decay time of 1.5 +/- 0.1 ns at low fluences and becoming clearly biphasic at higher fluences (greater than 10(15) photons/cm2). We interpret the shortening of decay times for C-phycocyanin and phycoerythrin 545 in terms of exciton annihilation, and have discussed the applicability of exciton annihilation theories to the high fluence effects. PMID:3926017

  18. Development of pathological diagnostics of human kidney cancer by multiple staining using new fluorescent Fluolid dyes.

    PubMed

    Wuxiuer, Dilibaier; Zhu, Yun; Ogaeri, Takunori; Mizuki, Keiji; Kashiwa, Yuki; Nishi, Kentaro; Isobe, Shin-ichiro; Aoyagi, Tei-ichiro; Kiyama, Ryoiti

    2014-01-01

    New fluorescent Fluolid dyes have advantages over others such as stability against heat, dryness, and excess light. Here, we performed simultaneous immunostaining of renal tumors, clear cell renal cell carcinoma (RCC), papillary RCC, chromophobe RCC, acquired cystic disease-associated RCC (ACD-RCC), and renal angiomyolipoma (AML), with primary antibodies against Kank1, cytokeratin 7 (CK7), and CD10, which were detected with secondary antibodies labeled with Fluolid-Orange, Fluolid-Green, and Alexa Fluor 647, respectively. Kank1 was stained in normal renal tubules, papillary RCC, and ACD-RCC, and weakly or negatively in all other tumors. CK7 was positive in normal renal tubules, papillary RCC, and ACD-RCC. In contrast, CD10 was expressed in renal tubules and clear cell RCC, papillary RCC, AML, and AC-RCC, and weakly in chromophobe RCC. These results may contribute to differentiating renal tumors and subtypes of RCCs. We also examined the stability of fluorescence and found that fluorescent images of Fluolid dyes were identical between a tissue section and the same section after it was stored for almost three years at room temperature. This indicates that tissue sections can be stored at room temperature for a relatively long time after they are stained with multiple fluorescent markers, which could open a door for pathological diagnostics. PMID:24995295

  19. Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse intensity in different tissues.

    PubMed

    Breia, Richard; Vieira, Sónia; da Silva, Jorge Marques; Gerós, Hernâni; Cunha, Ana

    2013-01-01

    Grape berry development and ripening depends mainly on imported photosynthates from leaves, however, fruit photosynthesis may also contribute to the carbon economy of the fruit. In this study pulse amplitude modulated chlorophyll fluorescence imaging (imaging-PAM) was used to assess photosynthetic properties of tissues of green grape berries. In particular, the effect of the saturation pulse (SP) intensity was investigated. A clear tissue-specific distribution pattern of photosynthetic competence was observed. The exocarp revealed the highest photosynthetic capacity and the lowest susceptibility to photoinhibition, and the mesocarp exhibited very low fluorescence signals and photochemical competence. Remarkably, the seed outer integument revealed a photosynthetic ability similar to that of the exocarp. At a SP intensity of 5000 μmol m(-2) s(-1) several photochemical parameters were decreased, including maximum fluorescence in dark-adapted (F(m)) and light-adapted (F'(m)) samples and effective quantum yield of PSII (Φ(II)), but the inner tissues were susceptible to a SP intensity as low as 3200 μmol m(-2) s(-1) under light-adapted conditions, indicating a photoinhibitory interaction between SP and actinic light intensities and repetitive exposure to SP. These results open the way to further studies concerning the involvement of tissue-specific photosynthesis in the highly compartmentalized production and accumulation of organic compounds during grape berry development.

  20. Multiple scattering and intensity fluctuations in optical coherent tomography of randomly inhomogeneous media

    SciTech Connect

    Kuzmin, V. L. Meglinski, I. V.

    2007-08-15

    An expression for signal intensity fluctuations in optical coherent tomography has been obtained for the first time in the framework of the theory of the multiple scattering of low-coherent optical radiation in a random medium. The contribution of the multiple scattering of low-coherent radiation backscattered from a randomly inhomogeneous layer, as well as the speckles of the interference component in optical coherent tomography, has been calculated.

  1. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  2. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  3. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  4. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers.

    PubMed

    Frantsuzov, Pavel A; Volkán-Kacsó, Sándor; Jankó, Bolizsár

    2009-11-13

    We present a new physical model resolving a long-standing mystery of the power-law distributions of the blinking times in single colloidal quantum dot fluorescence. The model considers the nonradiative relaxation of the exciton through multiple recombination centers. Each center is allowed to switch between two quasistationary states. We point out that the conventional threshold analysis method used to extract the exponents of the distributions for the on times and off times has a serious flaw: the qualitative properties of the distributions strongly depend on the threshold value chosen for separating the on and off states. Our new model explains naturally this threshold dependence, as well as other key experimental features of the single quantum dot fluorescence trajectories, such as the power-law power spectrum (1/f noise).

  5. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine.

    PubMed

    Malvindi, Maria Ada; Di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release. PMID:22037807

  6. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  7. Unraveling the time cross correlations of an emitter switching between two states with the same fluorescence intensity.

    PubMed

    Eloi, F; Frederich, H; Leray, A; Buil, S; Quélin, X; Ji, B; Giovanelli, E; Lequeux, N; Dubertret, B; Hermier, J-P

    2015-11-16

    The autocorrelation function of the fluorescence intensity of a nanoemitter is measured with the standard Hanbury-Brown and Twiss setup. Time-tagging of the photodetection events during all the experiment has opened new possibilities in terms of post-selection techniques that enable to go beyond the blinking and antibunching characterization. Here, we first present a new method developed to investigate in detail the antibunching of a fluorophore switching between two emitting states. Even if they exhibit the same fluorescence intensity, their respective amount of antibunching can be measured using the gap between their respective decay rates. The method is then applied to a nanoemitter consisting in a colloidal quantum dot coupled to a plasmonic resonator. The relative quantum efficiency of the charged and neutral biexcitons are determined.

  8. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  9. Fluorescence molecular tomography on animal model by means of multiple views structured light illumination

    NASA Astrophysics Data System (ADS)

    Ducros, N.; Bassi, A.; Valentini, G.; Canti, G.; Arridge, S.; D'Andrea, C.

    2013-03-01

    Fluorescence molecular tomography (FMT) is quite demanding in terms of acquisition/computational times due to the huge amount of data. Different research groups have proposed compression approaches regarding both illumination (wide field structured light instead of raster point scanning) and detection (compression of the acquired images). The authors have previously proposed a fast FMT reconstruction method based on the combination of a multiple-view approach with a full compression scheme. This method had been successfully tested on a cylindrical phantom and is being generalized in this paper to samples of arbitrary shape. The devised procedure and algorithms have been tested on an ex-vivo mouse.

  10. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity.

    PubMed

    Leiger, Kristjan; Freiberg, Arvi

    2016-01-01

    Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.

  11. Short communication: Changes in fluorescence intensity induced by soybean soluble polysaccharide-milk protein interactions during acidification.

    PubMed

    Li, Y H; Wang, W J; Xu, X J; Meng, Y C; Zhang, L W; Chen, J; Qiu, R

    2015-12-01

    Interactions between stabilizer and milk protein are believed to influence the stabilizing behavior of the milk system. We investigated changes in fluorescence intensity induced by interactions of soybean soluble polysaccharide (SSPS) and milk protein (Mp) during acidification. The fluorescence intensity (If) of Mp increased as pH decreased from 6.8 to 5.2. Compared with Mp alone, If of SSPS-Mp mixtures increased as the pH decreased from 6.8 to 5.2. We found that the If of the SSPS-Mp mixture decreased in a pH range from 5.2 to 3.6, which indicated a change in the polarity microenvironment around the Trp residues. We also found that the maximum emission wavelength (λmax) shifted from 337 to 330nm as pH decreased from 6.8 to 3.6, in further support of SSPS interacting with the polar portion of Mp during acidification. Furthermore, an excited monomeric molecule (pyrene exciplex) was found as a ground-state pyrene formed and a broad band was shown at about 450nm. The intensity ratio of the first peak to the third peak (I1:I3) of Mp increased slightly, and the ratio of intensity of pyrene exciplex to monomer (Ie:Im) decreased because pyrene molecules were located in a less hydrophobic microenvironment during acidification. However, the ratio of I1:I3 decreased clearly at pH below 5.6 and the ratio of Ie:Im showed the opposite trend in the SSPS-Mp mixture. Changes in intrinsic and exogenous fluorescence intensity confirmed that interactions of SSPS and Mp could change the polarity of the microenvironment and that SSPS probably interacted with the polar portion of Mp. These results could give insight into the behavior of stabilizers in acid milk products. PMID:26476946

  12. The effect of a gas environment on the fluorescence intensity of quantum-dot composite systems

    NASA Astrophysics Data System (ADS)

    Danilov, V. V.; Khrebtovb, A. I.; Shtrom, I. V.; Tsyrlin, G. E.; Samsonenko, Yu. B.

    2016-09-01

    The fluorescence kinetics of a composite structure based on colloidal CdSe/ZnS core-shell quantum dots deposited on an array of GaAs nanowires in atmospheres of different gases is studied upon excitation by cw laser radiation. It is suggested that the fluorescence enhancement mechanism consists in the transfer of part of the vibrational energy of quantum dots to surrounding gas molecules due to inelastic collisions.

  13. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.

    PubMed

    Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki

    2012-06-18

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

  14. Multiple Velocity Profile Measurements in Hypersonic Flows using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.

  15. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. PMID:27161580

  16. A method of XRF spectrochemical analysis based on some geometrical properties of the X-ray fluorescent intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Rubio, Marcelo; Sánchez, Jorge H.

    1989-08-01

    In previous works [J.E. Fernández and M. Rubio, subm. to X-Ray Spectrom. (1989); J.E. Fernández, subm. to Comput. Phys. Commun. (1989)] it was found out that the primary-XRF (X-ray fluorescence) intensity remains invariant under variation of the tilt angle α of the propagation plane whilst the secondary one vanishes at the limit |αz.sfnc; → {π}/{2}. As a consequence the detected fluorescence is only composed of primary photons, simplifying the increasing complexity, for multicomponent samples, of the mathematical dependence of the XRF intensity on their composition. This feature is exploited to elaborate analytical methods based on the resulting simplified XRF-intensity expression. The sample composition is calculated as solution of a linear set of equations when the excitation spectrum is monochromatic, and as iterative solution of a nonlinear set of equations for the more realistic polychromatic excitation spectrum. For polychromatic excitation an additional method is devised, which uses some nonlinear least-squares coefficients and tabulated data to build the coefficients matrix of a linear system of equations whose solution is the required concentration. Measured intensities under this scheme were used to determine the major-elements composition of some NBS standard steels. Comparison with NBS reported values evidences that this method is reliable and precise.

  17. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity

    PubMed Central

    Kaishima, Misato; Ishii, Jun; Matsuno, Toshihide; Fukuda, Nobuo; Kondo, Akihiko

    2016-01-01

    Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system’s ability to sense signal transduction and protein–protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry. PMID:27782154

  18. A Model of Population and Subject (MOPS) Intensities with Application to Multiple Sclerosis Lesion Segmentation

    PubMed Central

    Tomas-Fernandez, Xavier; Warfield, Simon K.

    2015-01-01

    White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from MRI has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject (MOPS). We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation. PMID:25616008

  19. Fluorescence Intensity and Intermittency as Tools for Following Dopamine Bioconjugate Processing in Living Cells

    PubMed Central

    Khatchadourian, Rafael; Bachir, Alexia; Clarke, Samuel J.; Heyes, Colin D.; Wiseman, Paul W.; Nadeau, Jay L.

    2007-01-01

    CdSe/ZnS quantum dots (QDs) conjugated to biomolecules that quench their fluorescence, particularly dopamine, have particular spectral properties that allow determination of the number of conjugates per particle, namely, photoenhancement and photobleaching. In this work, we quantify these properties on a single-particle and ensemble basis in order to evaluate their usefulness as a tool for indicating QD uptake, breakdown, and processing in living cells. This creates a general framework for the use of fluorescence quenching and intermittency to better understand nanoparticle-cell interactions. PMID:18401443

  20. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    NASA Astrophysics Data System (ADS)

    Malvindi, Maria Ada; di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed

  1. Determination of sulfur in biodiesel microemulsions using the summation of the intensities of multiple emission lines.

    PubMed

    Young, Carl G; Amais, Renata S; Schiavo, Daniela; Garcia, Edivaldo E; Nóbrega, Joaquim A; Jones, Bradley T

    2011-05-15

    A method for the determination of sulfur in biodiesel samples by inductively coupled plasma optical emission spectrometry which uses microemulsion for sample preparation and the summation of the intensities of multiple emission lines has been developed. Microemulsions were prepared using 0.5 mL of 20% v/v HNO(3), 0.5 mL of Triton X-100, 2-3 mL of biodiesel sample, and diluted with n-propanol to a final volume of 10 mL. Summation of the emission intensities of multiple sulfur lines allowed for increased accuracy and sensitivity. The amounts of sulfur determined experimentally were between 2 and 7 mg L(-1), well below legislative standards for many countries. Recoveries obtained ranged from 72 to 119%, and recoveries obtained for the 182.562 nm line were slightly lower. This is most likely due to its lower sensitivity. Using microemulsion for sample preparation and the summation of the intensities of multiple emission lines for the successful determination of sulfur in biodiesel has been demonstrated. PMID:21482315

  2. Microchip fluorescence-enhanced immunoaasay for simultaneous quantification of multiple tumor markers.

    PubMed

    Shi, Ming; Zhao, Shulin; Huang, Yong; Liu, Yi-Ming; Ye, Fanggui

    2011-09-15

    A microchip fluorescence-enhanced immunoassay method was developed for simultaneous detection of carcinoma antigen 125 (CA125) and carbohydrate antigen 15-3 (CA15-3). In this method, CA125 and CA15-3 react with excess amount of fluorescein isothiocyanate (FITC)-labeled monoclonal antibodies (Ab(*)) of CA125 and CA15-3 to form CA125-Ab(125)(*) and CA15-3-Ab(15-3)(*) complexes. Microchip electrophoresis (MCE) separation of free Ab(125)(*), Ab(15-3)(*), and CA125-Ab(125)(*), CA15-3-Ab(15-3)(*) complexes were then performed. The separated species were sensitively detected by laser-induced fluorescence detection (LIF). CA125 and CA15-3 were quantified simultaneously by measuring the fluorescence intensity of CA125-Ab(125)(*) and CA15-3-Ab(15-3)(*) complexes, respectively. Under the optimum conditions, the limits of detection were 0.23 U/mL for CA125 and 0.09 U/mL for CA15-3. The present MCE-LIF method was applied to the determination of CA125 and CA15-3 in serum from healthy subjects and cancer patients. The levels of CA125 and CA15-3 in these sera samples were found to be in the ranges of 15.6-36.1 U/mL and 13.8-28.4 U/mL for healthy subjects, and 192.5-368.3 U/mL and 63.3-198.4 U/mL for cancer patients.

  3. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Bian, Pingping; Zhou, Jing; Liu, Yueying; Ma, Zhanfang

    2013-06-01

    A one-step method for successfully fabrication of water-soluble and alkanethiol-stabilized Au nanoclusters (NCs) was demonstrated. The novel and facile method was based on simply placing histidine (His), HAuCl4 and 11-mercaptoundcanoic acid (MUA) together at room temperature. The resulting Au NCs were exclusively composed of Au17MUA4His22 (AMH), as demonstrated by the photoluminescence, UV-Vis absorption, electrospray ionization mass and X-ray photoelectron spectroscopy. AMH exhibited intense red fluorescence (λem = 600 nm), a long fluorescence lifetime (7.11 μs), considerable stability, and a large Stoke's shift (320 nm). Based on the excellent properties of the AMH, cell experiments were conducted. Cytotoxicity studies showed that the Au NCs exhibited negligible effects in altering cell proliferation or triggering apoptosis. Cancer cell imaging of HeLa cell lines indicated that the obtained AMH could serve as a promising fluorescent bioprobe for bioimaging. This strategy, based on the one-step method, may offer a novel approach to fabricate other water-soluble and alkanethiol-stabilized metal nanoclusters for application in biolabelling and bioimaging.A one-step method for successfully fabrication of water-soluble and alkanethiol-stabilized Au nanoclusters (NCs) was demonstrated. The novel and facile method was based on simply placing histidine (His), HAuCl4 and 11-mercaptoundcanoic acid (MUA) together at room temperature. The resulting Au NCs were exclusively composed of Au17MUA4His22 (AMH), as demonstrated by the photoluminescence, UV-Vis absorption, electrospray ionization mass and X-ray photoelectron spectroscopy. AMH exhibited intense red fluorescence (λem = 600 nm), a long fluorescence lifetime (7.11 μs), considerable stability, and a large Stoke's shift (320 nm). Based on the excellent properties of the AMH, cell experiments were conducted. Cytotoxicity studies showed that the Au NCs exhibited negligible effects in altering cell proliferation or

  4. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  5. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    NASA Astrophysics Data System (ADS)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  6. Gateway Vectors for Simultaneous Detection of Multiple Protein−Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Hikino, Kazumi; Goto-Yamada, Shino; Nishimura, Mikio; Nakagawa, Tsuyoshi; Mano, Shoji

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is widely used to detect protein—protein interactions, because it is technically simple, convenient, and can be adapted for use with conventional fluorescence microscopy. We previously constructed enhanced yellow fluorescent protein (EYFP)-based Gateway cloning technology-compatible vectors. In the current study, we generated new Gateway cloning technology-compatible vectors to detect BiFC-based multiple protein—protein interactions using N- and C-terminal fragments of enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), and monomeric red fluorescent protein (mRFP1). Using a combination of N- and C-terminal fragments from ECFP, EGFP and EYFP, we observed a shift in the emission wavelength, enabling the simultaneous detection of multiple protein—protein interactions. Moreover, we developed these vectors as binary vectors for use in Agrobacterium infiltration and for the generate transgenic plants. We verified that the binary vectors functioned well in tobacco cells. The results demonstrate that the BiFC vectors facilitate the design of various constructions and are convenient for the detection of multiple protein—protein interactions simultaneously in plant cells. PMID:27490375

  7. Gateway Vectors for Simultaneous Detection of Multiple Protein-Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation.

    PubMed

    Kamigaki, Akane; Nito, Kazumasa; Hikino, Kazumi; Goto-Yamada, Shino; Nishimura, Mikio; Nakagawa, Tsuyoshi; Mano, Shoji

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is widely used to detect protein-protein interactions, because it is technically simple, convenient, and can be adapted for use with conventional fluorescence microscopy. We previously constructed enhanced yellow fluorescent protein (EYFP)-based Gateway cloning technology-compatible vectors. In the current study, we generated new Gateway cloning technology-compatible vectors to detect BiFC-based multiple protein-protein interactions using N- and C-terminal fragments of enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), and monomeric red fluorescent protein (mRFP1). Using a combination of N- and C-terminal fragments from ECFP, EGFP and EYFP, we observed a shift in the emission wavelength, enabling the simultaneous detection of multiple protein-protein interactions. Moreover, we developed these vectors as binary vectors for use in Agrobacterium infiltration and for the generate transgenic plants. We verified that the binary vectors functioned well in tobacco cells. The results demonstrate that the BiFC vectors facilitate the design of various constructions and are convenient for the detection of multiple protein-protein interactions simultaneously in plant cells. PMID:27490375

  8. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  9. Combining OCT and a fluorescence intensity imaging method for atherosclerosis detection

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Yin, Jiechen; Narula, Jagat; Chen, Zhongping

    2012-02-01

    Coronary heart disease (like myocardial infarction) is caused by atherosclerosis. It cause over 30% of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. To diagnose this atherosclerosis before it gets rupture is the most effect way to increase the chance of survival for patients who suffer from this disease. The crucial tusk is how to find out vulnerable plaques. In resent years optical coherence tomography (OCT) has become a very useful tool for intravascular imaging, since it has high axial and transverse resolution. OCT can tell the detail structure inside the plaque like the thickness of plaque cap which is an important factor to identify vulnerable plaques. But we still need to find out the biochemical characteristics that is unique for vulnerable plaques (like inflammation). Fluorescence molecular imaging is a standard way to exam the biochemical property of biological samples. So we integrate these two techniques together into one probe. Our probe is comprised of a double-clad fiber (DCF) and a grin lens, and rotates with a micro mirror in front. The single-mode inner core of the DCF transmits both OCT and fluorescence excitation light, and the multimode inner cladding is used to detect fluorescence signal. In vitro result shows that this is a possible way for more accurate diagnose of vulnerable plaques.

  10. Laser-induced fluorescence thermometry of heating in water from short bursts of high intensity focused ultrasound.

    PubMed

    Al-Qraini, Moath M; Canney, Michael S; Oweis, Ghanem F

    2013-04-01

    Free field experimental measurements of the temperature rise of water in the focal region of a 2 MHz high intensity focused ultrasound (HIFU) transducer were performed. The transducer was operated in pulse-mode with millisecond bursts, at acoustic intensities of 5 to 18.5 kW/cm(2) at the focus, resulting in non-linear wave propagation and shock wave formation. Pulsed, planar, laser-induced fluorescence (LIF) was used as a fast rise-time, non-intrusive, temperature measurement method of the water present in the focal region. LIF thermometry is based on calibrating the temperature-dependent fluorescence intensity signal emitted by a passive dye dissolved in water when excited by a pulse of laser light. The laser beam was formed into a thin light sheet to illuminate a planar area in the HIFU focal region. The laser light sheet was oriented transverse to the acoustic axis. Cross-sectional, instantaneous temperature field measurements within the HIFU focal volume showed that the water temperature increased steadily with increasing HIFU drive voltage. Heating rates of 4000-7000°C/s were measured within the first millisecond of the HIFU burst. Increasing the length of the burst initially resulted in an increase in the water temperature within the HIFU focal spot (up to ∼3 ms), after which it steadied or slightly dropped. Acoustic streaming was measured and shown to be consistent with the reduction in heating with increased burst length due to convective cooling. LIF thermometry may thus be a viable non-invasive method for the characterization of HIFU transducers at high power intensities.

  11. Monitoring plasmid replication in live mammalian cells over multiple generations by fluorescence microscopy.

    PubMed

    Norby, Kathryn; Chiu, Ya-Fang; Sugden, Bill

    2012-01-01

    Few naturally-occurring plasmids are maintained in mammalian cells. Among these are genomes of gamma-herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's Sarcoma-associated herpesvirus (KSHV), which cause multiple human malignancies (1-3). These two genomes are replicated in a licensed manner, each using a single viral protein and cellular replication machinery, and are passed to daughter cells during cell division despite their lacking traditional centromeres (4-8). Much work has been done to characterize the replications of these plasmid genomes using methods such as Southern blotting and fluorescence in situ hybridization (FISH). These methods are limited, though. Quantitative PCR and Southern blots provide information about the average number of plasmids per cell in a population of cells. FISH is a single-cell assay that reveals both the average number and the distribution of plasmids per cell in the population of cells but is static, allowing no information about the parent or progeny of the examined cell. Here, we describe a method for visualizing plasmids in live cells. This method is based on the binding of a fluorescently tagged lactose repressor protein to multiple sites in the plasmid of interest (9). The DNA of interest is engineered to include approximately 250 tandem repeats of the lactose operator (LacO) sequence. LacO is specifically bound by the lactose repressor protein (LacI), which can be fused to a fluorescent protein. The fusion protein can either be expressed from the engineered plasmid or introduced by a retroviral vector. In this way, the DNA molecules are fluorescently tagged and therefore become visible via fluorescence microscopy. The fusion protein is blocked from binding the plasmid DNA by culturing cells in the presence of IPTG until the plasmids are ready to be viewed. This system allows the plasmids to be monitored in living cells through several generations, revealing properties of their synthesis and partitioning to

  12. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements.

    PubMed

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M; Grainger, David W; Castner, David G; Gamble, Lara J

    2006-05-15

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  13. Correlation between the In Vitro Functionality of Stored Platelets and the Cytosolic Esterase-Induced Fluorescence Intensity with CMFDA.

    PubMed

    Wang, Jiexi; Yi, Xiaoyang; Liu, Minxia; Zhou, Qian; Ren, Suping; Wang, Yan; Yang, Chao; Zhou, Jianwei; Han, Ying

    2015-01-01

    It has been hypothesized that the cytosolic esterase-induced fluorescence intensity (CEIFI) from carboxy dimethyl fluorescein diacetate (CMFDA) in platelets may related to platelet functions. In the present study, we measured the change of CEIFI in platelets during storage, and examined the correlations of CEIFI with the in vitro functionality of stored platelets, including the ADP-induced aggregation activity, hypotonic shock response, expression of CD62P as well as platelet apoptosis. The CEIFI of fresh platelets, when tested at 10 μM CMFDA, the mean fluorescence intensity index (MFI) was 305.9 ± 49.9 (N = 80). After 1-day storage, it was 203.8 ± 34.4, the CEIFI of the stored platelets started to decline significantly, and reduced to 112.7 ±27.7 after 7-day storage. The change in CEIFI is highly correlated to all four functional parameters measured, with the correlation coefficients being 0.9813, 0.9848, -0.9945 and -0.9847 for the ADP-induced aggregation activity, hypotonic shock response (HSR), expression of CD62P and platelet apoptosis respectively. The above results show that the CEIFI measurement of platelets represents well the viability and functional state of in vitro stored platelets. This may be used as a convenient new method for quality evaluation for stored platelets if this result can be further validated by the following clinical trials.

  14. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  15. Chemotherapy-Induced Changes in Cardiac Capillary Permeability Measured by Fluorescent Multiple Indicator Dilution

    PubMed Central

    Fernandez-Fernandez, Alicia; Carvajal, Denny A.; Lei, Tingjun; McGoron, Anthony J.

    2014-01-01

    Anthracyclines cause severe irreversible cardiac toxicity. The study of changes in cardiac permeability with chemotherapy could enhance the understanding of mechanisms behind cardiac damage, and provide useful information to evaluate anthracycline cardiotoxicity. Thirty-six rats (12 Sprague-Dawley, 12 Wistar, 12 Fischer-344) were randomly assigned to control (n= 21) or doxorubicin (n = 15), and injected i.p. with a cumulative dose of 18 mg/kg doxorubicin in saline (vehicle) or vehicle over 12 days. Echocardiography was performed at baseline and on day 11. An isolated heart experiment was done on day 12 to obtain perfused heart pressure values, and to measure cardiac capillary permeability using a Texas Red/sodium fluorescein multiple indicator dilution method. Control animals had significantly lower average permeability-surface-area-products (0.035±0.013 cm3/s) than doxorubicin animals (0.066±0.023 cm3/s), PSP±SD, p<0.001. These permeability changes correlated with significant functional changes. There was a significant decline in cardiac function with a deleterious effect of chemotherapy on fractional shortening (p<0.001), left ventricular developed pressure (p<0.001), contractility (p<0.001), and relaxation (p=0.02). Based on our results, cardiac capillary permeability changes can be detected after in vivo chemotherapy treatment using our fluorescent multiple indicator dilution technique, and may provide valuable information in evaluating cardiotoxicity of novel drugs. PMID:25224075

  16. Supramolecular Fluorescent Nanoparticles Constructed via Multiple Non-Covalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells.

    PubMed

    Wei, Xuan; Dong, Ruijiao; Wang, Dali; Zhao, Tianyu; Gao, Yongsheng; Duffy, Patrick; Zhu, Xinyuan; Wang, Wenxin

    2015-08-01

    Overabundance of hydrogen peroxide originating from environmental stress and/or genetic mutation can lead to pathological conditions. Thus, the highly sensitive detection of H2 O2 is important. Herein, supramolecular fluorescent nanoparticles self-assembled from fluorescein isothiocyanate modified β-cyclodextrin (FITC-β-CD)/rhodamine B modified ferrocene (Fc-RB) amphiphile were prepared through host-guest interaction between FITC-β-CD host and Fc-RB guest for H2 O2 detection in cancer cells. The self-assembled nanoparticles based on a combination of multiple non-covalent interactions in aqueous medium showed high sensitivity to H2 O2 while maintaining stability under physiological condition. Owing to the fluorescence resonance energy transfer (FRET) effect, addition of H2 O2 led to obvious fluorescence change of nanoparticles from red (RB) to green (FITC) in fluorescent experiments. In vitro study showed the fluorescent nanoparticles could be efficiently internalized by cancer cells and then disrupted by endogenous H2 O2 , accompanying with FRET from "on" to "off". These supramolecular fluorescent nanoparticles constructed via multiple non-covalent interactions are expected to have potential applications in diagnosis and imaging of diseases caused by oxidative stresses.

  17. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as antibody labels to increase the fluorescence signal and sensitivity. Ep...

  18. Using water Raman intensities to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect.

    PubMed

    Nettles, Charles B; Hu, Juan; Zhang, Dongmao

    2015-01-01

    Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding that fluorescence and Raman IFE can be reliably corrected using the equation I(corr)/I(obsd) = 10(dxAx + dmAm) when the effective excitation and emission path lengths, dx and dm, of a fluorophotometer are determined by simple linear curve-fitting of Raman intensities of a series of water Raman reference samples that have known degrees of Raman IFEs. The path lengths derived with one set of Raman measurements at one specific excitation wavelength are effective for correcting fluorescence and Raman IFEs induced by any chromophore or fluorophore, regardless of the excitation and emission wavelengths. The IFE-corrected fluorescence intensities are linearly correlated to fluorophore concentration over 5 orders of magnitude (from 5.9 nM to 0.59 mM) for 2-aminopurine in a 1 cm × 0.17 cm fluorescence cuvette. This water Raman-based method is easy to implement. It does not involve complicated instrument geometry determination or difficult data manipulation. This work should be of broad significance to physical and biological sciences given the popularity of fluorescence techniques in analytical applications.

  19. Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions.

    PubMed

    Sweeney, Elizabeth M; Shinohara, Russell T; Dewey, Blake E; Schindler, Matthew K; Muschelli, John; Reich, Daniel S; Crainiceanu, Ciprian M; Eloyan, Ani

    2016-01-01

    The formation of multiple sclerosis (MS) lesions is a complex process involving inflammation, tissue damage, and tissue repair - all of which are visible on structural magnetic resonance imaging (MRI) and potentially modifiable by pharmacological therapy. In this paper, we introduce two statistical models for relating voxel-level, longitudinal, multi-sequence structural MRI intensities within MS lesions to clinical information and therapeutic interventions: (1) a principal component analysis (PCA) and regression model and (2) function-on-scalar regression models. To do so, we first characterize the post-lesion incidence repair process on longitudinal, multi-sequence structural MRI from 34 MS patients as voxel-level intensity profiles. For the PCA regression model, we perform PCA on the intensity profiles to develop a voxel-level biomarker for identifying slow and persistent, long-term intensity changes within lesion tissue voxels. The proposed biomarker's ability to identify such effects is validated by two experienced clinicians (a neuroradiologist and a neurologist). On a scale of 1 to 4, with 4 being the highest quality, the neuroradiologist gave the score on the first PC a median quality rating of 4 (95% CI: [4,4]), and the neurologist gave the score a median rating of 3 (95% CI: [3,3]). We then relate the biomarker to the clinical information in a mixed model framework. Treatment with disease-modifying therapies (p < 0.01), steroids (p < 0.01), and being closer to the boundary of abnormal signal intensity (p < 0.01) are all associated with return of a voxel to an intensity value closer to that of normal-appearing tissue. The function-on-scalar regression model allows for assessment of the post-incidence time points at which the covariates are associated with the profiles. In the function-on-scalar regression, both age and distance to the boundary were found to have a statistically significant association with the lesion intensities at some time point

  20. Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions

    PubMed Central

    Sweeney, Elizabeth M.; Shinohara, Russell T.; Dewey, Blake E.; Schindler, Matthew K.; Muschelli, John; Reich, Daniel S.; Crainiceanu, Ciprian M.; Eloyan, Ani

    2015-01-01

    The formation of multiple sclerosis (MS) lesions is a complex process involving inflammation, tissue damage, and tissue repair — all of which are visible on structural magnetic resonance imaging (MRI) and potentially modifiable by pharmacological therapy. In this paper, we introduce two statistical models for relating voxel-level, longitudinal, multi-sequence structural MRI intensities within MS lesions to clinical information and therapeutic interventions: (1) a principal component analysis (PCA) and regression model and (2) function-on-scalar regression models. To do so, we first characterize the post-lesion incidence repair process on longitudinal, multi-sequence structural MRI from 34 MS patients as voxel-level intensity profiles. For the PCA regression model, we perform PCA on the intensity profiles to develop a voxel-level biomarker for identifying slow and persistent, long-term intensity changes within lesion tissue voxels. The proposed biomarker's ability to identify such effects is validated by two experienced clinicians (a neuroradiologist and a neurologist). On a scale of 1 to 4, with 4 being the highest quality, the neuroradiologist gave the score on the first PC a median quality rating of 4 (95% CI: [4,4]), and the neurologist gave the score a median rating of 3 (95% CI: [3,3]). We then relate the biomarker to the clinical information in a mixed model framework. Treatment with disease-modifying therapies (p < 0.01), steroids (p < 0.01), and being closer to the boundary of abnormal signal intensity (p < 0.01) are all associated with return of a voxel to an intensity value closer to that of normal-appearing tissue. The function-on-scalar regression model allows for assessment of the post-incidence time points at which the covariates are associated with the profiles. In the function-on-scalar regression, both age and distance to the boundary were found to have a statistically significant association with the lesion intensities at some time point

  1. When R  >  0.8R 0: fluorescence anisotropy, non-additive intensity, and cluster size

    NASA Astrophysics Data System (ADS)

    Zolmajd-Haghighi, Z.; Hanley, Q. S.

    2016-06-01

    Assembly and clustering feature in many biological processes and homo-FRET and fluorescence anisotropy can assist in estimating the aggregation state of a system. The distance dependence of resonance energy transfer is well described and tested. Similarly, assessment of cluster size using steady state anisotropy is well described for non-oriented systems when R  <  0.8R 0, however, these methods break down when R  >  0.8R 0. Fused trimeric DNA clusters labelled with fluorescein were engineered to provide inter-fluorophore distances from 0.7 to 1.6 R/R 0 and intensity and anisotropy were measured. These constructs cover a range where anisotropy effects depend on distance. Analytical expressions were derived for fully labelled and fractionally labelled clusters and the experimental results analysed. The experimental results showed that: (1) the system underwent distance dependent quenching; (2) when incompletely labelled both doubly and triply labelled forms could be assessed to obtain distance dependent intensity factors; (3) the anisotropy behaviour of a multiply labelled cluster of a particular size depends on the behaviour of the fluorophores and their distance in a cluster. This work establishes that when emission intensity data are available the analytically useful range for investigating clusters does not have to be restricted to R  <  0.8R 0 and is applicable to cases where the anisotropy of a cluster of N fluorophores is not well approximated by r 1/N.

  2. Intensity-resolved IR multiple photon ionization and fragmentation of C60.

    PubMed

    Bakker, Joost M; Lapoutre, Vivike J F; Redlich, Britta; Oomens, Jos; Sartakov, Boris G; Fielicke, André; von Helden, Gert; Meijer, Gerard; van der Meer, Alexander F G

    2010-02-21

    The sequential absorption of multiple infrared (IR) photons by isolated gas-phase species can lead to their dissociation and/or ionization. Using the newly constructed "Free-Electron Laser for IntraCavity Experiments" (FELICE) beam line at the FELIX facility, neutral C(60) molecules have been exposed to an extremely high number (approximately 10(23)) of photons/cm(2) for a total time duration of up to 5 micros. At wavelengths around 20 microm, resonant with allowed IR transitions of C(60), ionization and extensive fragmentation of the fullerenes are observed. The resulting photofragment distributions are attributed to absorption in fragmentation products formed once C(60) is excited to internal energies at which fragmentation or ionization takes place within the duration of the laser pulse. The high IR intensities available combined with the large interaction volume permit spatially resolved detection of the ions inside the laser beam, thereby disentangling the contributions from different IR intensities. The use of spatial imaging reveals intensity dependent mass distributions that are substantially narrower than what has been observed previously, indicating rather narrow energy distributions. A simple rate-equation modeling of the excitation process supports the experimental observations.

  3. Robust detection of multiple sclerosis lesions from intensity-normalized multi-channel MRI

    NASA Astrophysics Data System (ADS)

    Karpate, Yogesh; Commowick, Olivier; Barillot, Christian

    2015-03-01

    Multiple sclerosis (MS) is a disease with heterogeneous evolution among the patients. Quantitative analysis of longitudinal Magnetic Resonance Images (MRI) provides a spatial analysis of the brain tissues which may lead to the discovery of biomarkers of disease evolution. Better understanding of the disease will lead to a better discovery of pathogenic mechanisms, allowing for patient-adapted therapeutic strategies. To characterize MS lesions, we propose a novel paradigm to detect white matter lesions based on a statistical framework. It aims at studying the benefits of using multi-channel MRI to detect statistically significant differences between each individual MS patient and a database of control subjects. This framework consists in two components. First, intensity standardization is conducted to minimize the inter-subject intensity difference arising from variability of the acquisition process and different scanners. The intensity normalization maps parameters obtained using a robust Gaussian Mixture Model (GMM) estimation not affected by the presence of MS lesions. The second part studies the comparison of multi-channel MRI of MS patients with respect to an atlas built from the control subjects, thereby allowing us to look for differences in normal appearing white matter, in and around the lesions of each patient. Experimental results demonstrate that our technique accurately detects significant differences in lesions consequently improving the results of MS lesion detection.

  4. Cytogenetic abnormality in patients with multiple myeloma analyzed by fluorescent in situ hybridization

    PubMed Central

    Hu, Ying; Chen, Wenming; Chen, Shilun; Huang, Zhongxia

    2016-01-01

    Objective To analyze the fluorescent in situ hybridization (FISH) data and the association with clinical characteristics, therapy response, and survival time in patients with multiple myeloma. Method We performed a retrospective review of patients with multiple myeloma from November 2010 to April 2014. Results Cytogenetic abnormalities by FISH were detectable in 66% of patients. One cytogenetic abnormality, two cytogenetic abnormalities, and complex abnormalities were detectable in 21.2%, 51.5%, and 27.3% of cases, respectively. 1q21 amplification, t(4p16.3/14q32), and 17p deletion were observed in 69.7%, 30.3%, and 21.2% of cases, respectively. Total response rates (complete response [CR] + near CR + partial response) were 93.8% and 82.1%, respectively, in cytogenetic normality group and abnormality group. CR rates were 50% and 32.1%, respectively. Median overall survival (OS) time was 51 months and 24 months, respectively, in cytogenetic normality group and abnormality group (P<0.05). Median OS time was not significantly different between 1q21 amplification group and no 1q21 amplification group in patients with FISH abnormalities (P>0.05). Median OS time was not significantly different between t(4;14) group and no t(4;14) group in patients with FISH abnormalities (P>0.05). Seven patients of 17p deletion died in 2 years. Conclusion Multiple myeloma is characterized by a high occurrence of chromosomal aberrations. 1q21 amplification and t(4;14) are the most common abnormalities. Multiple cytogenetic abnormalities are frequently observed in the same one patient. The total response rate, CR rate, and OS time are worse in cytogenetic abnormal patients compared with cytogenetic normal patients. Patients with 17p deletion have a very poor prognosis. Future goals of therapy will be to achieve minimal residual disease, biomarkers, and genomic data, which might provide a better estimate of the depth of response to therapy and OS. PMID:27042105

  5. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations.

    PubMed

    van der Veen, N; van Leengoed, H L; Star, W M

    1994-11-01

    The kinetics of fluorescence in tumour (TT) and subcutaneous tissue (ST) and the vascular effects of photodynamic therapy (PDT) were studied using protoporphyrin IX (PpIX), endogenously generated after i.v. administration of 100 and 200 mg kg-1 5-aminolaevulinic acid (ALA). The experimental model was a rat skinfold observation chamber containing a thin layer of ST in which a small syngeneic mammary tumour grows in a sheet-like fashion. Maximum TT and ST fluorescence following 200 mg kg-1 ALA was twice the value after 100 mg kg-1 ALA, but the initial increase with time was the same for the two doses in both TT and ST. The fluorescence increase in ST was slower and the maximum fluorescence was less and appeared later than in TT. Photodynamic therapy was applied using green argon laser light (514.5 nm, 100 J cm-2). Three groups received a single light treatment at different intervals after administration of 100 or 200 mg kg-1 ALA. In these groups no correlation was found between the fluorescence intensities and the vascular damage following PDT. A fourth group was treated twice and before the second light treatment some fluorescence had reappeared after photobleaching due to the first treatment. Only with the double light treatment was lasting TT necrosis achieved, and for the first time with any photosensitiser in this model this was accomplished without complete ST necrosis.

  6. A Solar-pumped Fluorescence Model for Line-by-line Emission Intensities in the B-X, A-X, and X-X Band Systems of 12C14N

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.

    2016-09-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the {A}2{{{\\Pi }}}{{i}} and {B}2{{{Σ }}}+ electronically excited states followed by cascade to ro-vibrational levels of {X}2{{{Σ }}}+, and direct solar infrared pumping of ro-vibrational levels in the {X}2{{{Σ }}}+ state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for {X}2{{{Σ }}}+ (1-0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  7. A Solar-pumped Fluorescence Model for Line-by-line Emission Intensities in the B–X, A–X, and X–X Band Systems of 12C14N

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.

    2016-09-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the {A}2{{{\\Pi }}}{{i}} and {B}2{{{Σ }}}+ electronically excited states followed by cascade to ro-vibrational levels of {X}2{{{Σ }}}+, and direct solar infrared pumping of ro-vibrational levels in the {X}2{{{Σ }}}+ state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for {X}2{{{Σ }}}+ (1–0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  8. A Novel Multiple Hypothesis Based Particle Tracking Method for Clathrin Mediated Endocytosis Analysis Using Fluorescence Microscopy

    PubMed Central

    Liang, Liang; Shen, Hongying; De Camilli, Pietro; Duncan, James S.

    2015-01-01

    In order to quantitatively analyze biological images and study underlying mechanisms of the cellular and subcellular processes, it is often required to track a large number of particles involved in these processes. Manual tracking can be performed by the biologists, but the workload is very heavy. In this paper, we present an automatic particle tracking method for analyzing an essential subcellular process, namely clathrin mediated endocytosis. The framework of the tracking method is an extension of the classical multiple hypothesis tracking (MHT), and it is designed to manage trajectories, solve data association problems, and handle pseudo-splitting/merging events. In the extended MHT framework, particle tracking becomes evaluating two types of hypotheses. The first one is the trajectory-related hypothesis, to test whether a recovered trajectory is correct, and the second one is the observation-related hypothesis, to test whether an observation from an image belongs to a real particle. Here, an observation refers to a detected particle and its feature vector. To detect the particles in 2D fluorescence images taken using total internal reflection microscopy, the images are segmented into regions, and the features of the particles are obtained by fitting Gaussian mixture models into each of the image regions. Specific models are developed according to the properties of the particles. The proposed tracking method is demonstrated on synthetic data under different scenarios and applied to real data. PMID:24808351

  9. Multiresidue analysis of fluoroquinolone antibiotics in chicken tissue using liquid chromatography-fluorescence-multiple mass spectrometry.

    PubMed

    Schneider, Marilyn J; Donoghue, Dan J

    2002-11-15

    An efficient liquid chromatographic method for the multiresidue analysis of fluoroquinolone antibiotics in chicken tissue has been developed in which quantitation using fluorescence and confirmation with multiple mass spectrometry (MS(n)) was achieved simultaneously. Using this method, eight fluoroquinolones were analyzed in fortified samples of chicken liver and muscle tissue with recoveries at levels of 10-200 ng/g generally in the range of 60-93%, except for desethylene ciprofloxacin, which consistently gave recoveries >or=45%. Relative standard deviations were excellent in all cases, and the limits of detection in ng/g were determined as follows in liver and (muscle): desethylene ciprofloxacin 0.3 (0.1), norfloxacin 1.2 (0.2), ciprofloxacin 2 (1.5), danofloxacin 0.2 (0.1), enrofloxacin 0.3 (0.2), orbifloxacin 1.5 (0.5), sarafloxacin 2 (0.6), difloxacin 0.3 (0.2). Confirmation of the identities of the fluoroquinolones was achieved by monitoring the ratios of two prominent product ions in MS(2) (desethylene ciprofloxacin) or MS(3) (all others). Levels of confirmation as related to ion ratio variability criteria were established. Enrofloxacin and ciprofloxacin were also determined in enrofloxacin incurred chicken liver and muscle using this method.

  10. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  11. Order dependence of the profile of the intensities of multiple-quantum coherences

    SciTech Connect

    Lundin, A. A.; Zobov, V. E.

    2015-05-15

    A modification of the widespread phenomenological model theory of multiple-quantum (MQ) nuclear magnetic resonance spectra of a single cluster of correlated spins has been developed. In contrast to the mentioned theory, the size distribution of such clusters has been consistently taken into account. To obtain the distribution, solutions for the amplitudes of the expansion in the complete set of orthogonal operators are used. Expressions specifying the dependence of the profile of the intensities of MQ coherences on their number n (order) have been obtained. The total form of the dependence has been evaluated by means of the numerical implementation of the resulting expressions. The asymptotic expressions for large n values (wings of the spectrum) have been obtained analytically by the saddle-point method. It has been shown that the dependence under study has a Gaussian central part and exponential wings. The results obtained are in agreement with the previous calculations for some model systems and existing experimental data.

  12. Comparing Radiation Treatments Using Intensity-Modulated Beams, Multiple Arcs, and Single Arcs

    SciTech Connect

    Tang, Grace; Earl, Matthew A.; Luan Shuang; Wang Chao; Mohiuddin, Majid M.; Yu, Cedric X.

    2010-04-15

    Purpose: A dosimetric comparison of multiple static-field intensity-modulated radiation therapy (IMRT), multiarc intensity-modulated arc therapy (IMAT), and single-arc arc-modulated radiation therapy (AMRT) was performed to evaluate their clinical advantages and shortcomings. Methods and Materials: Twelve cases were selected for this study, including three head-and-neck, three brain, three lung, and three prostate cases. An IMRT, IMAT, and AMRT plan was generated for each of the cases, with clinically relevant planning constraints. For a fair comparison, the same parameters were used for the IMRT, IMAT, and AMRT planning for each patient. Results: Multiarc IMAT provided the best plan quality, while single-arc AMRT achieved dose distributions comparable to those of IMRT, especially in the complicated head-and-neck and brain cases. Both AMRT and IMAT showed effective normal tissue sparing without compromising target coverage and delivered a lower total dose to the surrounding normal tissues in some cases. Conclusions: IMAT provides the most uniform and conformal dose distributions, especially for the cases with large and complex targets, but with a delivery time similar to that of IMRT; whereas AMRT achieves results comparable to IMRT with significantly faster treatment delivery.

  13. Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters.

    PubMed

    Treister, Roi; Kliger, Mark; Zuckerman, Galit; Goor Aryeh, Itay; Eisenberg, Elon

    2012-09-01

    Although it is well known that pain induces changes in autonomic parameters, the extent to which these changes correlate with the experience of pain is under debate. The aim of the present study was to compare a combination of multiple autonomic parameters and each parameter alone in their ability to differentiate among 4 categories of pain intensity. Tonic heat stimuli (1minute) were individually adjusted to induce no pain, low, medium, and high pain in 45 healthy volunteers. Electrocardiogram, photoplethysmogram, and galvanic skin response were recorded, and the following parameters were calculated: heart rate; heart rate variability-high frequency (0.15 to 0.4Hz) spectral power; skin conductance level; number of skin conduction fluctuations; and photoplethysmographic pulse wave amplitude. A combination of parameters was created by fitting an ordinal cumulative logit model to the data and using linear coefficients of the model. Friedman test with post-hoc Wilcoxon test were used to compare between pain intensity categories for every parameter alone and for their linear combination. All of the parameters successfully differentiated between no pain and all other pain categories. However, none of the parameters differentiated between all 3 pain categories (i.e., low and medium; medium and high; low and high). In contrast, the linear combination of parameters significantly differentiated not only between pain and no pain, but also between all pain categories (P<.001 to .02). These results suggest that multiparameter approaches should be further investigated to make progress toward reliable autonomic-based pain assessment.

  14. The impact of relative intensity noise on the signal in multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Alexandrov, Sergey; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin; Slepneva, Svetlana; Huyet, Guillaume

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) applies a unique low-cost solution to enhance the scanning depth of standard time domain OCT by inserting an partial mirror into the reference arm of the interferometric system. This novel approach achieves multiple reflections for different layers and depths of an sample with minimal effort of engineering and provides an excellent platform for low-cost OCT systems based on well understood production methods for micro-mechanical systems such as CD/DVD pick-up systems. The direct integration of a superluminescent light-emitting diode (SLED) is a preferable solution to reduce the form- factor of an MR-OCT system. Such direct integration exposes the light source to environmental conditions that can increase fluctuations in heat dissipation and vibrations and affect the noise characteristics of the output spectrum. This work describes the impact of relative intensity noise (RIN) on the quality of the interference signal of MR-OCT related to a variety of environmental conditions, such as temperature.

  15. Application of the IMM-JPDA filter to multiple target tracking in total internal reflection fluorescence microscopy images.

    PubMed

    Rezatofighi, Seyed Hamid; Gould, Stephen; Hartley, Richard; Mele, Katarina; Hughes, William E

    2012-01-01

    We propose a multi-target tracking method using an Interacting Multiple Model Joint Probabilistic Data Association (IMM-JPDA) filter for tracking vesicles in total internal reflection fluorescence microscopy (TIRFM) sequences. We enhance the accuracy and reliability of the algorithm by tailoring an appropriate framework to this application. Evaluation of our algorithm is performed on both realistic synthetic data and real TIRFM data. Our results are compared against related methods and a commercial tracking software.

  16. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  17. Relationship between Fluorescence Intensity of GFP and the Expression Level of Prestin in a Prestin-Expressing Chinese Hamster Ovary Cell Line

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Nagaoka, Tomoyuki; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Outer hair cells (OHCs) in mammals can elongate and contract at frequencies up to 100kHz in response to changes in their membrane potential. The origin of this unique motility is the motor protein prestin, which is densely packed in the lateral membrane of the OHCs. In a previous work, we constructed a prestin-expressing cell line using Chinese hamster ovary (CHO) cells to obtain a stable supply of prestin. When we research prestin using constructed cells, it is necessary to estimate the expression level of prestin in the cells easily and non-invasively. As the prestin gene and a green fluorescent protein (GFP) gene were introduced into constructed cells using the same vector, the expression level of prestin and fluorescence intensity of GFP are possibly correlated. Since this correlation is not clear, however, in this study, we therefore investigated whether the expression level of prestin evaluated by patch-clamp recording and the fluorescence intensity of GFP obtained from fluorescence images are correlated or not. As a result, it was demonstrated that they were correlated. The expression level of prestin can therefore be evaluated by measuring the fluorescence intensity of GFP.

  18. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO₄(2-) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System.

    PubMed

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean. PMID:27420071

  19. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO42− Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System

    PubMed Central

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071

  20. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants.

    PubMed Central

    Axelsen, P H; Bajzer, Z; Prendergast, F G; Cottam, P F; Ho, C

    1991-01-01

    Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement. PMID:1932553

  1. Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution

    NASA Astrophysics Data System (ADS)

    Guidetti, G.; Cantelli, A.; Mazzaro, R.; Ortolani, L.; Morandi, V.; Montalti, M.

    2016-04-01

    Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 +/- 25 and 1100 +/- 200 nm respectively. The correlation of these results with TEM and DLS data is discussed.Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking

  2. Formaldehyde Emission in Comet C/2002 T7 (LINEAR) at Infrared Wavelengths: Line-by-Line Validation of Modeled Fluorescent Intensities

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Bonev, B. P.; Dello Russo, N.; Magee-Sauer, K.; Mumma, M. J.; Reuter, D. C.; Villanueva, G. L.; Anderson, W. M.; Gibb, E. L.

    2006-09-01

    Cometary nuclei are the most primitive remnants of the early Solar System, so measuring abundances of their ices allows a glimpse into the conditions in which icy bodies formed. Only in the last several years has it become possible to routinely study native cometary volatiles at infrared wavelengths. In spring 2004, we observed comet C/2002 T7 (LINEAR, hereafter C/T7) using the CSHELL spectrometer at the NASA-IRTF 3-m telescope. CSHELL offers sufficiently high spectral resolving power (λ/δλ 2.5 x 104) to permit line-by-line intensities to be measured. Emission lines from multiple molecular species were targeted in the 2.9 - 5.0 micron spectral region, and our observations revealed an extremely rich chemistry in C/T7, including formaldehyde (H2CO). H2CO is ubiquitous in dense interstellar clouds, so its presence is expected in comets if they contain interstellar material. These bodies delivered enormous quantities of pre-biotic chemicals to the young Earth, thus the abundance of H2CO in comets is of keen astrobiological interest. C/T7 provided the best opportunity to date to compare H2CO line intensities predicted by an existing fluorescence model1 with high-resolution comet spectra. We present results2 showing a high degree of correlation between model and data. This work validates the model and permits highly reliable measures of rotational temperature and production rate of H2CO, for comparison with chemically related molecules (CO, methyl alcohol) in C/T7 and other comets in our database. This research was supported by the NASA Planetary Atmospheres (RTOP 344-33-55), Astrobiology (RTOP 344-53-51), and Planetary Astronomy (RTOP 344-32-98) Programs. References: 1Reuter, D. C., et al. 1989 Ap J 341:1045-1058; 2DiSanti, M. A., et al. 2006 Ap J (in press)

  3. Intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and graphic analysis of fluorescence intensity in cerebral aneurysm surgery.

    PubMed

    Oda, Jumpei; Kato, Yoko; Chen, S F; Sodhiya, Paresh; Watabe, T; Imizu, S; Oguri, D; Sano, H; Hirose, Y

    2011-08-01

    We present our preliminary experience with intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and analysis of blood flow dynamics using fluorescence intensity assessment in cerebral aneurysm clipping surgery. Thirty-nine patients with 43 intracranial aneurysms underwent microsurgical clipping. Intraoperative ICG-VA was performed before and after clip application. An infrared fluorescence module integrated into a surgical microscope was used to visualize fluorescence in the surgical field and we recorded the emitted fluorescent light. An integrated analytical visualization tool simultaneously analyzed the video sequence and converted it into an intensity diagram, which allowed an objective evaluation of the results rather than the subjective assessment of fluorescence using ICG-VA. Overall, ICG-VA was performed 137 times. Incomplete clipping was detected in four patients, which allowed suitable adjustment to completely obliterate the aneurysm. In 12 patients, perforators arising close to, or from, the aneurysmal neck were identified in the surgical field. In three patients, the ICG-VA intensity diagram provided valuable information leading to modification of the primary surgical maneuver. ICG-VA provides high resolution images allowing real-time assessment of the blood flow in the parent artery and arterial branches, including the perforators. The intensity diagram is useful for providing a more objective record of the hemodynamics than the traditional ICG-VA, which relies more on subjective assessment and may allow interobserver variability. We conclude that ICG-VA, combined with the intensity diagram, can reduce the morbidity and complications associated with aneurysm clipping and improve patient outcomes.

  4. Effect of powder sample granularity on fluorescent intensity and on thermal parameters in x-ray diffraction Rietveld analysis

    SciTech Connect

    Sparks, C.J.; Specht, E.D.; Ice, G.E. ); Kumar, R.; Zschack, P. ); Shiraishi, T. ); Hisatsune, K. )

    1991-01-01

    The effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2{theta} dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu{sub 50}Au{sub 44}Ni{sub 6} alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity. A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30{degrees} 2{theta}, and thermal parameters should be ignored unless extreme precautions are taken to produce >5 {mu}m particles and high packing densities.

  5. Inherent visible light signature of an intense underwater ultraviolet light source due to combined Raman and fluorescence effects

    NASA Astrophysics Data System (ADS)

    Mazel, Charles H.; Kalata-Olson, Jody; Pham, Chuong N.

    2000-07-01

    We investigated the utility of a portable, intense source of ultraviolet light for diver use in support of Very Shallow Water operations. The working hypothesis was that the light would be of use to divers at short-to-medium ranges (up to several meters) while remaining invisible to surface observers due to the incoherent insensitivity of the human eye to ultraviolet light. The light source contained an arc discharge lamp rich in short wavelengths and was fitted with a filter that transmitted only the near ultraviolet portion of the spectrum. In-water tests were made in darkness using Navy divers both in a natural coastal environment and in a test tank. It was found that the light was of limited utility to the divers. In addition, the light was not covert because of a bluish-white glow associated with the ultraviolet beam. Subsequent measurements demonstrated that the visible glow was produced by a combination of fluorescence of dissolved organic matter in the water and Raman scatter from the water itself. The relative importance of the two factors varied with water type. These two effects that transform light from the invisible to the visible impose inherent limitations on the use of ultraviolet light for covert operations.

  6. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach

    SciTech Connect

    Wang Jiazhu; Pawlicki, Todd; Rice, Roger; Mundt, Arno J.; Sandhu, Ajay; Lawson, Joshua; Murphy, Kevin T.

    2012-04-01

    Rotational RapidArc (RA) and static intensity-modulated radiosurgery (IMRS) have been used for brain radiosurgery. This study compares the 2 techniques from beam delivery parameters and dosimetry aspects for multiple brain metastases. Twelve patients with 2-12 brain lesions treated with IMRS were replanned using RA. For each patient, an optimal 2-arc RA plan from several trials was chosen for comparison with IMRS. Homogeneity, conformity, and gradient indexes have been calculated. The mean dose to normal brain and maximal dose to other critical organs were evaluated. It was found that monitor unit (MU) reduction by RA is more pronounced for cases with larger number of brain lesions. The MU-ratio of RA and IMRS is reduced from 104% to 39% when lesions increase from 2 to 12. The dose homogeneities are comparable in both techniques and the conformity and gradient indexes and critical organ doses are higher in RA. Treatment time is greatly reduced by RA in intracranial radiosurgery, because RA uses fewer MUs, fewer beams, and fewer couch angles.

  7. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics.

    PubMed

    Chung, Inhee; Witkoskie, James B; Cao, Jianshu; Bawendi, Moungi G

    2006-01-01

    This paper analyzes the observed phenomenology of the fluorescence time trace of collections of quantum dots (QDs) in terms of the model parameters that characterize the fluorescence blinking statistics of single QDs. We demonstrate that the non-universal dynamics that appear in fluorescence time traces of collections of QDs at short time scales are related to the universal dynamics that appear at longer time scales. We explore how the extent of time separation between the short and long dynamics affects the transition region and the dynamics at longer time scales. We suggest a methodology to extract single QD statistical model parameters from experimental fluorescence time traces of collections of QDs. We explore theoretical time traces and their experimental analogs for three different cases that span the diverse nonuniversal dynamics that appear at short time scales.

  8. A dithienosilole-based fluorescent chemosensor for multiple logic operations at the molecular level.

    PubMed

    Zhang, Chen; Sun, Caixia; Lu, Yahong; Wang, Junxing; He, Xingxing; Lu, Junting; Yin, Shouchun; Qiu, Huayu

    2015-11-01

    A chemosensor consisting of two terpyridines covalently linked to a dithienosilole unit (1) has been synthesized, and its optical and metal sensing properties have been investigated. Due to the metal-organic coordination function, 1 can bind with many transition metal ions and display different fluorescence responses that cause it to function as a "turn-off" fluorescent chemosensor. A significant bathochromic shift in the fluorescence spectra is observed in the presence of Zn(2+). Meanwhile, the emission of 1 is weakened upon exposure to Ag(+) and Fe(2+) and completely quenched by Ni(2+), Co(2+), and Cu(2+). Based on the observed results, several logic gates, such as XNOR, INHIBIT, and IMPLICATION, have been achieved by controlling the chemical inputs.

  9. A dithienosilole-based fluorescent chemosensor for multiple logic operations at the molecular level.

    PubMed

    Zhang, Chen; Sun, Caixia; Lu, Yahong; Wang, Junxing; He, Xingxing; Lu, Junting; Yin, Shouchun; Qiu, Huayu

    2015-11-01

    A chemosensor consisting of two terpyridines covalently linked to a dithienosilole unit (1) has been synthesized, and its optical and metal sensing properties have been investigated. Due to the metal-organic coordination function, 1 can bind with many transition metal ions and display different fluorescence responses that cause it to function as a "turn-off" fluorescent chemosensor. A significant bathochromic shift in the fluorescence spectra is observed in the presence of Zn(2+). Meanwhile, the emission of 1 is weakened upon exposure to Ag(+) and Fe(2+) and completely quenched by Ni(2+), Co(2+), and Cu(2+). Based on the observed results, several logic gates, such as XNOR, INHIBIT, and IMPLICATION, have been achieved by controlling the chemical inputs. PMID:26099823

  10. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields. PMID:26296140

  11. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  12. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  13. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  14. Determination of multiple phytohormones in fruits by high-performance liquid chromatography with fluorescence detection using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling.

    PubMed

    Li, Guoliang; Lu, Shuaimin; Wu, Hongliang; Chen, Guang; Liu, Shucheng; Kong, Xiaojian; Kong, Weiheng; You, Jinmao

    2015-01-01

    Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high-performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12-oxo-phytodienoic acid, indole-3-acetic acid, 3-indolybutyric acid, 3-indolepropionic acid, gibberellin A3 , 1-naphthylacetic acid, and 2-naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid-liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R(2) values). This method offered low detection limits of 0.19-0.44 ng/mL (at a signal-to-noise ratio of 3), and method accuracies were in the range of 92.32-103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.

  15. Optimal patterns for sequentially multiple focusing in high intensity focused ultrasound and their application to thermal dose

    NASA Astrophysics Data System (ADS)

    Shim, Mun-Bo; Lee, Hyoungki; Lee, Hotaik; Park, Junho; Ahn, Minsu

    2012-11-01

    The purpose of this study is to propose a new method for multiple-focus generation to shorten overall treatment time as well as to avoid the formation of high intensity regions outside the target volume. A numerical simulation of the acoustic fields produced by a 1017-element spherical-section ultrasound phased array transducer operating at a frequency of 1.0MHz with 16 cm radius of curvature is performed for the proposed multiple-focus generation. The total foci are partitioned into the several patterns because multiple focusing generally gives rise to the grating lobes outside of the three dimensional region of interest even if applying the optimization of intensity gain in determining the phases and amplitudes of the excitation source vector. The optimization problem is repeatedly formulated in term of the focal points until the multiple-focus patterns cover all the focal points. Genetic algorithm is used for selecting the patterns without the grating lobes. The obtained set of multiple-focus patterns can sequentially be used to necrose a given volume in the short time as well as in the safe treatment. The proposed method might prove useful to improve the speed and safety of focused ultrasound thermal ablation. This strategy will also be effective for any transducers as well as for other cases of multiple-focus generation.

  16. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.

    PubMed

    Liu, Yong; Wu, Peiyi

    2013-06-26

    Gold nanoparticles (Au NPs) are very attractive candidate nanoparticles in biological assay because of their high chemical stabilities, high homogeneities, good biocompatibilities, and low toxicities. However, molecular beacon assays via encapsulating the combined fluorescence or surface-enhanced Raman scattering (SERS) signals of reporters and Au NPs in nanobarcodes particles usually suffer from fluorescence quenching or weak Raman enhancement when Au NPs are employed (especially with size smaller than 15 nm). Herein, we present a new design of simultaneously realizing metal-enhanced fluorescence and coenhanced surface-enhanced Raman scattering by facilely embedding Ag nanoparticle into the shell of two kinds of Au nanoaggregate (5 and 10 nm), meanwhile, fluorophore is located between the silver core and gold nanoparticle layers and the distance among them is adjusted by SiO2 spacer (Ag@first SiO2 spacer@FiTC+SiO2@second SiO2 spacer@Au nanoaggregate). In this architecture, Ag nanoparticle not only is utilized as an efficient fluorescence enhancer to overcome the common fluorescence quenching around Au nanoaggregates but also behaves like a mirror. Thus, incident light that passes through the SERS-active Au nanoaggregate and the intervening dielectric layer of SiO2 could be reflected multiply from the surface of Ag nanoparticle and coupled with the light at the nanogap between the Au nanoaggregates to further amplify Raman intensity. This results in enhancement factors for fluorescence and SERS ~1.6-fold and more than 300-fold higher than the control samples without silver core under identical experimental conditions, respectively. Moreover, fluorophore and SERS reporters are assembled onto different layers of the concentric hybrid microsphere, resulting in a feasible fabrication protocol when a large number of agents need to be involved into the dual-mode nanobarcodes. A proof-of-concept chip-based DNA sandwich hybridization assay using genetically modified

  17. Predicting Distribution and Inter-Annual Variability of Tropical Cyclone Intensity from a Stochastic, Multiple-Linear Regression Model

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Tippett, M. K.; Sobel, A. H.; Camargo, S. J.

    2014-12-01

    We are working towards the development of a new statistical-dynamical downscaling system to study the influence of climate on tropical cyclones (TCs). The first step is development of an appropriate model for TC intensity as a function of environmental variables. We approach this issue with a stochastic model consisting of a multiple linear regression model (MLR) for 12-hour intensity forecasts as a deterministic component, and a random error generator as a stochastic component. Similar to the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS), MLR relates the surrounding environment to storm intensity, but with only essential predictors calculated from monthly-mean NCEP reanalysis fields (potential intensity, shear, etc.) and from persistence. The deterministic MLR is developed with data from 1981-1999 and tested with data from 2000-2012 for the Atlantic, Eastern North Pacific, Western North Pacific, Indian Ocean, and Southern Hemisphere basins. While the global MLR's skill is comparable to that of the operational statistical models (e.g., SHIPS), the distribution of the predicted maximum intensity from deterministic results has a systematic low bias compared to observations; the deterministic MLR creates almost no storms with intensities greater than 100 kt. The deterministic MLR can be significantly improved by adding the stochastic component, based on the distribution of random forecasting errors from the deterministic model compared to the training data. This stochastic component may be thought of as representing the component of TC intensification that is not linearly related to the environmental variables. We find that in order for the stochastic model to accurately capture the observed distribution of maximum storm intensities, the stochastic component must be auto-correlated across 12-hour time steps. This presentation also includes a detailed discussion of the distributions of other TC-intensity related quantities, as well as the inter

  18. Design of Multiple Logic Gates Based on Chemically Triggered Fluorescence Switching of Functionalized Polyethylenimine.

    PubMed

    Pan, Yi; Shi, Yupeng; Chen, Zhihua; Chen, Junying; Hou, Mengfei; Chen, Zhanpeng; Li, Cheuk-Wing; Yi, Changqing

    2016-04-13

    In this study, two new functionalized polyethylenimine (PEI), PEIR and PEIQ, have been synthesized by covalently conjugating rhodamine 6G (R6G) or 8-chloroacetyl-aminoquinoline (CAAQ) and have been investigated for their sensing capabilities toward metal ions and anions basing on fluorescence on-off and off-on mechanisms. When triggered by protons, metal ions, or anions, functionalized PEIs can behave as a fluorescence switch, leading to a multiaddressable system. Inspired by these results, functionalized PEI-based logic systems capable of performing elementary logic operations (YES, NOT, NOR, and INHIBIT) and integrative logic operations (OR + INHIBIT) have been constructed by observing the change in the fluorescence with varying the chemical inputs such as protons, metal ions, and anions. Due to its characteristics, such as high sensitivity and fast response, developing functionalized PEI as a new material to perform logic operations may pave a new avenue to construct the next generation of molecular devices with better applicability for biomedical research. PMID:27007856

  19. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    NASA Astrophysics Data System (ADS)

    Llacer, Jorge; Deasy, Joseph O.; Bortfeld, Thomas R.; Solberg, Timothy D.; Promberger, Claus

    2003-01-01

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  20. Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA

    NASA Astrophysics Data System (ADS)

    Fujii, Ryo; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2015-04-01

    We report on a nanoscale energy-route selector consisting of multiple fluorescence resonance energy transfer (FRET) structures switched by external signaling with multiple wavelengths of light. In each FRET structure, a specific activator molecule is incorporated to a FRET pair of a donor and an acceptor to control the activation of the acceptor. Owing to this configuration, the FRET structures are switched independently, and an energy route is selected. Two photo-switchable FRET structures, one consists of Alexa Fluor 568 (donor), Cy5 (acceptor), and Alexa Fluor 405 (activator), and the other consists of Alexa Fluor 568 (donor), Cy5.5 (acceptor), and Cy3 (activator), were constructed using DNA strands modified with fluorescence molecules. Switching rates for the individual FRET structures were measured as 64 and 49 %, respectively. An energy-route selector was then assembled with the FRET structures which share a single donor. Experimental results demonstrate that the energy route can be changed repeatedly by activation control using three wavelengths of light.

  1. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.

    PubMed

    Song, Erqun; Yu, Mengqun; Wang, Yunyun; Hu, Weihua; Cheng, Dan; Swihart, Mark T; Song, Yang

    2015-10-15

    Antibiotic residues, which are among the most common contaminants in animal-based food products such as milk, have become a significant public health concern. Here, we combine a multicolor quantum dot (QD)-based immunofluorescence assay and an array analysis method to achieve simultaneous, sensitive and visual detection of streptomycin (SM), tetracycline (TC), and penicillin G (PC-G) in milk. Antibodies (Abs) for SM, TC and PC-G were conjugated to QDs with different emission wavelengths (QD 520 nm, QD 565 nm and QD 610 nm) to serve as detection probes (QD-Ab). Then a direct competitive fluorescent immunoassay was performed in antigen-coated microtiter plate wells for simultaneous qualitative and quantitative detection of SM, TC, and PC-G residues, based on fluorescence of the QD-Ab probes. The linear ranges for SM, TC and PC-G were 0.01-25 ng/mL, 0.01-25 ng/mL and 0.01-10 ng/mL, respectively, with detection limit of 5 pg/mL for each of them. Based on fluorescence of the QD-Ab probes, residues of the three antibiotics were determined visually and simultaneously. Compared with a commercial enzyme-linked immunosorbent assay kit, our method could achieve simultaneous analysis of multiple target antibiotics in multiple samples in a single run (high-throughput analysis) and improved accuracy and sensitivity for analysis of residues of the three antibiotics in authentic milk samples. This new analytical tool can play an important role in ameliorating the negative impact of the residual antibiotics on human health and the ecosystem. PMID:26002016

  2. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence

    PubMed Central

    Ingaramo, Maria; York, Andrew G.; Andrade, Eric J.; Rainey, Kristin; Patterson, George H.

    2015-01-01

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications. PMID:26333365

  3. Micelle-induced multiple performance improvement of fluorescent probes for H2S detection.

    PubMed

    Tian, Haiyu; Qian, Junhong; Bai, Hongyan; Sun, Qian; Zhang, Lingyi; Zhang, Weibing

    2013-03-20

    In this paper, two colorimetric and turn-on fluorescent probes N-[2-(2-hydroxy)-ethoxy] ethyl-4-azido-1,8-naphthalimide (SS1) and N-butyl-4-azido-1,8-naphthalimide (SS2) for selective recognition of H2S were designed and synthesized. The probes were constructed by incorporating an azido group into the naphthalimide fluorophore as a specifical reaction group for sulfide utilizing its reducing property. Once treated with H2S, the azido groups of the probes were converted to amino groups and the solutions' color changed from colorless to yellow companied with a strong yellow-green fluorescence. Rapid and sensitive responses of the probes towards H2S were achieved in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB): the reaction was completed within 10min in CTAB compared to more than 4h in buffer solution, and the detection limit decreased from 0.5μM to 20nM. High selectivity and good competition of both probes towards H2S over other 11 ions and 2 reducing agents were realized in CTAB micelle. An overall linear concentration range of 0.05μM to 1mM was achieved with the assistance of differently charged surfactants CTAB and sodium dodecyl sulfate (SDS). The probes were applied to rapidly and sensitively detect H2S levels in fetal bovine serum without any pretreatment of the sample.

  4. [Research on the Relationship between Surface Structure and Fluorescence Intensity of Ca(1-x)Al2Si2O8 : Eu(x)].

    PubMed

    He, Xiao; Zhang, Li-sheng; Zu, En-dong; Yang, Xiao-yun; Dong, Kun

    2016-01-01

    Ca(1-x)Al2Si2O8 : Eu(x)(x = 0, 0.01, 0.05, 0.15) were synthesized by solid-state reaction respectively at 1 150, 1 250 1350 and 1 450 degrees C. With X-ray diffraction(XRD), Raman spectroscopy(Raman), photoluminescence spectroscopy(PL) and X-ray fluorescence spectrometer(XRF), the relationship between surface structure and fluorescence intensity of Ca(1-x) Al2Si2O8: Eu(x) were studied. XRD and Raman results show that, CaAl2Si2O8 anorthite single-phase has formed gradually along with the temperature rising in the process of synthesis. Raman spectroscopy is clear that when the Eu doping amount is the same, Si-O amorphous phase disappear gradually and the CaAl2Si2O8 phase form gradually with the temperature increases. As the temperature increases, vibration peaks position silicon oxygen tetrahedron shift to lower wave number. When 1 450 degrees C, the temperature is too high to destroy the structure of silicon oxygen tetrahedron. At the same time, there is a broadening amorphous peak appears in Raman spectroscopy. The procedure of Al to replace Si is hindered with Eu doped in. It is the result that the peak at 1 620 cm(-1) decreases after the first increases. The change of surface structure associated with the scattering amount of Eu. PL and XRF results show that: as the temperature increases, the amount of Eu atom scattering on the material surface increases gradually, this change lead to the fluorescence intensity raise. Therefore, there is proportional relationship between the fluorescence intensity of the samples and the number of samples per unit surface area of Eu atoms. PMID:27228758

  5. Fluorescent intensity-based differential counting of FITC-doped silica nanoparticles: applications of CD4+ T-cell detection in microchip-type flowcytometers

    NASA Astrophysics Data System (ADS)

    Yun, Hoyoung; Bang, Hyunwoo; Lee, Won Gu; Lim, Hyunchang; Park, Junha; Lee, Joonmo; Riaz, Asif; Cho, Keunchang; Chung, Chanil; Han, Dong-Chul; Chang, Jun Keun

    2007-12-01

    Although CD4+ T-cells are an important target of HIV detection, there have been still major problems in making a diagnosis and monitoring in the third world and the region with few medical facilities. Then, it is necessary to use portable diagnosis devices at low cost when you put an enumeration of CD4+ T-cells. In general, the counting of CD4 below 200cells/uL makes it necessary to initiate antiretroviral treatment in adults (over 13 years old). However, lymphocyte subsets (including CD4 counts) of infants and young children are higher than those of adults. This fact shows the percentage of CD4+ T-cells of blood subsets, i.e., CD4/CD45%, CD4/CD8% or CD4/CD3% means a more reliable indicator of HIV infection than absolute counts in children. To know the percentage of CD4+ T-cell by using two fluorescent dyes of different emission wavelength, at least, one laser and two PMT detectors are in general needed. Then, it is so hard to develop a portable device like a 'toaster size' because this makes such a device more complex including many peripheral modules. In this study, we developed a novel technique to control the intensity of fluorescent dye-doped silica nanoparticles. I synthesized FITC-doped silica nanoparticles conjugated CD4 antibody 10 times brighter than FITC-conjugated CD45 antibody. With the difference of intensity of two fluorescent dyes, we measured two parameters by using only a single detector and laser. Most experiments were achieved with uFACS (microfabricated fluorescence-activated cell sorter) on an inverted microscope (IX71, Olympus). In conclusion, this method enables us to discriminate the difference between CD4 and CD45 in an intensity domain simultaneously. Furthermore, this technique would make it possible develop much cheaper and smaller devices which can count the number of CD4 T-cells.

  6. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  7. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  8. Effects of ferrofluid and phytoalexin spirobrassinin on thioflavin-T-based fluorescence in cerebrospinal fluid of the elderly and multiple sclerosis patients.

    PubMed

    Kristofikova, Zdena; Gazova, Zuzana; Siposova, Katarina; Bartos, Ales; Ricny, Jan; Kotoucova, Jolana; Sirova, Jana; Ripova, Daniela

    2014-08-01

    It is well known that misfolded peptides/proteins can play a role in processes of normal ageing and in the pathogenesis of many diseases including Alzheimer's disease. Previously, we evaluated samples of cerebrospinal fluid from patients with Alzheimer's disease and multiple sclerosis by means of thioflavin-T-based fluorescence. We observed attenuated effects of magnetite nanoparticles operated via anti-aggregation actions on peptides/proteins from patients with Alzheimer's disease but not from those with multiple sclerosis when compared to age-related controls. In this study, we have evaluated the in vitro effects of anti-aggregation operating ferrofluid and phytoalexin spirobrassinin in the cerebrospinal fluid of patients with multiple sclerosis and Alzheimer's disease. We have found significant differences in native fluorescence (λ excitation = 440 nm, λ emission = 485 nm) of samples among particular groups (young controls < multiple sclerosis, Alzheimer's disease < old controls). Differences among groups were observed also in thioflavin-T-based fluorescence (young controls = multiple sclerosis < Alzheimer's disease < old controls) and the most marked change from native to thioflavin-T-based fluorescence was found in young controls (28-40 years old people). Both ferrofluid and spirobrassinin evoked drops in thioflavin-T-based fluorescence; however, ferrofluid was more efficient in old controls (54-75 years old people) and spirobrassinin in multiple sclerosis patients, both compared to young controls. The results are discussed especially in relation to aggregated peptides/proteins and liposoluble fluorescent products of lipid peroxidation. Based on the significant effect of spirobrassinin in vitro, we suggest that spirobrassinin may be of therapeutic value in multiple sclerosis. PMID:24858241

  9. The sensitive capillary electrophoretic-LIF method for simultaneous determination of curcuminoids in turmeric by enhancing fluorescence intensities of molecules upon inclusion into (2-hydroxypropyl)-β-cyclodextrin.

    PubMed

    Kalaycıoğlu, Zeynep; Hashemi, Parya; Günaydın, Keriman; Erim, F Bedia

    2015-10-01

    Curcuminoids have received great attention in the past decades due to their health benefit properties. The aim of this study is to develop a very simple, rapid, and sensitive capillary zone electrophoresis technique coupled with a laser induced fluorescence detector (LIF) for the simultaneous determination of three major curcuminoids of turmeric, namely, curcumin, demethoxy curcumin (DMC), and bisdemethoxy curcumin (BDMC). Background electrolyte was selected as borate at pH 9.6 and (2-hydroxypropyl)-β-cyclodextrin (2-HP-β-CD) was added to prevent rapid alkali degradation of curcuminoids in buffer and to increase fluorescence intensities of molecules. With the addition of 2-HP-β-CD to the separation electrolyte, the fluorescence signal intensities of curcuminoids were enhanced considerably by 30, 40, and 54 fold for curcumin, DMC, and BDMC, respectively. The three curcuminoids of turmeric were fully separated and quantified in less than 4.5 min. The repeatability of the peak areas of curcuminoids for intra-day and inter-day experiments was in the satisfactory range of 2.26 and 2.55%, respectively. The LOD and LOQ values for the developed method were equal to or less than 0.081 and 0.270 μg/mL, respectively, for all curcuminoids. The developed method was successfully applied to find curcuminoids amount in turmeric samples and herbal supplements.

  10. Understanding walking activity in multiple sclerosis: step count, walking intensity and uninterrupted walking activity duration related to degree of disability.

    PubMed

    Neven, An; Vanderstraeten, Annelien; Janssens, Davy; Wets, Geert; Feys, Peter

    2016-09-01

    In multiple sclerosis (MS), physical activity (PA) is most commonly measured as number of steps, while also walking intensity and walking activity duration are keys for a healthy lifestyle. The aim of this study was to investigate (1) the number of steps persons with MS (PwMS) take; (2) the number of steps they take at low and moderate intensity; and (3) their walking activity duration for 2, 3, 6, 10, 12 and 14 uninterrupted minutes; all related to the degree of disability. 64 PwMS participated, distinguished in a mild (n = 31) and moderate MS subgroup (n = 34) based on their ambulatory dysfunction (Disease Steps). Standardized clinical tests were performed, and step data from the StepWatch Activity Monitor were collected for seven consecutive days. The results showed that (1) step count in PwMS was lower than PA recommendations, and is negatively influenced by a higher disability degree. (2) No walking was registered during 77 % of the day. PwMS are making steps for 22 % at low and only 1 % at moderate intensity. (3) Both MS subgroups rarely walk for more than six uninterrupted minutes, especially not at moderate intensity. PwMS need to be encouraged to make steps at moderate intensity, and to make steps for longer periods of time (minimal ten uninterrupted minutes).

  11. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.

    PubMed

    Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph

    2016-08-01

    Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.

  12. Waste reduction process improvements in the analysis of plutonium by x-ray fluorescence: results from multiple data sets

    SciTech Connect

    Worley, Christopher G; Soderberg, Constance B; Townsend, Lisa E

    2010-01-01

    To minimize waste, improve process safety, and minimize costs, modifications were implemented to a method for quantifying gallium in plutonium metal using wavelength dispersive X-ray fluorescence. These changes included reducing sample sizes, reducing ion exchange process volumes, using cheaper reagent grade acids, eliminating the use of HF acid, and using more robust containment film for sample analysis. Relative precision and accuracy achieved from analyzing multiple aliquots from a single parent sample were {approx}0.2% and {approx}0.1% respectively. The same precision was obtained from analyzing a total of four parent materials, and the average relative accuracy from all the samples was 0.4%, which is within programmatic uncertainty requirements.

  13. Multiple Evidence of Intense Solar Proton Events During Solar Cycle 13

    NASA Astrophysics Data System (ADS)

    Peristykh, Alexei

    We present evidence of intense solar proton events in the last decade of the XIX century based on diverse solar and geophysical data. One of those events (July 15, 1892) was observed by George Hale as a 'remarkable solar disturbance'. There appears to be a number of intense solar flare events at that period concurrent with solar cycle 13. Besides white-light flares, there were more numerous storm sudden commencements (SSC) of high amplitude ( 40 nT), noticeable enhanced annual sums of the Aa index, more frequent observation of very bright aurorae borealis in North America. This phenomenon is also revealed from data on nitrates in polar ice and cosmogenic isotopes in terrestrial archives.

  14. Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    PubMed Central

    Imai, Natsuko; Dorigatti, Ilaria; Cauchemez, Simon; Ferguson, Neil M.

    2015-01-01

    Background Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. Methodology/Principal Findings The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1–4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. Conclusions/Significance Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings. PMID:25881272

  15. Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    PubMed Central

    Imai, Natsuko; Dorigatti, Ilaria; Cauchemez, Simon; Ferguson, Neil M.

    2016-01-01

    Background Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions. Methodology/Principle Findings We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries. Conclusions/Significance As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available. PMID:27399793

  16. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial

    PubMed Central

    Vandenabeele, Frank; Grevendonk, Lotte; Verboven, Kenneth; Hansen, Dominique

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type II (+23±7%) and IIa (+23±6%,) CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13±7% and +45±20%) and body fat percentage tended to decrease (HITR: -3.9±2.0% and HCTR: -2.5±1.2%). Furthermore, endurance capacity (Wmax +21±4%, time to exhaustion +24±5%, VO2max +17±5%) and lean tissue mass (+1.4±0.5%) only increased in HITR. Finally self-reported physical activity levels increased 73±19% and 86±27% in HCTR and HITR, respectively. Conclusion High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS. Trial Registration ClinicalTrials.gov NCT01845896 PMID:26418222

  17. Intensive Long Distance Running as a Possible Cause of Multiple Splanchnic Arterial Aneurysms: A Case Report

    PubMed Central

    Jang, Lee Chan; Park, Sung Su

    2016-01-01

    This is a case report that suggests the possible association between multiple splanchnic arterial aneurysms and long-distance running. The clinical features of one patient admitted at Chungbuk National University Hospital for treatment of multiple splanchnic arterial aneurysms were reviewed. A 54-year-old man had a recurrent, intermittent and epigastric pain for 2 months. There was no abnormality in gastroscopy and colonoscopy. An abdominal computed tomography angiography documented calcified superior mesenteric artery (SMA) and splenic artery aneurysms. The patient had a history of recreational long-distance running for over 10 years. His average running time per week was more than 10 hours. There was no evidence of systemic arteritis, connective tissue disorder or infectious process that may have caused the aneurysms. He did not take any drugs. The SMA aneurysm was opened, and the aneurysmal segment of SMA was replaced with a vein graft. The splenic aneurysm was observed. The patient recovered without any sequelae.

  18. Intensive Long Distance Running as a Possible Cause of Multiple Splanchnic Arterial Aneurysms: A Case Report

    PubMed Central

    Jang, Lee Chan; Park, Sung Su

    2016-01-01

    This is a case report that suggests the possible association between multiple splanchnic arterial aneurysms and long-distance running. The clinical features of one patient admitted at Chungbuk National University Hospital for treatment of multiple splanchnic arterial aneurysms were reviewed. A 54-year-old man had a recurrent, intermittent and epigastric pain for 2 months. There was no abnormality in gastroscopy and colonoscopy. An abdominal computed tomography angiography documented calcified superior mesenteric artery (SMA) and splenic artery aneurysms. The patient had a history of recreational long-distance running for over 10 years. His average running time per week was more than 10 hours. There was no evidence of systemic arteritis, connective tissue disorder or infectious process that may have caused the aneurysms. He did not take any drugs. The SMA aneurysm was opened, and the aneurysmal segment of SMA was replaced with a vein graft. The splenic aneurysm was observed. The patient recovered without any sequelae. PMID:27699161

  19. A Technique for Estimating Intensity of Emotional Expressions and Speaking Styles in Speech Based on Multiple-Regression HSMM

    NASA Astrophysics Data System (ADS)

    Nose, Takashi; Kobayashi, Takao

    In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.

  20. Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser.

    PubMed

    Almoro, Percival F; Pham, Quang Duc; Serrano-Garcia, David Ignacio; Hasegawa, Satoshi; Hayasaki, Yoshio; Takeda, Mitsuo; Yatagai, Toyohiko

    2016-05-15

    In the multiple-plane phase retrieval method, a tedious-to-fabricate phase diffuser plate is used to increase the axial intensity variation for a nonstagnating iterative reconstruction of a smooth object wavefront. Here we show that a spatial light modulator (SLM) can be used as an easily controllable diffuser for phase retrieval. The polarization modulation at the SLM facilitates independent formation of orthogonally polarized scattered and specularly reflected beams. Through an analyzer, the polarization states are filtered enabling beam interference, thereby efficiently encoding the phase information in the axially diverse speckle intensity measurements. The technique is described using wave propagation and Jones calculus, and demonstrated experimentally on technical and biological samples. PMID:27176952

  1. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    SciTech Connect

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L.

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  2. Changes to processes in estuaries and coastal waters due to intense multiple pressures - An introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven B.; Jennerjahn, Tim C.; Vizzini, Salvatrice; Zhang, Weiguo

    2015-04-01

    From the 2013 ECSA conference 'Estuaries and Coastal Areas in Times of Intense Change' a theme emerged that has ended up being the focus of this Special Issue of Estuarine Coastal and Shelf Science, namely 'Changes to processes in estuaries and coastal waters due to intense multiple pressures'. Many parts of the world are continuing to experience unprecedented rates of economic growth, and those responsible for managing coastal and estuarine areas must respond accordingly. At the same time, global climate change and sea level rise are also continuing, placing new or more intense pressures on coastal areas that must be dealt with in ways that are as far as possible managed as a result of good scientific understanding. There are other pressures too, which depend on the system concerned. This article provides an overview of the papers contained within the Special Issue and provides a discussion of how these fit within the main theme of intense multiple stressors, considering how a balance can be achieved between the needs of various different stakeholders and interest groups, and the sustainability of the system concerned. We categorise the papers in four main groupings: (1) stressors related to sea level rise; (2) stressors related to changes in fresh water inputs; (3) stressors related to anthropogenic pollution; and (4) the use of indicators as a means of assessing the effects of stressors, and reflect on the fact that despite the diversity of different challenges and geographical regions involved many of the approaches and discussions contained within the Special Issue have strong similarities, leading to a set of overarching principles that should be considered when making recommendations on management strategies.

  3. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds.

    PubMed

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-08-14

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion.

  4. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    SciTech Connect

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. ); Wyssbrod, H.R.; Porter, R.A. ); Michaels, C.A. )

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  5. Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    PubMed Central

    2008-01-01

    We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan. PMID:18464926

  6. A methodology to study multiple sclerosis (MS) based on distributions of standardized intensities in segmented tissue regions

    NASA Astrophysics Data System (ADS)

    Lei, T.; Udupa, J. K.; Odhner, D.; Mishra, S.; Wu, G.; Schwartz, E.; Ying, G.-S.; Iwanaga, T.; Desiderio, L.; Balcer, L.

    2006-03-01

    This paper presents (1) an improved hierarchical method for segmenting the component tissue regions in fast spin echo T2 and PD images of the brain of Multiple Sclerosis (MS) patients, and (2) a methodology to characterize the disease utilizing the distributions of standardized T2 and PD intensities in the segmented tissue regions. First, the background intensity inhomogeneities are corrected and the intensity scales are standardized for all acquired images. The segmentation method imposes a feedback-like procedure on our previously developed hierarchical brain tissue segmentation method. With gradually simplified patterns in images and stronger evidences, pathological objects are recognized and segmented in an interplay fashion. After the brain parenchymal (BP) mask is generated, an under-estimated gray matter mask (uGM) and an over-estimated white matter mask (oWM) are created. Pure WM (PWM) and lesion (LS) masks are extracted from the all-inclusive oWM mask. By feedback, accurate GM and WM masks are subsequently formed. Finally, partial volume regions of GM and WM as well as Dirty WM (DWM) masks are generated. Intensity histograms and their parameters (peak height, peak location, and 25th, 50th and 75th percentile values) are computed for both T2 and PD images within each tissue region. Tissue volumes are also estimated. Spearman correlation coefficient rank test is then utilized to assess if there exists a trend between clinical states and the image-based parameters. This image analysis method has been applied to a data set consisting of 60 patients with MS and 20 normal controls. LS related parameters and clinical Extended Disability Status Scale (EDSS) scores demonstrate modest correlations. Almost every intensity-based parameter shows statistical difference between normal control and patient groups with a level better than 5%. These results can be utilized to monitor disease progression in MS.

  7. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  8. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  9. Development of indirect competitive fluorescence immunoassay for 2,2',4,4'-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An indirect competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in aqueous samples. A hapten, 2,4,2'-tribromodiphenyl ether-4’-aldehyde was sy...

  10. A conspiracy of optimism: Sustained yield, multiple use, and intensive management on the national forests, 1945-1991

    SciTech Connect

    Hirt, P.W.

    1991-01-01

    This study focuses on two core national forest management policies; sustained yield and multiple use. Public and elected officials attempt to apply principles of sustainable development to publicly-owned forest lands to ensure that a wide variety of both market and nonmarket forest values are preserved for the benefit of present and future generations. Interest groups, the Forest Service, and policy makers have conceived of sustained yield and multiple use in different and evolving ways over the years. This study explores how these principles have been variously defined and either implemented or thwarted. After World War Two, with escalating demands on national forest resources, the US Forest Service turned to intensive management as a technological method of enhancing natural forest productivity and mitigating the environmental effects of increased use. But the agency's optimistic vision of efficient, sustained production of forest commodities through technical mastery over nature has met overwhelming fiscal, environmental, technical, and political obstacles. Changing public values since the 1960s and popularization of ecology have initiated a growing skepticism toward the premises of intensive management.

  11. Modelling and implementation of a fixed-length-extension to measure fluorescent intensity in bioprocesses using an optical sensor

    NASA Astrophysics Data System (ADS)

    Sardesai, Neha; Al-Adhami, Mustafa; Rao, Govind; Kostov, Yordan

    2016-05-01

    Fluorescent proteins are often used as reporters of protein concentration in biology and biomedicine applications. They can be detected using a fluorimeter equipped with fiber optics for ease of access. However, small changes in the path length due to change in the position, or immersion depth of the optical fiber results in large changes in readings. To alleviate the situation, the fiber is equipped with a fixed-length-extension that provides constant path length. The operation of the fiber equipped fluorimeter is theoretically modelled and practically verified in this paper.

  12. Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulse laser.

    PubMed

    Zhidkov, A G; Sasaki, A; Tajima, T; Auguste, T; D'Olivera, P; Hulin, S; Monot, P; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    1999-09-01

    We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.

  13. Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources

    NASA Astrophysics Data System (ADS)

    Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.

    2015-12-01

    Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.

  14. Multicolor Fluorescence Detection-Based Microfluidic Device for Single-Cell Metabolomics: Simultaneous Quantitation of Multiple Small Molecules in Primary Liver Cells.

    PubMed

    Li, Qingling; Chen, Peilin; Fan, Yuanyuan; Wang, Xu; Xu, Kehua; Li, Lu; Tang, Bo

    2016-09-01

    Single-cell metabolomics can be used to study cell diversity and how cells respond to environment. There is an urgent need to develop effective detection methods for single-cell metabolomics. Microchip electrophoresis with laser-induced fluorescence detection (MCE-LIFD) is a powerful tool to detect metabolites at the single-cell level. However, the existing one-laser excitation and one-color fluorescence collection in MCE-LIFD is not sufficient for the simultaneous detection of multiple small molecules with wide variations in their fluorescence excitation and emission spectra. In this manuscript, we describe a multicolor fluorescence detection-based microfluidic device (MFD-MD) for single-cell metabolomics research. We selected primary liver cells from acute ethanol-stimulated mice as the model cells and hydrogen peroxide (H2O2), glutathione (GSH), and cysteine (Cys) as representative small-molecule metabolites for single-cell analysis. The microfluidic chip enabled accurate single-cell manipulation and effective electrophoresis separation. The new multicolor fluorescence detection permitted simultaneous analysis of H2O2, GSH, and Cys. Ethanol exposure induced an increase in H2O2 and a decrease in GSH and Cys. Obvious cell heterogeneity was observed. These results provide insights regarding the intracellular oxidative/antioxidative molecular mechanism in response to external stimuli. The MFD-MD provides a new opportunity for simultaneous single-cell analysis of multiple metabolites. PMID:27503398

  15. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  16. Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto P.; Landgraf, Jochen

    2007-06-01

    We investigate the capabilities of different instrument concepts for the retrieval of aerosol properties over land. It was found that, if the surface reflection properties are unknown, only multiple-viewing-angle measurements of both intensity and polarization are able to provide the relevant aerosol parameters with sufficient accuracy for climate research. Furthermore, retrieval errors are only little affected when the number of viewing angles is increased at the cost of the number of spectral sampling points and vice versa. This indicates that there is a certain amount of freedom for the instrument design of dedicated aerosol instruments. The final choice on the trade-off between the spectral sampling and the number of viewing angles should be made taking other factors into account, such as instrument complexity and the ability to obtain global coverage.

  17. Real-space multiple scattering theory calculations of LEED (low-energy electron diffraction) intensities for stepped surfaces

    SciTech Connect

    Zhang, X.-G.; Rous, P.J.; Van Hove, M.A. ); MacLaren, J.M. ); Gonis, A. ); Somorjai, G.A. California Univ., Berkeley, CA . Dept. of Chemistry)

    1990-07-25

    We use a newly developed real-space multiple scattering theory (RS-MST) to calculate low-energy electron diffraction (LEED) intensities from stepped surfaces. In this calculation the electron wavefunctions are expanded in terms of an angular momentum basis, utilizing the property of removal invariance of systems with semi-infinite periodicity. This strongly reduces the dependence of the calculation on the interlayer spacing and thus opens up the possibility of treating more open surfaces. This includes in particular stepped surfaces, to which conventional methods cannot be applied. Applications of the formalism to various stepped surfaces are presented. In particular, the results for Cu(311) and (331) surfaces obtained from both the layer doubling and RS-MST methods are compared. In addition, numerical techniques which can improve the convergence as well as the speed of the RS-MST approach are discussed. 6 refs., 3 figs.

  18. Fast electron heating in ultra-intense laser-solid interaction by shifted Kα line fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinolli, E.; Koenig, M.; Santos, J. J.; Amiranoff, F.; Baton, S. D.; Batani, D.; Perelli, E.; Scianitti, F.; Gremillet, L.; Rabec, M.; Rousseaux, C.; Hall, T. A.; Key, M. H.; MacKinnon, A. J.; Koch, J. A.; Freeman, R. R.; Snavely, R. A.; King, J. A.; Andersen, C.; Hill, J. M.; Stephens, R. B.; Cowan, T. E.; Ng, A.; Ao, T.

    2002-11-01

    In the context of the fast ignition studies[1], the heating of the dense fuel by fast electrons appears to be one of the most relevant aspects currently investigated [2]. In order to estimate the energy deposition and the efficiency of the fast electron transport in solid targets, we have performed experiments on LULI and RAL high power lasers, at irradiances up to a few 10^19 W/cm^2. Shifted Kα lines from an aluminum fluorescer layer buried at different depths in multilayered targets were detected using a Bragg conical-crystal spectrograph. The results were used to infer the ionization stage of the Al layer. Monte Carlo and hybrid transport codes[3] were used to study fast electron energy release by collisions and ohmic effect. The energy coupling to the target is described within an ionization model for dense matter[4] and compared to the experimental data. Despite some uncertainties of the modeling, the results give an indication of a deep heating of the target up to 30 eV after propagation in 100 μm Al. [1] M Tabak et al., Phys. of Plasmas 1, 1626 (1994) [2] E Martinolli et al., submitted to PRL, may 2002 [3] L Gremillet et al. Phys. of Plasmas 9, 941, (2002) [4] G Chiu and A Ng, PRE 59, 1024, (1999)

  19. Theoretical and Experimental Study on Boron β-Diketonate Complexes with Intense Two-Photon-Induced Fluorescence in Solution and in the Solid State.

    PubMed

    Lanoë, Pierre-Henri; Mettra, Bastien; Liao, Yuan Yuan; Calin, Nathalie; D'Aléo, Anthony; Namikawa, Tomotaka; Kamada, Kenji; Fages, Fréderic; Monnereau, Cyrille; Andraud, Chantal

    2016-07-18

    Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing. PMID:26990918

  20. Effects of temperature, CO 2/O 2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO 2 to O 2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 °C), three levels of CO 2 concentrations (2-6%), five levels of O 2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 μmol m -2 s -1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 °C, CO 2 concentration of 4%, O 2 concentration of 20% and photosynthetic photon flux of about 100 μmol m -2 s -1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO 2 to O 2 under relatively low light intensities in aquatic food production modules.

  1. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis.

    PubMed

    Kitaya, Y; Azuma, H; Kiyota, M

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules.

  2. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Technical Reports Server (NTRS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  3. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis.

    PubMed

    Kitaya, Y; Azuma, H; Kiyota, M

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. PMID:16175686

  4. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  5. A simple but efficient strategy to enhance hydrostability of intensely fluorescent Mg-based coordination polymer (CP) via forming a composite of CP with hydrophobic PVDF.

    PubMed

    Zhai, Lu; Zhang, Wen-Wei; Zuo, Jing-Lin; Ren, Xiao-Ming

    2016-02-28

    A coordination polymer (CP) of Mg(2+) with 1,3,5-benzenetricarboxylate (BTC(3-)) was synthesized using a solvothermal method. The Mg-CP, with a formula of Mg3(BTC)(HCOO)3(DMF)3, crystallizes in the trigonal space group P3[combining macron], with cell parameters of a = b = 13.972(5) Å, c = 8.090(5) Å and V = 1367.6(11) Å(3), and shows a lamella structure built from planar rosette-type hexanuclear architectures. The Mg-CP emits intense blue fluorescence arising from π* → π transition of intra-ligand of BTC(3-) with 21.69% quantum yield, yet it exhibits poor stability to water. The composites of Mg-CP with hydrophobic polyvinylidene fluoride (PVDF) were sequentially prepared by mechanically mixed, tableted and annealed processes, which showed good compatibility between Mg-CP and PVDF, high hydrostability, and intense blue emission. This study suggests a simple but efficient method to solve the drawbacks of some functional CPs unstable to water and to promote them as practical applications in the field of functional materials.

  6. Construction of a multiple fluorescence labelling system for use in co-invasion studies of Listeria monocytogenes

    PubMed Central

    Andersen, Jens B; Roldgaard, Bent B; Lindner, Ariel B; Christensen, Bjarke B; Licht, Tine R

    2006-01-01

    Background Existing virulence models are often difficult to apply for quantitative comparison of invasion potentials of Listeria monocytogenes. Well-to-well variation between cell-line based in vitro assays is practically unavoidable, and variation between individual animals is the cause of large deviations in the observed capacity for infection when animal models are used. One way to circumvent this problem is to carry out virulence studies as competition assays between 2 or more strains. This, however, requires invasion-neutral markers that enable easy discrimination between the different strains. Results A fluorescent marker system, allowing visualization and identification of single L. monocytogenes cells as well as colonies in a non-destructive manner, was developed. Five different fluorescent labels are available, and allowed simultaneous visual discrimination between three differently labelled strains at the single cell level by use of fluorescence microscopy. More than 90% of the L. monocytogenes host cells maintained the fluorescence tags for 40 generations. The fluorescence tags did not alter the invasive capacity of the L. monocytogenes cells in a traditional Caco-2 cell invasion assay, and visual discrimination between invaded bacteria carrying different fluorescent labels inside the cells was possible. Conclusion The constructed fluorescent marker system is stable, easy to use, does not affect the virulence of L. monocytogenes in Caco-2 cell assays, and allows discrimination between differently labelled bacteria after internalization in these cells. PMID:17014739

  7. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients

    PubMed Central

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly; Eijnde, Bert O.; Wens, Inez

    2016-01-01

    Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells—SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7+), myonuclei (MN) and central nuclei content and fiber cross-sectional area (fCSA) was quantified using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fibers in both MS (119%, p < 0.01) and HC (69%, p < 0.05), whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p < 0.05). No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and per fCSA in MS patients increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients. PMID:27303309

  8. Advantages of estimating parameters of photosynthesis model by fitting A-Ci curves at multiple subsaturating light intensities

    NASA Astrophysics Data System (ADS)

    Fu, W.; Gu, L.; Hoffman, F. M.

    2013-12-01

    The photosynthesis model of Farquhar, von Caemmerer & Berry (1980) is an important tool for predicting the response of plants to climate change. So far, the critical parameters required by the model have been obtained from the leaf-level measurements of gas exchange, namely the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curves, made at saturating light conditions. With such measurements, most points are likely in the Rubisco-limited state for which the model is structurally overparameterized (the model is also overparameterized in the TPU-limited state). In order to reliably estimate photosynthetic parameters, there must be sufficient number of points in the RuBP regeneration-limited state, which has no structural over-parameterization. To improve the accuracy of A-Ci data analysis, we investigate the potential of using multiple A-Ci curves at subsaturating light intensities to generate some important parameter estimates more accurately. Using subsaturating light intensities allow more RuBp regeneration-limited points to be obtained. In this study, simulated examples are used to demonstrate how this method can eliminate the errors of conventional A-Ci curve fitting methods. Some fitted parameters like the photocompensation point and day respiration impose a significant limitation on modeling leaf CO2 exchange. The multiple A-Ci curves fitting can also improve over the so-called Laisk (1977) method, which was shown by some recent publication to produce incorrect estimates of photocompensation point and day respiration. We also test the approach with actual measurements, along with suggested measurement conditions to constrain measured A-Ci points to maximize the occurrence of RuBP regeneration-limited photosynthesis. Finally, we use our measured gas exchange datasets to quantify the magnitude of resistance of chloroplast and cell wall-plasmalemma and explore the effect of variable mesophyll conductance. The variable mesophyll conductance

  9. Single-Isocenter Frameless Intensity-Modulated Stereotactic Radiosurgery for Simultaneous Treatment of Multiple Brain Metastases: Clinical Experience

    SciTech Connect

    Nath, Sameer K.; Lawson, Joshua D.; Simpson, Daniel R.

    2010-09-01

    Purpose: To describe our clinical experience using a unique single-isocenter technique for frameless intensity-modulated stereotactic radiosurgery (IM-SRS) to treat multiple brain metastases. Methods and Materials: Twenty-six patients with a median of 5 metastases (range, 2-13) underwent optically guided frameless IM-SRS using a single, centrally located isocenter. Median prescription dose was 18 Gy (range, 14-25). Follow-up magnetic resonance imaging (MRI) and clinical examination occurred every 2-4 months. Results: Median follow-up for all patients was 3.3 months (range, 0.2-21.3), with 20 of 26 patients (77%) followed up until their death. For the remaining 6 patients alive at the time of analysis, median follow-up was 14.6 months (range, 9.3-18.0). Total treatment time ranged from 9.0 to 38.9 minutes (median, 21.0). Actuarial 6- and 12-month overall survivals were 50% (95% confidence interval [C.I.], 31-70%) and 38% (95% C.I., 19-56%), respectively. Actuarial 6- and 12-month local control (LC) rates were 97% (95% C.I., 93-100%) and 83% (95% C.I., 71-96%), respectively. Tumors {<=}1.5 cm had a better 6-month LC than those >1.5 cm (98% vs. 90%, p = 0.008). New intracranial metastatic disease occurring outside of the treatment volume was observed in 7 patients. Grade {>=}3 toxicity occurred in 2 patients (8%). Conclusion: Frameless IM-SRS using a single-isocenter approach for treating multiple intracranial metastases can produce clinical outcomes that compare favorably with those of conventional SRS in a much shorter treatment time (<40 minutes). Given its faster treatment time, this technique is appealing to both patients and personnel in busy clinics.

  10. Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).

    PubMed Central

    Neubauer, C.

    1993-01-01

    Reversible nonphotochemical fluorescence quenching depends on thylakoid lumen acidification and violaxanthin de-epoxidation and is correlated with photoprotection of photosynthesis. The O2-dependent electron flow in the coupled Mehler-ascorbate peroxidase reaction (MP-reaction) mediates the electron flow necessary for lumen acidification and violaxanthin de-epoxidation in isolated, intact chloroplasts. Inhibition of violaxanthin de-epoxidation by dithiothreitol (DTT) was correlated with suppression of fluorescence quenching. In addition, DTT was also found to suppress fluorescence quenching due to inhibition of ascorbate peroxidase activity, a main enzyme of the MP-reaction, even in the presence of zeaxanthin. In intact, non-CO2-fixing chloroplasts, violaxanthin and antheraxanthin de-epoxidation and the ascorbate peroxidase activity show different sensitivities to increasing DTT concentrations. Violaxanthin de-epoxidase activity, measured as the sum of zeaxanthin and antheraxanthin formed, was inhibited with an inhibitor concentration for 50% inhibition (I50) of 0.35 mM DTT. In contrast, inhibition of the O2-dependent electron flow and corresponding lumen acidification occurred with higher I50 values of 2.5 and 3 mM DTT, respectively, and was attributed to inhibition of ascorbate peroxidase activity (I50 = 2 mM DTT). Accordingly, the DTT-induced inhibition of the nigericin-sensitive nonphotochemical fluorescence quenching was correlated linearly with the decreasing concentrations of zeaxanthin and antheraxanthin and was almost unaffected by DTT inhibition of the MP-reaction and correlated [delta]pH. The nigericin-insensitive, photoinhibitory kind of nonphotochemical fluorescence quenching up to 1 mM was mainly correlated with inhibition of violaxanthin de-epoxidation. At higher DTT concentrations, it was attributed to inhibition of both violaxanthin de-epoxidation and MP-reaction. The results show that DTT has multiple, but distinguishable, effects on

  11. Dynamics of the ssDNA Recognition by the RepA Hexameric Helicase of Plasmid RSF1010: Analyses Using Fluorescence Stopped-Flow Intensity and Anisotropy Methods✩

    PubMed Central

    Andreeva, Iraida E.; Szymanski, Michal R.; Jezewska, Maria J.; Galletto, Roberto; Bujalowski, Wlodzimierz

    2011-01-01

    The kinetic mechanism of the single-stranded DNA (ssDNA) recognition by the RepA hexameric replicative helicase of the plasmid RSF1010 and the nature of formed intermediates, in the presence of the ATP nonhydrolyzable analog, β,γ-imidoadenosine-5′-triphosphate (AMP-PNP), have been examined, using the fluorescence intensity and anisotropy stopped-flow and analytical ultracentrifugation methods. Association of the RepA hexamer with the ssDNA oligomers that engage the total DNA-binding site and exclusively the strong DNA-binding subsite is a minimum four-step mechanism Helicase+ssDNA⇄k−1k1(H−ssDNA)1⇄k−2k2(H−ssDNA)2⇄k−3k3(H−ssDNA)3⇄k−4k4(H−ssDNA)4 Extreme stability of the RepA hexamer precludes any disintegration of its structure, and the sequential character of the mechanism indicates that the enzyme exists in a predominantly single conformation prior to the association with the nucleic acid. Moreover, the hexameric helicase possesses a DNA-binding site located outside its cross channel. The reaction steps have dramatically different dynamics, with rate constants differing by 2–3 orders of magnitude. Such behavior indicates a very diverse nature of the observed transitions, which comprises binding steps and large conformational transitions of the helicase, including local opening of the hexameric structure. Steady-state fluorescence anisotropies of intermediates indicate that the entry of the DNA into the cross channel is initiated from the 5′ end of the bound nucleic acid. The global structure of the tertiary complex RepA–ssDNA–AMP–PNP is very different from the structure of the binary complex RepA–AMP-PNP, indicating that, in equilibrium, the RepA hexamer–ssDNA–AMP-PNP complex exists as a mixture of partially open states. PMID:19289128

  12. Origin of Excitation Dependent Fluorescence in Carbon Nanodots.

    PubMed

    Sharma, Arjun; Gadly, Trilochan; Gupta, Alka; Ballal, Anand; Ghosh, Sunil Kumar; Kumbhakar, Manoj

    2016-09-15

    The fascinating aspect of excitation dependent fluorescence in carbon nanodots has led to several hypotheses, starting from particle size distribution to the presence of different emissive states and even to sluggish solvent relaxation around nanodot. In this contribution we provide definitive evidence for the involvement of discrete multiple electronic states for the excitation dependent emission in carbon nanodots. The presence of different types of aggregates even at very dilute solutions used in ensemble fluorescence spectroscopy, where fluorescence intensity shows linear dependence with absorbance, is the origin of these multiple electronic states. Inhomogeneous broadening due to slow solvent relaxation leading to excitation dependent spectral shift has negligible influence in conventional solvents. PMID:27588560

  13. Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid like materials in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Terajima, Tomomi; Moriizumi, Mihoko

    2013-02-01

    SummaryDissolved organic carbon (DOC) such as humic substances are key to understanding the aquatic environment in catchments, because they, containing a large number of phenolic and carboxylic acid groups, adsorb many kinds of inorganic materials and also affect nutrition and carbon transport in catchments. To understand the detailed DOC dynamics, we conducted hydrological observations at mountainous headwater catchments dominated by different vegetation types (planted evergreen coniferous forest of 1.29 ha and natural deciduous broadleaf forest of 1.28 ha). The relationship between DOC concentrations and fluorescence intensity of fulvic acid-like materials (F-FAM) were positively correlated in both catchments but different between soil extracts, baseflow, and near surface flow represented by biomat flow. The ratios of change in F-FAM to that in DOC concentration (F-FAM/DOC) were higher in the baseflow (about 6 in both catchments) and lower in the soil extracts (about 4.5 in both catchments, respectively). However, the relationship in stormflow was distributed between the trends of baseflow and soil extracts. The higher F-FAM/DOC in baseflow may thus indicate that DOC (and FAM) in groundwater discharge mainly contributed to the stream flow, and the stormflow mainly reflect subsurface flow through soil during most rainstorms. In contrast, a high F-FAM/DOC ratio (>6) appeared in the stormflow of both catchments especially during large storms of short duration and high intensity following a dry antecedent period. The F-FAM/DOC in biomat flow developing distinctly in the coniferous catchment was high (about 6.5). Thus, rapid shallow subsurface flow through the biomat or near-surface of slopes might explain the unique transport dynamics of DOC and FAM in stormflows with the high F-FAM/DOC ratio. These results imply that the DOC and FAM relationship responds variably depending on both the distribution of soil organic matter and rainwater flow paths in steep slopes as

  14. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  15. UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12.

    PubMed

    Centore, Richard C; Sandler, Steven J

    2007-04-01

    RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA. PMID:17259317

  16. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns.

  17. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns. PMID:22182472

  18. The mean fluorescence intensities of anti-HLA antibodies detected using micro-bead flow cytometry predict the risk of platelet transfusion refractoriness.

    PubMed

    Beligaswatte, Ashanka; Tsiopelas, Eleni; Humphreys, Ian; Bennett, Greg; Robinson, Kathryn; Davis, Ken; Bardy, Peter

    2013-08-01

    There are no accepted methods to predict the development of platelet transfusion refractoriness (PTR) due to human leucocyte antigen (HLA)-alloimmunization. Hence, matched platelets are usually given only to patients demonstrating PTR, necessarily resulting in some ineffective random donor platelets (RDPLT) transfusions. To assess its utility in predicting PTR, we retrospectively tested samples from 387 patients receiving chemotherapy for acute leukaemia or autologous transplantation using a micro-bead flow cytometry assay. The average of the mean fluorescence intensities (avgMFI) of the class I beads in the screening assay was correlated with outcomes of RDPLT transfusions during a 2 week period. Antibodies were detected in 57 patients; 66 developed PTR, of whom 28 were alloimmunized. avgMFI usefully predicted the development of PTR (area under the receiver operating curve 0.87, 95% confidence interval: 0.77-0.96). A logistic regression model estimated the probability of PTR to be >90% when avgMFI >5440. These results indicate that micro-bead flow cytometry assays could inform a risk-adapted strategy for managing thrombocytopaenic HLA allo-immunized patients.

  19. Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; Branson, Mark D.; Randall, David A.

    2016-03-01

    This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvements in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM's low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. These results are discussed in light of their implication for future rainfall changes in response to climate forcing.

  20. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.

    PubMed

    Mielke, Marcelo S; Schaffer, Bruce

    2010-01-01

    The interactive effects of changing light intensity and soil flooding on the photosynthetic performance of Eugenia uniflora L. (Myrtaceae) seedlings in containers were examined. Two hypotheses were tested: (i) the photosynthetic apparatus of shade-adapted leaves can be rapidly acclimated to high light after transfer from shade to full sun, and (ii) photosynthetic acclimation to changing light intensity may be influenced by soil flooding. Seedlings cultivated in a shade house (40% of full sun, approximately 12 mol m(-)(2) day(-)(1)) for 6 months were transferred to full sun (20-40 mol m(-2) day(-1)) or shade (30% of full sun, approximately 8 mol m(-2) day(-1)) and subjected to soil flooding for 23 days or not flooded. Chlorophyll content index (CCI), chlorophyll fluorescence, leaf weight per area (LWA), photosynthetic light-response curves and leaf reflectance indexes were measured during soil flooding and after plants were unflooded. The CCI values increased throughout the experiment in leaves of shaded plants and decreased in leaves of plants transferred to full sun. There were no significant interactions between light intensity and flooding treatments for most of the variables analyzed, with the exception of Fv/Fm 22 days after plants were flooded and 5 days after flooded plants were unflooded. The light environment significantly affected LWA, and light environment and soil flooding significantly affected the light-saturated gross CO(2) assimilation rate expressed on area and dry weight bases (A(max-area) and A(max-wt), respectively), stomatal conductance of water vapor (g(ssat)) and intrinsic water use efficiency (A/g(s)). Five days after flooded plants were unflooded, the normalized difference vegetation index (NDVI) and the scaled photochemical reflectance index (sPRI) were significantly higher in shade than in sun leaves. Thirty days after transferring plants from the shade house to the light treatment, LWA was 30% higher in sun than in shade leaves, and A

  1. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  2. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  3. Multiple temperature effects on up-conversion fluorescences of Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} and high thermal sensitivity

    SciTech Connect

    Cao, B. S.; Wu, J. L.; Wang, X. H.; He, Y. Y.; Feng, Z. Q.; Dong, B. E-mail: bscao@dlnu.edu.cn; Rino, L.

    2015-08-15

    We report multiple temperature effects on green and red up-conversion emissions in Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} phosphors. With increasing temperature, the decrease of the red emission from {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2}, the increase of green emission from {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and another unchanged green emission from {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (S{sub max}) and optimum operating temperature (T{sub max}) are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  4. Long-term outcome after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with multiple myeloma.

    PubMed

    El-Cheikh, Jean; Crocchiolo, Roberto; Furst, Sabine; Stoppa, Anne-Marie; Ladaique, Patrick; Faucher, Catherine; Calmels, Boris; Lemarie, Claude; De Colella, Jean-Marc Schiano; Granata, Angela; Coso, Diane; Bouabdallah, Reda; Chabannon, Christian; Blaise, Didier

    2013-05-01

    This study examines the long-term outcomes of a cohort of patients with myeloma who were treated with reduced-intensity conditioning (RIC) regimens after a minimum follow-up of 5 years at our centre. A total of 53 patients with multiple myeloma (MM) who received allogeneic hematopoietic stem-cell transplantation (Allo-SCT) between January 2000 and January 2007 were identified. The median follow-up of living patients was 84 months (51-141). The median age of the MM patients was 50 (28-70) years. Fifty-one patients (96%) received a transplant from a sibling donor. The median time between diagnosis and Allo-SCT was 34 months (6-161), and the median time between auto-SCT and Allo-SCT was 10 months (1-89). Fifty-one patients (96%) received at least one auto-SCT; 24 patients (45%) received a tandem auto-Allo-SCT. At last follow-up, 21 patients (40%) are alive > 5 years post RIC Allo-SCT. At last follow-up, 14 (26%) are in first complete remission (CR), and four patients (8%) in second CR after donor lymphocyte infusion or re-induction with one of the new anti-myeloma drugs (bortezomib or lenalidomide) after Allo-SCT. Eight patients (38%) among these long survivors received one of these new drugs as induction or relapse treatment before Allo-SCT. Disease status and occurrence of cGvHD were significantly associated with progression-free survival (PFS); hazard ratio (HR) = 0.62 (0.30-1.29, P = 0.20). Acute GvHD was correlated with higher transplant-related mortality; HR = 4.19 (1.05-16.77, P = 0.04). No variables were associated with overall survival (OS). In conclusion, we observe that long-term disease control can be expected in a subset of MM patients undergoing RIC Allo-SCT. After 10 years, the OS and PFS were 32% and 24%, respectively. The PFS curve after Allo-SCT stabilizes in time with a plateau after 6 years post Allo-SCT.

  5. Signal to Noise Ratio in Digital Lock-in Detection for Multiple Intensity-Modulated Signals in CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    CHEN, S.; Lin, B.; Harrison, F. W.; Nehrir, A. R.; Campbell, J. F.; Refaat, T.; Abedin, N. M.; Obland, M. D.; Ismail, S.; Meadows, B. L.

    2013-12-01

    NASA Langley Research Center is investigating Intensity-Modulated, Continuous-Wave Laser Absorption Spectrometers (LASs) for the measurement of atmospheric carbon dioxide (CO2) column mixing ratio from both air- and space-borne platforms. The LAS system uses high-power fiber lasers/amplifiers in the 1.57-um CO2 absorption band and the 1.26-um O2 absorption band in the transmitters and simultaneous digital lock-in detection for the multiple intensity-modulated signals with different modulation waveforms , such as simple sinusoidal waves at different frequencies, associated with different wavelengths in the receivers. The Signal to Noise Ratio (SNR) of the simultaneous digital lock-in detection in the system is of interest for the system designs and the performance prediction of airborne and space-borne implementations in the future. This paper will discuss the properties of the signals and various noises in the LAS system, especially for the simultaneous digital lock-in detection with a single detector for the multiple intensity-modulated signals at different frequencies. The numerical simulation of the SNR for the simultaneous digital lock-in detection in terms of relative intensity of the multiple modulated signals and the integration time, and an initial experimental verification will be presented.

  6. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  7. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  8. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  9. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic.

    PubMed

    Tani, Chiaki; Inoue, Koichi; Tani, Yuri; Harun-ur-Rashid, Md; Azuma, Norihiro; Ueda, Shunsaku; Yoshida, Kazuyuki; Maeda, Isamu

    2009-11-01

    Genetically modified bacterial biosensors can detect specific environmental compounds. Here, we attempted to establish a fluorescent microplate method to detect arsenic using recombinant Escherichia coli cells transformed with plasmids harboring three tandem copies of the ars promoter/operator-the gene for green fluorescent protein (gfp). In the biosensors, one copy of arsR, whose transcription is autoregulated by the ars promoter/operator and ArsR in the genome of E. coli, was placed in trans in another plasmid under the control of isopropyl-1-thio-beta-D-galactopyranoside-inducible promoter. First, this manipulation enabled regulation of the arsR expression at an adequate level. Second, the copy number of reporter unit also affected signal and noise. When the plasmid harboring three copies of the reporter unit was used, the signal-to-noise ratio doubled and the detection limit decreased from 20 to 7.5 microg L(-1) As(III), compared to the use of the plasmid harboring one copy of the ars promoter/operator-arsR-gfp. Thus, segregation of arsR from the ars promoter/operator-gfp using two plasmids is effective in regulating the signal-to-noise ratio and the detection limit with the different functions.

  10. Effect of polarization and geometric factors on quantitative laser-induced fluorescence- to-Raman intensity ratios of water samples and a new calibration technique

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-09-01

    A 266-nm laser-induced fluorescence system was used to study the effect of polarization of the excitation source and geometry of the collection optics on the ratio of the signal from a fluorescence standard, quinine sulfate, and the Raman scatter from water. Although the ratio is sometimes considered to be a constant and is used for intersystem comparisons, our studies showed that the Raman signal and, thus, the ratio can vary by a factor of up to 3.6. These experimental values agree with previous studies by others involving gas and flame Raman spectroscopy and suggest a new calibration method for intersystem comparison of different fluorescence systems.

  11. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature.

    PubMed

    Lin, Jintai; Zheng, Yuhui; Wang, Qianming; Zeng, Zhi; Zhang, Cheng Cheng

    2014-08-11

    A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green-red-blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex=427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future. PMID:25066718

  12. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature.

    PubMed

    Lin, Jintai; Zheng, Yuhui; Wang, Qianming; Zeng, Zhi; Zhang, Cheng Cheng

    2014-08-11

    A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green-red-blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex=427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future.

  13. COMPARISON OF RANDOM SITE SELECTION AT MULTIPLE INTENSITIES FOR THE ASSESSMENT OF THE OHIO RIVER FISH COMMUNITY

    EPA Science Inventory

    The Ohio River Valley Sanitation Commission (ORSANCO) is a compact of eight states representing interests in the Ohio River basin that has been instrumental in the development of biological monitoring of the Ohio River. In the past, ORSANCO has conducted intensive surveys by samp...

  14. Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping

    NASA Astrophysics Data System (ADS)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.

    2016-10-01

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.

  15. Fluorescent dendritic organogels based on 2-(2'-hydroxyphenyl)benzoxazole: emission enhancement and multiple stimuli-responsive properties.

    PubMed

    Chen, Hui; Feng, Yu; Deng, Guo-Jun; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua

    2015-07-27

    A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB-G1 with 2-(2'-hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB-G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π-π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB-G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli-responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol-gel phase transitions.

  16. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery.

    PubMed

    Lee, Ji Eun; Lee, Nohyun; Kim, Hyoungsu; Kim, Jaeyun; Choi, Seung Hong; Kim, Jeong Hyun; Kim, Taeho; Song, In Chan; Park, Seung Pyo; Moon, Woo Kyung; Hyeon, Taeghwan

    2010-01-20

    Highly versatile nanocomposite nanoparticles were synthesized by decorating the surface of mesoporous dye-doped silica nanoparticles with multiple magnetite nanocrystals. The superparamagnetic property of the magnetite nanocrystals enabled the nanoparticles to be used as a contrast agent in magnetic resonance (MR) imaging, and the dye molecule in the silica framework imparted optical imaging modality. Integrating a multitude of magnetite nanocrystals on the silica surface resulted in remarkable enhancement of MR signal due to the synergistic magnetism. An anticancer drug, doxorubicin (DOX), could be loaded in the pores and induced efficient cell death. In vivo passive targeting and accumulation of the nanoparticles at the tumor sites was confirmed by both T2 MR and fluorescence imaging. Furthermore, apoptotic morphology was clearly detected in tumor tissues of mice treated with DOX loaded nanocomposite nanoparticles, demonstrating that DOX was successfully delivered to the tumor sites and its anticancer activity was retained.

  17. Simultaneous determination of multiple amino acids in plasma in critical illness by high performance liquid chromatography with ultraviolet and fluorescence detection.

    PubMed

    Wang, Hao; McNeil, Yvette R; Yeo, Tsin W; Anstey, Nicholas M

    2013-12-01

    There is increasing recognition that the host response to critical illness includes derangement of multiple amino acid pathways, including amino acids (AAs) central to metabolism and immune, endothelial and neurological function. To characterise concentration changes of these plasma amino acid we report the development and validation of a method for the quantification of AAs in small volumes of plasma (50μL) using HPLC with simultaneous UV and fluorescence (FL) detection. Protein precipitation and pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is followed by reversed phase HPLC separation. Calibration curves were built with norleucine as an internal standard. Thirty-three (including the 20 proteinogenic) AAs, were selected as standards and their corresponding concentrations in the plasma of healthy human controls and patients with severe falciparum malaria were quantified. This method enables the detection of perturbations in arginine metabolism, aromatic amino acid pathways, methionine transsulfuration and transmethylation pathways and other metabolic pathways.

  18. Multiple-overtone resonance Raman scattering and fluorescence from I{sub 2} species adsorbed on silver surfaces

    SciTech Connect

    Sibbald, M.S.; Chumanov, G.; Small, G.; Cotton, T.M.

    1998-07-01

    A detailed excitation profile of a Raman progression consisting of up to six overtones and a fundamental band at 123 cm{sup {minus}1} observed from iodide adsorbed on an electrochemically roughened silver surface at 20 K is analyzed. The excitation profile was constructed from 77 spectra obtained by tuning the laser wavelength in {approximately}0.25 nm steps through the spectral range 409 nm{endash}433 nm. The shift between resonances in the excitation profile, corresponding to the spacing between vibronic levels in the excited state, is also equal to 123 cm{sup {minus}1} indicating that the ground state and excited state potential energy surfaces have the same shape. Only two distinct resonances spaced three vibrational quanta apart were evident in the profile for each band in the progression. Curve fitting of the Raman band shapes indicates that each overtone is composed of one sharp and one broad band, whereas the fundamental contains only one sharp component. The measured width of the fundamental was less than 2.5 cm{sup {minus}1} FWHM, limited by the instrument function. It is proposed that the sharp Raman bands represent a normal vibrational mode of a surface-adsorbed I{sub 2}-like species with the width determined by the intrinsic vibrational dephasing in the ground state. On the other hand, the broad Raman bands reflect vibronic coupling between different I{sub 2}-like species adsorbed on the same Ag cluster. The broad bandwidths result from both dephasing associated with the vibronic coupling and the intrinsic vibrational dephasing. Other weak emission bands are attributed to resonance fluorescence corresponding to direct transitions from higher vibronic levels of the excited state to the ground state. An emission at 429.9 nm is assigned to exciton recombination in small silver iodide clusters which are formed after spontaneous oxidation of the iodide-modified silver surface. {copyright} {ital 1998 American Institute of Physics.}

  19. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  20. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection.

    PubMed

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-06-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  1. Multiple Linear Regression Analysis Indicates Association of P-Glycoprotein Substrate or Inhibitor Character with Bitterness Intensity, Measured with a Sensor.

    PubMed

    Yano, Kentaro; Mita, Suzune; Morimoto, Kaori; Haraguchi, Tamami; Arakawa, Hiroshi; Yoshida, Miyako; Yamashita, Fumiyoshi; Uchida, Takahiro; Ogihara, Takuo

    2015-09-01

    P-glycoprotein (P-gp) regulates absorption of many drugs in the gastrointestinal tract and their accumulation in tumor tissues, but the basis of substrate recognition by P-gp remains unclear. Bitter-tasting phenylthiocarbamide, which stimulates taste receptor 2 member 38 (T2R38), increases P-gp activity and is a substrate of P-gp. This led us to hypothesize that bitterness intensity might be a predictor of P-gp-inhibitor/substrate status. Here, we measured the bitterness intensity of a panel of P-gp substrates and nonsubstrates with various taste sensors, and used multiple linear regression analysis to examine the relationship between P-gp-inhibitor/substrate status and various physical properties, including intensity of bitter taste measured with the taste sensor. We calculated the first principal component analysis score (PC1) as the representative value of bitterness, as all taste sensor's outputs shared significant correlation. The P-gp substrates showed remarkably greater mean bitterness intensity than non-P-gp substrates. We found that Km value of P-gp substrates were correlated with molecular weight, log P, and PC1 value, and the coefficient of determination (R(2) ) of the linear regression equation was 0.63. This relationship might be useful as an aid to predict P-gp substrate status at an early stage of drug discovery.

  2. Effects of self-hypnosis training and cognitive restructuring on daily pain intensity and catastrophizing in individuals with multiple sclerosis and chronic pain.

    PubMed

    Jensen, Mark P; Ehde, Dawn M; Gertz, Kevin J; Stoelb, Brenda L; Dillworth, Tiara M; Hirsh, Adam T; Molton, Ivan R; Kraft, George H

    2011-01-01

    Fifteen adults with multiple sclerosis were given 16 sessions of treatment for chronic pain that included 4 sessions each of 4 different treatment modules: (a) an education control intervention; (b) self-hypnosis training (HYP); (c) cognitive restructuring (CR); and (d) a combined hypnosis-cognitive restructuring intervention (CR-HYP). The findings supported the greater beneficial effects of HYP, relative to CR, on average pain intensity. The CR-HYP treatment appeared to have beneficial effects greater than the effects of CR and HYP alone. Future research examining the efficacy of an intervention that combines CR and HYP is warranted. PMID:21104484

  3. Long-term dynamics of tropical walking sticks in response to multiple large-scale and intense disturbances.

    PubMed

    Willig, Michael R; Presley, Steven J; Bloch, Christopher P

    2011-02-01

    Understanding the effects of disturbance and secondary succession on spatio-temporal patterns in the abundance of species is stymied by a lack of long-term demographic data, especially in response to infrequent and high intensity disturbances, such as hurricanes. Moreover, resistance and resilience to hurricane-induced disturbance may be mediated by legacies of previous land use, although such interactive effects are poorly understood, especially in tropical environments. We address these central issues in disturbance ecology by analyzing an extensive dataset, spanning the impacts of Hurricanes Hugo and Georges, on the abundance of a Neotropical walking stick, Lamponius portoricensis, in tabonuco rainforest of Puerto Rico during the wet and dry seasons from 1991 to 2007. By synthesizing data from two proximate sites in tabonuco forest, we show that resistance to Hurricane Hugo (97% reduction in abundance) was much less than resistance to Hurricane Georges (21% reduction in abundance). Based on a powerful statistical approach (generalized linear mixed-effects models with Poisson error terms), we documented that the temporal trajectories of abundance during secondary succession (i.e., patterns of resilience) differed between hurricanes and among historical land use categories, but that the effects of hurricanes and land use histories were independent of each other. These complex results likely arise because of differences in the intensities of the two hurricanes with respect to microclimatic effects (temperature and moisture) in the forest understory, as well as to time-lags in the response of L. portoricensis to changes in the abundance and distribution of preferred food plants (Piper) in post-hurricane environments.

  4. Magnetic resonance imaging of the cerebral aqueduct. Signal intensity time curves demonstrated by fast acquisition with multiple excitation (FAME).

    PubMed

    van den Hout, J H; Bakker, C J; Mali, W P; van Dijk, P; Faber, J A; Feldberg, M A; Gooskens, R H; Witkamp, T D

    1989-11-01

    Using cardiac-gated fast acquisition with multiple excitation (FAME), time curves of the cerebral aqueduct signals were derived in 19 healthy volunteers and 14 patients. A mean curve of the normal subjects was determined during systole. A relatively stable point of time was found at 270 msec after the R-wave supposed to be the reversal of the flow of cerebral-spinal fluid in the aqueduct. Different curves were noticed in complete aqueductal obstruction (n = 2); in other pathologic states, such as cerebral tumor (n = 3), normal pressure hydrocephalus (n = 3), and brain atrophy (n = 1), no different signal time curves were observed. Parameters such as aqueduct diameter, cerebro-spinal fluid volume and brain compliance are probably other important factors in aqueduct liquor flow.

  5. Reactive Astrocytes Expressing Intense Estrogen Receptor-alpha Immunoreactivities Have Much Elongated Cytoplasmic Processes: An Autopsy Case of Human Cerebellar Tissue with Multiple Genitourinary and Gastrointestinal Anomalies

    PubMed Central

    Kim, Eo-Jin; Oh, Chang Seok; Kim, Jaehyup; Kim, Wu Ho; Chung, Yoon Hee

    2007-01-01

    We performed an immunohistochemical study on the estrogen receptor alpha (ER-α) distribution in the cerebellum of a human neonate with multiple congenital anomalies, that had been acquired during autopsy. Although the exact pathology in the brain was not clearly elucidated in this study, an unidentified stressful condition might have induced the astrocytes into reactive states. In this immunohistochemical study on the neonatal cerebellum with multiple congenital anomalies, intense ER-α immunoreactivities (IRs) were localized mainly within the white matter even though ER-α IRs were known to be mainly localized in neurons. Double immunohistochemical staining showed that ER-α IR cells were reactive astrocytes, but not neurons. Interestingly, there were differences in the process length among the reactive astrocytes showing ER-α IRs. Our quantitative data confirmed that among the glial fibrillary acidic protein (GFAP)-expressing reactive astrocytes, the cells exhibiting intense ER-α IRs have much longer cytoplasmic processes and relatively weaker GFAP IRs. Taken together, the elongated processes of reactive astrocytes might be due to decreased expression of GFAP, which might be induced by elevated expression of ER-α even though the elucidation of the exact mechanism needs further studies. PMID:17982251

  6. An echolocation model for range discrimination of multiple closely spaced objects: Transformation of spectrogram into the reflected intensity distribution

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Kunugiyama, Kenji; Yano, Masafumi

    2004-02-01

    Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, bats' echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for three or more closely spaced objects with an accuracy of about 1 μs, when all the objects are located within 30 μs of delay separation. This model is applicable for the range discrimination of objects having different reflected intensities and in a noisy environment (0-dB signal-to-noise ratio) while the cross-correlation method is hard to apply to these problems.

  7. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    PubMed Central

    Stevens, Leslie M.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY. PMID:26086655

  8. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students.

    PubMed

    Stevens, Leslie M; Hoskins, Sally G

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY. PMID:26086655

  9. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students.

    PubMed

    Stevens, Leslie M; Hoskins, Sally G

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY.

  10. The paradox between low shock-stage and evidence for compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Hanna, Romy D.; Dobson, Katherine J.; Tomkinson, Tim; Lee, Martin R.

    2015-01-01

    Petrographic analysis of eight CM carbonaceous chondrites (EET 96029, LAP 031166, LON 94101, MET 01072, Murchison, Murray, SCO 06043, QUE 93005) by electron imaging and diffraction, and X-ray computed tomography, reveals that six of them have a petrofabric defined by shock flattened chondrules. With the exception of Murchison, those CMs that have a strong petrofabric also contain open or mineralized fractures, indicating that tensional stresses accompanying the impacts were sufficient to locally exceed the yield strength of the meteorite matrix. The CMs studied span a wide range of petrologic subtypes, and in common with Rubin (2012) we find that the strength of their petrofabrics increases with their degree of aqueous alteration. This correspondence suggests that impacts were responsible for enhancing alteration, probably because the fracture networks they formed tapped fluid reservoirs elsewhere in the parent body. Two meteorites that do not fit this pattern are MET 01072 and Murchison; both have a strong petrofabric but are relatively unaltered. In the case of MET 01072, impact deformation is likely to have postdated parent body aqueous activity. The same may also be true for Murchison, but as this meteorite also lacks fractures and veins, its chondrules were most likely flattened by multiple low intensity impacts. Multiphase deformation of Murchison is also revealed by the microstructures of calcite grains, and chondrule-defined petrofabrics as revealed by X-ray computed tomography. The contradiction between the commonplace evidence for impact-deformation of CMs and their low shock stages (most belong to S1) can be explained by most if not all having been exposed to multiple low intensity (i.e., <5 GPa) shock events. Aqueous alteration was enhanced by those impacts that were of sufficient intensity to open high permeability fracture networks that could connect to fluid reservoirs.

  11. Monte Carlo fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge

    2011-07-01

    Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.

  12. Amobarbital treatment of multiple personality. Use of structured video tape interviews as a basis for intensive psychotherapy.

    PubMed

    Hall, R C; LeCann, A F; Schoolar, J C

    1978-09-01

    The case of a 30-year-old woman with five distinct personalities is presented. The patient was treated, using a system of structured video taped sodium amobarbital interviews, in which areas to be explored were developed in psychotherapy. Tapes were played for the patient after each session. The taped material was used as the basis for psychotherapeutic investigation. The patient evidenced many of the features previously reported in cases of multiple personality, specifically: being the product of an unwanted pregnancy in a repressively rigid family; emotional distancing by one parent; strong sibling rivalry with an adopted sib; family history of mental illness; a traumatic first sexual experience (rape); a marriage to a maladjusted individual in an attempt to escape the parental home; a high internalized standard of performance and an inability to display anger or negative feelings toward the parents. In the course of treatment, the patient's personalties fused and she was able to accept each component as part of herself. No further fragmentation has occurred during the year following discharge. The therapy technique minimized dependency, and the possiblity of addiction to amobarbital interviews permitted more active patient therapy involvement, and set clear-cut goals and expectations for improvement before further amobarbital interviews could be conducted.

  13. Amobarbital treatment of multiple personality. Use of structured video tape interviews as a basis for intensive psychotherapy.

    PubMed

    Hall, R C; LeCann, A F; Schoolar, J C

    1978-09-01

    The case of a 30-year-old woman with five distinct personalities is presented. The patient was treated, using a system of structured video taped sodium amobarbital interviews, in which areas to be explored were developed in psychotherapy. Tapes were played for the patient after each session. The taped material was used as the basis for psychotherapeutic investigation. The patient evidenced many of the features previously reported in cases of multiple personality, specifically: being the product of an unwanted pregnancy in a repressively rigid family; emotional distancing by one parent; strong sibling rivalry with an adopted sib; family history of mental illness; a traumatic first sexual experience (rape); a marriage to a maladjusted individual in an attempt to escape the parental home; a high internalized standard of performance and an inability to display anger or negative feelings toward the parents. In the course of treatment, the patient's personalties fused and she was able to accept each component as part of herself. No further fragmentation has occurred during the year following discharge. The therapy technique minimized dependency, and the possiblity of addiction to amobarbital interviews permitted more active patient therapy involvement, and set clear-cut goals and expectations for improvement before further amobarbital interviews could be conducted. PMID:690626

  14. Cancer detection by quantitative fluorescence image analysis.

    PubMed

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  15. 3D multiple optical trapping of Au-nanoparticles and prokaryote E. coli using intra-cavity generated non-circular beam of inhomogeneous intensity

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shakher, C.; Mehta, D. S.

    2010-06-01

    We report 3D multiple trapping of dielectric polystyrene (PS) beads and gold nano-particles (GNPs) in single beam optical tweezers system using an asymmetric beam of inhomogeneous intensity distribution. This special kind of beam of quasi-TEM11 profile was generated from intra-cavity CW-laser source operating at 532 nm. Multiple trapping of both the low refractive index rod-like Escherichia coli bacteria and 253 nm plasmonic GNPs dispersed in 1.025 μm PS beads which were homogenized in de-ionized water was realized utilizing this spatial beam. Laser-GNPs interaction rendered the enhancement of local surface plasmon resonance field around GNPs causing long-range aggregation of PS beads. The multiple trapping of plasmonic GNPs by the present simple method might find applications for micro- and nano-connectors, underlying physical processes in light-matter interaction assays for inter-particle force analysis, cancer diagnostic and photothermolysis, surface-enhanced Raman scattering (SERS) spectroscopy, and surface plasmon based biological and chemical sensors.

  16. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders

    PubMed Central

    Lange-Consiglio, A.; Meucci, A.; Cremonesi, F.

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r2>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage. PMID:26623308

  17. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders.

    PubMed

    Lange-Consiglio, A; Meucci, A; Cremonesi, F

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r(2)>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage.

  18. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.

    PubMed

    Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang

    2016-09-01

    The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut.

  19. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.

    PubMed

    Zhao, Lei; Ming, Tian; Chen, Huanjun; Liang, Yao; Wang, Jianfang

    2011-09-01

    Both the excitation and emission processes of a fluorescent molecule positioned near a noble metal nanocrystal can interact strongly with the localized surface plasmon resonance of the metal nanocrystal. While the effects of this plasmon-fluorophore interaction on the intensity, polarization, and direction of the fluorescence emission have been intensively investigated, the plasmonic effect on the emission spectrum has barely been explored. We show, on the single-particle level, that the localized surface plasmon resonance of Au nanorods can strongly alter the spectral profile of the emission from adjacent fluorescent molecules. The fluorescent molecules are embedded in a mesostructured silica shell that is uniformly coated on each Au nanorod. The longitudinal plasmon resonance wavelengths of the nanorods are deliberately shifted away from the intrinsic fluorescence emission peak wavelength by synthetically tuning the nanorod aspect ratio. The resultant emission spectra of the fluorescent molecules are found to be remarkably modulated. Besides the intrinsic fluorescence peak, a plasmon-induced new peak emerges at the plasmon resonance wavelength. The intensity of this plasmon-induced fluorescence peak increases as the size of the Au nanorod is increased. This spectral modulation can be understood by depicting the decay process of the fluorophore with multiple vibrational energy levels. The plasmon with a specific resonance energy will enhance the transition rate between the energy levels that have the transition energy approximately equal to the plasmon energy. This plasmon-enhanced transition rate results in a modulated spectral profile of the fluorescence emission.

  20. Two-photon excitation in laser scanning fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Strickler, James H.; Webb, Watt W.

    1991-04-01

    Simultaneous absorption of two red photons from a strongly focused subpicosecond colliding pulse mode4ocked dye laser stimulates visible fluorescence emission from fluorophores having their normal absorption in the ultraviolet1. The quadratic increase of the two-photon excitation rate with excitation intensity restricts fluorescence emission to the focal volume thus providing the same depth resolution as does confocal microscopy. Image degradation due to out of focus backround is thus avoided. Photobleaching and most cellular photodamage are similarly confined to the focus thereby minimizing sample degredation during acquisition of the multiple sections required for 3-d image reconstruction. Fluorescence images of living cells and other thick photolabile fluorescence labled assemblies illustrate the depth discrimination of both two-photon fluorescence excitation and photobleaching. The quadratic intensity dependence of two-photon excitation allows 3-d spatially resolved photochemistry in particular the photolytic release of caged compounds such as neurotransmitters nucleotides fluorescent dyes and second messengers such as 1P3 and Ca. The two-photon release of cased ATP has been measured and release of a caged fluorescent dye has been shown. Point photobleaching and a 3-d " write once read many" optical memory have been demonstrated. Two-photon excitation of photo-initiated polymerization with a sharply focused single beam allows microfabrication of complex structures of arbitrary form. By scanning the focused beam through a liquid polymer with a UV excited initiator it is possible to harden the polymer only at the focus thereby creating

  1. Polar plot representation of time-resolved fluorescence.

    PubMed

    Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M

    2014-01-01

    Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

  2. Evaluation of a High-Intensity Green Fluorescent Protein Fluorophage Method for Drug- Resistance Diagnosis in Tuberculosis for Isoniazid, Rifampin, and Streptomycin

    PubMed Central

    Yu, Xia; Gu, Yunting; Jiang, Guanglu; Ma, Yifeng; Zhao, Liping; Sun, Zhaogang; Jain, Paras; O'Donnell, Max; Larsen, Michelle; Jacobs, William R.; Huang, Hairong

    2016-01-01

    A novel method for detecting drug resistance in Mycobacterium tuberculosis using mycobacteriophage Φ2GFP10 was evaluated with clinical isolates. The phage facilitates microscopic fluorescence detection due to the high expression of green fluorescence protein which also simplifies the operative protocol as well. A total of 128 clinical isolates were tested by the phage assay for isoniazid (INH), rifampin (RIF), and streptomycin (STR) resistance while conventional drug susceptibility test, by MGIT960, was used as reference. The sensitivities of Φ2GFP10 assay for INH, RIF, and STR resistance detection were 100, 98.2, and 89.3%, respectively while their specificities were 85.1, 98.6, and 95.8%, respectively. The agreement between phage and conventional assay for detecting INH, RIF, and STR resistance was 92.2, 98.4, and 93.0%, respectively. The Φ2GFP10-phage results could be available in 2 days for RIF and STR, while it takes 3 days for INH, with an estimated cost of less than $2 to test all the three antibiotics. The Φ2GFP10-phage method has the potential to be a valuable, rapid and economical screening method for detecting drug-resistant tuberculosis. PMID:27379052

  3. Dose-dense and less dose-intense Total Therapy 5 for gene expression profiling-defined high-risk multiple myeloma.

    PubMed

    Jethava, Y; Mitchell, A; Zangari, M; Waheed, S; Schinke, C; Thanendrarajan, S; Sawyer, J; Alapat, D; Tian, E; Stein, C; Khan, R; Heuck, C J; Petty, N; Avery, D; Steward, D; Smith, R; Bailey, C; Epstein, J; Yaccoby, S; Hoering, A; Crowley, J; Morgan, G; Barlogie, B; van Rhee, F

    2016-01-01

    Multiple myeloma (MM) is a heterogeneous disease with high-risk patients progressing rapidly despite treatment. Various definitions of high-risk MM are used and we reported that gene expression profile (GEP)-defined high risk was a major predictor of relapse. In spite of our best efforts, the majority of GEP70 high-risk patients relapse and we have noted higher relapse rates during drug-free intervals. This prompted us to explore the concept of less intense drug dosing with shorter intervals between courses with the aim of preventing inter-course relapse. Here we report the outcome of the Total Therapy 5 trial, where this concept was tested. This regimen effectively reduced early mortality and relapse but failed to improve progression-free survival and overall survival due to relapse early during maintenance. PMID:27471869

  4. Dose-dense and less dose-intense Total Therapy 5 for gene expression profiling-defined high-risk multiple myeloma

    PubMed Central

    Jethava, Y; Mitchell, A; Zangari, M; Waheed, S; Schinke, C; Thanendrarajan, S; Sawyer, J; Alapat, D; Tian, E; Stein, C; Khan, R; Heuck, C J; Petty, N; Avery, D; Steward, D; Smith, R; Bailey, C; Epstein, J; Yaccoby, S; Hoering, A; Crowley, J; Morgan, G; Barlogie, B; van Rhee, F

    2016-01-01

    Multiple myeloma (MM) is a heterogeneous disease with high-risk patients progressing rapidly despite treatment. Various definitions of high-risk MM are used and we reported that gene expression profile (GEP)-defined high risk was a major predictor of relapse. In spite of our best efforts, the majority of GEP70 high-risk patients relapse and we have noted higher relapse rates during drug-free intervals. This prompted us to explore the concept of less intense drug dosing with shorter intervals between courses with the aim of preventing inter-course relapse. Here we report the outcome of the Total Therapy 5 trial, where this concept was tested. This regimen effectively reduced early mortality and relapse but failed to improve progression-free survival and overall survival due to relapse early during maintenance. PMID:27471869

  5. Use of Tunable, Pulsed Dye Laser for Quantitative Fluorescence in Syphilis Serology (FTA-ABS Test)

    PubMed Central

    Kasatiya, S. S.; Lambert, N. G.; Laurence, R. A.

    1974-01-01

    A pulsed dye laser was used as an excitation source in a fluorescent treponemal antibody absorption (FTA-ABS) test. A high precision in quantitative fluorescence was obtained with this high-power excitation source coupled to an electronic detection system and a storage oscilloscope by standardization of fluorescence evaluation and through elimination of human error. One 0.4-μs pulse exposure was sufficient to record fluorescence intensity data on the oscilloscope. Absence of fading of fluorescence after repeated excitation permitted multiple readings of the same microscope field. Almost 100% reproducible results were obtained for the FTA-ABS test with 40 samples. Electronic detection of fluorescence and the high sensitivity obtained with laser excitation raise doubts about the relative value of quantitative immunofluorescence in the FTA-ABS test. PMID:4598221

  6. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    PubMed

    Danielson, Eric; Lee, Sang H

    2014-01-01

    Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters) in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis), streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free.

  7. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    PubMed

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. PMID:25770441

  8. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    PubMed

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface.

  9. Clinical applicability and prognostic significance of molecular response assessed by fluorescent-PCR of immunoglobulin genes in multiple myeloma. Results from a GEM/PETHEMA study.

    PubMed

    Martinez-Lopez, Joaquin; Fernández-Redondo, Elena; García-Sánz, Ramón; Montalbán, María Angeles; Martínez-Sánchez, Pilar; Pavia, Bruno; Mateos, María Victoria; Rosiñol, Laura; Martín, Marisa; Ayala, Rosa; Martínez, Rafael; Blanchard, María Jesus; Alegre, Adrian; Besalduch, Joan; Bargay, Joan; Hernandez, Miguel T; Sarasquete, María Eugenia; Sanchez-Godoy, Pedro; Fernández, Manuela; Blade, Joan; San Miguel, Jesús F; Lahuerta, Juan Jose

    2013-12-01

    Minimal residual disease monitoring is becoming increasingly important in multiple myeloma (MM), but multiparameter flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) techniques are not routinely available. This study investigated the prognostic influence of achieving molecular response assessed by fluorescent-PCR (F-PCR) in 130 newly diagnosed MM patients from Grupo Español Multidisciplinar de Melanoma (GEM)2000/GEM05 trials (NCT00560053, NCT00443235, NCT00464217) who achieved almost very good partial response after induction therapy. As a reference, we used the results observed with simultaneous MFC. F-PCR at diagnosis was performed on DNA using three different multiplex PCRs: IGH D-J, IGK V-J and KDE rearrangements. The applicability of F-PCR was 91·5%. After induction therapy, 64 patients achieved molecular response and 66 non-molecular response; median progression-free survival (PFS) was 61 versus 36 months, respectively (P = 0·001). Median overall survival (OS) was not reached (NR) in molecular response patients (5-year survival: 75%) versus 66 months in the non-molecular response group (P = 0·03). The corresponding PFS and OS values for patients with immunophenotypic versus non-immunophenotypic response were 67 versus 42 months (P = 0·005) and NR (5-year survival: 95%) versus 69 months (P = 0·004), respectively. F-PCR analysis is a rapid, affordable, and easily performable technique that, in some circumstances, may be a valid approach for minimal residual disease investigations in MM.

  10. Time-resolved fluorescence microscopy.

    PubMed

    Suhling, Klaus; French, Paul M W; Phillips, David

    2005-01-01

    In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.

  11. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also

  12. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    La Calle, Inmaculada De; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2012-01-01

    In this work, two ultrasound-based procedures are developed for sample preparation prior to determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Sr in biological tissues by total reflection X-ray fluorescence spectrometry. Ultrasound-assisted extraction by means of a cup-horn sonoreactor and ultrasonic-probe slurry sampling were compared with a well-established procedure such as magnetic agitation slurry sampling. For that purpose, seven certified reference materials and different real samples of animal tissue were used. Similar accuracy and precision is obtained with the three sample preparation approaches tried. Limits of detection were dependent on both the sample matrix and the sample pre-treatment used, best values being achieved with ultrasound-assisted extraction. Advantages of ultrasound-assisted extraction include reduced sample handling, decreased contamination risks (neither addition of surfactants nor use of foreign objects inside the extraction vial), simpler background (no solid particles onto the sample carrier) and improved recovery for some elements such as P. A mixture of 10% v/v HNO3 + 20-40% v/v HCl was suitable for extraction from biological tissues.

  13. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  14. Fluorescence analyzer for lignin

    SciTech Connect

    Berthold, J.W.; Malito, M.L.; Jeffers, L.

    1993-06-01

    An apparatus for measuring lignin concentration with time resolved fluorescence in an undiluted wood pulp or black liquor sample, on a real-time, in situ basis is described, comprising: light source means for applying excitation light pulses at a selected wavelength and at known time intervals to the undiluted sample for causing the lignin concentration to produce fluorescent emission light with a fluorescence intensity that monotonically decreases in a quenched fluorescence regime; light detector means for measuring the emission light at the known time intervals and establishing signals indicative thereof; switching means for turning said light detector means on at precise specified time intervals after each excitation light pulse; and signal processing means connected to the light source means and the light detector means for comparing intensities of the emission light from the lignin in the quenched fluorescence regime to the intensities of the excitation light pulses on a time resolved basis for providing a measurement of the lignin concentration in the undiluted sample as a function of the time resolved emission light intensity.

  15. Time-resolved fluorescence spectroscopy of spinach chloroplast.

    PubMed

    Yu, W; Pellegrino, F; Alfano, R R

    1977-04-11

    Picosecond fluorescent kinetics and time-resolved spectra of spinach chloroplast were measured at room temperature and low temperatures. The measurement is conducted with 530 nm excitation at an average intensity of 2-10(14) photons/cm2, pluse and at a pulse separation of 6 ns for the 100 pulses used. The 685 nm fluorescent kinetics was found to decay with two components, a fast component with a 56 ps lifetime, and a slow component with a 220 ps lifetime. The 730 nm fluorescent kinetics at room temperature is a single exponential decay with a 100 ps lifetime. The 730 nm fluorescence lifetime was found to increase by a factor of 6 when the temperature was lowered from room temperature to 90 K, while the 685 and 695 nm fluorescent kinetics were unchanged. The time-resolved spectra data obtained within 10 ps after excitation is consistent with the kinetic data reported here. A two-level fluorescence scheme is proposed to explain the kinetics. The effect of excitation with high light intensity and multiple pulses is discussed.

  16. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma.

    PubMed

    Rosiñol, Laura; Pérez-Simón, José Antonio; Sureda, Anna; de la Rubia, Javier; de Arriba, Felipe; Lahuerta, Juan José; González, José David; Díaz-Mediavilla, Joaquín; Hernández, Belén; García-Frade, Javier; Carrera, Dolores; León, Angel; Hernández, Miguel; Abellán, Pascual Fernández; Bergua, Juan Miguel; San Miguel, Jesús; Bladé, Joan

    2008-11-01

    One hundred ten patients with multiple myeloma (MM) failing to achieve at least near-complete remission (nCR) after a first autologous stem cell transplantation (ASCT) were scheduled to receive a second ASCT (85 patients) or a reduced-intensity-conditioning allograft (allo-RIC; 25 patients), depending on the human leukocyte antigen (HLA)-identical sibling donor availability. There was a higher increase in complete remission (CR) rate (40% vs 11%, P = .001) and a trend toward a longer progression-free survival (PFS; median, 31 months vs not reached, P = .08) in favor of allo-RIC. In contrast, it was associated with a trend toward a higher transplantation-related mortality (16% vs 5%, P = .07), a 66% chance of chronic graft-versus-host disease and no statistical difference in event-free survival and overall survival. Although the PFS plateau observed with allo-RIC is very encouraging, this procedure is associated with high morbidity and mortality, and therefore it should still be considered investigational and restricted to well-designed prospective clinical trials. This trial is registered at ClinicalTrials.gov ID number NCT00560053. PMID:18612103

  17. Time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Ishikawa, Kenichi L.

    2015-02-01

    The time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model is proposed (TD-ORMAS) for multielectron dynamics in intense laser fields. Extending the previously proposed time-dependent complete-active-space self-consistent-field method [TD-CASSCF; Phys. Rev. A 88, 023402 (2013), 10.1103/PhysRevA.88.023402], which divides the occupied orbitals into core and active orbitals, the TD-ORMAS method further subdivides the active orbitals into an arbitrary number of subgroups and poses the occupation restriction by giving the minimum and maximum number of electrons distributed in each subgroup. This enables highly flexible construction of the configuration-interaction (CI) space, allowing a large-active-space simulation of dynamics, e.g., the core excitation or ionization. The equations of motion for both CI coefficients and spatial orbitals are derived based on the time-dependent variational principle, and an efficient algorithm is proposed to solve for the orbital time derivatives. In-depth descriptions of the computational implementation are given in a readily programmable manner. The numerical application to the one-dimensional lithium hydride cluster models demonstrates that the high flexibility of the TD-ORMAS framework allows for the cost-effective simulations of multielectron dynamics by exploiting systematic series of approximations to the TD-CASSCF method.

  18. A computational model of echolocation: Transformation of spectrogram into the reflected intensity distribution for range discrimination of multiple closely spaced objects

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Kunugiyama, Kenji; Yano, Masafumi

    2001-05-01

    Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, the echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for multiple closely spaced objects with an accuracy of about 1 microsecond, when all the objects are located within 30 microseconds of delay separation. This accuracy is possible even with objects having different reflected intensities and in a noisy environment.

  19. Comparable outcomes between unrelated and related donors after reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation in patients with high-risk multiple myeloma.

    PubMed

    El-Cheikh, Jean; Crocchiolo, Roberto; Boher, Jean-Marie; Furst, Sabine; Stoppa, Anne-Marie; Ladaique, Patrick; Faucher, Catherine; Calmels, Boris; Castagna, Luca; Lemarie, Claude; De Colella, Jean-Marc Schiano; Coso, Diane; Bouabdallah, Reda; Chabannon, Christian; Blaise, Didier

    2012-06-01

    The purpose of this study was to assess the results of allogeneic stem cell transplantation (allo-SCT) after reduced-intensity conditioning (RIC) from matched related donors (MRD) and unrelated donors (URD) in 40 patients with high-risk multiple myeloma (MM) in a single centre. Seventeen (43%) (Group 1) and 23 patients (57%) (Group 2) had URD and MRD, respectively. Thirty-nine patients (98%) received one or more autologous transplantation. The median follow-up was 22 months (1-49). None of our patient experienced a graft rejection. The cumulative incidence of grade II-IV acute GVHD was higher (47%) for the URD vs. (17%) for the MRD (P = 0.092). The cumulative incidence of chronic GVHD was no different between the two groups (24% vs. 30%, respectively). At 2 yr, the TRM probabilities were lower in the unrelated group 12% vs. 22% in the related group (P = 0.4). Also at 2 yrs, for patients receiving unrelated transplantation overall and progression-free survivals, 59% and 42%, respectively compared to patients with related donor transplantation, 66% and 44% (P = 0.241). In conclusion, these results suggest that URD in MM is feasible. The small number of patients with URD emphasizes the need to delineate indications and perform prospective protocols.

  20. A phase 2 study of three low-dose intensity subcutaneous bortezomib regimens in elderly frail patients with untreated multiple myeloma.

    PubMed

    Larocca, A; Bringhen, S; Petrucci, M T; Oliva, S; Falcone, A P; Caravita, T; Villani, O; Benevolo, G; Liberati, A M; Morabito, F; Montefusco, V; Passera, R; De Rosa, L; Omedé, P; Vincelli, I D; Spada, S; Carella, A M; Ponticelli, E; Derudas, D; Genuardi, M; Guglielmelli, T; Nozzoli, C; Aghemo, E; De Paoli, L; Conticello, C; Musolino, C; Offidani, M; Boccadoro, M; Sonneveld, P; Palumbo, A

    2016-06-01

    This phase 2 trial evaluated three low-dose intensity subcutaneous bortezomib-based treatments in patients ⩾75 years with newly diagnosed multiple myeloma (MM). Patients received subcutaneous bortezomib plus oral prednisone (VP, N=51) or VP plus cyclophosphamide (VCP, N=51) or VP plus melphalan (VMP, N=50), followed by bortezomib maintenance, and half of the patients were frail. Response rate was 64% with VP, 67% with VCP and 86% with VMP, and very good partial response rate or better was 26%, 28.5% and 49%, respectively. Median progression-free survival was 14.0, 15.2 and 17.1 months, and 2-year OS was 60%, 70% and 76% in VP, VCP, VMP, respectively. At least one drug-related grade ⩾3 non-hematologic adverse event (AE) occurred in 22% of VP, 37% of VCP and 33% of VMP patients; the discontinuation rate for AEs was 12%, 14% and 20%, and the 6-month rate of toxicity-related deaths was 4%, 4% and 8%, respectively. The most common grade ⩾3 AEs included infections (8-20%), and constitutional (10-14%) and cardiovascular events (4-12%); peripheral neuropathy was limited (4-6%). Bortezomib maintenance was effective and feasible. VP, VCP and VMP regimens demonstrated no substantial difference. Yet, toxicity was higher with VMP, suggesting that a two-drug combination followed by maintenance should be preferred in frail patients. PMID:26898189

  1. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  2. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  3. Ethynyl-linked (pyreno)pyrrole-naphthyridine and aniline-naphthyridine molecules as fluorescent sensors of guanine via multiple hydrogen bondings.

    PubMed

    Lu, Shao-Hung; Selvi, Srinivasan; Fang, Jim-Min

    2007-01-01

    New fluorescent molecular sensors for 9-alkylguanines were constructed by conjugation of 2-acetamido-1,8-naphthyridine with N-Boc-pyrrole, N-Boc-pyreno[2,1-b]pyrrole, or acetanilide moieties via an ethynyl bridge. In combination with the triple hydrogen-bonding motif of 2-acetamidonaphthyridine toward alkylguanine, an additional binding site was provided by the substituent properly located on the pyrrole or aniline ring to enhance the affinity of these receptor molecules. Besides the ESI-MS analyses, the binding events were readily monitored by the absorption and fluorescence changes in the visible region.

  4. Initial Sequential Organ Failure Assessment score versus Simplified Acute Physiology score to analyze multiple organ dysfunction in infectious diseases in Intensive Care Unit

    PubMed Central

    Nair, Remyasri; Bhandary, Nithish M.; D’Souza, Ashton D.

    2016-01-01

    Aims: To investigate initial Sequential Organ Failure Assessment (SOFA) score of patients in Intensive Care Unit (ICU), who were diagnosed with infectious disease, as an indicator of multiple organ dysfunction and to examine if initial SOFA score is a better mortality predictor compared to Simplified Acute Physiology Score (SAPS). Materials and Methods: Hospital-based study done in medical ICU, from June to September 2014 with a sample size of 48. Patients aged 18 years and above, diagnosed with infectious disease were included. Patients with history of chronic illness (renal/hepatic/pulmonary/  cardiovascular), diabetes, hypertension, chronic obstructive pulmonary disease, heart disease, those on immunosuppressive therapy/chemoradiotherapy for malignancy and patients in immunocompromised state were excluded. Blood investigations were obtained. Six organ dysfunctions were assessed using initial SOFA score and graded from 0 to 4. SAPS was calculated as the sum of points assigned to each of the 17 variables (12 physiological, age, type of admission, and three underlying diseases). The outcome measure was survival status at ICU discharge. Results: We categorized infectious diseases into dengue fever, leptospirosis, malaria, respiratory tract infections, and others which included undiagnosed febrile illness, meningitis, urinary tract infection and gastroenteritis. Initial SOFA score was both sensitive and specific; SAPS lacked sensitivity. We found no significant association between age and survival status. Both SAPS and initial SOFA score were found to be statistically significant as mortality predictors. There is significant association of initial SOFA score in analyzing organ dysfunction in infectious diseases (P < 0.001). SAPS showed no statistical significance. There was statistically significant (P = 0.015) percentage of nonsurvivors with moderate and severe dysfunction, based on SOFA score. Nonsurvivors had higher SAPS but was not statistically significant (P

  5. Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: An observational study.

    PubMed

    Eisele, Philipp; Alonso, Angelika; Szabo, Kristina; Ebert, Anne; Ong, Melissa; Schoenberg, Stefan O; Gass, Achim

    2016-09-01

    Recently, several studies reported increased signal intensity (SI) in the dentate nucleus (DN) after repeated application of gadolinium-based contrast agents (GBCAs), suggesting a deposition of gadolinium in this location. Patients with relapsing-remitting multiple sclerosis (RRMS) frequently show increased permeability of the blood-brain barrier as part of the inflammatory process in the brain parenchyma, which theoretically might increase the risk of gadolinium deposition. In this retrospective study, we investigated a possible increasing SI in the DN after repeated administrations of the macrocyclic contrast agent gadoterate meglumine.Forty-one RRMS patients (33 women, mean age 38 years) with at least 6 prior gadolinium-enhanced examinations (single dose gadoterate meglumine) were identified. A total of 279 unenhanced T1-weighted examinations were analyzed.SI ratio differences did not differ between the first and last MRI examination, neither for the DN-to-pons ratio (P = 0.594) nor for the DN-to-cerebellum ratio (P = 0.847). There was no correlation between the mean DN-to-pons, or between the mean DN-to-cerebellum SI ratio and the number of MRI examinations (P = 0.848 and 0.891), disease duration (P = 0.676 and 0.985), and expanded disability status scale (EDSS) (P = 0.639 and 0.945).We found no signal increases in the DN after a minimum of 6 injections of the macrocyclic GBCA gadoterate meglumine in RRMS patients. This warrants further investigations in regard to the true pathophysiologic basis of intracerebral gadolinium deposition. PMID:27684794

  6. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  7. Fluorescence and lasing in liquid crystalline photonic bandgap materials

    NASA Astrophysics Data System (ADS)

    Cao, Wenyi

    Cholesteric liquid crystals (CLCs) and cholesteric blue phases (BPs) are one-dimensional and three-dimensional photonic bandgap (PGB) materials. In this work, fluorescence and lasing are experimentally studied in dye-doped CLC films and BPs, together with the calculations of density of states rho in CLC films. The normal modes of light propagation in a CLC film in the direction along the helical axis have been obtained analytically, using transfer matrix method. Two normal modes are elliptically polarized and their rho differ greatly. The value and wavelength of the largest rho depend on the CLC film thickness. The fluorescence spectra of dye DCM in CLC films are greatly altered: suppressed in the stop band and enhanced at band edges with intensity oscillations. The altered fluorescence spectra are in good agreement with the calculated spectra from rho. The fluorescence lifetimes, however, have no measurable difference. At high dye concentration, the fluorescence intensity is quenched by the formation of dye excimers. Mirrorless lasing in CLC films has been studied systematically. The lasing wavelengths and thresholds are in good agreement with the calculated values from rho. The threshold is optimized over CLC film thickness and dye concentration. Lasing at defect modes has been observed in CLC composite structures. Photon-counting statistics confirms the transition from the incoherent fluorescence to coherent laser emission with increasing pump energy. The totally coherent emitting area is estimated from the diffraction pattern of the CLC laser emission. The structures of BPs are characterized through textures and reflection measurements. In BP I, the stimulated emission is due to the multiple reflection of the fluorescence by small BP I crystals. In large BP II single crystals, the fluorescence is altered and lasing occurs at edges of the reflection peak or at defect modes. Lasing in three dimensions has been observed for the first time in PGB materials, and

  8. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  9. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  10. Fast and reliable screening of mutations in human tumors: use of multiple fluorescence-based long linker arm nucleotides assay (mf-LLA).

    PubMed

    Marcelino, L A; Galvin, M; Martins, G M; Proença, M J; Mayrand, E; Rueff, J A; Monteiro, C J

    1999-06-01

    Human tumor samples were screened for point mutations by adapting a mobility-shift assay to automated DNA sizing. This screen identifies the type of point mutation and relative amount of mutated DNA sequences present in a sample. Test samples having known hypoxanthine-guanine phosphoribosyl transferase (hprt)/exon-3 sequence mutations were characterized by: (i) PCR amplification, (ii) fluorescent dye-primer extension with 36-atom linker derived deoxycytosine or deoxyuridine triphosphate and the remaining three natural nucleotides and (iii) sizing of the resulting fluorescently labeled modified strands, using an automated DNA sequencer. Routinely, a range of sizes is observed among the sequence variants of a single DNA target sequence. This is because nucleotide analogs are incorporated into DNA strands in a sequence-dependent manner, resulting in composition-dependent electrophoretic mobility. Thus, point mutations are identified as shifts in mobility between the fluorescently labeled modified strands of the control and test samples. The twenty different hprt/exon-3 single-base substitution mutations tested were easily identified, even at fourfold dilution with control DNA.

  11. Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence.

    PubMed

    Rao, Sujaya; Ostroverkhova, Oksana

    2015-07-01

    Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds. PMID:25666705

  12. Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence.

    PubMed

    Rao, Sujaya; Ostroverkhova, Oksana

    2015-07-01

    Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds.

  13. Fluorescence lifetime imaging of skin cancer

    NASA Astrophysics Data System (ADS)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  14. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  15. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  16. Time-resolved fluorescence anisotropy imaging.

    PubMed

    Suhling, Klaus; Levitt, James; Chung, Pei-Hua

    2014-01-01

    Fluorescence can be characterized by its intensity, position, wavelength, lifetime, and polarization. The more of these features are acquired in a single measurement, the more can be learned about the sample, i.e., the microenvironment of the fluorescence probe. Polarization-resolved fluorescence lifetime imaging-time-resolved fluorescence anisotropy imaging, TR-FAIM-allows mapping of viscosity or binding or of homo-FRET which can indicate dimerization or generally oligomerization.

  17. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    SciTech Connect

    Crissman, Harry A.; Cui, H. H.; Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  18. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement.

    PubMed

    Futamura, Koji; Sekino, Masashi; Hata, Akihiro; Ikebuchi, Ryoyo; Nakanishi, Yasutaka; Egawa, Gyohei; Kabashima, Kenji; Watanabe, Takeshi; Furuki, Motohiro; Tomura, Michio

    2015-09-01

    Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full-spectral flow cytometer (spectral-FCM). Unlike conventional flow cytometer, this spectral-FCM acquires the emitted fluorescence for all probes across the full-spectrum from each cell with 32 channels sequential PMT unit after dispersion with prism, and extracts the signals of each fluoroprobe based on the spectral shape of each fluoroprobe using unique algorithm in high speed, high sensitive, accurate, automatic and real-time. The spectral-FCM detects the continuous changes in emission spectra from green to red of the photoconvertible protein, KikGR with high-spectral resolution and separates spectrally-adjacent fluoroprobes, such as FITC (Emission peak (Em) 519 nm) and EGFP (Em 507 nm). Moreover, the spectral-FCM can measure and subtract autofluorescence of each cell providing increased signal-to-noise ratios and improved resolution of dim samples, which leads to a transformative technology for investigation of single cell state and function. These advances make it possible to perform 11-color fluorescence analysis to visualize movement of multilinage immune cells by using KikGR-expressing mice. Thus, the novel spectral flow cytometry improves the combinational use of spectrally-adjacent various FPs and multicolor fluorochromes in metabolically active cell for the investigation of not only the immune system but also other research and clinical fields of use.

  19. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

    PubMed Central

    Ughi, Giovanni J.; Verjans, Johan; Fard, Ali M.; Wang, Hao; Osborn, Eric; Hara, Tetsuya; Mauskapf, Adam; Jaffer, Farouc A.; Tearney, Guillermo J.

    2015-01-01

    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT-NIRF systems acquire data at a very high frame-rate (>100 frames/second), a high number of images per pullback need to be analyzed, making manual processing of OCT-NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT-NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from 6 New Zealand White rabbit atherosclerotic after indocyanine-green (ICG) injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 μm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from 8 different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT-NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall. PMID:25341407

  20. Nine New Fluorescent Probes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  1. Changes in the fluorescence composition of multiple DOM sources over pH gradients assessed by combining parallel factor analysis and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Cuss, C. W.; Shi, Y. X.; McConnell, S. M.; Guéguen, C.

    2014-09-01

    Dissolved organic matter is a ubiquitous constituent of natural waters that plays key roles in several important processes. The fluorescence properties of DOM have been linked to its functionality, but these properties may vary with pH. In this study Kohonen's self-organizing maps (SOMs) were applied to excitation-emission matrices (EEMs) of fresh dissolved organic matter (DOM) from three sources: senescent sugar-maple leaves and white spruce needles, and humified white spruce needles, over a pH range of ~4.5 - 12.5. SOMs were applied to raw EEMs, EEMs reduced in dimensionality by pre-processing using parallel factor analysis (PARAFAC), and PARAFAC loading proportions normalized to values at initial pH. Some separation of EEMs into source-based clusters was achieved in the SOM of raw EEMs, but commingling was apparent and evidence of changes over pH gradients was overshadowed. SOMs of PARAFAC component proportions demonstrated clear source-based clustering, and pH-based gradients were visible for DOM from senescent and humified spruce needles. Changes in optical properties were obvious over pH gradients in the SOM of components normalized to starting condition. Component proportions decreased to values as low as 5% of the initial values for microbial humic-like peak M and increased to as high as 278% for a humic-like component. Tyrosine-like fluorescence increased to 112% of initial over increasing pH in humified spruce leachates but decreased to as low as 45% in the other leachates. The combination of PARAFAC and SOM drastically enhanced visualization and interpretability of pH-induced changes in DOM compared to either method alone.

  2. Fluorescent sensors based on bacterial fusion proteins

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  3. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    ERIC Educational Resources Information Center

    Stevens, Leslie M.; Hoskins, Sally G.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and…

  4. Parent-child attitude congruence on type and intensity of physical activity: Testing multiple mediators of sedentary behavior in older children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined parent–child attitudes on value of specific types and intensities of physical activity, which may explain gender differences in child activity, and evaluated physical activity as a mechanism to reduce time spent in sedentary behaviors. A community sample of 681 parents and 433 ch...

  5. Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.

    PubMed

    Norris, Stephen R; Núñez, Marcos F; Verhey, Kristen J

    2015-03-10

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  6. Influence of Fluorescent Tag on the Motility Properties of Kinesin-1 in Single-Molecule Assays

    PubMed Central

    Norris, Stephen R.; Núñez, Marcos F.; Verhey, Kristen J.

    2015-01-01

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  7. A simple model for understanding the fluorescence behavior of Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Shuxin; Zhu, Xiuyi; Cao, Tiantian; Zhu, Manzhou

    2014-05-01

    In this work, we synthesized Au25 nanoclusters protected by 2-(naphthalen-2-yl)ethanethiolate. Our experiments revealed that the luminescence of this nanocluster consists of two bands, namely, band I centered at 740 nm and band II centered at 680 nm. Compared with 2-phenylethanethiolate protected Au25 nanoclusters, this new nanocluster has a much higher QY (quantum yield) value (6.5 times higher). Fluorescence lifetime measurements showed multiple components, i.e. 0.15 ns, ~20 ns and ~150 ns. With an increase in the electropositivity of the nanocluster, the fluorescence intensity of the nanocluster exhibits a significant enhancement. Since the 2-(naphthalen-2-yl)ethanethiolate protected Au25 nanocluster shares the same Au13/Au12 core-shell structure as the 2-phenylethanethiolate protected nanocluster, the band II fluorescence implies that the surface ligands play a major role in the origin of the fluorescence.

  8. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A.; Hirons, Gregory T.

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  9. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  10. Saturation of fluorescence in flames with a Gaussian laser beam

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1978-01-01

    The method of saturated fluorescence for measuring species concentrations in flames is usually performed with laser beams that do not provide a constant intensity distribution across the focal volume. Because of the intensity distribution across the beam, the fluorescence signal does not depend on laser power or intensity in the same manner as for uniform illumination. This leads to anomolous apparent saturation intensities. In the following, the effect is considered for atomic fluorescence. Relations for the fluorescence signal under two common excitation geometries are derived and uncertainty relations used to consider the benefits of high laser intensity.

  11. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  12. Osteoclastome-like giant cell thyroid carcinoma controlled by intensive radiation and adriamycin, in a patient with meningioma and multiple myeloma treated by radiation and cytoxan

    SciTech Connect

    Vizel-Schwartz, M.

    1981-01-01

    The eighth cases of osteoclastome-like giant cell carcinoma of the thyroid, and the first one to be treated with adriamycin in addition to surgery and radiation, is reported. This rare variant of anaplastic thyroid carcinoma appeared in a patient operated on for meningioma and treated for multiple myeloma with cranial radiation and chronic administration of cytoxan.

  13. Tightly-coupled plant-soil nitrogen cycling: Implications for multiple ecosystem services on organic farms across an intensively managed agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability among farms across an agricultural landscape may reveal diverse biophysical contexts and experiences that show innovations and insights to improve nitrogen (N) cycling and yields, and thus the potential for multiple ecosystem services. In order to assess potential tradeoffs between yield...

  14. Fluorescent standards for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Belko, N.; Kavalenka, S.; Samtsov, M.

    2016-08-01

    Photodynamic therapy is an evolving technique for treatment of various oncological diseases. This method employs photosensitizers - species that lead to death of tumor cells after the photoactivation. For further development and novel applications of photodynamic therapy new photosensitizers are required. After synthesis of a new photosensitizer it is important to know its concentration in different biological tissues after its administration and distribution. The concentration is frequently measured by the extraction method, which has some disadvantages, e.g. it requires many biological test subjects that are euthanized during the measurement. We propose to measure the photosensitizer concentration in tissue by its fluorescence. For this purpose fluorescent standards were developed. The standards are robust and simple to produce; their fluorescence signal does not change with time. The fluorescence intensity of fluorescent standards seems to depend linearly on the dye concentration. A set of standards thus allow the calibration of a spectrometer. Finally, the photosensitizer concentration can be determined by the fluorescence intensity after comparing the corresponding spectrum with spectra of the set of fluorescent standards. A biological test subject is not euthanized during this kind of experiment. We hope this more humane technique can be used in future instead of the extraction method.

  15. Fluorescence detection of dental calculus

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Biryukova, T.; Sukhinina, A.; Vdovin, Yu

    2010-11-01

    This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 - 645 nm and 340 - 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy.

  16. Theory of fluorescence intermittency in quantum dots and other fluorophores

    NASA Astrophysics Data System (ADS)

    Volkan-Kacso, Sandor

    2011-12-01

    The purpose of the dissertation is to provide a theoretical explanation to the phenomenon of fluorescence intermittency. This is achieved by proposing a model of Multiple Recombination Centers (MRC), which is shown to successfully reproduce the main features of the phenomenon. Virtually all known types of optically active nanoscale objects to date show extremely long correlations in the fluctuations of fluorescence intensity. Experimentally collected intensity trajectories from such single fluorophores show fluctuations on the timescales longer than seconds. This phenomenon is generically referred to as fluorescence intermittency or blinking. In colloidal quantum dots blinking often assumes the shape of a random telegraph-like intermittency, a stochastic series of "ON" and "OFF" time intervals. Amazingly, the distribution of these ON and OFF times follow a universal power law dependence. Spectral characterization of trajectories effectively renders blinking an optical 1/f type noise. By a suitable Bayesian estimation method we point out that the conventional method of analysis using intensity histograms is problematic for such trajectories: The qualitative properties of the distributions strongly depend on the threshold value chosen for the separation the ON and OFF states. We propose phenomenological MRC model for the quantum dot and its environment by modeling the multiple channels of non-radiative relaxation as a collection of a few interacting two-level systems. We show how this model of multiple recombination centers reproduces key experimental features of blinking, including the strong threshold dependence. After a survey of existing models of blinking, we show that the MRC model is the only self-consistent model that can explain the long-range correlations found between blinking times. Beyond quantum dots, a carefully performed spectral analysis of intensity fluctuations observed in other fluorophores such as self-assembled quantum dots, nanorods, nanowires

  17. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  18. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    NASA Astrophysics Data System (ADS)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  19. Integrated fluorescence analysis system

    DOEpatents

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  20. Ultraviolet fluorescence monitor

    SciTech Connect

    Hargis, P.J. Jr.; Preppernau, B.L.; Aragon, B.P.

    1997-05-01

    A multispectral ultraviolet (UV) fluorescence imaging fluorometer and a pulsed molecular beam laser fluorometer were developed to detect volatile organic compounds of interest in environmental monitoring and drug interdiction applications. The UV fluorescence imaging fluorometer is a relatively simple instrument which uses multiple excitation wavelengths to measure the excitation/emission matrix for irradiated samples. Detection limits in the high part-per-million to low part-per-million range were measured for a number of volatile organic vapors in the atmosphere. Detection limits in the low part-per-million range were obtained using cryogenic cooling to pre-concentrate unknown samples before introducing them into the imaging fluorometer. A multivariate analysis algorithm was developed to analyze the excitation/emission matrix and used to determine the relative concentrations of species in computer synthesized mixtures containing up to five organic compounds. Analysis results demonstrated the utility of multispectral UV fluorescence in analytical measurements. A transportable UV fluorescence imaging fluorometer was used in two field tests. Field test results demonstrated that detection limits in the part-per-billion range were needed to reliably identify volatile organic compounds in realistic field test measurements. The molecular beam laser fluorometer, a more complex instrument with detection limits in the part-per-billion to part-per-trillion range, was therefore developed to satisfy detection sensitivity requirements for field test measurements. High-resolution spectroscopic measurements made with the molecular beam laser fluorometer demonstrated its utility in identifying volatile organic compounds in the atmosphere.

  1. Effect of multiple step excitation on the reactivation and x-ray intensities following the fusion d. mu. d, d. mu. t and p. mu. t

    SciTech Connect

    Takahashi, H.

    1986-01-01

    Menshikov and Ponomarev recently studied analytically the effect of multistep excitation on the muon reactivation for d..mu..t fusion and got a rather large activation factor of 35%. As expected, this shows a large density effect on the reactivation factor. The numerical cascade calculation with the cross section for multistep excitation, used by them, indicates that the reactivation factor is 25%. Due to the large Auger transition rates in the high excited states, the density effect on the reactivation factor is not large. Muonic x-ray spectra of ..mu../sup 3/He from ..mu..-catalyzed pd and dd fissions, measured by H. bossy et al., are analyzed by the cascade model used for the muon reactivation calculation. The model calculation is in good agreement with the intensity ratios ..mu../sup 3/He(3-1)/..mu../sup 3/He(2-1) of 0.13 +- 0.02 and 0.03 +- 0.007 measured for dd and pd fusions, and the multistep excitation increases 5% of the x-ray ratio for dd fusion. 10 refs., 3 figs., 2 tabs.

  2. SU-E-T-450: Dosimetric Impact of Rotational Error On Multiple-Target Intensity-Modulated Radiosurgery (IMRS) with Single-Isocenter

    SciTech Connect

    Jang, S; Huq, M

    2014-06-01

    Purpose: Evaluating the dosimetric-impact on multiple-targets placed away from the isocenter-target with varying rotational-error introduced by initial setup uncertainty and/or intrafractional-movement Methods: CyberKnife-Phantom was scanned with the Intracranial SRS-protocol of 1.25mm slice-thickness and the multiple-targets(GTV) of 1mm and 10mm in diameter were contoured on the Eclipse. PTV for distal-target only was drawn with 1mm expansion around the GTV to find out how much margin is needed to compensate for the rotational-error. The separation between the isocenter-target and distal-target was varied from 3cm to 7cm. RapidArc-based IMRS plans of 16Gy single-fraction were generated with five non-coplanar arcs by using Varian TrueBeam-STx equipped with high resolution MLC leaves of 2.5mm at center and with dose-rate of 1400MU/min at 6MV for flatteringfilter- free(FFF). An identical CT image with intentionally introduced 1° rotational-error was registered with the planning CT image, and the isodose distribution and Dose-Volume-Histogram(DVH) were compared with the original plans. Additionally, the dosimetric-impact of rotational error was evaluated with that of 6X photon energy which was generated with the same target-coverage. Results: For the 1mm-target with 6X-FFF, PTV-coverage(D100) of the distal-target with 1° rotational-error decreased from 1.00 to 0.35 as the separation between isocenter-target and distal-target increased from 3cm to 7cm. However, GTV-coverage(D100) was 1.0 except that of 7cm-separation(0.55), which resulted from the 1mm-margin around the distal-target. For 6X photon, GTV-coverage remained at 1.0 regardless of the separation of targets, showing that the dosimetric-impact of rotational error depends on the degree of rotational-error, separation of targets, and dose distribution around targets. For 10mm-target, PTV-coverage of distaltarget located 3cm-away was better than that of 1mm-target(0.93 versus 0.7) and GTV-coverage was 1

  3. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  4. Fluorescence analyzer for lignin

    DOEpatents

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  5. New assay for multiple single molecule enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Lee, Alan I.; Brody, James P.

    2005-03-01

    A population of identical proteins has the same amino acid sequence, but there may be subtle differences in local folding that lead to variations in activity. Single molecule studies allow us to understand these subtle differences. Single molecule experiments are usually time consuming and difficult because only a few molecules are observed in one experiment. To address this problem, we have developed an assay where we can simultaneously measure the activity of multiple individual molecules of a protease, α-chymotrypsin. The assay utilizes a synthetic chymotrypsin substrate that is non-fluorescent before cleavage by chymotrypsin, but is intensely fluorescent after. To study the activity of individual enzymes, the enzyme and substrate are encapsulated in micron-sized droplets of water surrounded by silicone oil. On average, each micro-droplet contains less than one enzyme. The fluorescence of these droplets is recorded over time using a microscope and a CCD camera system. Software tracks individual droplets over time and records fluorescence. The kinetics of individual chymotrypsin molecules is calculated through the increase of fluorescence intensity of the same individual droplet over time. The activity profiles of the individual enzymes and the bulk sample of the enzyme are very similar. This validates the assay and demonstrates that the average of a few individual molecules can be representative of the behavior of the bulk population.

  6. Time-Resolved Fluorescence Assays.

    PubMed

    Ma, Chen-Ting; Sergienko, Eduard A

    2016-01-01

    Fluorescence-based detection techniques are popular in high throughput screening due to sensitivity and cost-effectiveness. Four commonly used techniques exist, each with distinct characteristics. Fluorescence intensity assays are the simplest to run, but suffer the most from signal interference. Fluorescence polarization assays show less interference from the compounds or the instrument, but require a design that results in change of fluorophore-containing moiety size and usually have narrow assay signal window. Fluorescence resonance energy transfer (FRET) is commonly used for detecting protein-protein interactions and is constrained not by the sizes of binding partners, but rather by the distance between fluorophores. Time-resolved fluorescence resonance energy transfer (TR-FRET), an advanced modification of FRET approach utilizes special fluorophores with long-lived fluorescence and earns its place near the top of fluorescent techniques list by its performance and robustness, characterized by larger assay window and minimized compound spectral interference. TR-FRET technology can be applied in biochemical or cell-based in vitro assays with ease. It is commonly used to detect modulation of protein-protein interactions and in detection of products of biochemical reactions and cellular activities. PMID:27316992

  7. Assessment of Interfraction Patient Setup for Head-and-Neck Cancer Intensity Modulated Radiation Therapy Using Multiple Computed Tomography-Based Image Guidance

    SciTech Connect

    Qi, X. Sharon; Hu, Angie Y.; Lee, Steve P.; Lee, Percy; DeMarco, John; Li, X. Allen; Steinberg, Michael L.; Kupelian, Patrick; Low, Daniel

    2013-07-01

    Purpose: Various image guidance systems are commonly used in conjunction with intensity modulated radiation therapy (IMRT) in head-and-neck cancer irradiation. The purpose of this study was to assess interfraction patient setup variations for 3 computed tomography (CT)-based on-board image guided radiation therapy (IGRT) modalities. Methods and Materials: A total of 3302 CT scans for 117 patients, including 53 patients receiving megavoltage cone-beam CT (MVCBCT), 29 receiving kilovoltage cone-beam CT (KVCBCT), and 35 receiving megavoltage fan-beam CT (MVFBCT), were retrospectively analyzed. The daily variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. The clinical target volume-to-planned target volume (CTV-to-PTV) margins were calculated using 2.5Σ + 0.7 σ, where Σ and σ were systematic and random positioning errors, respectively. Various patient characteristics for the MVCBCT group, including weight, weight loss, tumor location, and initial body mass index, were analyzed to determine their possible correlation with daily patient setup. Results: The average interfraction displacements (± standard deviation) in the ML, CC, and AP directions were 0.5 ± 1.5, −0.3 ± 2.0, and 0.3 ± 1.7 mm (KVCBCT); 0.2 ± 1.9, −0.2 ± 2.4, and 0.0 ± 1.7 mm (MVFBCT); and 0.0 ± 1.8, 0.5 ± 1.7, and 0.8 ± 3.0 mm (MVCBCT). The day-to-day random errors for KVCBCT, MVFBCT, and MVCBCT were 1.4-1.6, 1.7, and 2.0-2.1 mm. The interobserver variations were 0.8, 1.1, and 0.7 mm (MVCBCT); 0.5, 0.4, and 0.8 mm (MVFBCT); and 0.5, 0.4, and 0.6 mm (KVCBCT) in the ML, CC, and AP directions, respectively. The maximal calculated uniform CTV-to-PTV margins were 5.6, 6.9, and 8.9 mm for KVCBCT, MVFBCT, and MVCBCT, respectively. For the evaluated patient characteristics, the calculated margins for different patient parameters appeared to differ; analysis of variance (ANOVA) and/or t test analysis found no statistically significant setup

  8. Metal enhanced fluorescence with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  9. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T.

    2013-01-01

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers. PMID:23624689

  10. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-06-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding.

  11. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    PubMed Central

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-01-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825

  12. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  13. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  14. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  15. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  16. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals--A Multifunctional Fluorescence-Based Sensor Platform.

    PubMed

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H; Gan, Zongsong; Cole, Ivan S; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-01-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructure CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing. PMID:26400503

  17. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals-A Multifunctional Fluorescence-Based Sensor Platform

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H.; Gan, Zongsong; Cole, Ivan S.; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-09-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructue CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing.

  18. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform

    PubMed Central

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H.; Gan, Zongsong; Cole, Ivan S.; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-01-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructue CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing. PMID:26400503

  19. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence. PMID:23545837

  20. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence.

  1. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  2. Fluorescent reporters for Staphylococcus aureus.

    PubMed

    Malone, Cheryl L; Boles, Blaise R; Lauderdale, Katherine J; Thoendel, Matthew; Kavanaugh, Jeffrey S; Horswill, Alexander R

    2009-06-01

    With the emergence of Staphylococcus aureus as a prominent pathogen in community and healthcare settings, there is a growing need for effective reporter tools to facilitate physiology and pathogenesis studies. Fluorescent proteins are ideal as reporters for their convenience in monitoring gene expression, performing host interaction studies, and monitoring biofilm growth. We have developed a suite of fluorescent reporter plasmids for labeling S. aureus cells. These plasmids encode either green fluorescent protein (GFP) or higher wavelength reporter variants for yellow (YFP) and red (mCherry) labeling. The reporters were placed under control of characterized promoters to enable constitutive or inducible expression. Additionally, plasmids were assembled with fluorescent reporters under control of the agr quorum-sensing and sigma factor B promoters, and the fluorescent response with wildtype and relevant mutant strains was characterized. Interestingly, reporter expression displayed a strong dependence on ribosome binding site (RBS) sequence, with the superoxide dismutase RBS displaying the strongest expression kinetics of the sequences examined. To test the robustness of the reporter plasmids, cell imaging was performed with fluorescence microscopy and cell populations were separated using florescence-activated cell sorting (FACS), demonstrating the possibilities of simultaneous monitoring of multiple S. aureus properties. Finally, a constitutive YFP reporter displayed stable, robust labeling of biofilm growth in a flow-cell apparatus. This toolbox of fluorescent reporter plasmids will facilitate cell labeling for a variety of different experimental applications. PMID:19264102

  3. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.

    PubMed

    Axelrod, Daniel

    2012-08-01

    Microscopic fluorescent samples of interest to cell and molecular biology are commonly embedded in an aqueous medium near a solid surface that is coated with a thin film such as a lipid multilayer, collagen, acrylamide, or a cell wall. Both excitation and emission of fluorescent single molecules near film-coated surfaces are strongly affected by the proximity of the coated surface, the film thickness, its refractive index and the fluorophore's orientation. For total internal reflection excitation, multiple reflections in the film can lead to resonance peaks in the evanescent intensity versus incidence angle curve. For emission, multiple reflections arising from the fluorophore's near field emission can create a distinct intensity pattern in both the back focal plane and the image plane of a high aperture objective. This theoretical analysis discusses how these features can be used to report film thickness and refractive index, and fluorophore axial position and orientation. PMID:22612666

  4. Detection of Bhanja virus in cell cultures by fluorescent antibody technique.

    PubMed

    Lopes, M C; Ramoni, C

    1975-06-26

    The multiplication of Bhanja virus in CV-1 cells was studied both by staining the viral antigens with the FA technique and measuring the light intensity emitted by the fluorescent cells with a photomultiplier and by the simultaneous titration of intracellular and extracellular virus. The fluorescence appeared at 3 hrs post adsorption in the form of very small granules in the cytoplasm of the infected cells. Percentage of cells containing viral antigens reached its maximum at 18 hrs post adsorption. Later on the fluorescence slowly decreased. The virus in infected cells was demonstrated 9 hrs post adsorption and maximum titre was reached 48 hrs post adsorption. The cell sheet remained apparently normal and no sign of cytopathic effect was observed until 36 hrs post adsorption.

  5. Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays.

    PubMed

    Liu, Zhiyi; Ma, Suihua; Ji, Yanhong; Liu, Le; Hu, Zhaoxu; Guo, Jihua; Ma, Hui; He, Yonghong

    2010-09-15

    The microarray technique, which can provide parallel detection with high throughput in biomedical research, has generated considerable interest since the end of the 20th century. A number of instruments have been reported for microarray detection. In this paper, we have developed a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for multicolor microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. When coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. This system is improved with a specifically designed, high performance spectrometer which can offer a spectral resolution of 0.2 nm and operates with spatial resolutions ranging from 2 to 30 μm. We demonstrate the application of the system by reading out arrays for identification of bacteria. PMID:20718427

  6. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-01

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  7. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-01

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis. PMID:25144824

  8. A Tool for Alignment and Averaging of Sparse Fluorescence Signals in Rod-Shaped Bacteria.

    PubMed

    Goudsmits, Joris M H; van Oijen, Antoine M; Robinson, Andrew

    2016-04-26

    Fluorescence microscopy studies have shown that many proteins localize to highly specific subregions within bacterial cells. Analyzing the spatial distribution of low-abundance proteins within cells is highly challenging because information obtained from multiple cells needs to be combined to provide well-defined maps of protein locations. We present (to our knowledge) a novel tool for fast, automated, and user-impartial analysis of fluorescent protein distribution across the short axis of rod-shaped bacteria. To demonstrate the strength of our approach in extracting spatial distributions and visualizing dynamic intracellular processes, we analyzed sparse fluorescence signals from single-molecule time-lapse images of individual Escherichia coli cells. In principle, our tool can be used to provide information on the distribution of signal intensity across the short axis of any rod-shaped object. PMID:27119631

  9. An extremely stable host-guest complex that functions as a fluorescence probe for calcium ions.

    PubMed

    Lin, Chi-Feng; Liu, Yi-Hung; Lai, Chien-Chen; Peng, Shie-Ming; Chiu, Sheng-Hsien

    2006-06-01

    Herein, we report a crown ether based molecular cage that forms extremely stable supramolecular complexes with dimethyldiazapyrenium (DMDAP) ions in CD(3)CN through the collaboration of multiple weak C-HO hydrogen bonds. The very strong binding affinity in this host-guest system allows the molecular cage to bleach the fluorescence signal of DMDAP substantially in equimolar solutions at concentrations as low as 1 x 10(-5) M. Remarkably, a 1x10(-5) M equimolar solution of the molecular cage and DMDAP is highly selective toward Ca(2+) ions-relative to other biologically important Li(+), Na(+), K(+), and Mg(2+) ions-and causes a substantial increase in the fluorescence intensity of the solution. As a result, this molecular cage/DMDAP complex behaves as a supramolecular fluorescence probe for the detection of Ca(2+) ions in solution.

  10. Intense monochromatic terahertz electromagnetic waves from coherent GaAs-like longitudinal optical phonons in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Asai, Souta; Tsuruta, Syuichi; Nakayama, Masaaki

    2012-06-01

    We demonstrate that, in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells, the terahertz electromagnetic wave from the coherent GaAs-like longitudinal optical (LO) phonon is enhanced by a piezoelectric field originating from a tensile strain in the GaAs layer. The presence of the tensile strain is confirmed using Raman scattering spectroscopy. The Fourier power spectrum of the terahertz waveform shows that the intensity of the terahertz band of the coherent GaAs-like LO phonon increases as the index n approaches 1. The amplitude of the GaAs-like LO phonon is proportional to the piezoelectric field in the strained GaAs layer.

  11. Dual-readout fluorescent assay of protein kinase activity by use of TiO2-coated magnetic microspheres.

    PubMed

    Bai, Jie; Zhao, Yunjie; Wang, Zhibin; Liu, Chenghui; Wang, Yucong; Li, Zhengping

    2013-05-01

    A simple, highly sensitive, and dual-readout fluorescent assay is developed for the detection of protein kinase activity based on the specific recognition utility of TiO2-coated Fe3O4/SiO2 magnetic microspheres (TMSPs) for kinase-induced phosphopeptides. When the fluorophore-labeled substrate peptides are phosphorylated by the kinase reaction, they can bind specifically to the TiO2 layer of TMSPs by means of phosphate groups, resulting in fluorophore enrichment on the TMSP surfaces. The accumulated fluorophores on the TMSPs are proportional to the kinase activity, and the fluorescence signal readout could be run through either direct fluorescent imaging of the TMSPs or measurement of the fluorescence intensity by simply detaching the fluorescent phosphopeptides into the solution. The TMSPs exhibit extremely high selectivity for capturing phosphorylated peptides over the nonphosphorylated ones, resulting in an ultrahigh fluorescence signal-to-background ratio of 42, which is the highest fluorescence change thus far in fluorescent assays for detection of protein kinase activities. Therefore, the proposed fluorescent assay presents high sensitivity, low detection limit of 0.1 milliunit/μL, and wide dynamic range from 0.5 milliunit/μL to 0.5 unit/μL with protein kinase A (PKA) as a model target. Moreover, the TMSP-based fluorescent assay can simultaneously quantify multiple kinase activities with their specific peptides labeled with different dyes. This new strategy is also successfully applied to monitoring drug-triggered PKA activation in cell lysates. Therefore, the TMSP-based fluorescent assay is very promising in high-throughput screening of kinase inhibitors and in highly sensitive detection of kinase activity, and thus it is a valuable tool for development of targeted therapy, clinical diagnosis, and studies of fundamental life science. PMID:23581884

  12. Ultrasound-modulated fluorescence based on fluorescent microbubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Feshitan, Jameel A.; Wei, Ming-Yuan; Borden, Mark A.; Yuan, Baohong

    2014-08-01

    Ultrasound-modulated fluorescence (UMF) imaging has been proposed to provide fluorescent contrast while maintaining ultrasound resolution in an optical-scattering medium (such as biological tissue). The major challenge is to extract the weakly modulated fluorescent signal from a bright and unmodulated background. UMF was experimentally demonstrated based on fluorophore-labeled microbubble contrast agents. These contrast agents were produced by conjugating N-hydroxysuccinimide (NHS)-ester-attached fluorophores on the surface of amine-functionalized microbubbles. The fluorophore surface concentration was controlled so that a significant self-quenching effect occurred when no ultrasound was applied. The intensity of the fluorescent emission was modulated when microbubbles were oscillated by ultrasound pulses, presented as UMF signal. Our results demonstrated that the UMF signals were highly dependent on the microbubbles' oscillation amplitude and the initial surface fluorophore-quenching status. A maximum of ˜42% UMF modulation depth was achieved with a single microbubble under an ultrasound peak-to-peak pressure of 675 kPa. Further, UMF was detected from a 500-μm tube filled with contrast agents in water and scattering media with ultrasound resolution. These results indicate that ultrasound-modulated fluorescent microbubble contrast agents can potentially be used for fluorescence-based molecular imaging with ultrasound resolution in the future.

  13. Ultrasound-modulated fluorescence based on fluorescent microbubbles

    PubMed Central

    Liu, Yuan; Feshitan, Jameel A.; Wei, Ming-Yuan; Borden, Mark A.; Yuan, Baohong

    2014-01-01

    Abstract. Ultrasound-modulated fluorescence (UMF) imaging has been proposed to provide fluorescent contrast while maintaining ultrasound resolution in an optical-scattering medium (such as biological tissue). The major challenge is to extract the weakly modulated fluorescent signal from a bright and unmodulated background. UMF was experimentally demonstrated based on fluorophore-labeled microbubble contrast agents. These contrast agents were produced by conjugating N-hydroxysuccinimide (NHS)-ester-attached fluorophores on the surface of amine-functionalized microbubbles. The fluorophore surface concentration was controlled so that a significant self-quenching effect occurred when no ultrasound was applied. The intensity of the fluorescent emission was modulated when microbubbles were oscillated by ultrasound pulses, presented as UMF signal. Our results demonstrated that the UMF signals were highly dependent on the microbubbles’ oscillation amplitude and the initial surface fluorophore-quenching status. A maximum of ∼42% UMF modulation depth was achieved with a single microbubble under an ultrasound peak-to-peak pressure of 675 kPa. Further, UMF was detected from a 500-μm tube filled with contrast agents in water and scattering media with ultrasound resolution. These results indicate that ultrasound-modulated fluorescent microbubble contrast agents can potentially be used for fluorescence-based molecular imaging with ultrasound resolution in the future. PMID:25104407

  14. Monitoring dynamic systems with multiparameter fluorescence imaging.

    PubMed

    Kudryavtsev, Volodymyr; Felekyan, Suren; Woźniak, Anna K; König, Marcelle; Sandhagen, Carl; Kühnemuth, Ralf; Seidel, Claus A M; Oesterhelt, Filipp

    2007-01-01

    A new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored. The most statistically efficient techniques known from single-molecule spectroscopy are used to estimate fluorescence parameters of interest for all pixels, not just for the regions of interest. Their statistical significance is judged from a stack of two-dimensional histograms. In this way, specific pixels can be selected for subsequent pixel-based subensemble analysis in order to improve the statistical accuracy of the parameters estimated. MFDi avoids the need for sequential measurements, because the registered data allow one to perform many analysis techniques, such as fluorescence-intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS), in an off-line mode. The limitations of FCS for counting molecules and monitoring dynamics are discussed. To demonstrate the ability of our technique, we analysed two systems: (i) interactions of the fluorescent dye Rhodamine 110 inside and outside of a glutathione sepharose bead, and (ii) microtubule dynamics in live yeast cells of Schizosaccharomyces pombe using a fusion protein of Green Fluorescent Protein (GFP) with Minichromosome Altered Loss Protein 3 (Mal3), which is involved in the dynamic cycle of polymerising and depolymerising microtubules. PMID:17160654

  15. Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Leiner, Marc J.; Wolfbeis, Otto S.

    1988-06-01

    We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.

  16. Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Gupta, A.

    1983-01-01

    Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.

  17. Spectral line discriminator for passive detection of fluorescence

    NASA Technical Reports Server (NTRS)

    Kebabian, Paul L. (Inventor)

    1996-01-01

    A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.

  18. Fluorescence lifetime plate reader: resolution and precision meet high-throughput.

    PubMed

    Petersen, Karl J; Peterson, Kurt C; Muretta, Joseph M; Higgins, Sutton E; Gillispie, Gregory D; Thomas, David D

    2014-11-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.

  19. Hydrogen-Bond and Supramolecular-Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines.

    PubMed

    Wałęsa-Chorab, Monika; Tremblay, Marie-Hélène; Skene, William G

    2016-08-01

    An electronic push-pull fluorophore consisting of an intrinsically fluorescent central fluorene capped with two diaminophenyl groups was prepared. An aminothiophene was conjugated to the two flanking diphenylamines through a fluorescent quenching azomethine bond. X-ray crystallographic analysis confirmed that the fluorophore formed multiple intermolecular supramolecular bonds. It formed two hydrogen bonds involving a terminal amine, resulting in an antiparallel supramolecular dimer. Hydrogen bonding was also confirmed by FTIR and NMR spectroscopic analyses, and further validated theoretically by DFT calculations. Intrinsic fluorescence quenching modes could be reduced by intermolecular supramolecular contacts. These contacts could be engaged at high concentrations and in thin films, resulting in fluorescence enhancement. The fluorescence of the fluorophore could also be restored to an intensity similar to its azomethine-free counterpart with the addition of water in >50 % v/v in tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetonitrile. The fluorophore also exhibited reversible oxidation and its color could be switched between yellow and blue when oxidized. Reversible electrochemically mediated fluorescence turn-off on turn-on was also possible. PMID:27388588

  20. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  1. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    NASA Astrophysics Data System (ADS)

    Munro, Troy; Liu, Liwang; Glorieux, Christ; Ban, Heng

    2016-06-01

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity, peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of

  2. Probing individual molecules with confocal fluorescence microscopy.

    PubMed

    Nie, S; Chiu, D T; Zare, R N

    1994-11-11

    Confocal fluorescence microscopy coupled with a diffraction-limited laser beam and a high-efficiency detection system has been used to study the diffusive movement and emission process of individual fluorescent molecules in the liquid phase at room temperature. The high detection sensitivity achieved at fast data acquisition speeds (greater than 1 kilohertz) allows real-time observation of single-molecule fluorescence without statistical analysis. The results show fluorescence-cycle saturation at the single-molecule level and multiple recrossings of a single molecule into and out of the probe volume as well as the triplet state.

  3. Metal-enhanced fluorescence of single green fluorescent protein (GFP)

    SciTech Connect

    Fu Yi; Zhang Jian; Lakowicz, Joseph R.

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.

  4. A comparative study of fluorescence in malignant melanoma and nevocellular nevus using a fluorescence microscope and formalin-fixed specimens.

    PubMed

    Shukuwa, T; Nonaka, S; Yoshida, H

    1990-09-01

    Fluorescence in malignant melanoma cells was investigated. The specimens from 18 cases of malignant melanoma and 26 cases of nevocellular nevus, which were fixed with formalin and embedded in paraffin wax, were studied by the fluorescence microscopic method. On the fluorescence microscope, the malignant melanoma cells emitted intense fluorescence from the cytoplasm. The nevus cells with large amounts of melanin granules showed moderate fluorescence. The tumor cells of melanoma in situ and nevus cells with few melanin granules emitted little fluorescence. Not only malignant melanoma cells but also nevus cells in the formalin fixed specimens had various degrees of fluorescence. Many cases of malignant melanoma emitted intense fluorescence, but this was rarely found in nevocellular nevus. This method is also useful in differentiating melanoma from nevocellular nevus. PMID:2277143

  5. Photon Antibunching in Complex Intermolecular Fluorescence Quenching Kinetics.

    PubMed

    Sharma, Arjun; Enderlein, Jörg; Kumbhakar, Manoj

    2016-08-18

    We present a novel fluorescence spectroscopic method, which combines fluorescence antibunching, time-correlated single-photon counting (TCSPC), and steady-state emission spectroscopy, to study chemical reactions at the single molecule level. We exemplify our method on investigating intermolecular fluorescence quenching of Rhodamine110 by aniline. We demonstrate that the combination of measurements of fluorescence antibunching, fluorescence lifetime, and fluorescence steady state intensity, captures the full picture of the complex quenching kinetics, which involves static and dynamics quenching, and which cannot be seen by steady-state or lifetime measurements alone. PMID:27468007

  6. Sensing Metal Ions with DNA Building Blocks: Fluorescent Pyridobenzimidazole Nucleosides

    PubMed Central

    Kim, Su Jeong; Kool, Eric T.

    2008-01-01

    We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer’s chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry, and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154° and 140°, respectively. In methanol the compounds 1 and 2 had absorption maxima at 360 and 370 nm respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of seventeen monovalent, divalent and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with ten of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au+, Au3+), strong quenching (Cu2+, Ni2+, Pt2+), and in substantial enhancements in emission intensity coupled with redshifts (Ag+, Cd2+, Zn2+). The greatest spectral changes for ligand-nucleoside 2 included a redshift in fluorescence (Ag+), a blueshift (Cd2+), strong quenching (Pd2+, Pt2+), and in substantial enhancements in emission intensity coupled with a blueshift (Zn2+). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution, and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for at multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs. PMID:16669686

  7. Real-time fluorescence microscopy monitoring of porphyrin biodistribution

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert

    1996-01-01

    In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.

  8. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  9. Fluorescence applications in molecular neurobiology

    PubMed Central

    Taraska, Justin W.; Zagotta, William N.

    2012-01-01

    Summary Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single molecule bleaching analysis, intensity measurements, co-localization microscopy, electron transfer, and bi-molecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology. PMID:20434995

  10. Fluorescence properties of Neurospora tyrosinase.

    PubMed

    Beltramini, M; Lerch, K

    1982-07-01

    Some structural properties of Neurospora tyrosinase have been studied by fluorescence spectroscopy. The emission spectra observed for oxy-, deoxy-, met- and apo-tyrosinase and the Co2+-substituted form are indicative of a protein containing buried tryptophan residues. By using acrylamide and iodide, part of the emission is quenched, indicating heterogeneity in the tryptophan environment. Upon binding of Cu2+ or Co2+ to apo-tyrosinase, a marked decrease of the tryptophan quantum yield is observed. A further decrease in emission intensity results from the binding of molecular O2 to the deoxy form. The fluorescent probe 8-anilinonaphthalene-1-sulphonate binds to tyrosinase only when the metal ions are removed. Reconstitution of apo-tyrosinase with Cu2+ completely displaces the probe, suggesting that 8-anilinonaphthalene-1-sulphonate binds to apo-tyrosinase at the active site. The fluorescence properties of Neurospora tyrosinase are compared with those of haemocyanin. PMID:6215031

  11. Fluorescence properties of Neurospora tyrosinase.

    PubMed Central

    Beltramini, M; Lerch, K

    1982-01-01

    Some structural properties of Neurospora tyrosinase have been studied by fluorescence spectroscopy. The emission spectra observed for oxy-, deoxy-, met- and apo-tyrosinase and the Co2+-substituted form are indicative of a protein containing buried tryptophan residues. By using acrylamide and iodide, part of the emission is quenched, indicating heterogeneity in the tryptophan environment. Upon binding of Cu2+ or Co2+ to apo-tyrosinase, a marked decrease of the tryptophan quantum yield is observed. A further decrease in emission intensity results from the binding of molecular O2 to the deoxy form. The fluorescent probe 8-anilinonaphthalene-1-sulphonate binds to tyrosinase only when the metal ions are removed. Reconstitution of apo-tyrosinase with Cu2+ completely displaces the probe, suggesting that 8-anilinonaphthalene-1-sulphonate binds to apo-tyrosinase at the active site. The fluorescence properties of Neurospora tyrosinase are compared with those of haemocyanin. PMID:6215031

  12. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  13. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    PubMed

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  14. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis. PMID:8455155

  15. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, John C.; Jett, James H.

    1986-01-01

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle.

  16. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1984-01-06

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser which excites a different stained component of the same biological particle.

  17. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1986-03-04

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle. 8 figs.

  18. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  19. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.

    PubMed

    Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya

    2015-08-01

    We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796

  20. Time-resolved fluorescence of thioredoxin single-tryptophan mutants: modeling experimental results with minimum perturbation mapping

    NASA Astrophysics Data System (ADS)

    Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.

    1994-08-01

    The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.

  1. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe.

    PubMed

    Yan, Xu; Li, Hongxia; Zheng, Weishi; Su, Xingguang

    2015-09-01

    In this work, we designed a dual-emission ratiometric fluorescence probe by hybridizing two differently colored quantum dots (QDs), which possess a built-in correction that eliminates the environmental effects and increases sensor accuracy. Red emissive QDs were embedded in the silica nanoparticle as reference while the green emissive QDs were covalently linked to the silica nanoparticle surface to form ratiometric fluorescence probes (RF-QDs). Dopamine (DA) was then conjugated to the surface of RF-QDs via covalent bonding. The ratiometric fluorescence probe functionalized with dopamine (DA) was highly reactive toward tyrosinase (TYR), which can catalyze the oxidization of DA to dopamine quinine and therefore quenched the fluorescence of the green QDs on the surface of ratiometric fluorescence probe. With the addition of different amounts of TYR, the ratiometric fluorescence intensity of the probe continually varied, leading to color changes from yellow-green to red. So the ratiometric fluorescence probe could be utilized for sensitive and selective detection of TYR activity. There was a good linear relationship between the ratiometric fluorescence intensity and TYR concentration in the range of 0.05-5.0 μg mL(-1), with the detection limit of 0.02 μg mL(-1). Significantly, the ratiometric fluorescence probe has been used to fabricate paper-based test strips for visual detection of TYR activity, which validates the potential on-site application.

  2. Fluorescent lidar for organic aerosol study

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Timofeev, V. I.; Grishin, A. I.; Fateyeva, N. L.

    2005-10-01

    The paper describes the fluorescent lidar created for monitoring of the atmosphere and for estimating the content of fluorescent components of organic aerosol. The lidar operation is based on the use of ultraviolet radiation of harmonics of Nd:YAG solid state laser for exciting the atmospheric fluorescence and the spectral analysis of the atmospheric fluorescence is used in the near ultraviolet and blue spectral range with the resolution of 2 nm. The lidar was found to be efficient for remote analysis of organic aerosol occurring as a result of vegetation emission of secondary metabolites to the atmosphere. Fluorescence spectra processing allows us to select some organic compounds, which molecules contain 7 and more carbon atoms. Taking into account the availability of interconnection between organic aerosol and vegetation, in lidar the second harmonic of Nd:YAG laser is also used for exciting the fluorescence of vegetation covers. In this case the receiving system detects the fluorescence of vegetation in the red spectral range conditioned by the chlorophyll of vegetation. Simultaneous detection of the fluorescence from the atmosphere and from vegetation makes it possible to obtain data on the interaction of the atmosphere and underlying surface covered by vegetation. It has been found that a disruption in the vegetation feeding or the impact of pollutions on vegetation resulted in a sharp increase of the fluorescence intensity of vegetation chlorophyll in the red spectral range and in the simultaneous appearance of organic aerosol in the atmosphere adjacent to vegetation in the region of negative impact.

  3. Intense violet-blue-emitting Ba(2)AlB(4)O(9)Cl:Eu(2+) phosphors for applications in fluorescent lamps and ultraviolet-light-emitting diodes.

    PubMed

    Kuo, Te-Wen; Huang, Chien-Hao; Chen, Teng-Ming

    2010-08-01

    We synthesized a violet-blue phosphor Ba(2)AlB(4)O(9)Cl:Eu(2+) with a solid-state reaction. The excitation and emission spectra of this phosphor showed that all were broadband due to 4f(7)-4f(6)d(1) transitions of Eu(2+). The phosphors with different Eu(2+) concentrations presented violet-blue luminescence for ultraviolet [(UV) 250-390nm] excitation. The optimum concentration of Eu(2+) in Ba(2)AlB(4)O(9)Cl:Eu(2+) is determined to be 6mol.%. The luminous efficiency was found to be 8.1lm/W for the violet-blue fluorescent lamp and 3.2lm/W for the violet-blue phosphor-converted light-emitting diode, respectively. Ba(2)AlB(4)O(9)Cl:Eu(2+) would be a promising phosphor for converting the UV radiation to violet-blue emission for a novel high light-conversion efficiency phototherapy illuminator.

  4. Medium effects on fluorescence of ciprofloxacin hydrochloride

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Fu, Yan; Li, Long-Di; Liu, Jia-Ming

    2003-10-01

    The medium (pH, organic solvents, cyclodextrin (CD) or surfactants) effects on the fluorescence of ciprofloxacin hydrochloride (CPFX·HCl) were studied in detail. It is found that the three acid constants of ciprofloxacin (CPFX) are near to each other. Therefore the relation curve between pH and fluorescence intensity has no strident change and keeps relative stable in the pH range of 2-7. When pH was in the range of 5.5-6.0, the fluorescence intensity of CPFX reached the max. The kind and amount of organic solvent added to the luminescent system have various effects. Ethanol quenched fluorescence and the fluorescence excitation wavelength is red shift at first and then blue shift. Acetone has complicated effects on the fluorescence properties of CPFX·HCl solution. The experiment result shows that acetone is really a quencher when its volume content in the system is from 0 to 20%, but when its content is 90%, the signal intensity is unexpectedly one and a half times as much as that of no acetone. This means that there is a strong interaction between the acetone and CPFX; CPFX·H + could be included into the γ-CD but the capping effect is not notable. The effect of cationic surfactant cetyltrimethylammonium bromide and non-ionic surfactant TX-100 and TX-80 on CPFX fluorescence was unimpressive, but the anionic surfactant's effect is aberrant. The fluorescence intensity of CPFX·HCl solution experiences three stages of increasing, decreasing and increasing in turn, as sodium dodecyl sulfate is adding gradually. But for sodium lauryl sulfonate, there are only two stages of decreasing and increasing with the concentration increasing. It is problematic to illustrate clearly the effect mechanism of acetone and anionic surfactant at present. Undoubtedly, the experimental results in this paper should be useful in practice works and the research is worth studying still further.

  5. Fluorescence assay of the interaction between hemoglobin and the cytoplasmic domain of erythrocyte membrane band 3.

    PubMed

    Sega, Martiana F; Chu, Haiyan; Christian, John A; Low, Philip S

    2015-10-01

    Oxygen tension has emerged as a potent regulator of multiple erythrocyte properties, including glucose metabolism, cell volume, ATP release, and cytoskeletal organization. Because hemoglobin (Hb)(1) binds to the cytoplasmic domain of band 3 (cdb3) in an oxygen dependent manner, with deoxyHb exhibiting significantly greater affinity for cdb3 than oxyHb, the deoxyHb-cdb3 interaction has been hypothesized to constitute the molecular switch for all O2-controlled erythrocyte processes. In this study, we describe a rapid and accurate method for quantitating the interaction of deoxyHb binding to cdb3. For this purpose, enhanced green fluorescent protein (eGFP) is fused to the COOH-terminus of cdb3, and the binding of Hb to the NH2-terminus of cdb3-eGFP is quantitated by Hb-mediated quenching of cdb3-eGFP fluorescence. As expected, the intensity of cdb3-eGFP fluorescence decreases only slightly following addition of oxyHb. However, upon deoxygenation of the same Hb-cdb3 solution, the fluorescence decreases dramatically (i.e. confirming that deoxyHb exhibits much greater affinity for cdb3 than oxyHb). Using this fluorescence quenching method, we not only confirm previously established characteristics of the Hb-cdb3 interaction, but also establish an assay that can be exploited to screen for inhibitors of the sickle Hb-cdb3 interaction that accelerates sickle Hb polymerization.

  6. Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Olgar, M. A.; Cengiz, E.; Tıraşoglu, E.

    2016-09-01

    Kβ/Kα, intensity ratios and σKα,β production cross-sections of Cu and Sn were measured in pure metals and in different alloys which have different compositions (CuxSn1-x x=0.48, 0.41, 0.14 and 0.06). The samples were excited by 59.5 keV γ-rays from 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. Comparison of the σKβ production cross-sections and Kβ/Kα X-ray intensity ratio values for Cu and Sn with the theoretical and semi-empirical calculations indicates that they are in the inverse direction with concentration of constituent element in the alloys. The results show that variations in these parameters can be explained with the charge transfer process between the elements which constitute the alloys.

  7. Fluorescence imaging using synthetic GFP chromophores.

    PubMed

    Walker, Christopher L; Lukyanov, Konstantin A; Yampolsky, Ilia V; Mishin, Alexander S; Bommarius, Andreas S; Duraj-Thatte, Anna M; Azizi, Bahareh; Tolbert, Laren M; Solntsev, Kyril M

    2015-08-01

    Green fluorescent protein and related proteins carry chromophores formed within the protein from their own amino acids. Corresponding synthetic compounds are non-fluorescent in solution due to photoinduced isomerization of the benzylideneimidiazolidinone core. Restriction of this internal rotation by binding to host molecules leads to pronounced, up to three orders of magnitude, increase of fluorescence intensity. This property allows using GFP chromophore analogs as fluorogenic dyes to detect metal ions, proteins, nucleic acids, and other hosts. For example, RNA aptamer named Spinach, which binds to and activates fluorescence of some GFP chromophores, was proved to be a unique label for live-cell imaging of specific RNAs, endogenous metabolites and target proteins. Chemically locked GFP chromophores are brightly fluorescent and represent potentially useful dyes due to their small size and high water solubility. PMID:26117808

  8. The Origin of Fluorescence from Graphene Oxide

    PubMed Central

    Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G.

    2012-01-01

    Time-resolved fluorescence measurements of graphene oxide in water show multiexponential decay kinetics ranging from 1 ps to 2 ns. Electron-hole recombination from the bottom of the conduction band and nearby localized states to wide-range valance band is suggested as origin of the fluorescence. Excitation wavelength dependence of the fluorescence was caused by relative intensity changes of few emission species. By introducing the molecular orbital concept, the dominant fluorescence was found to originate from the electronic transitions among/between the non-oxidized carbon regions and the boundary of oxidized carbon atom regions, where all three kinds of functionalized groups C-O, C = O and O = C-OH were participating. In the visible spectral range, the ultrafast fluorescence of graphene oxide was observed for the first time. PMID:23145316

  9. Fluorescence diagnostics for foods subjected to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kulawansa, Digala M.; Menzel, E. R.; Banford, H. M.

    1996-03-01

    We have examined the inherent fluorescence of pepper and cinnamon samples exposed to radiation from a 60Co gamma source. We find that in the pepper the fluorescence intensity increases with radiation dose and the ratio of fluorescence intensity at two specific wavelengths, 566 and 674 nm, increases with radiation dose. In contrast, in the cinnamon the distinction between unirradiated and irradiated is not clear. Our preliminary work on gamma ray irradiated pepper indicates that laser-induced fluorescence may be utilized to detect the absorbed dose of irradiation of food samples.

  10. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Forster resonance energy transfer measurements.

    PubMed

    Hoffmann, Birgit; Zimmer, Thomas; Klöcker, Nikolaj; Kelbauskas, Laimonas; König, Karsten; Benndorf, Klaus; Biskup, Christoph

    2008-01-01

    Since its discovery, green fluorescent protein (GFP) and its variants have proven to be a good and convenient fluorescent label for proteins: GFP and other visible fluorescent proteins (VFPs) can be fused selectively to the protein of interest by simple cloning techniques and develop fluorescence without additional cofactors. Among the steadily growing collection of VFPs, several pairs can be chosen that can serve as donor and acceptor fluorophores in Forster resonance energy transfer (FRET) experiments. Among them, the cyan fluorescent proteins (ECFP/Cerulean) and the enhanced yellow fluorescent protein (EYFP) are most commonly used. We show that ECFP and Cerulean have some disadvantages despite their common use: Upon irradiation with light intensities that are commonly used for intensity- and lifetime-based FRET measurements, both the fluorescence intensity and the fluorescence lifetime of ECFP and Cerulean decrease. This can hamper both intensity- and lifetime-based FRET measurements and emphasizes the need for control measurements to exclude these artifacts. PMID:18601529

  11. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  12. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  13. Optogenetic Reporters: Fluorescent Protein-Based Genetically-Encoded Indicators of Signaling and Metabolism in the Brain

    PubMed Central

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2012-01-01

    Fluorescent protein technology has evolved to include genetically-encoded biosensors that can monitor levels of ions, metabolites, and enzyme activities as well as protein conformation and even membrane voltage. They are well suited to live-cell microscopy and quantitative analysis, and they can be used in multiple imaging modes, including one or two-photon fluorescence intensity or lifetime microscopy. Although not nearly complete, there now exists a substantial set of genetically-encoded reporters that can be used to monitor many aspects of neuronal and glial biology, and these biosensors can be used to visualize synaptic transmission and activity-dependent signaling in vitro and in vivo. In this review we present an overview of design strategies for engineering biosensors, including sensor designs using circularly-permuted fluorescent proteins and using fluorescence resonance energy transfer (FRET) between fluorescent proteins. We also provide examples of indicators that sense small ions (e.g., pH, chloride, zinc), metabolites (e.g., glutamate, glucose, ATP, cAMP, lipid metabolites), signaling pathways (e.g., G protein coupled receptors, Rho GTPases), enzyme activities (e.g., protein kinase A, caspases), and reactive species. We focus on examples where these genetically-encoded indicators have been applied to brain-related studies and used with live-cell fluorescence microscopy. PMID:22341329

  14. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  15. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  16. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  17. Fluorescence enhancement by heterostructure colloidal photonic crystals with dual stopbands.

    PubMed

    Li, Heng; Wang, Jingxia; Liu, Feng; Song, Yanlin; Wang, Rongming

    2011-04-01

    In this work, we present a facile approach on the remarkable enhancement of fluorescent signal by heterostructure colloidal photonic crystals (PCs) with dual stopbands. The intensity of fluorescent medium on heterostructure PCs with dual stopbands overlapping the excitation wavelength and the emission wavelength of fluorescent medium can be up to 162-fold enhancement in comparison to that on the control sample. Otherwise, parameters of heterostructure PC films such as film thickness or stacking order have important effects on fluorescent signals. The method will be of great significance for developing the highly sensitive fluorescence-based detection.

  18. Multispectral fluorescence imaging of atherosclerosis

    SciTech Connect

    Davenport, C.M.C.

    1992-01-01

    Multispectral fluorescence imaging is a new diagnostic technique with the potential to provide improved detection and classification of atherosclerotic disease. This technique involves imaging the fluorescence response of a tissue region through a tunable band-pass filtering device. The result is a set of image in which each individual image is composed of the fluorescence emission within a specified band of wavelengths. Multispectral imaging combined with angioscopic technology allows direct access to important spectral information and spatial attributes providing the potential for more informed clinical decisions about which, if any, treatment modality is indicated. In this dissertation, the system requirements for an angioscopic system with multispectral imaging capability are identified. This analysis includes a description of the necessary optical components and their characteristics as well as the experimental determination of spectral radiance values for the fluorescence response of human aorta specimens and the estimation of anticipated signal-to-noise ratios for the spectral images. Other issues investigated include the number of spectral images required to provide good classification potential and the best normalization method to be utilized. Finally, the potential utility of the information contained within a multispectral data set is demonstrated. Two methods of utilizing the multispectral data are presented. The first method involves generating a ratio-image from the ratio of the intensities of two spectrally filtered images. The second method consists of using histologically verified training data to train a projector and then applying that projector to a set of spectral images. The result provides improved contrast image. White-light images (generated using an incandescent light source), total-fluorescence images (the fluorescence response without spectral filtering), ratio-images, and optimized contrast images are compared. T

  19. Visualization of in vivo degradation of aliphatic polyesters by a fluorescent dendritic star macromolecule.

    PubMed

    Duan, Shun; Ma, Shiqing; Huang, Zhaohui; Zhang, Xu; Yang, Xiaoping; Gao, Ping; Yin, Meizhen; Cai, Qing

    2015-12-01

    In tissue engineering, most polymeric scaffolds should degrade along with the formation of the new tissues. Therefore, it is necessary to look into the in vivo degradation of scaffolds. In this study, a fluorescent perylenediimide-cored (PDI-cored) dendritic star macromolecule bearing multiple amines (d-p48) was incorporated into biodegradable polyester nanofibrous scaffolds by eletrospinning as an indicator. The polyester/d-p48 blend nanofibers could emit strong red fluorescence when they were irradiated under exciting light. Initially, using slowly degradable polyester, poly(L-lactide) (PLLA)/d-p48 nanofibers were soaked in phosphate buffered saline for various lengths of time to determine the possible diffusing release of d-p48 macromolecule from nanofibers. The PLLA/d-p48 nanofibers were then implanted subcutaneously into mice and left for up to 2 weeks. In both cases, no undesirable release of the incorporated d-p48 macromolecule was detected, and the nanofibers were clearly visualized in vivo by fluorescence microscopy. Using a fast degradable polyester, poly(lactide-co-glycolide) (PLGA)/d-p48 nanofibers were electrospun and implanted subcutaneously to determine the possibility of monitoring in vivo degradation by fluorescence during 12 weeks. The results showed that the location and the contour of PLGA/d-p48 nanofibrous scaffolds could be clearly visualized using an animal fluorescent imaging system. The fluorescent intensities decreased gradually with the degradation of the scaffolds. No side effects on liver and kidney were found during the detection. This study indicates that the fluorescent PDI-cored dendritic star macromolecule can be used as a stable bioimaging indicator for biodegradable aliphatic polyesters in vivo. PMID:26526346

  20. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  1. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Fluorescence emission of pyrene in surfactant solutions.

    PubMed

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  5. Fluorescence Spectroscopy in a Shoebox

    NASA Astrophysics Data System (ADS)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  6. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  7. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  8. Optimization via specific fluorescence brightness of a receptor-targeted probe for optical imaging and positron emission tomography of sentinel lymph nodes.

    PubMed

    Qin, Zhengtao; Hall, David J; Liss, Michael A; Hoh, Carl K; Kane, Christopher J; Wallace, Anne M; Vera, David R

    2013-10-01

    The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET-computed tomography imaging.

  9. Optimization via specific fluorescence brightness of a receptor-targeted probe for optical imaging and positron emission tomography of sentinel lymph nodes

    PubMed Central

    Qin, Zhengtao; Hall, David J.; Liss, Michael A.; Hoh, Carl K.; Kane, Christopher J.; Wallace, Anne M.

    2013-01-01

    Abstract. The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET–computed tomography imaging. PMID:23958947

  10. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  11. IR-stimulated visible fluorescence in pink and brown diamond.

    PubMed

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.

  12. Fluorescence spectroscopy for neoplasms control

    NASA Astrophysics Data System (ADS)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  13. Anorganic fluorescence reference materials for decay time of fluorescence emission

    NASA Astrophysics Data System (ADS)

    Engel, A.; Ottermann, C.; Klahn, J.; Korb, T.; Resch-Genger, U.; Hoffmann, K.; Kynast, U.; Rupertus, V.

    2008-02-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration

  14. A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...

  15. Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence.

    PubMed

    Reichert, W M; Truskey, G A

    1990-06-01

    Total Internal Reflection Fluorescence (TIRF) is a powerful technique for visualizing focal and close contacts between the cell and the surface. Practical application of TIRF has been hampered by the lack of straightforward methods to calculate separation distances. The characteristic matrix theory of thin dielectric films was used to develop simple exponential approximations for the fluorescence excited in the cell-substratum contact region during a TIRF experiment. Two types of fluorescence were examined: fluorescently labeled cell membranes, and a fluorescent water-soluble dye. By neglecting the refractive index of the cell membrane, the fluorescence excited in the cell membrane was modelled by a single exponential function while the fluorescence in the membrane/substratum water gap followed a weighted sum of two exponentials. The error associated with neglecting the cell membrane for an incident angle of 70 degrees never exceeded 2.5%, regardless of the cell-substratum separation distance. Comparisons of approximated fluorescence intensities to more exact solutions of the fluorescence integrals for the three-phase model indicated that the approximations are accurate to about 1% for membrane/substratum gap thicknesses of less than 50 nm if the cytoplasmic and water gap refractive indices are known. The intrinsic error of this model in the determination of membrane/substratum separations was 10% as long as the uncertainties in the water gap and cytoplasmic refractive indices were less than 1%.

  16. Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Feng, Xunli; Oh, C. H.

    2016-10-01

    We investigate the dynamics of the microwave-frequency nonclassical correlations in a three-level Δ -configuration artificial atom, which is realized by superconducting quantum circuits. The intensity-intensity correlation and intensity field are strongly dependent on the relative phase Φ of the driven fields. It is found that two interference loops are formed in the dressed state picture at Φ =0 or π, which are responsible for the generation of nonclassical microwave photons. When the phase is changed into Φ =π /2 or 3π /2 , the temporal correlation functions exhibit different oscillating behaviors. The phase-sensitive nonclassical correlations of fluorescence photons may find practical application in the design of all-optical switches and quantum information processing.

  17. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  18. Detection of rheumatoid arthritis in humans by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  19. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  20. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  1. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  2. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  3. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    We have postulated that, in the case of tetragonal chicken egg white lysozyme, crystal growth occurs by the addition of pre-critical nuclei sized n-mers that form in the bulk solution, and that the n-mer growth units were multiples of the tetrameric 4(sub 3) helical structure. These have the strongest intermolecular bonds in the crystal and are therefore likely to be the first species formed. High resolution AFM studies provide strong supporting evidence for this model, but the data also suggest that the actual species in solution may not be identical in structure to that found in the crystal. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process, using covalent fluorescent derivatives which crystallize in the characteristic P4(sub 3)2(sub 1)2(sub 1) space group. FRET studies are being carried out between the cascade blue (CB-lys, donor, Ex(sub max) 366 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex(sub max) 430 nm, Em 528 nm) asp101 derivatives. The estimated R(sub 0) for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approx. 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 4(sub 3) helix. The short donor lifetime of 2.80 ns (chi(sup 2) = 0.644), coupled with the large average distances between the molecules (greater than or equal to 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Lifetime data show that CB-lys has a single lifetime when it is the only species in solution. Similarly, LY-lys also exhibits a single lifetime of 4.63 ns (chi(sup 2) = 0.42) when alone in solution. Addition of LY-lys to CB-lys results in the appearance of a third lifetime component of 0.348ns for the CB-lys. The fractional intensities of the different species present can be used to estimate the distribution of monomer and n-mers in solution. The self

  4. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  5. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  6. pH fluorescent probes: chlorinated fluoresceins.

    PubMed

    Ge, Feng-Yan; Chen, Li-Gong

    2008-01-01

    A series of regiospecific chlorinated fluoresceins have been synthesized by the reaction of the regiospecific chlorinated resorcinols with chlorinated phthalic anhydride. The regioisomers were successfully separated by chromatography. The photophysical properties of the obtained chlorinated fluoresceins were examined and found their absorption and emission maxima at long wavelength with high fluorescence quantum yield. Especially, pH-dependent properties of chlorinated fluoresceins have been studied in detail. These compounds show strongly pH-sensitive range of 3.5-7.0, and have lower pK (a) values than fluorescein. Furthermore, their fluorescent intensity could reach the maximum in the physiological environment of pH range 6.8-7.4. Due to higher fluorescence quantum yield and lower pK (a) values, chlorinated fluoresceins will be expected to be used as excellent pH fluorescent probes for pH measurement of the acidic cell.

  7. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed. PMID:24767504

  8. Factors affecting ultimate imaging depth of two-photon fluorescence microscopy in scattering medium

    NASA Astrophysics Data System (ADS)

    Sergeeva, Ekaterina A.; Katichev, Aleksey R.

    2009-10-01

    Different aspects of multiple small-angle scattering effect on two-phonon fluorescence microscopy (2PFM) imaging ability are discussed in this paper. We focus on theoretical evaluation of the maximum accessible imaging depth. There are three main factors which potentially restrict imaging depth: i) decay of tightly focused excitation beam caused by scattering and accompanied by loss of diffraction-limited resolution; ii) out-of focus fluorescence originated from excessive illumination of the sample surface which is required to compensate for the lack of peak intensity inside scattering medium; iii) decrease of signal-to noise ratio of fluorescence signal due to Beer-Bouguer-Lambert law decrease of excitation intensity. Based on small-angle diffusive approximation of radiation transfer theory we compared the influence of these factors and found out that the first two factors define fundamental limitation of 2PEM potentialities in scattering medium while the last one provides principal instrumental limitation which prevails in state-of the-art commercial laser scanning microscopy systems.

  9. Factors affecting ultimate imaging depth of two-photon fluorescence microscopy in scattering medium

    NASA Astrophysics Data System (ADS)

    Sergeeva, Ekaterina A.; Katichev, Aleksey R.

    2010-02-01

    Different aspects of multiple small-angle scattering effect on two-phonon fluorescence microscopy (2PFM) imaging ability are discussed in this paper. We focus on theoretical evaluation of the maximum accessible imaging depth. There are three main factors which potentially restrict imaging depth: i) decay of tightly focused excitation beam caused by scattering and accompanied by loss of diffraction-limited resolution; ii) out-of focus fluorescence originated from excessive illumination of the sample surface which is required to compensate for the lack of peak intensity inside scattering medium; iii) decrease of signal-to noise ratio of fluorescence signal due to Beer-Bouguer-Lambert law decrease of excitation intensity. Based on small-angle diffusive approximation of radiation transfer theory we compared the influence of these factors and found out that the first two factors define fundamental limitation of 2PEM potentialities in scattering medium while the last one provides principal instrumental limitation which prevails in state-of the-art commercial laser scanning microscopy systems.

  10. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    PubMed

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation. PMID:27417083

  11. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    PubMed

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

  12. Universality of the fluorescence intermittency in nanoscale systems: experiment and theory.

    PubMed

    Frantsuzov, Pavel A; Volkán-Kacsó, Sándor; Jankó, Boldizsár

    2013-02-13

    A variety of optically active nanoscale objects show extremely long correlations in the fluctuations of fluorescence intensity (blinking). Here we performed a systematic study to quantitatively estimate the power spectral density (PSD) of the fluorescence trajectories of colloidal and self-assembled quantum dots (QDs), nanorods (NRs), nanowires (NWs), and organic molecules. We report for the first time a statistically correct method of PSD estimation suitable for these systems. Our method includes a detailed analysis of the confidence intervals. The striking similarity in the spectra of these nanoscale systems, including even a "nonblinking" quantum dot investigated by Wang and collaborators (Nature2009, 459, 685-689), is powerful evidence for the existence of a universal physical mechanism underlying the blinking phenomenon in all of these fluorophores (Frantsuzov et al. Nat. Phys.2008, 4, 519-522). In this paper we show that the features of this universal mechanism can be captured phenomenologically by the multiple recombination center model (MRC) we suggested recently for explaining single colloidal QD intermittency. Within the framework of the MRCs we qualitatively explain all of the important features of fluorescence intensity fluctuations for a broad spectrum of nanoscale emitters.

  13. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model

    PubMed Central

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-01-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation. PMID:27417083

  14. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1 %, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  15. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically can not reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  16. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, 51%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear hits. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics

  17. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment

  18. Suitability of fluorescence measurements to quantify sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Carpenter, Claire M

    2013-06-01

    Fluorescence activity has been used to identify Desulfovibrio and has been termed the 'desulfoviridin test'. This fluorescence is attributed to the prosthetic group of bisulfite reductase, a key enzyme in dissimilatory sulfate reduction. We have pursued the use of fluorescence measurements to quantify sulfate-reducing bacteria. Cells of D. desulfuricans and D. gigas were treated with NaOH and produced two fluorescence spectra: one with maximum fluorescence with an excitation at 395 nm and an emission at 605 nm and another with an excitation at 320 nm and emission at 360 nm. Using the fluorescence with excitation at 395 nm and emission at 605 nm, we explored a series of parameters to measure Desulfovibrio in pure cultures and environmental samples. Fluorescence measurements are reliable provided the cells are treated with 1.75 N NaOH and the chromophore released from the cells is not exposed to strong light intensity, and is not exposed to temperatures greater than 20 °C, and measurements are done within a few minutes of extraction. Bleaching of fluorescence was attributed to metal ions in solution which was not observed until metal concentrations reached 1.5mM. We propose that D. desulfuricans is appropriate as the reference organism for measurement of sulfate-reducing bacteria by fluorescence and by using fluorescence intensity, 10(5) cells/ml can be readily detected in environmental samples. PMID:23566827

  19. Suitability of fluorescence measurements to quantify sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Carpenter, Claire M

    2013-06-01

    Fluorescence activity has been used to identify Desulfovibrio and has been termed the 'desulfoviridin test'. This fluorescence is attributed to the prosthetic group of bisulfite reductase, a key enzyme in dissimilatory sulfate reduction. We have pursued the use of fluorescence measurements to quantify sulfate-reducing bacteria. Cells of D. desulfuricans and D. gigas were treated with NaOH and produced two fluorescence spectra: one with maximum fluorescence with an excitation at 395 nm and an emission at 605 nm and another with an excitation at 320 nm and emission at 360 nm. Using the fluorescence with excitation at 395 nm and emission at 605 nm, we explored a series of parameters to measure Desulfovibrio in pure cultures and environmental samples. Fluorescence measurements are reliable provided the cells are treated with 1.75 N NaOH and the chromophore released from the cells is not exposed to strong light intensity, and is not exposed to temperatures greater than 20 °C, and measurements are done within a few minutes of extraction. Bleaching of fluorescence was attributed to metal ions in solution which was not observed until metal concentrations reached 1.5mM. We propose that D. desulfuricans is appropriate as the reference organism for measurement of sulfate-reducing bacteria by fluorescence and by using fluorescence intensity, 10(5) cells/ml can be readily detected in environmental samples.

  20. Computer Generated Holography with Intensity-Graded Patterns

    PubMed Central

    Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina

    2016-01-01

    Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896

  1. Magnetic field effects on recombination fluorescence in liquid iso-octane

    SciTech Connect

    Saik, V.O.; Ostafin, A.E.; Lipsky, S.

    1995-11-01

    The 123.6 nm photoionization of deuterated isooctane at {minus}10 {degree}C in the presence of hexafluorobenzene has been studied by examining the effect of a magnetic field to alter the quantum yield of recombination fluorescence. This fluorescence results from geminate recombination of hexafluorobenzene anions with isooctane positive ions. The use of a deuterated as contrasted to a protonated alkane makes the intensity of the recombination fluorescence much more sensitive to the magnetic field and permits observation of two maxima in the fluorescence yield at field strengths of 0 and 411 G and a possible third maximum at 822 G. The theory of the hyperfine induced spin evolution predicts these resonances at selected multiples of the C{sub 6}F{sup {minus}}{sub 6} hyperfine constant of 137 G. Utilizing the diffusion theory of geminate recombination in a Coulomb field, the experimental magnetic field spectrum is found to be well predicted over most of the range of magnetic field strengths studied (up to 2.5 kG) by a simple, one parameter, exponential radial probability density of initial scavenged geminate pair separation distances. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Goiffon, Reece J.; Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-03-01

    Kidneys normally filter the blood of excess salts and metabolic products, such as urea, while retaining plasma proteins. In diseases such as multiple myeloma and diabetes mellitus, the renal function is compromised and protein escapes into the urine. In this study, we present the use of fluorescence lifetime imaging (FLI) to image excess serum protein in urine (proteinuria). The near-infrared fluorescent dye LS-288 has distinct lifetimes when bound to protein versus free in solution, providing contrast between the protein-rich viscera and the mostly protein-free bladder. FLI with LS-288 in mice revealed that fluorescence lifetime (FLT) differences in the bladder relative to surrounding tissues was due to the fractional contributions of the bound and unbound dye molecules. The FLT of LS-288 decreased in the case of proteinuria while fluorescence intensity was unchanged. The results show that FLI can be useful for the dynamic imaging of protein-losing nephropathy due to diabetes mellitus and other renal diseases and suggest the potential use of the FLI to distinguish tumors from fluid-filled cysts in the body.

  3. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo

    NASA Astrophysics Data System (ADS)

    Razansky, Daniel; Distel, Martin; Vinegoni, Claudio; Ma, Rui; Perrimon, Norbert; Köster, Reinhard W.; Ntziachristos, Vasilis

    2009-07-01

    Fluorescent proteins have become essential reporter molecules for studying life at the cellular and sub-cellular level, re-defining the ways in which we investigate biology. However, because of intense light scattering, most organisms and tissues remain inaccessible to current fluorescence microscopy techniques at depths beyond several hundred micrometres. We describe a multispectral opto-acoustic tomography technique capable of high-resolution visualization of fluorescent proteins deep within highly light-scattering living organisms. The method uses multiwavelength illumination over multiple projections combined with selective-plane opto-acoustic detection for artifact-free data collection. Accurate image reconstruction is enabled by making use of wavelength-dependent light propagation models in tissue. By performing whole-body imaging of two biologically important and optically diffuse model organisms, Drosophila melanogaster pupae and adult zebrafish, we demonstrate the facility to resolve tissue-specific expression of eGFP and mCherrry fluorescent proteins for precise morphological and functional observations in vivo.

  4. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.

    PubMed

    Stockwell, Simon R; Mittnacht, Sibylle

    2014-01-01

    Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software(1) to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.

  5. Fluorescence lifetime measurements in heterogeneous scattering medium

    NASA Astrophysics Data System (ADS)

    Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke

    2016-07-01

    Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.

  6. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  7. TIR fluorescence screening of cell membranes

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Strauss, Wolfgang S.; Sailer, Reinhard; Wagner, Michael; Schneckenburger, Herbert

    2005-03-01

    A novel setup for fluorescence measurements of surfaces of biological samples, in particular cell membranes, is described. The method is based on multiple total internal reflection (TIR) of a laser beam on the surface of a multi-well plate, such that 96 individual samples are excited simultaneously. Main prerequisites are an appropriate thickness and high transmission of the glass bottom, a non-cytotoxic adhesive, and appropriate glass rods for TIR illumination. Fluorescence from cell surface is detected simultaneously using an integrating CCD camera and appropriate optical filters. For validation of the system, transfected cells expressing a fluorescent membrane protein are used. In addition, intracellular translocation of green fluorescent protein kinase c upon stimulation is examined. The method appears well suitable for high throughput screening (HTS), since neither washing of the samples nor any re-adjustment of the equipment after changing of individual plates are necessary.

  8. Continuous detection of glucose concentration by fluorescent indicator

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Lu, Lou; Xu, Kexin

    Continuous glucose detection has a great significance for diabetics. On the one hand, it can fully reflect the patient blood glucose change level. On the other hand, it can better guide the insulin dosage, and achieve closed-loop control of insulin pump. A continuous detection method of glucose concentration by borate polymer fluorescent indicator is proposed in the paper. The principle of this method is based on the competing reaction between alizarin, glucose and borate polymer. The borate polymer has high specific reaction with glucose, meanwhile reacts with non fluorescent alizarin. The product of the reaction between borate polymer and alizarin is fluorescent, called as fluorescent indicator. When glucose was introduced, the glucose molecules could react with the borate polymer in fluorescent indicator because of the high specificity. This competing process leads to the decomposition of fluorescent indicator into the non-fluorescent alizarin, and the fluorescent intensity gets loss. Therefore, the change of fluorescent intensity can reflect the glucose concentration level. In this method, the fluorescent indicator can well identify the glucose molecules. According to the experiment, we know that there is a high specific and good linear reaction between glucose and borate polymer. The linear fitting is up to 0.97 and the detection limitation can reach to 10 mg/dL. The fluorescent intensity reaches strongest with the optimal proportion of alizarin: borate polymer as 1:3. The reaction of the fluorescent indicator identifying glucose molecules has a good linear relationship, the linear fitting of which can reach to 0.98. The detection limitation can reach to 30 mg/dL, which fulfills the detection requirements of glucose concentration in vivo.

  9. PNA-induced assembly of fluorescent proteins using DNA as a framework.

    PubMed

    Gholami, Zahra; Brunsveld, Luc; Hanley, Quentin

    2013-08-21

    Controlled alignment of proteins on molecular frameworks requires the development of facile and orthogonal chemical approaches and molecular scaffolds. In this work, protein-PNA conjugates are brought forward as new chemical components allowing efficient assembly and alignment on DNA scaffolds. Site-selective monomeric teal fluorescent protein (mTFP)-peptide nucleic acid (PNA) (mTFP-PNA) conjugation was achieved by covalent linkage of the PNA to the protein through expressed protein ligation (EPL). A DNA beacon, with 6-Fam and Dabcyl at its ends, acts as a framework to create an assembled hetero-FRET system with the mTFP-PNA conjugate. Using fluorescence intensity, frequency domain lifetime measurements, and anisotropy measurements, the system was shown to produce FRET as indicated by decreased donor intensity, decreased donor lifetime, and increased donor anisotropy. Extension of the DNA scaffold allowed for the assembly of multiple mTFP-PNA constructs. Efficient formation of protein dimers and oligomers on the DNA-PNA frameworks could be shown, as visualized via size exclusion chromatography (SEC) and electrophoresis (SDS-PAGE). Assembly of multiple proteins in a row induced homo-FRET for the mTFP-PNA's assembled on the DNA scaffolds. The oligonucleotide framework allows an induced and controllable assembly of proteins by fusing them to PNAs directed to align on DNA scaffolds.

  10. High-resolution probing of local conformational changes in proteins by the use of multiple labeling: unfolding and self-assembly of human carbonic anhydrase II monitored by spin, fluorescent, and chemical reactivity probes.

    PubMed

    Hammarström, P; Owenius, R; Mårtensson, L G; Carlsson, U; Lindgren, M

    2001-06-01

    Two different spin labels, N-(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl)iodoacetamide (IPSL) and (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate (MTSSL), and two different fluorescent labels 5-((((2-iodoacetyl)amino)-ethyl)amino)naphtalene-1-sulfonic acid (IAEDANS) and 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN), were attached to the introduced C79 in human carbonic anhydrase (HCA II) to probe local structural changes upon unfolding and aggregation. HCA II unfolds in a multi-step manner with an intermediate state populated between the native and unfolded states. The spin label IPSL and the fluorescent label IAEDANS reported on a substantial change in mobility and polarity at both unfolding transitions at a distance of 7.4-11.2 A from the backbone of position 79. The shorter and less flexible labels BADAN and MTSSL revealed less pronounced spectroscopic changes in the native-to-intermediate transition, 6.6-9.0 A from the backbone. At intermediate guanidine (Gu)-HCl concentrations the occurrence of soluble but irreversibly aggregated oligomeric protein was identified from refolding experiments. At approximately 1 M Gu-HCl the aggregation was found to be essentially complete. The size and structure of the aggregates could be varied by changing the protein concentration. EPR measurements and line-shape simulations together with fluorescence lifetime and anisotropy measurements provided a picture of the self-assembled protein as a disordered protein structure with a representation of both compact as well as dynamic and polar environments at the site of the molecular labels. This suggests that a partially folded intermediate of HCA II self-assembles by both local unfolding and intermolecular docking of the intermediates vicinal to position 79. The aggregates were determined to be 40-90 A in diameter depending on the experimental conditions and spectroscopic technique used.

  11. Neoplasm diagnostics based on fluorescence of polymethine dyes

    NASA Astrophysics Data System (ADS)

    Samtsov, Michael P.; Voropay, Eugene S.; Chalov, Vadim N.; Zhavrid, Edvard A.

    2002-05-01

    Investigated polymethine dye TICS has near IR bands of fluorescence and absorption within the transparency region of biological tissues. It can be detected up to 1.5 cm from the surface of the skin. The intensity of a fluorescence signal of TICS is linear for doses up to 2 mg/kg in both tumor and muscle tissue. The ratio of an intensity of light induced fluorescence in tumor tissue to one in muscle tissue is up to 3.6 for rapidly growing tumors. The retention time of TICS is 7 days in all tissues. TICS can be used in the detection of tumor boundaries and tumor internal structure.

  12. Photodeposition of Silver Can Result in Metal-Enhanced Fluorescence

    PubMed Central

    GEDDES, CHRIS D.; PARFENOV, ALEXANDR

    2009-01-01

    Chemically deposited silver particles are widely used for surface-enhanced Raman scattering (SERS) and more recently for surface-enhanced fluorescence (SEF), also known as metal-enhanced fluorescence (MEF). We now show that metallic silver deposited by laser illumination results in an ~7-fold increased intensity of locally bound indocyanine green. The increased intensity is accompanied by a decreased lifetime and increased photostability. These results demonstrate the possibility of photolithographic preparation of surfaces for enhanced fluorescence in microfluidics, medical diagnostics, and other applications. PMID:14658678

  13. Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Hill, Steven C.; Pinnick, Ronald G.; Santarpia, Joshua L.; Baker, Neal; Alvarez, Benjamin; Ratnesar-Shumate, Shanna; Cottrell, Brian; McKee, Laura

    2011-05-01

    Laboratory measurements demonstrating the effects of ozone on aerosolized B. thuringiensis, as revealed by fluorescence spectra, are reported. The fluorescence emission peak around 330 nm (excited at 263nm) decreases somewhat in intensity and becomes slightly blue-shifted. Further, the fluorescence emission around 400 nm-550 nm is less affected by the ozone than is the 330 nm (tryptophan) peak.

  14. Monitoring the accumulation of lipofuscin in aging murine eyes by fluorescence spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrated fluorescence of murine eyes is collected as a function of age. This fluorescence is attributed to pigments generally referred to as lipofuscin and is observed to increase with age. No difference in fluorescence intensity is observed between the eyes of males or females. This work p...

  15. Fluorescence Approaches to Growing Macromolecule Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    Trace fluorescent labeling, typically < 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the more brightly the emission from it, and thus fluorescence intensity of a solid phase is a good indication of whether one has crystals or not. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases are considerably simpler. The higher fluorescence intensity of the crystalline phase led us to test if we could derive crystallization conditions from screen outcomes which had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.

  16. Fluorescence approaches to growing macromolecule crystals.

    PubMed

    Pusey, Marc; Forsythe, Elizabeth; Achari, Aniruddha

    2008-01-01

    Trace fluorescent labeling, typically less than 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the brighter the emission from it; thus, fluorescence intensity of a solid phase is a good indication of whether or not one has crystals. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases is considerably simpler. The higher fluorescence intensity of the crystalline phase led the authors to test if they could derive crystallization conditions from screen outcomes that had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.

  17. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  18. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  19. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery

    PubMed Central

    Mahoney, Daniel P.; Owens, Eric A.; Fan, Chaoyang; Hsiang, Jung-Cheng; Henary, Maged M.; Dickson, Robert M.

    2016-01-01

    Cyanine dyes are well known for their bright fluorescence and utility in biological imaging. Yet, cyanines also readily photoisomerize to produce non-emissive dark states. Co-illumination with a secondary, red-shifted light source on-resonance with the longer wavelength absorbing dark state reverses the photoisomerization and returns the cyanine dye to the fluorescent manifold, increasing steady-state fluorescence intensity. Modulation of this secondary light source dynamically alters emission intensity, drastically improving detection sensitivity and facilitating fluorescence signals to be recovered from otherwise overwhelming background. Red and near-IR emitting cyanine derivatives have been synthesized with varying alkyl chain lengths and halogen substituents to alter dual-laser fluorescence enhancement. Photophysical properties and enhancement with dual laser modulation were coupled with density functional calculations to characterize substituent effects on dark state photophysics, potentially improving detection in high background biological environments. PMID:25763888

  20. The first bifluoride sensor based on fluorescent enhancement.

    PubMed

    Dutta, Kaku; Deka, Ramesh Ch; Das, Diganta Kumar

    2013-07-01

    The first fluorescent sensor for HF2(-) anion, N(1), N(3)-di(naphthalene-1-yl)isophthalamide (L) has been derived from α-Napthylamine and isopthaloyl chloride. In 1:1 (v/v) DMSO:H2O, L exhibits high selectivity towards HF2(-) anion with a 4-fold enhancement in fluorescent intensity. Very little enhancement in fluorescence intensity is observed for F(-), Cl(-), Br(-), I(-), SCN(-), PO4(3-), SO4(2-), and CH3COO(-) anions. The stoichiometry interaction between L and HF2 (-) is found to be 1:1 from fluorescence and UV/Visible spectral data. DFT calculation shows that binding between HF2(-) and L is 1:1 and increases the relative planarity between the two naphthyl rings causing fluorescence enhancement. A shift of 0.080 V in oxidation potential of L is observed on interaction with HF2(-) by cyclic voltammetry and square wave voltammetry.

  1. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  2. A fluorescence spectroscopy study of traditional Chinese medicine Angelica

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong

    2013-10-01

    By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.

  3. [Acidity and temperature effect on the fluorescence characteristics of hydraulic oils and lubricants].

    PubMed

    Deng, Hu; Zhou, Xun; Shang, Li-ping; Zhang, Ze-lin; Wang, Shun-li

    2014-12-01

    By analyzing HyJet V phosphate ester hydraulic oil environmental impacts (oil, etc.) and confounding factors (pH, temperature, etc.), the feasibility was studied for the fluorescence detection of aircraft hydraulic oil leaks. By using the fluorescence spectrophotometer at various acidities and temperatures, the fluorescence properties of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant were gained. The experimental results are shown as following: The fluorescence peaks of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant are at 362, 405 and 456 nm, respectively. The impact of temperature on HyJet V phosphate ester hydraulic oil is less effective; Jet Oil II lubricant and 2197 lubricant fluorescence intensity decreases with increasing temperature. When acidity increases, the fluorescence peak of HyJet V phosphate ester hydraulic oil gradient shifts from 370 to 362 nm, and the fluorescence intensity decreases; the fluorescence peak of Jet Oil II lubricant is always 405 nm, while the fluorescence intensity decreases; the fluorescence peak of 2197 lubricant at 456 nm red shifts to 523 nm, and double fluorescence peaks appeare. The results are shown as following: under the influence of the environment and interference factors, the fluorescence characteristics of HyJet V phosphate ester hydraulic oil remain unchanged, and distinguish from Jet Oil II lubricant and 2197 lubricant. Therefore, the experiments indicate that the detection of HyJet V phosphate ester hydraulic oil leak is feasible by using fluorescence method.

  4. Fluorescence spectroscopy for wastewater monitoring: A review.

    PubMed

    Carstea, Elfrida M; Bridgeman, John; Baker, Andy; Reynolds, Darren M

    2016-05-15

    Wastewater quality is usually assessed using physical, chemical and microbiological tests, which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. Hence, there is an urgent need to find a rapid and effective method for the evaluation of water quality in natural and engineered systems and for providing an early warning of pollution events. Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor wastewater in surface waters for tracking sources of pollution, and in treatment works for process control and optimization. This paper reviews the current progress in applying fluorescence to assess wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence intensity compared to natural waters for the components associated with peak T (living and dead cellular material and their exudates) and peak C (microbially reprocessed organic matter). Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could be used for online monitoring in wastewater treatment works. This review also shows that care should be taken in any attempt to identify wastewater pollution sources due to potential overlapping fluorophores. Correlations between fluorescence intensity and water quality parameters such as biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and dilution of samples, typically up to ×10, has been shown to be useful to limit inner filter effect. It has been concluded that the following research gaps need to be filled: lack of studies on the on-line application of fluorescence spectroscopy in wastewater treatment works and lack of data processing tools suitable for rapid correction and extraction of

  5. Normalized fluorescence lifetime imaging for tumor identification and margin delineation

    NASA Astrophysics Data System (ADS)

    Sherman, Adria J.; Papour, Asael; Bhargava, Siddharth; Taylor, Zach; Grundfest, Warren S.; Stafsudd, Oscar M.

    2013-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a technique that has been proven to produce quantitative and qualitative differentiation and identification of substances with good specificity and sensitivity based on lifetime extracted information. This technique has shown the ability to also differentiate between a wide range of tissue types to identify malignant from benign tissue in vivo and ex vivo. However, the complexity, long duration and effort required to generate this information has limited the adoption of these techniques in a clinical setting. Our group has developed a time-resolved imaging system (patent pending) that does not require the extraction of lifetimes or use of complex curve fitting algorithms to display the needed information. The technique, entitled Lifetime Fluorescence Imaging (LFI, or NoFYI), converts fluorescence lifetime decay information directly into visual contrast. Initial studies using Fluorescein and Rhodamine-B demonstrated the feasibility of this approach. Subsequent studies demonstrated the ability to separate collagen and elastin powders. The technique uses nanosecond pulsed UV LEDs at 375 nm for average illumination intensities of ~4.5 μW on the tissue surface with detection by a gated CCD camera. To date, we have imaged 11 surgical head and neck squamous cell carcinoma and brain cancer biopsy specimens including 5 normal and 6 malignant samples. Images at multiple wavelengths clearly demonstrate differentiation between benign and malignant tissue, which was later confirmed by histology. Contrast was obtained between fluorophores with 35 μm spatial resolution and an SNR of ~30 dB allowing us to clearly define tumor margins in these highly invasive cancers. This method is capable of providing both anatomical and chemical information for the pathologist and the surgeon. These results suggest that this technology has a possible role in identifying tumors in tissue specimens and detecting tumor margins

  6. Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas.

    PubMed

    Aouani, Heykel; Hostein, Richard; Mahboub, Oussama; Devaux, Eloïse; Rigneault, Hervé; Ebbesen, Thomas W; Wenger, Jérôme

    2012-07-30

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas.

  7. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  8. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  9. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  10. Laser-induced fluorescence in diagnosis of dental caries

    NASA Astrophysics Data System (ADS)

    Drakaki, Eleni A.; Makropoulou, Mersini I.; Khabbaz, Maruan; Serafetinides, Alexandros A.

    2003-09-01

    The autofluorescence spectra of hard dental tissues, both in normal and pathological areas were investigated in this study. The measurements were performed both on the intact hard tissues of the examined teeth, such as enamel, dentine, cementum, and root canal, and on the tissues pathologically affected by caries (superficial, intermediate, and deep). Various laser wavelengths (337 nm, 488 nm, and 514 nm) were used to irradiate the dental surfaces and a computer-controlled spectrograph captured the fluorescent spectra. The emission signals were stored, measured, analyzed and quantified in terms of wavelength distribution and the relative photon intensity. Results indicated that the fluorescent spectra from healthy enamel, dentine, and cementum were almost identical in form, depending on the excitation wavelength. The intact and affected hard tissues were greatly different in the integral fluorescent intensity. Healthy areas were found to produce the most pronounced fluorescent intensity, whereas the carious regions produced the weaker fluorescent intensity. Independently of the laser excitation wavelength, dentin regions were found to produce the most pronounced fluorescent intensity than any other dental component. The fluorescence signal of carious affected dental structure revealed a reed shifted spectral curve, more pronounced after 488 nm excitation. There was a pronounced red shift for deep caries (crown -- root caries), after ultraviolet laser excitation. Excitation with visible wavelengths did not produce such differences between intact and cervical, deep carious affected tissue. Using a monochromatic light source without any light output at the wavelengths of fluorescence, e.g. a laser with the appropriate filters, the difference in fluorescence between intact and carious enamel was generally easy to observe. Finally, we found that the blue line of an argon ion laser is preferable for superficial caries detection, while the ultraviolet emitting nitrogen

  11. Comparative studies on the interaction of cefixime with bovine serum albumin by fluorescence quenching spectroscopy and synchronous fluorescence spectroscopy.

    PubMed

    Zhang, Lihui; Liu, Baosheng; Li, Zhiyun; Guo, Ying

    2015-08-01

    Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy-transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method.

  12. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  13. Fluorescent minerals, a review

    USGS Publications Warehouse

    Modreski, P.J.; Aumente-Modreski, R.

    1996-01-01

    Fluorescent minerals are more than just an attractive novelty, and collecting them is a speciality for thousands of individuals who appreciate their beauty, rarity, and scientific value. Fluorescent properties can be used as an aid to mineral identification, locality determination, and distinction between natural and synthetic gemstones. This article gives an overview of those aspects of fluorescence that are of most interest to collectors, hobbyists, and mineralogists. -from Authors

  14. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes.

    PubMed Central

    Randolph, J B; Waggoner, A S

    1997-01-01

    In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe. PMID:9207044

  15. Predicting fluorescence lifetimes and spectra of biopolymers.

    PubMed

    Callis, Patrik R

    2011-01-01

    Use of fluorescence in biology and biochemistry for imaging and characterizing equilibrium and dynamic processes is growing exponentially. Much progress has been made in the last few years on the microscopic understanding of the underlying principles of what controls the wavelength and quenching of fluorescence in biopolymers, both of which are central to the utility of fluorescent probes. This chapter is concerned with the quantitative microscopic understanding and prediction of the fluorescence wavelength and/or intensity of a fluorescent probe molecule attached to a biopolymer as revealed by hybrid quantum and classical mechanical computation procedures. The aim is not only to provide a recipe, but also even more importantly, to communicate the qualitative basic concepts of interpretation of fluorescence. These are surprisingly simple, although not broadly appreciated at this time. In addition, an effort has been made to show how these techniques have led to an emerging understanding of the relation between time-dependent wavelengths shifts due to solvent relaxation and population decay of conformational sub-ensembles.

  16. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  17. Fluorescent reporter methods.

    PubMed

    Hutter, Harald

    2006-01-01

    The identification and cloning of the green fluorescent protein (GFP) from jellyfish marks the beginning of a new era of fluorescent reporters. In Caenorhabditis elegans, genetically encoded markers like the fluorescent proteins of the GFP family became the reporter of choice for gene expression studies and protein localization. The small size and transparency of the worm allows the visualization of in vivo dynamics, which increases the number of potential applications for fluorescent reporters tremendously. In combination with subcellular tags, GFP can be used to label subcellular structures like synapses allowing novel approaches to study developmental processes like synapse formation. Other fluorescent labels like small organic dyes, which are in widespread use in cell culture systems, are rarely used in C. elegans owing to difficulties in applying these labels through the impenetrable cuticle or eggshell of the animal. A notable exception is the use of lipophilic dyes, which are taken up by certain sensory neurons in the intact animal and can be introduced into the embryo after puncturing of the egg shell. This chapter covers the use of fluorescent dyes and fluorescent proteins in C. elegans. Emphasis is placed on microscopic techniques including wide field and confocal microscopy as well as time-lapse recordings. The use of fluorescent proteins as transgenic markers and image processing of fluorescence images are briefly discussed.

  18. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  19. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed Central

    Enderlein, J

    2000-01-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions. PMID:10733992

  20. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  1. On the Intensity Profile of Electric Lamps and Light Bulbs

    ERIC Educational Resources Information Center

    Bacalla, Xavier; Salumbides, Edcel John

    2013-01-01

    We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…

  2. Fluorescence imaging of early lung cancer

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; MacAulay, Calum E.; Le Riche, Jean C.; Ikeda, Norihiko; Palcic, Branko

    1995-01-01

    The performance of a fluorescence imaging device was compared with conventional white-light bronchoscopy in 100 patients with lung cancer, 46 patients with resected State I nonsmall cell lung cancer, 10 patients with head and neck cancer, and 67 volunteers who had smoked at least one pack of cigarettes per day for twenty-five years or more. Using differences in tissue autofluorescence between premalignant, malignant and normal tissues, fluorescence bronchoscopy was found to detect more than twice as many moderate-severe dysplasia and carcinoma in situ sites than conventional white-light bronchoscopy. The use of fluorescence imaging to detect small peripheral lung nodules was investigated in a micro metastatic lung model of mice implanted with Lewis lung tumor cells. Fluorescence imaging was found to be able to detect small malignant lung lesions. The use of (delta) -aminolevulinic acid (ALA) to enhance fluorescence detection of CIS was investigated in a patient after oral administration of 60 mg/kg of ALA four hours prior to bronchoscopy, although ALA enhanced the tumor's visibility, multiple sites of false positive fluorescence were observed in areas of inflammation or metaplasia.

  3. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  4. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  5. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  6. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  7. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  8. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Palczewski, Krzysztof

    2015-01-01

    Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE. PMID:26309765

  9. Investigation of Förster Resonance Energy Transfer (FRET) and Competition of Fluorescent Dyes on DNA Microparticles

    PubMed Central

    Kim, Jieun; Lee, Jae Sung; Lee, Jong Bum

    2015-01-01

    Fluorescent labeling is widely used to investigate the structural stability and changes to DNA nano- and microstructures. Despite this, the conventional method for observing DNA structures has several limitations in terms of cost-efficiency. This paper introduces a DNA spherical particle stained with DNA intercalating dyes (SYBR Green and SYTOX Orange) as tracers and reports the interaction between multiple dyes. The interference between the dyes was analyzed in terms of Förster resonance energy transfer (FRET) and competition. The changes in the fluorescence intensity by FRET were uniform, regardless of the sequence. The competition effect could occur when several dyes were added simultaneously. These properties are expected to help in the design of multicolor tracers in bioimaging and environmental applications. PMID:25856674

  10. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  11. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  12. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  13. Measuring initiator caspase activation by bimolecular fluorescence complementation.

    PubMed

    Parsons, Melissa J; Bouchier-Hayes, Lisa

    2015-01-01

    Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used. PMID:25561623

  14. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions

    PubMed Central

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  15. Engineering fluorescent proteins.

    PubMed

    Miyawaki, Atsushi; Nagai, Takeharu; Mizuno, Hideaki

    2005-01-01

    Green fluorescent protein from the jellyfish Aequorea victora (GFP) and GFP-like proteins from Anthozoa species encode light-absorbing chromophores intrinsically within their respective protein sequences. Recent studies have made progress in obtaining bright variants of these proteins which develop chromophores quickly and efficiently, as well as novel fluorescent proteins that photoactivate or photoconvert, i.e., become fluorescent or change colors upon illumination at specific wavelengths. Also, monomeric versions of these proteins have been engineered for fusion protein applications. Simple GFP variants and circularly permuted GFP variants have been used to develop fluorescent probes that sense physiological signals such as membrane potential and concentrations of free calcium. Further molecular characterization of the structure and maturation of these proteins is in progress, aimed at providing information for rational design of variants with desired fluorescence properties.

  16. Mapping membrane protein structure with fluorescence

    PubMed Central

    Taraska, Justin W.

    2012-01-01

    Membrane proteins regulate many cellular processes including signaling cascades, ion transport, membrane fusion, and cell-to-cell communications. Understanding the architecture and conformational fluctuations of these proteins is critical to understanding their regulation and functions. Fluorescence methods including intensity mapping, fluorescence resonance energy transfer, and photo-induced electron transfer, allow for targeted measurements of domains within membrane proteins. These methods can reveal how a protein is structured and how it transitions between different conformational states. Here, I will review recent work done using fluorescence to map the structures of membrane proteins, focusing on how each of these methods can be applied to understanding the dynamic nature of individual membrane proteins and protein complexes. PMID:22445227

  17. Fast fluorescence switching within hydrophilic supramolecular assemblies.

    PubMed

    Cusido, Ja