A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.
2014-05-01
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.
A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003
2014-05-15
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less
Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal
2016-05-01
In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.
Bremer, Daniel; Leben, Ruth; Mothes, Ronja; Radbruch, Helena; Niesner, Raluca
2017-04-03
Fluorescence-lifetime imaging microscopy (FLIM) is a technique to generate images, in which the contrast is obtained by the excited-state lifetime of fluorescent molecules instead of their intensity and emission spectrum. The ubiquitous coenzymes NADH and NADPH, hereafter NAD(P)H, in cells show a short fluorescence lifetime ≈400 psec in the free-state and a longer fluorescence lifetime when bound to enzymes. The fluorescence lifetime of NAD(P)H in this state depends on the binding-site on the specific enzyme. In the case of NADPH bound to members of the NADPH oxidases family we measured a fluorescence lifetime of 3650 psec as compared to enzymes typically active in cells, in which case fluorescence lifetimes of ∼2000 psec are measured. Here we present a robust protocol based on NAD(P)H fluorescence lifetime imaging in isolated cells to distinguish between normally active enzymes and NADPH oxidases, mainly responsible for oxidative stress. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Feeks, James A; Hunter, Jennifer J
2017-05-01
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Elson, D S; Jo, J A
2007-01-01
We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues. PMID:19503759
Feeks, James A.; Hunter, Jennifer J.
2017-01-01
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina. PMID:28663886
Fluorescence lifetime imaging ophthalmoscopy.
Dysli, Chantal; Wolf, Sebastian; Berezin, Mikhail Y; Sauer, Lydia; Hammer, Martin; Zinkernagel, Martin S
2017-09-01
Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk
We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less
Capture of Fluorescence Decay Times by Flow Cytometry
Naivar, Mark A.; Jenkins, Patrick; Freyer, James P.
2012-01-01
In flow cytometry, the fluorescence decay time of an excitable species has been largely underutilized and is not likely found as a standard parameter on any imaging cytometer, sorting, or analyzing system. Most cytometers lack fluorescence lifetime hardware mainly owing to two central issues. Foremost, research and development with lifetime techniques has lacked proper exploitation of modern laser systems, data acquisition boards, and signal processing techniques. Secondly, a lack of enthusiasm for fluorescence lifetime applications in cells and with bead-based assays has persisted among the greater cytometry community. In this unit, we describe new approaches that address these issues and demonstrate the simplicity of digitally acquiring fluorescence relaxation rates in flow. The unit is divided into protocol and commentary sections in order to provide a most comprehensive discourse on acquiring the fluorescence lifetime with frequency-domain methods. The unit covers (i) standard fluorescence lifetime acquisition (protocol-based) with frequency-modulated laser excitation, (ii) digital frequency-domain cytometry analyses, and (iii) interfacing fluorescence lifetime measurements onto sorting systems. Within the unit is also a discussion on how digital methods are used for aliasing in order to harness higher frequency ranges. Also, a final discussion is provided on heterodyning and processing of waveforms for multi-exponential decay extraction. PMID:25419263
A current-assisted CMOS photonic sampler with two taps for fluorescence lifetime sensing
NASA Astrophysics Data System (ADS)
Ingelberts, H.; Kuijk, M.
2016-04-01
Imaging based on fluorescence lifetime is becoming increasingly important in medical and biological applications. State-of- the-art fluorescence lifetime microscopes either use bulky and expensive gated image intensifiers coupled to a CCD or single-photon detectors in a slow scanning setup. Numerous attempts are being made to create compact, cost-effective all- CMOS imagers for fluorescence lifetime sensing. Single-photon avalanche diode (SPAD) imagers can have very good timing resolution and noise characteristics but have low detection efficiency. Another approach is to use CMOS imagers based on demodulation detectors. These imagers can be either very fast or very efficient but it remains a challenge to combine both characteristics. Recently we developed the current-assisted photonic sampler (CAPS) to tackle these problems and in this work, we present a new CAPS with two detection taps that can sample a fluorescence decay in two time windows. In the case of mono-exponential decays, two windows provide enough information to resolve the lifetime. We built an electro-optical setup to characterize the detector and use it for fluorescence lifetime measurements. It consists of a supercontinuum pulsed laser source, an optical system to focus light into the detector and picosecond timing electronics. We describe the structure and operation of the two-tap CAPS and provide basic characterization of the speed performance at multiple wavelengths in the visible and near-infrared spectrum. We also record fluorescence decays of different visible and NIR fluorescent dyes and provide different methods to resolve the fluorescence lifetime.
NASA Technical Reports Server (NTRS)
Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.
2000-01-01
In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.
In vivo fluorescence lifetime optical projection tomography
McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.
2011-01-01
We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145
NASA Astrophysics Data System (ADS)
Rudek, F.; Baselt, T.; Lempe, B.; Taudt, C.; Hartmann, P.
2015-03-01
The importance of fluorescence lifetime measurement as an optical analysis tool is growing. Many applications already exist in order to determine the fluorescence lifetime, but the majority of these require the addition of fluorescence-active substances to enable measurements. Every usage of such foreign materials has an associated risk. This paper investigates the use of auto-fluorescing substances in Saccharomyces cerevisiae (Baker's yeast) as a risk free alternative to fluorescence-active substance enabled measurements. The experimental setup uses a nitrogen laser with a pulse length of 350 ps and a wavelength of 337 nm. The excited sample emits light due to fluorescence of NADH/NADPH and collagen. A fast photodiode collects the light at the output of an appropriate high-pass edge-filter at 400 nm. Fluorescence lifetimes can be determined from the decay of the measurement signals, which in turn characterizes the individual materials and their surrounding environment. Information about the quantity of the fluorescence active substances can also be measured based on the received signal intensity. The correlation between the fluorescence lifetime and the metabolic state of Saccharomyces cerevisiae was investigated and is presented here.
Emerging biomedical applications of time-resolved fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.
1994-07-01
Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shcheslavskiy, V. I.; Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005; Neubauer, A.
We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.
Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.
Pickup, John C; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J S
2013-01-01
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested. © 2013 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
Chen, Jin; Venugopal, Vivek; Intes, Xavier
2011-01-01
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610
NADPH as a potential intrinsic probe for tumour margin estimation
NASA Astrophysics Data System (ADS)
Stewart, Hazel; Hupp, Ted R.; Birch, David J. S.
2018-03-01
The fluorescent properties of the reduced coenzyme NADH and its phosphorylated derivative (NADPH) have been explored in order to assess their potential as an intrinsic probe for cancer surgery. NADPH production is increased in cancer cells to quench reactive oxygen species and meet higher demands for biosynthesis, and has attractive fluorescent properties such as emission towards the visible part of the spectrum and a relatively long fluorescence lifetime upon binding to enzymes ( 1 - 6.5 ns) that helps discriminate against other endogenous species. Different environmental effects on NAD(P)H fluorescence are reported here, including an increase in lifetime upon oxygen removal, an ability to retain its fluorescent properties in a complex medium (a silica phantom) and its fluorescence lifetime also being distinguishable in a cell environment. In addition, the development of a miniaturized liquid light guide filter-based timecorrelated single photon counting fluorescence lifetime system is reported as a step towards time-resolved visual imaging in cancer surgery. This system has been demonstrated as being capable of accurately measuring NAD(P)H fluorescence lifetimes in both simple solvent and cellular environments.
Fluorescence lifetime imaging microscopy using near-infrared contrast agents.
Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S
2012-08-01
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.
Fluorescence Lifetime Imaging Microscopy Using Near-Infrared Contrast Agents
Nothdurft, Ralph; Sarder, Pinaki; Bloch, Sharon; Culver, Joseph; Achilefu, Samuel
2013-01-01
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labeled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes’ relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. PMID:22788550
Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O
2017-11-08
3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
NASA Astrophysics Data System (ADS)
Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.
2009-09-01
Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.
Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A
2009-12-01
The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames
NASA Astrophysics Data System (ADS)
Jonsson, Malin; Ehn, Andreas; Christensen, Moah; Aldén, Marcus; Bood, Joakim
2014-04-01
A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ϕ = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.
Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence
NASA Technical Reports Server (NTRS)
O'Brian, T. R.; Lawler, J. E.
1992-01-01
Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.
Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae
2016-01-01
We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724
Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.
2012-01-01
We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606
Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime
NASA Astrophysics Data System (ADS)
Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie
2017-09-01
Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.
Polar plot representation of time-resolved fluorescence.
Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M
2014-01-01
Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.
NASA Astrophysics Data System (ADS)
Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.
2013-05-01
We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.
Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted
2012-12-01
We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.
Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M
2015-01-01
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5–5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry PMID:25523156
NASA Astrophysics Data System (ADS)
Wlodarczyk, Jakub; Kierdaszuk, Borys
2005-08-01
Decays of tyrosine fluorescence in protein-ligand complexes are described by a model of continuous distribution of fluorescence lifetimes. Resulted analytical power-like decay function provides good fits to highly complex fluorescence kinetics. Moreover, this is a manifestation of so-called Tsallis q-exponential function, which is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay functions were applied to analysis of fluorescence decays of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli (the product of the deoD gene), free in aqueous solution and in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate). The power-like function provides new information about enzyme-ligand complex formation based on the physically justified heterogeneity parameter directly related to the lifetime distribution. A measure of the heterogeneity parameter in the enzyme systems is provided by a variance of fluorescence lifetime distribution. The possible number of deactivation channels and excited state mean lifetime can be easily derived without a priori knowledge of the complexity of studied system. Moreover, proposed model is simpler then traditional multi-exponential one, and better describes heterogeneous nature of studied systems.
Pelet, S; Previte, M J R; Laiho, L H; So, P T C
2004-10-01
Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society
Processes Affecting the Variability of Fluorescence Signals from Benthic Targets in Shallow Waters
1998-09-30
analysis of zooxanthellae isolated from coral samples. We examined fluorescence lifetimes from benthic targets using femtosecond laser based Single...a temporal resolution 5 ps. The laser set-up was employed for laboratory studies of fluorescence lifetimes from model targets such as zooxanthellae ...seagrasses. Over 200 measurements on isolated zooxanthellae were conducted with a bench-top FRR fluorometer and Phase Shift Fluorometer. During the CoBOP-98
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier
2017-07-01
Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.
Shang, Jianyuan; Geva, Eitan
2007-04-26
The quenching rate of a fluorophore attached to a macromolecule can be rather sensitive to its conformational state. The decay of the corresponding fluorescence lifetime autocorrelation function can therefore provide unique information on the time scales of conformational dynamics. The conventional way of measuring the fluorescence lifetime autocorrelation function involves evaluating it from the distribution of delay times between photoexcitation and photon emission. However, the time resolution of this procedure is limited by the time window required for collecting enough photons in order to establish this distribution with sufficient signal-to-noise ratio. Yang and Xie have recently proposed an approach for improving the time resolution, which is based on the argument that the autocorrelation function of the delay time between photoexcitation and photon emission is proportional to the autocorrelation function of the square of the fluorescence lifetime [Yang, H.; Xie, X. S. J. Chem. Phys. 2002, 117, 10965]. In this paper, we show that the delay-time autocorrelation function is equal to the autocorrelation function of the square of the fluorescence lifetime divided by the autocorrelation function of the fluorescence lifetime. We examine the conditions under which the delay-time autocorrelation function is approximately proportional to the autocorrelation function of the square of the fluorescence lifetime. We also investigate the correlation between the decay of the delay-time autocorrelation function and the time scales of conformational dynamics. The results are demonstrated via applications to a two-state model and an off-lattice model of a polypeptide.
NASA Astrophysics Data System (ADS)
Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas
2015-12-01
Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0 = 0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.
Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji
2011-01-01
We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté
2015-12-15
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Boonstra, Martin C.; de Rooij, Karien E.; Powolny, François E.; Sinisi, Riccardo; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Vahrmeijer, Alexander L.; Dijkstra, Jouke; van de Giessen, Martijn
2015-03-01
Excision of the whole tumor is crucial, but remains difficult for many tumor types. Fluorescence lifetime imaging could be helpful intraoperative to differentiate normal from tumor tissue. In this study we investigated the difference in fluorescence lifetime imaging of indocyanine green coupled to cyclic RGD free in solution/serum or bound to integrins e.g. in tumors. The U87-MG glioblastoma cell line, expressing high integrin levels, was cultured to use in vitro and to induce 4 subcutaneous tumors in a-thymic mice (n=4). Lifetimes of bound and unbound probe were measured with an experimental time-domain single-photon avalanche diode array (time resolution <100ps). In vivo measurements were taken 30-60 minutes after intravenous injection, and after 24 hours. The in vitro lifetime of the fluorophores was similar at different concentrations (20, 50 and 100μM) and showed a statistically significant higher lifetime (p<0.001) of bound probe compared to unbound probe. In vivo, lifetimes of the fluorophores in tumors were significantly higher (p<0.001) than at the control site (tail) at 30-60 minutes after probe injection. Lifetimes after 24 hours confirmed tumor-specific binding (also validated by fluorescence intensity images). Based on the difference in lifetime imaging, it can be concluded that it is feasible to separate between bound and unbound probes in vivo.
Fluorescence lifetime imaging of skin cancer
NASA Astrophysics Data System (ADS)
Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris
2011-03-01
Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.
Hu, Wenbo; Guo, Lihong; Bai, Lei; Miao, Xiaofei; Ni, Yun; Wang, Qi; Zhao, Hui; Xie, Meng; Li, Lin; Lu, Xiaomei; Huang, Wei; Fan, Quli
2018-05-28
Two-photon fluorescence lifetime imaging (TP-FLIM) not only permits imaging deep inside the tissues with precise spatial manipulation but also circumvents tissue autofluorescence, holding tremendous promise in molecular imaging. However, the serious lack of suitable contrast agents with long fluorescence lifetime and efficient two-photon absorption (TPA) greatly limits the advance of TP-FLIM. This study reports a simple approach to fabricate water-soluble organic semiconducting nanoparticles [thioxanthone (TXO) NPs] with ultralong fluorescence lifetime and efficient TPA for in vivo TP-FLIM. The approach utilizes the aggregation of a specifically selected thermally activated delayed fluorescence (TADF) fluorophore to prolong its fluorescence lifetime. Encapsulating the TADF fluorophore within an amphiphilic copolymer not only maximizes its aggregation but also obtains TXO NPs with efficient TPA. Importantly, as-prepared TXO NPs exhibit a considerably long fluorescence lifetime at a magnitude of 4.2 µs, which is almost 1000 times larger than that of existing organic contrast agents. Moreover, such long fluorescence lifetime is almost oxygen-inert, readily realizing both in vitro and in vivo TP-FLIM. This work may set valuable guidance for designing organic semiconducting materials with ultralong fluorescence lifetimes to fulfill the potential of FLIM. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards in vivo bacterial detection in human lung(Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin
2017-04-01
Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).
Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.
2017-01-01
A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691
NASA Astrophysics Data System (ADS)
Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham
2011-03-01
Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).
Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul
2008-10-15
Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo.
Krasieva, Tatiana B; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L; Gratton, Enrico; Tromberg, Bruce J
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λ(ex)=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6 ± 0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5 ± 0.05 and 0.17 ± 0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
NASA Astrophysics Data System (ADS)
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico
2012-01-01
Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo. PMID:23235925
Cao, Ruofan; Naivar, Mark A; Wilder, Mark; Houston, Jessica P
2014-01-01
Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:25274073
Fluorescence lifetime images of different green fluorescent proteins in fly brain
NASA Astrophysics Data System (ADS)
Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.
2009-02-01
The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.
Methodological considerations for global analysis of cellular FLIM/FRET measurements
NASA Astrophysics Data System (ADS)
Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.
2012-02-01
Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.
Sinchenko, Elena; Gibbs, W E Keith; Davis, Claire E; Stoddart, Paul R
2010-11-20
A distributed optical-fiber sensing system based on pulsed excitation and time-gated photon counting has been used to locate a fluorescent region along the fiber. The complex Alq3 and the infrared dye IR-125 were examined with 405 and 780 nm excitation, respectively. A model to characterize the response of the distributed fluorescence sensor to a Gaussian input pulse was developed and tested. Analysis of the Alq3 fluorescent response confirmed the validity of the model and enabled the fluorescence lifetime to be determined. The intrinsic lifetime obtained (18.2±0.9 ns) is in good agreement with published data. The decay rate was found to be proportional to concentration, which is indicative of collisional deactivation. The model allows the spatial resolution of a distributed sensing system to be improved for fluorophores with lifetimes that are longer than the resolution of the sensing system.
[The analysis of sinusoidal modulated method used for measuring fluorescence lifetime].
Feng, Ying; Huang, Shi-hua
2007-12-01
This paper has built a system with a sinusoidal modulated LED as the excitation source. Such exciter was used upon the sample Eu2 L'3 x nH2O (L' = C4H4O4). Both the excitation light and the 5Do-7F2 emission of Eu3+ ion were measured. Fluorescence lifetime, which approximate to 0.680 ms, can then be obtained from the measured excitation and fluorescence waveforms by non-linear least square curve fitting based on the principle of phase-shift measurement of fluorescence lifetime. Data processing methods considering respectively the high order harmonics in the modulation and multi-exponential decay of the fluorescence were discussed. A method of utilizing Fourier series expandedness to amendatory the result was put forward. Accordingly, the applicability for phase-shift method was expanded as well as a more exact result was acquired.
NASA Astrophysics Data System (ADS)
Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.
2018-05-01
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
In vivo tomographic imaging of deep seated cancer using fluorescence lifetime contrast
Rice, William L.; Shcherbakova, Daria M; Verkusha, Vladislav V.; Kumar, Anand T.N.
2015-01-01
Preclinical cancer research would benefit from non-invasive imaging methods that allow tracking and visualization of early stage metastasis in vivo. While fluorescent proteins revolutionized intravital microscopy, two major challenges which still remain are tissue autofluorescence and hemoglobin absorption, which act to limit intravital optical techniques to large or subcutaneous tumors. Here we employ time-domain technology for the effective separation of tissue autofluorescence from extrinsic fluorophores, based on their distinct fluorescence lifetimes. Additionally, we employ cancer cells labelled with near infra-red fluorescent proteins (iRFP) to allow deep-tissue imaging. Our results demonstrate that time-domain imaging allows the detection of metastasis in deep-seated organs of living mice with a more than 20-fold increase in sensitivity compared to conventional continuous wave techniques. Furthermore, the distinct fluorescence lifetimes of each iRFP enables lifetime multiplexing of three different tumors, each expressing unique iRFP labels in the same animal. Fluorescence tomographic reconstructions reveal 3D distributions of iRFP720-expressing cancer cells in lungs and brain of live mice, allowing ready longitudinal monitoring of cancer cell fate with greater sensitivity than otherwise currently possible. PMID:25670171
NASA Astrophysics Data System (ADS)
Sherlock, Benjamin E.; Harvestine, Jenna N.; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A.; Leach, J. Kent; Marcu, Laura
2018-03-01
We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable.
Novel online security system based on rare-earth-doped glass microbeads
NASA Astrophysics Data System (ADS)
Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.
2004-06-01
A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.
Fluorescence lifetime plate reader: Resolution and precision meet high-throughput
Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.
2014-01-01
We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092
Moise, Nicolae; Moya, Ismaël
2004-06-28
We report the first direct decomposition of the fluorescence lifetime heterogeneity during multiphasic fluorescence induction in dark-adapted leaves by multi-frequency phase and modulation fluorometry (PMF). A very fast component, assigned to photosystem I (PSI), was found to be constant in lifetime and yield, whereas the two slow components, which are strongly affected by the closure of the reaction centers by light, were assigned to PSII. Based on a modified "reversible radical pair" kinetic model with three compartments, we showed that a loosely connected pigment complex, which is assumed to be the CP47 complex, plays a specific role with respect to the structure and function of the PSII: (i) it explains the heterogeneity of PSII fluorescence lifetime as a compartmentation of excitation energy in the antenna, (ii) it is the site of a conformational change in the first second of illumination, and (iii) it is involved in the mechanisms of nonphotochemical quenching (NPQ). On the basis of the multi-frequency PMF analysis, we reconciled two apparently antagonistic aspects of chlorophyll a fluorescence in vivo: it is heterogeneous with respect to the kinetic structure (several lifetime components) and homogeneous with respect to average quantities (quasi-linear mean tau-Phi relationship).
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations
NASA Astrophysics Data System (ADS)
Hosny, Neveen A.; Lee, David A.; Knight, Martin M.
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.
Hosny, Neveen A; Lee, David A; Knight, Martin M
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.
2016-04-01
Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.
Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.
2010-01-01
Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250
Wei, Liping; Yan, Wenrong; Ho, Derek
2017-12-04
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Yan, Wenrong; Ho, Derek
2017-01-01
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568
NASA Astrophysics Data System (ADS)
Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio
1999-07-01
Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.
Fluorescence lifetime based bioassays
NASA Astrophysics Data System (ADS)
Meyer-Almes, Franz-Josef
2017-12-01
Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.
NASA Astrophysics Data System (ADS)
Li, Wenyan; Houston, Kevin D.; Houston, Jessica P.
2017-01-01
Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example PSFC can report changes in protein conformation, expression, interactions, and movement, as well as differences in intracellular microenvironments. This contribution focuses on the latter case by taking PSFC measurements of macrophage cells when inoculated with enhanced green fluorescent protein (EGFP)-expressing E. coli. During progressive internalization of EGFP-E. coli, fluorescence lifetimes were acquired and compared to control groups. It was hypothesized that fluorescence lifetimes would correlate well with phagocytosis because phagosomes become acidified and the average fluorescence lifetime of EGFP is known to be affected by pH. We confirmed that average EGFP lifetimes consistently decreased (3 to 2 ns) with inoculation time. The broad significance of this work is the demonstration of how high-throughput fluorescence lifetime measurements correlate well to changes that are not easily tracked by intensity-only cytometry, which is affected by heterogeneous protein expression, cell-to-cell differences in phagosome formation, and number of bacterium engulfed.
Zhang, Xu; Wadkins, Randy M.
2009-01-01
Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D. PMID:19254547
Zhang, Xu; Wadkins, Randy M
2009-03-04
Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D.
Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets
Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda
2013-01-01
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626
Sherlock, Benjamin E; Harvestine, Jenna N; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A; Leach, J Kent; Marcu, Laura
2018-03-01
We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)
1999-01-01
The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.
Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.
Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S
2016-12-01
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τ m ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τ m than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.
2018-03-01
Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.
Lin, Y; Ghijsen, M T; Gao, H; Liu, N; Nalcioglu, O; Gulsen, G
2014-01-01
Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube (PMT) is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, Indocyanine Green (ICG) and 3-3′ Diethylthiatricarbocyanine Iodide (DTTCI), which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized. PMID:21753235
A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System
Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.
2009-01-01
We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564
Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M
2007-01-15
Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.
Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura
2014-01-01
Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604
Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo
2018-05-07
Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.
Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination
NASA Astrophysics Data System (ADS)
Zhong, Xin; Wang, Xinwei; Zhou, Yan
2018-01-01
A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.
Fluorescence lifetime imaging of oxygen in dental biofilm
NASA Astrophysics Data System (ADS)
Gerritsen, Hans C.; de Grauw, Cees J.
2000-12-01
Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.
Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo
NASA Astrophysics Data System (ADS)
Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida
2017-02-01
To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.
NASA Astrophysics Data System (ADS)
Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.
2017-02-01
Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.
Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay
NASA Astrophysics Data System (ADS)
Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.
2013-06-01
Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.
Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells
Fruhwirth, Gilbert O.; Ameer-Beg, Simon; Cook, Richard; Watson, Timothy; Ng, Tony; Festy, Frederic
2010-01-01
Development of remote imaging for diagnostic purposes has progressed dramatically since endoscopy began in the 1960’s. The recent advent of a clinically licensed intensity-based fluorescence micro-endoscopic instrument has offered the prospect of real-time cellular resolution imaging. However, interrogating protein-protein interactions deep inside living tissue requires precise fluorescence lifetime measurements to derive the Förster resonance energy transfer between two tagged fluorescent markers. We developed a new instrument combining remote fiber endoscopic cellular-resolution imaging with TCSPC-FLIM technology to interrogate and discriminate mixed fluorochrome labeled beads and expressible GFP/TagRFP tags within live cells. Endoscopic-FLIM (e-FLIM) data was validated by comparison with data acquired via conventional FLIM and e-FLIM was found to be accurate for both bright bead and dim live cell samples. The fiber based micro-endoscope allowed remote imaging of 4 µm and 10 µm beads within a thick Matrigel matrix with confident fluorophore discrimination using lifetime information. More importantly, this new technique enabled us to reliably measure protein-protein interactions in live cells embedded in a 3D matrix, as demonstrated by the dimerization of the fluorescent protein-tagged membrane receptor CXCR4. This cell-based application successfully demonstrated the suitability and great potential of this new technique for in vivo pre-clinical biomedical and possibly human clinical applications. PMID:20588974
Prenner, E; Sommer, A; Maurer, N; Glatter, O; Gorges, R; Paltauf, F; Hermetter, A
2000-04-01
Choline phospholipids are the major constituents of the outer layer of the erythrocyte membrane. To investigate their lateral membrane organization we determined the fluorescence lifetime properties of diphenylhexatriene analogues of phosphatidylcholine, choline plasmalogen, (the respective enolether derivative), and sphingomyelin inserted into the outer layer of hemoglobin-free ghosts. Fluorescence lifetimes were recorded by time-resolved phase and modulation fluorometry and analyzed in terms of Continuous Lorentzian distributions. To assess the influence of membrane proteins on the fluorescence lifetime of the labeled lipids in the biomembrane, lipid vesicles were used as controls. In general, the lifetime distributions in the ghost membranes are broad compared to vesicles. Phosphatidylcholine and sphingomyelin exhibit very similar lifetime distributions in contrast to an increased plasmalogen lifetime heterogeneity in both systems. Orientational effects of side chain mobilities on the observed lifetimes can be excluded. Fluorescence anisotropies revealed identical values for all three labeled phospholipids in the biomembrane.
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells
Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae
2016-01-01
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.
Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae
2016-08-31
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM).
NASA Astrophysics Data System (ADS)
Chia, Thomas H.
Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning multiphoton laser excitation to sample a ˜4 mm2 region from 54 genuine Reserve Notes. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.
Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang
2017-02-01
Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.
Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues
NASA Astrophysics Data System (ADS)
Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina
2017-12-01
Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.
Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging
2007-03-01
spectral and lifetime characterization of NADH may be used to reveal metabolic changes in vivo and has potential to be used as an early diagnostic...combined spectral lifetime imaging modality will help for 5 characterization of breast cancer cells from cell culture based models to a relevant in... spectral and lifetime system and integrated into a multiphoton fluorescence excitation microscopy system 7 • Calibrated and characterized this
Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker
2016-12-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate from the RPE and may be modified by the overlaying retinal layers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xie, Zhiwei; Kim, Jimin P; Cai, Qing; Zhang, Yi; Guo, Jinshan; Dhami, Ranjodh S; Li, Li; Kong, Bin; Su, Yixue; Schug, Kevin A; Yang, Jian
2017-03-01
Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.
Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira
2017-08-20
Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.
Simultaneous acquisition of trajectory and fluorescence lifetime of moving single particles
NASA Astrophysics Data System (ADS)
Wu, Qianqian; Qi, Jing; Lin, Danying; Yan, Wei; Hu, Rui; Peng, Xiao; Qu, Junle
2017-02-01
Fluorescence lifetime imaging (FLIM) has been a powerful tool in life science because it can reveal the interactions of an excited fluorescent molecule and its environment. The combination with two-photon excitation (TPE) and timecorrelated single photon counting (TCSPC) provides it the ability of optical sectioning, high time resolution and detection efficiency. In previous work, we have introduced a two-dimensional acousto-optic deflector (AOD) into TCSPC-based FLIM to achieve fast and flexible FLIM. In this work, we combined the AOD-FLIM system with a single particle tracking (SPT) setup and algorithm and developed an SPT-FLIM system. Using the system, we acquired the trajectory and fluorescence lifetime of a moving particle simultaneously and reconstructed a life-time-marked pseudocolored trajectory, which might reflect dynamic interaction between the moving particle and its local environment along its motion trail. The results indicated the potential of the technique for studying the interaction between specific moving biological macromolecules and the ambient micro-environment in live cells.
Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz
2007-03-01
The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.
Colyer, R.; Siegmund, O.; Tremsin, A.; Vallerga, J.; Weiss, S.; Michalet, X.
2011-01-01
Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach. PMID:21625298
Phytoplankton-Fluorescence-Lifetime Vertical Profiler
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest
2004-01-01
A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the same principle as the one described in "Fluorometer for Analysis of Photosynthesis in Phytoplankton" (SSC-00110), NASA Tech Briefs, Vol. 24, No. 1 (November 2000), page 79. The excitation is modulated at a frequency of 70 MHz, and the phase shift between the excitation light and the emitted fluorescence is measured by a detection method in which the 70 MHz signal is down-converted to a 400 Hz signal. The fluorescence lifetime can be computed from the known relationship among the fluorescence lifetime, phase shift, and modulation frequency
Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography
NASA Astrophysics Data System (ADS)
Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher
2011-07-01
Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.
NASA Astrophysics Data System (ADS)
Kapsokalyvas, Dimitrios; Barygina, Victoria; Cicchi, Riccardo; Fiorillo, Claudia; Pavone, Francesco S.
2013-02-01
Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Metabolic activity is increased in the epidermis and the dermis. Oxidative stress is high mainly due to reactive oxygen species (ROS) originating from the skin environment and cellular metabolism. We employed a custom multiphoton microscope coupled with a FLIM setup to image primary culture fibroblast cells from perilesional and lesional psoriatic skin in-vitro. Twophoton excited fluorescence images revealed the morphological differences between healthy and psoriatic fibroblasts. Based on the spectral analysis of the NADH and FAD components the oxidative stress was assessed and found to be higher in psoriatic cells. Furthermore the fluorescence lifetime properties were investigated with a TCSPC FLIM module. Mean fluorescence lifetime was found to be longer in psoriatic lesional cells. Analysis of the fast (τ1) and slow (τ2) decay lifetimes revealed a decrease of the ratio of the contribution of the fast (α1) parameter to the contribution of the slow (α2) parameter. The fluorescence in the examined part of the spectrum is attributed mainly to NADH. The decrease of the ratio (α1)/ (α2) is believed to correlate strongly with the anti-oxidant properties of NADH which can lead to the variation of its population in high ROS environment. This methodology could serve as an index of the oxidative status in cells and furthermore could be used to probe the oxidative stress of tissues in-vivo.
Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo's David.
Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo; Toniolo, Lucia
2005-09-01
We developed a combined procedure for the analysis of works of art based on a portable system for fluorescence imaging integrated with analytical measurements on microsamples. The method allows us to localize and identify organic and inorganic compounds present on the surface of artworks. The fluorescence apparatus measures the temporal and spectral features of the fluorescence emission, excited by ultraviolet (UV) laser pulses. The kinetic of the emission is studied through a fluorescence lifetime imaging system, while an optical multichannel analyzer measures the fluorescence spectra of selected points. The chemical characterization of the compounds present on the artistic surfaces is then performed by means of analytical measurements on microsamples collected with the assistance of the fluorescence maps. The previous concepts have been successfully applied to study the contaminants on the surface of Michelangelo's David. The fluorescence analysis combined with Fourier transform infrared (FT-IR) measurements revealed the presence of beeswax, which permeates most of the statue surface, and calcium oxalate deposits mainly arranged in vertical patterns and related to rain washing.
NASA Astrophysics Data System (ADS)
Makoui, Anali
We have investigated the use of deep UV laser induced fluorescence for the sensitive detection and spectroscopic lifetime studies of terbium doped dipicolinic acid (DPA-Tb) and used this to study the optical characteristics of DPA which is a chemical surrounding most bacterial spores. Background absorption spectra, fluorescence spectra, and Excitation Emission Matrix (EEM) spectra were made of the DPA-Tb complex, using both fixed 266 nm wavelength and tunable (220 nm--280 nm) UV laser excitations. Of importance, the fluorescence lifetimes of the four main fluorescence peaks (488 nm, 543 nm, 581 nm, and 618 nm) of the DPA-Tb complex have been measured for the first time to our knowledge. The lifetimes of all the fluorescing lines have been measured as a function of DPA-Tb concentration, solvent pH, and solvent composition, including that for the weakest fluorescing line of DPA-Tb at 618 nm. In addition, a new spectroscopic lifetime measurement technique, which we call "Transient Fluorescence Spectroscopy", was developed. In this technique, a weak, quasi-CW, amplitude modulated UV laser (8.5 kHz) was used to measure the lifetimes of the fluorescence lines, and yields insight into energy transfer and excitation lifetimes within the system. This technique is especially useful when a high power laser is not either available or not suitable. In the latter case, this would be when a high power pulsed deep-UV laser could produce bleaching or destruction of the biological specimen. In addition, this technique simulated the excitation and fluorescence emission of the DPA-Tb using a 4-level energy model, and solved the dynamic transient rate equations to predict the temporal behavior of the DPA-Tb emitted fluorescence. Excellent agreement between the experiments and the simulation were found. This technique has the potential to provide a more accurate value for the fluorescence lifetime values. In addition, with the use of asymmetric excitation waveforms, the dynamic transient rate equation analysis may allow for detailed studies of selected transfer mechanisms in a wide range of other spectroscopic applications including rare-earth solid-state lasing materials and biological samples.
Fluorescence lifetime imaging of calcium flux in neurons in response to pulsed infrared light
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Sedelnikova, Anna; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.
2017-02-01
Pulsed infrared light can excite action potentials in neurons; yet, the fundamental mechanism underlying this phenomenon is unknown. Previous work has observed a rise in intracellular calcium concentration following infrared exposure, but the source of the calcium and mechanism of release is unknown. Here, we used fluorescence lifetime imaging of Oregon Green BAPTA-1 to study intracellular calcium dynamics in primary rat hippocampal neurons in response to infrared light exposure. The fluorescence lifetime of Oregon Green BAPTA-1 is longer when bound to calcium, and allows robust measurement of intracellular free calcium concentrations. First, a fluorescence lifetime calcium calibration curve for Oregon Green BAPTA-1 was determined in solutions. The normalized amplitude of the short and long lifetimes was calibrated to calcium concentration. Then, neurons were incubated in Oregon Green BAPTA-1 and exposed to pulses of infrared light (0-1 J/cm2; 0-5 ms; 1869 nm). Fluorescence lifetime images were acquired prior to, during, and after the infrared exposure. Fluorescence lifetime images, 64x64 pixels, were acquired at 12 or 24 ms for frame rates of 83 and 42 Hz, respectively. Accurate α1 approximations were achieved in images with low photon counts by computing an α1 index value from the relative probability of the observed decay events. Results show infrared light exposure increases intracellular calcium in neurons. Altogether, this study demonstrates accurate fluorescence lifetime component analysis from low-photon count data for improved imaging speed.
NASA Astrophysics Data System (ADS)
Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura
2014-03-01
The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.
Improved Charge-Transfer Fluorescent Dyes
NASA Technical Reports Server (NTRS)
Meador, Michael
2005-01-01
Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields, solvent-polarity- dependent fluorescence behavior, susceptibility to quenching by certain chemical species, and/or two-photon fluorescence, none of them has the combination of all of these attributes. Because the present dyes do have all of these attributes, they have potential utility as molecular probes in a variety of applications. Examples include (1) monitoring curing and deterioration of polymers; (2) monitoring protein expression; (3) high-throughput screening of drugs; (4) monitoring such chemical species as glucose, amines, amino acids, and metal ions; and (5) photodynamic therapy of cancers and other diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina
2016-03-01
Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.
3D printed miniaturized spectral system for tissue fluorescence lifetime measurements
NASA Astrophysics Data System (ADS)
Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.
2016-04-01
Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.
Fluorescence lifetime assays: current advances and applications in drug discovery.
Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich
2011-06-01
Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.
ERIC Educational Resources Information Center
Rusak, David A.; James, William H., III; Ferzola, Maria J.; Stefanski, Michael J.
2006-01-01
An experiment related to the measurement of fluorescence lifetime for an undergraduate instrumental analysis or physical chemistry laboratory that highlights relative rates of electronic transitions in molecules and introduces students to data collection of a pulsed signal is illustrated. The experiment of the long fluorescence lifetime of…
Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.
Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina
2017-10-01
Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Fluorescence lifetime as a new parameter in analytical cytology measurements
NASA Astrophysics Data System (ADS)
Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.
1996-05-01
A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.
Fluorescence Lifetime Techniques in Medical Applications
Marcu, Laura
2012-01-01
This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730
Fluorescence lifetime in cardiovascular diagnostics
NASA Astrophysics Data System (ADS)
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
Fluorescence lifetime in cardiovascular diagnostics.
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
NASA Astrophysics Data System (ADS)
Saito Nogueira, Marcelo; Kurachi, Cristina
2016-03-01
Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.
Multiphoton fluorescence spectra and lifetimes of biliverdins and their protein-associated complex
NASA Astrophysics Data System (ADS)
Huang, Chin-Jie; Wu, Cheng-Ham; Liu, Tzu-Ming
2012-03-01
To investigate whether endogenous biliverdins can serve as a fluorescence metabolic marker in cancer diagnosis, we measured their multiphoton fluorescence spectra and lifetimes with femtosecond Cr:forsterite laser. Excited at 1230nm, the two-photon fluorescence of biliverdins peaks around 670nm. The corresponding lifetime (<100ps) was much shorter than those of porphyrins (~10ns), which is another commonly present metabolites in living cells. Further mixing biliverdins with proteins like fetal bovine serum (FBS), biliverdins reductase A (BVRA), or heme oxygenase-1 (HO-1), the yields of red autofluorescences didn't change a lot, but the corresponding lifetimes with HO-1 and BSA were lengthened to 200~300ps. This indicates that biliverdin can have an association with these proteins and change its lifetime. These spectral and temporal characteristics of fluorescence make biliverdin a potential marker fluorophore for hyperspectral diagnosis on the heme catabolism in human cells or tissues.
NASA Astrophysics Data System (ADS)
Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.
2017-10-01
The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.
NASA Astrophysics Data System (ADS)
Gärtner, Maria; Mütze, Jörg; Ohrt, Thomas; Schwille, Petra
2009-07-01
In vivo studies of single molecule dynamics by means of Fluorescence correlation spectroscopy can suffer from high background. Fluorescence lifetime correlation spectroscopy provides a tool to distinguish between signal and unwanted contributions via lifetime separation. By studying the motion of the RNA-induced silencing complex (RISC) within two compartments of a human cell, the nucleus and the cytoplasm, we observed clear differences in concentration as well as mobility of the protein complex between those two locations. Especially in the nucleus, where the fluorescence signal is very weak, a correction for background is crucial to provide reliable results of the particle number. Utilizing the fluorescent lifetime of the different contributions, we show that it is possible to distinguish between the fluorescent signal and the autofluorescent background in vivo in a single measurement.
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Ruhlandt, Daja; Chithik, Anna; Ebrecht, René; Wouters, Fred S.; Gregor, Ingo
2016-02-01
Fluorescence lifetime microscopy has become an important method of bioimaging, allowing not only to record intensity and spectral, but also lifetime information across an image. One of the most widely used methods of FLIM is based on Time-Correlated Single Photon Counting (TCSPC). In TCSPC, one determines this curve by exciting molecules with a periodic train of short laser pulses, and then measuring the time delay between the first recorded fluorescence photon after each exciting laser pulse. An important technical detail of TCSPC measurements is the fact that the delay times between excitation laser pulses and resulting fluorescence photons are always measured between a laser pulse and the first fluorescence photon which is detected after that pulse. At high count rates, this leads to so-called pile-up: ``early'' photons eclipse long-delay photons, resulting in heavily skewed TCSPC histograms. To avoid pile-up, a rule of thumb is to perform TCSPC measurements at photon count rates which are at least hundred times smaller than the laser-pulse excitation rate. The downside of this approach is that the fluorescence-photon count-rate is restricted to a value below one hundredth of the laser-pulse excitation-rate, reducing the overall speed with which a fluorescence signal can be measured. We present a new data evaluation method which provides pile-up corrected fluorescence decay estimates from TCSPC measurements at high count rates, and we demonstrate our method on FLIM of fluorescently labeled cells.
In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment.
Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir
2014-07-01
Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in vivo fluorescence lifetime imaging with HER2-targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pretreatment size. Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (∼0.13 ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment), the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03 ns. The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. ©2014 American Association for Cancer Research.
In-vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment
Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir
2015-01-01
Purpose Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in-vivo fluorescence lifetime imaging with HER2 targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. Experimental Design HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice, bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pre-treatment size. Results Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (~0.13ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment) the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03ns. Conclusions The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in-vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. PMID:24671949
NASA Astrophysics Data System (ADS)
Rück, A.; Breymayer, J.; Lilge, L.; Mandel, A.; Schäfer, P.; von Einem, B.; von Arnim, C.; Kalinina, S.
2018-02-01
A common property during tumor development is altered energy metabolism, which could lead to a switch from oxidative phosphorylation and glycolysis. The impact of this switch for theranostic applications could be significant. Interestingly altered metabolism could be correlated with a change in the fluorescence lifetimes of both NAD(P)H and FAD. However, as observed in a variety of investigations, the situation is complex and the result is influenced by parameters like oxidative stress, pH or viscosity. Besides metabolism, oxygen levels and consumption has to be taken into account in order to understand treatment responses. For this, correlated imaging of phosphorescence and fluorescence lifetime parameters has been investigated by us and used to observe metabolic markers simultaneously with oxygen concentrations. The technique is based on time correlated single photon counting to detect the fluorescence lifetime of NAD(P)H and FAD by FLIM and the phosphorescence lifetime of newly developed phosphors and photosensitizers by PLIM. For this, the photosensitizer TLD1433 from Theralase, which is based on a ruthenium (II) coordination complex, was used. TLD1433 which acts as a redox indicator was mainly found in cytoplasmatic organelles. The most important observation was that TLD1433 can be used as a phosphor to follow up local oxygen concentration and consumption during photodynamic therapy. Oxygen consumption was accompanied by a change in cell metabolism, observed by simultaneous FLIM/PLIM. The combination of autofluorescence-FLIM and phosphor-PLIM in luminescence lifetime microscopy provides new insights in light induced reactions.
Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors
NASA Astrophysics Data System (ADS)
Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.
2017-07-01
The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.
Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.
Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M
2015-02-18
G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.
Development of a fluorimeter using laser-induced single-shot fluorescence lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Eisum, Niels H.; Lynggaard-Jensen, Anders
1990-08-01
The developed laboratory prototype fluorimeter is the first step to a new in-situ instrument, and is based on a pulsed nitrogen laser (pumping a color dye laser and the laserbeam passing through a frequency doubler) with a pulse width less than 1 nsec. With such a short excitation pulse it is possible to measure the exponential decay of the fluorescence from the aromatic compounds and thus determine the fluorescence lifetime-curves, which are typically in the region of 5-40 nsec. The emitted fluorescence is collected simultaneously in 35 channels in the wavelength region 250-600 nm. If the fluorescence falls within the transmission areas of the interference filters in each channel the light will be collected by a plastic light guide (doped PMMA) in the actual channel and transmitted to the channels photo multiplier tube (PMT). (The use of the plastic light guide improves the sensitivity). The signal from the PMT is passed on to a 200 MHz 8-bit flash AID-converter connected to a local memory. From this local memory the digital lifetime curves from each channel are transmitted to a computer for presentation of the 3-dimensional spectrum. This spectrum has been obtained with a single laser shot.
NASA Astrophysics Data System (ADS)
Pu, Yang; Alfano, Robert R.
2015-03-01
Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.
Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.
2016-01-01
Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800
High speed fluorescence imaging with compressed ultrafast photography
NASA Astrophysics Data System (ADS)
Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.
2017-02-01
Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.
Clinical results of fluorescence lifetime imaging in ophthalmology
NASA Astrophysics Data System (ADS)
Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.
2009-07-01
A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.
NASA Astrophysics Data System (ADS)
Chib, Rahul; Requena, Sebastian; Mummert, Mark; Strzhemechny, Yuri M.; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal
2016-12-01
A fluorescence lifetime imaging probe with a long lifetime was used in combination with time-gating for the detection of hyaluronidase using hyaluronic acid as the probe template. This probe was developed by heavily labeling hyaluronic acid with long lifetime azadioxatriangulenium fluorophores (ADOTA). We used this probe to image hyaluronidase produced by DU-145 prostate cancer cells.
The Phasor Approach to Fluorescence Lifetime Imaging Analysis
Digman, Michelle A.; Caiolfa, Valeria R.; Zamai, Moreno; Gratton, Enrico
2008-01-01
Changing the data representation from the classical time delay histogram to the phasor representation provides a global view of the fluorescence decay at each pixel of an image. In the phasor representation we can easily recognize the presence of different molecular species in a pixel or the occurrence of fluorescence resonance energy transfer. The analysis of the fluorescence lifetime imaging microscopy (FLIM) data in the phasor space is done observing clustering of pixels values in specific regions of the phasor plot rather than by fitting the fluorescence decay using exponentials. The analysis is instantaneous since is not based on calculations or nonlinear fitting. The phasor approach has the potential to simplify the way data are analyzed in FLIM, paving the way for the analysis of large data sets and, in general, making the FLIM technique accessible to the nonexpert in spectroscopy and data analysis. PMID:17981902
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L
2008-11-21
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.
2013-01-01
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789
Fluorescence lifetime in cardiovascular diagnostics
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications. PMID:20210432
Two-Photon Fluorescent Probe for Monitoring Autophagy via Fluorescence Lifetime Imaging.
Hou, Liling; Ning, Peng; Feng, Yan; Ding, Yaqi; Bai, Lei; Li, Lin; Yu, Haizhu; Meng, Xiangming
2018-06-19
We reported the first lysosome targeted two-photon fluorescent probe (Lyso-NP) as a viscosity probe for monitoring autophagy. The fluorescence lifetime of Lyso-NP exhibited an excellent linear relationship with viscosity value ( R 2 = 0.99, x = 0.39). Lyso-NP also showed the specific capability for imaging lysosomal viscosity under two-photon excitation at 860 nm along with good biocompatibility. More importantly, Lyso-NP could be used to monitor the autophagy process in living cells by quantitatively detecting lysosomal viscosity changes during the membrane fusion process via two-photon fluorescence lifetime imaging.
NASA Astrophysics Data System (ADS)
Glanzmann, Thomas M.; Ballini, Jean-Pierre; Jichlinski, Patrice; van den Bergh, Hubert; Wagnieres, Georges A.
1996-12-01
The biomedical use of an optical fiber-based spectro- temporal fluorometer that can endoscopically record the fluorescence decay of an entire spectrum without scanning is presented. The detector consists of a streak camera coupled to a spectrograph. A mode-locked argon ion pumped dye laser or a nitrogen laser-pumped dye laser are used as pulsed excitation light sources. We measured the fluorescence decays of endogenous fluorophores and of ALA-induced- protoporphyrin IX(PPIX) in an excised human bladder with a carcinoma in situ (CIS). Each autofluorescence decay can be decomposed in at least three exponential components for all tissue samples investigated if the excitation is at 425 nm. The decays of the autofluorescence of all normal sites of the human bladder are similar and they differ significantly from the decays measured on the CIS and the necrotic tissue. The fluorescence of the ALA-induced PPIX in the bladder is monoexponential with a lifetime of 15 (plus or minus 1) ns and this fluorescence lifetime does not change significantly between the normal urothelium and the CIS. A photoproduct of ALA-PPIX with a fluorescence maximum at 670 nm and a lifetime of 8 (plus or minus 1) ns was observed. The measurement of the decay of the autofluorescence allowed to correctly identify a normal tissue site that was classified as abnormal by the measurement of the ALA-PPIX fluorescence intensity.
NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing
NASA Astrophysics Data System (ADS)
Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.
2016-04-01
Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.
NASA Astrophysics Data System (ADS)
Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.
2013-02-01
There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.
Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V; Roberts, Michael S
2013-02-01
There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.
The photoluminescence of a fluorescent lamp: didactic experiments on the exponential decay
NASA Astrophysics Data System (ADS)
Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano
2017-01-01
The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras, can be employed to the same aim. The experiments do not require that luminescent phosphors are hazardously extracted from the compact fluorescent lamp, that also contains mercury. We obtain lifetime measurements for specific fluorescent elements of the bulb coating, in good agreement with the known values. We also address the physical mechanisms on which fluorescence lamps are based in a simplified way, suitable for undergraduate students; and we discuss in detail the physics of the lamp switch-off by analysing the time dependent spectrum, measured through a commercial fiber-optic spectrometer. Since the experiment is not hazardous in any way, requires a simple setup up with instruments which are commonly found in educational labs, and focuses on the typical features of the exponential decay, it is suitable for being performed in the undergraduate laboratory.
Fluorescence lifetime measurements in flow cytometry
NASA Astrophysics Data System (ADS)
Beisker, Wolfgang; Klocke, Axel
1997-05-01
Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.
In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.
Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf
2016-05-01
High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.
Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui
2018-05-01
Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.
Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics
NASA Astrophysics Data System (ADS)
Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.
1996-07-01
Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.
A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium
NASA Astrophysics Data System (ADS)
Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.
2010-12-01
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.
Community detection for fluorescent lifetime microscopy image segmentation
NASA Astrophysics Data System (ADS)
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar
2014-03-01
Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.
An improved cyan fluorescent protein variant useful for FRET.
Rizzo, Mark A; Springer, Gerald H; Granada, Butch; Piston, David W
2004-04-01
Many genetically encoded biosensors use Förster resonance energy transfer (FRET) between fluorescent proteins to report biochemical phenomena in living cells. Most commonly, the enhanced cyan fluorescent protein (ECFP) is used as the donor fluorophore, coupled with one of several yellow fluorescent protein (YFP) variants as the acceptor. ECFP is used despite several spectroscopic disadvantages, namely a low quantum yield, a low extinction coefficient and a fluorescence lifetime that is best fit by a double exponential. To improve the characteristics of ECFP for FRET measurements, we used a site-directed mutagenesis approach to overcome these disadvantages. The resulting variant, which we named Cerulean (ECFP/S72A/Y145A/H148D), has a greatly improved quantum yield, a higher extinction coefficient and a fluorescence lifetime that is best fit by a single exponential. Cerulean is 2.5-fold brighter than ECFP and replacement of ECFP with Cerulean substantially improves the signal-to-noise ratio of a FRET-based sensor for glucokinase activation.
FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY.
Dysli, Chantal; Berger, Lieselotte; Wolf, Sebastian; Zinkernagel, Martin S
2017-11-01
To quantify retinal fluorescence lifetimes in patients with central serous chorioretinopathy (CSC) and to identify disease specific lifetime characteristics over the course of disease. Forty-seven participants were included in this study. Patients with central serous chorioretinopathy were imaged with fundus photography, fundus autofluorescence, optical coherence tomography, and fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with age-matched controls. Retinal autofluorescence was excited using a 473-nm blue laser light and emitted fluorescence light was detected in 2 distinct wavelengths channels (498-560 nm and 560-720 nm). Clinical features, mean retinal autofluorescence lifetimes, autofluorescence intensity, and corresponding optical coherence tomography (OCT) images were further analyzed. Thirty-five central serous chorioretinopathy patients with a mean visual acuity of 78 ETDRS letters (range, 50-90; mean Snellen equivalent: 20/32) and 12 age-matched controls were included. In the acute stage of central serous chorioretinopathy, retinal fluorescence lifetimes were shortened by 15% and 17% in the respective wavelength channels. Multiple linear regression analysis showed that fluorescence lifetimes were significantly influenced by the disease duration (P < 0.001) and accumulation of photoreceptor outer segments (P = 0.03) but independent of the presence or absence of subretinal fluid. Prolonged central macular autofluorescence lifetimes, particularly in eyes with retinal pigment epithelial atrophy, were associated with poor visual acuity. This study establishes that autofluorescence lifetime changes occurring in central serous chorioretinopathy exhibit explicit patterns which can be used to estimate perturbations of the outer retinal layers with a high degree of statistical significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, David J.; Wranne, Moa S.; Gilbert Gatty, Mélina
Thioflavin-T (ThT) is one of the most commonly used dyes for amyloid detection, but the origin of its fluorescence enhancement is not fully understood. Herein we have characterised the ThT fluorescence response upon binding to the Aβ(1-40) and Aβ(1-42) variants of the Alzheimer's-related peptide amyloid-β, in order to explore how the photophysical properties of this dye relates to structural and morphological properties of two amyloid fibril types formed by peptides with a high degree of sequence homology. We show that the steady-state ThT fluorescence is 1.7 times more intense with Aβ(1-40) compared to Aβ(1-42) fibrils in concentration matched samples preparedmore » under quiescent conditions. By measuring the excited state lifetime of bound ThT, we also demonstrate a distinct difference between the two fibril isoforms, with Aβ(1-42) fibrils producing a longer ThT fluorescence lifetime compared to Aβ(1-40). The substantial steady-state intensity difference is therefore not explained by differences in fluorescence quantum yield. Further, we find that the ThT fluorescence intensity, but not the fluorescence lifetime, is dependent on the fibril preparation method (quiescent versus agitated conditions). We therefore propose that the fluorescence lifetime is inherent to each isoform and sensitively reports on fibril microstructure in the protofilament whereas the total fluorescence intensity relates to the amount of exposed β-sheet in the mature Aβ fibrils and hence to differences in their morphology. Our results highlight the complexity of ThT fluorescence, and demonstrate its extended use in amyloid fibril characterisation. - Highlights: • ThT emission is more intense with Aβ(1-40) fibrils than with Aβ(1-42) fibrils. • Aβ(1-42) fibrils induce longer ThT fluorescence lifetimes and higher quantum yield. • ThT emission intensity in Aβ fibril samples reports on fibril morphology. • The ThT fluorescence lifetime is a characteristic feature of each Aβ fibril type.« less
NASA Astrophysics Data System (ADS)
Connally, Russell; Veal, Duncan; Piper, James A.
2003-07-01
The abundance of naturally fluorescing components (autofluorophors) encountered in environmentally sourced samples can greatly hinder the detection and identification of fluorescently labeled target using fluorescence microscopy. Time-resolved fluorescence microscopy (TRFM) is a technique that reduces the effects of autofluorescence through precisely controlled time delays. Lanthanide chelates have fluorescence lifetimes many orders of magnitude greater than typical autofluorophors, and persist in their luminescence long after autofluorescence has ceased. An intense short pulse of (UV) light is used to excite fluorescence in the sample and after a short delay period the longer persisting fluorescence from the chelate is captured with an image-intensified CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flashlamp with a short pulse duration was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, flash output decays with an approximate lifetime of 18μs and the TRFM requires a long-lived chelate to ensure probe fluorescence is still visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the water-borne parasite Giardia lamblia. Fluorescence lifetime of the construct was determined to be 339μs +/- 14μs and provided a 45-fold enhancement of labeled Giardia over background using a gate delay of 100μs. Despite the sub-optimal decay characteristics of the light pulse, flashlamps have many advantages compared to optical chopper wheels and modulated lasers. Their low cost, lack of vibration, ease of interface and small footprint are important factors to consider in TRFM design.
Optical metabolic imaging of live tissue cultures
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Cook, Rebecca S.; Arteaga, Carlos L.; Skala, Melissa C.
2013-02-01
The fluorescence properties, both intensity and fluorescence lifetime, of NADH and FAD, two coenzymes of metabolism, are sensitive, high resolution measures of cellular metabolism. However, often in vivo measurements of tissue are not feasible. In this study, we investigate the stability over time of two-photon auto-fluorescence imaging of NADH and FAD in live-cultured tissues. Our results demonstrate that cultured tissues remain viable for at least several days post excision. Furthermore, the optical redox ratio, NADH fluorescence lifetime, and FAD fluorescence lifetime do not significantly change in the cultured tissues over time. With these findings, we demonstrate the potential of sustained tissue culture techniques for optical metabolic imaging.
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.
2016-01-01
Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663
Fluorescence Lifetime Imaging Microscopy (FLIM) of quantum dots in living cells
NASA Astrophysics Data System (ADS)
Nadeau, Jay; Carlini, Lina
2013-02-01
Fluorescence lifetime imaging microscopy (FLIM) is an emerging imaging technique that can indicate environmental factors such as pH and redox potential by the effect of these factors on the fluorescence lifetimes of fluorophores. Semiconductor quantum dots (QDs) are highly sensitive to environment and so are ideal for use in FLIM, although certain experimental parameters must be carefully considered for QD imaging to account for their long lifetimes and two-photon behavior. We image the uptake of three types of QDs in cultured fibroblasts and show some preliminary results on the effects of endosomes and lysosomes on QD lifetimes. These results indicate the feasibility of FLIM for studies using QDs in live cells.
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten
2016-03-01
Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.
Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten
2016-03-01
Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.
Reinhardt, Klaus; Breunig, Hans Georg; Uchugonova, Aisada; König, Karsten
2015-01-01
We explore the possibility of characterizing sperm cells without the need to stain them using spectral and fluorescence lifetime analyses after multi-photon excitation in an insect model. The autofluorescence emission spectrum of sperm of the common bedbug, Cimex lectularius, was consistent with the presence of flavins and NAD(P)H. The mean fluorescence lifetimes showed smaller variation in sperm extracted from the male (tau m, τm = 1.54–1.84 ns) than in that extracted from the female sperm storage organ (tau m, τm = 1.26–2.00 ns). The fluorescence lifetime histograms revealed four peaks. These peaks (0.18, 0.92, 2.50 and 3.80 ns) suggest the presence of NAD(P)H and flavins and show that sperm metabolism can be characterized using fluorescence lifetime imaging. The difference in fluorescence lifetime variation between the sexes is consistent with the notion that female animals alter the metabolism of sperm cells during storage. It is not consistent, however, with the idea that sperm metabolism represents a sexually selected character that provides females with information about the male genotype. PMID:26333813
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Bürling, K; Hunsche, M; Noga, G
2010-01-01
In modern agriculture there is a great demand for a rapid and objective screening method for stress resistance, because so far, the resistance of new cultivars is tested in time- and money consuming field experiments. Based on fluorescence ratios, and lifetime of fluorophores measured by fluorescence spectroscopy, we have postulated that an early discrimination of susceptible and resistant wheat cultivars to the leaf rust pathogen Puccinia triticina can be accomplished. As representative for leaf rust resistant and leaf rust susceptible wheat genotypes the cultivars Esket and Skalmeje, respectively, were chosen. Plants were grown under controlled environment conditions and inoculated with the leaf rust pathogen at the second-leaf-stage by single-droplet application. Fluorescence measurements were carried out from two to four days after inoculation (dai) by using a compact fibre-optic fluorescence spectrometer with nanosecond time-resolution. Experimental results indicated that UV laser-induced spectral characteristics as well as determination of fluorescence lifetime are suited to detect leaf rust two dai. For this purpose several ratios and wavelength can be considered. In general, the tested cultivars showed distinct responses to the pathogen development. In this context the ratio F451/F687 measured three dai and mean lifetimes at 500 nm and 530 nm are suited to differentiate the resistant Esket from the susceptible Skalmeje genotypes.
Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H
2016-04-20
Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Yu, Qi; Wang, Xinghao; Li, Qiu; Gong, Yimin; Dai, Zhenwen
2018-06-01
Natural radiative lifetimes for five even-parity levels of Tm III were measured by time-resolved laser-induced fluorescence method. The branching fraction measurements were performed based on the emission spectra of a hollow cathode lamp. By combining the measured branching fractions and the lifetime values reported in this work and in literature, experimental transition probabilities and oscillator strengths for 11 transitions were derived for the first time.
NASA Astrophysics Data System (ADS)
Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao
2010-01-01
Protein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease. The results of the experiments show that expression of the eGFP in fusion with the 97Q protein leads to the decrease of the eGFP fluorescence lifetime by ~300 ps. This phenomenon does not appear in Hsp104-deficient cells, where the aggregation in polyQ is prevented. We demonstrate that the lifetime decrease observed is related to the aggregation per se and discuss the possible role of refractive index and homo-FRET in these dynamics.
NASA Astrophysics Data System (ADS)
Chakraborty, Sandeep; Ou, Meng-Hsin; Kuo, Jean-Cheng; Chiou, Arthur
2016-10-01
Cellular metabolic state can serve as a biomarker to indicate the differentiation potential of stem cells into other specialized cell lineages. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was applied to determine the fluorescence lifetime and the amounts of the auto-fluorescent metabolic co-factor reduced nicotinamide adenine dinucleotide (NADH) to elucidate the cellular metabolism of human mesenchymal stem cells (hMSCs) in osteogenic and adipogenic differentiation processes. 2P-FLIM provides the free to protein-bound NADH ratio which can serve as the indicator of cellular metabolic state. We measured NADH fluorescence lifetime at 0, 7, and 14 days after hMSCs were induced for either osteogenesis or adipogenesis. In both cases, the average fluorescence lifetime increased significantly at day 14 (P < 0.001), while the ratio of free to protein-bound NADH ratio decreased significantly in 7- days (P < 0.001) and 14-days (P < 0.001). Thus, our results indicated a higher metabolic rate in both osteogenic and adipogenic differentiation processes when compared with undifferentiated hMSCs. This approach may be further utilized to study proliferation efficiency and differentiation potential of stem cells into other specialized cell lineages.
Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration.
Dysli, Chantal; Wolf, Sebastian; Zinkernagel, Martin S
2016-05-01
To investigate fluorescence lifetime characteristics in patients with geographic atrophy (GA) in eyes with age-related macular degeneration and to correlate the measurements with clinical data and optical coherence tomography (OCT) findings. Patients with GA were imaged with a fluorescence lifetime imaging ophthalmoscope. Retinal autofluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Mean retinal fluorescence lifetimes were analyzed within GA and the surrounding retina, and data were correlated with best corrected visual acuity and OCT measurements. Fluorescence lifetime maps of 41 eyes of 41 patients (80 ± 7 years) with GA were analyzed. Mean lifetimes within areas of atrophy were prolonged by 624 ± 276 ps (+152%) in the short spectral channel and 418 ± 186 ps (+83%) in the long spectral channel compared to the surrounding tissue. Autofluorescence lifetime abnormalities in GA occurred with particular patterns, similar to those seen in fundus autofluorescence intensity images. Within the fovea short mean autofluorescence lifetimes were observed, presumably representing macular pigment. Short lifetimes were preserved even in the absence of foveal sparing but were decreased in patients with advanced retinal atrophy in OCT. Short lifetimes in the fovea correlated with better best corrected visual acuity in both spectral channels. This study established that autofluorescence lifetime changes in GA present with explicit patterns. We hypothesize that the short lifetimes seen within the atrophy may be used to estimate damage induced by atrophy and to monitor disease progression in the context of natural history or interventional therapeutic studies.
NASA Astrophysics Data System (ADS)
Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura
2016-03-01
Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.
Fluorenone based fluorescent probe for selective "turn-on" detection of pyrophosphate and alanine
NASA Astrophysics Data System (ADS)
Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D.
2018-06-01
To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565 nm for pyrophosphate and 530 nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73 - and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.
Correlated FLIM and PLIM for cell metabolism
NASA Astrophysics Data System (ADS)
Rück, A.; Breymayer, J.; Kalinina, S.
2016-03-01
Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. A defective mitochondrial function associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimers disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect the underlying metabolic mechanisms are therefore of prominent interest. They offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways. Moreover oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NADH and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.
Kochmann, Sven; Baleizão, Carlos; Berberan-Santos, Mário N; Wolfbeis, Otto S
2013-02-05
We report on a new method for sensing trace oxygen in the gas phase. It is based on the extreme efficiency of the quenching of the thermally activated delayed fluorescence of isotopically enriched carbon-13 fullerene C(70) ((13)C(70)). This fullerene was dissolved in polymer matrixes of varying oxygen permeability, viz., polystyrene (PS), ethyl cellulose (EC) and an organically modified silica gel ("ormosil"; OS). The sensor films (5-10 μm thick), on photoexcitation at 470 nm, display a strong delayed photoluminescence with peaks between 670 and 700 nm. Its quenching by molecular oxygen was studied at 25 and 60 °C and at concentrations from zero up to 150 ppmv of oxygen in nitrogen. The rapid lifetime determination (RLD) method was applied to determine oxygen-dependent lifetimes and for fluorescence lifetime imaging of oxygen. The lower limits of detection (at 1% quenching) vary with the polymer used (EC ∼250 ppbv, OS ∼320 ppbv, PS ∼530 ppbv at 25 °C) and with temperature. The oxygen sensors reported here are the most sensitive ones described so far.
Development of a Time Domain Fluorimeter for Fluorescent Lifetime Multiplexing Analysis
Weissleder, Ralph; Mahmood, Umar
2009-01-01
We show that a portable, inexpensive USB-powered time domain fluorimeter (TDF) and analysis scheme were developed for use in evaluating a new class of fluorescent lifetime multiplexed dyes. Fluorescent proteins, organic dyes, and quantum dots allow the labeling of more and more individual features within biological systems, but the wide absorption and emission spectra of these fluorophores limit the number of distinct processes which may be simultaneously imaged using spectral separation alone. By additionally separating reporters in a second dimension, fluorescent lifetime multiplexing provides a means to multiply the number of available imaging channels. PMID:19830273
FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY
Dysli, Chantal; Berger, Lieselotte; Wolf, Sebastian
2017-01-01
Purpose: To quantify retinal fluorescence lifetimes in patients with central serous chorioretinopathy (CSC) and to identify disease specific lifetime characteristics over the course of disease. Methods: Forty-seven participants were included in this study. Patients with central serous chorioretinopathy were imaged with fundus photography, fundus autofluorescence, optical coherence tomography, and fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with age-matched controls. Retinal autofluorescence was excited using a 473-nm blue laser light and emitted fluorescence light was detected in 2 distinct wavelengths channels (498–560 nm and 560–720 nm). Clinical features, mean retinal autofluorescence lifetimes, autofluorescence intensity, and corresponding optical coherence tomography (OCT) images were further analyzed. Results: Thirty-five central serous chorioretinopathy patients with a mean visual acuity of 78 ETDRS letters (range, 50–90; mean Snellen equivalent: 20/32) and 12 age-matched controls were included. In the acute stage of central serous chorioretinopathy, retinal fluorescence lifetimes were shortened by 15% and 17% in the respective wavelength channels. Multiple linear regression analysis showed that fluorescence lifetimes were significantly influenced by the disease duration (P < 0.001) and accumulation of photoreceptor outer segments (P = 0.03) but independent of the presence or absence of subretinal fluid. Prolonged central macular autofluorescence lifetimes, particularly in eyes with retinal pigment epithelial atrophy, were associated with poor visual acuity. Conclusion: This study establishes that autofluorescence lifetime changes occurring in central serous chorioretinopathy exhibit explicit patterns which can be used to estimate perturbations of the outer retinal layers with a high degree of statistical significance. PMID:28099314
Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Beier, Hope T.
2016-03-01
Time-correlated single photon counting (TCSPC) is the most robust method for fluorescence lifetime imaging using laser scanning microscopes. However, TCSPC is inherently slow making it ineffective to capture rapid events due to the single photon product per laser pulse causing extensive acquisition time limitations and the requirement of low fluorescence emission efficiency to avoid bias of measurement towards short lifetimes. Furthermore, thousands of photons per pixel are required for traditional instrument response deconvolution and fluorescence lifetime exponential decay estimation. Instrument response deconvolution and fluorescence exponential decay estimation can be performed in several ways including iterative least squares minimization and Laguerre deconvolution. This paper compares the limitations and accuracy of these fluorescence decay analysis techniques to accurately estimate double exponential decays across many data characteristics including various lifetime values, lifetime component weights, signal-to-noise ratios, and number of photons detected. Furthermore, techniques to improve data fitting, including binning data temporally and spatially, are evaluated as methods to improve decay fits and reduce image acquisition time. Simulation results demonstrate that binning temporally to 36 or 42 time bins, improves accuracy of fits for low photon count data. Such a technique reduces the required number of photons for accurate component estimation if lifetime values are known, such as for commercial fluorescent dyes and FRET experiments, and improve imaging speed 10-fold.
Rachofsky, E L; Osman, R; Ross, J B
2001-01-30
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.
Digman, Michelle A.; Gratton, Enrico; Storti, Barbara; Beltram, Fabio
2013-01-01
A versatile pH-dependent fluorescent protein was applied to intracellular pH measurements by means of the phasor approach to fluorescence lifetime imaging. By this fit-less method we obtain intracellular pH maps under resting or altered physiological conditions by single-photon confocal or two-photon microscopy. PMID:22517076
Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M
2014-11-01
The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.
On the uncertainty in single molecule fluorescent lifetime and energy emission measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.
1995-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.
1996-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity
Kwok, Showming; Lee, Claudia; Sánchez, Susana A.; Hazlett, Theodore L.; Gratton, Enrico; Hayashi, Yasunori
2008-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo. PMID:18302935
NASA Astrophysics Data System (ADS)
Lubbeck, Jennifer L.
The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.
Single-molecule detection by two-photon excitation of fluorescence
NASA Astrophysics Data System (ADS)
Zander, Christoph; Brand, Leif; Eggeling, C.; Drexhage, Karl-Heinz; Seidel, Claus A. M.
1997-05-01
Using a mode-locked titanium: sapphire laser at 700 nm for two-photon excitation we studied fluorescence bursts from individual coumarin 120 molecules in water and triacetin. Fluorescence lifetimes and multichannel scaler traces have been measured simultaneously. Due to the fact that scattered excitation light as well as Raman scattered photons can be suppressed by a short-pass filter a very low background level was achieved. To identify the fluorophore by its characteristic fluorescence lifetime the time-resolved fluorescence signals were analyzed by a maximum likelihood estimator. The obtained average fluorescence lifetimes (tau) av equals 4.8 +/- 1.2 ns for coumarin 120 in water and (tau) av equals 3.3 +/- 0.6 for coumarin 120 in triacetin are in good agreement with results obtained from separate measurements at higher concentrations.
Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning
Silva, Susana F.; Domingues, José Paulo
2018-01-01
Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938
Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.
Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel
2018-01-01
Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.
Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas
2015-09-14
In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less
2015-08-01
lifetime ( t2 ) corresponds to protein- bound NADH (23). Conversely, protein-bound FAD corre- sponds to the short lifetime, whereas free FAD corresponds...single photon counting (TCSPC) electronics (SPC-150, Becker and Hickl). TCSPC uses a fast detector PMT to measure the time between a laser pulse and... Becker and Hickl). A binning of nine surrounding pixels was used. Then, the fluorescence lifetime components were computed for each pixel by deconvolving
Investigating the Modification of Spontaneous Emission using Layer-by-Layer Self-Assembly
NASA Astrophysics Data System (ADS)
Ashry, Islam Ahmed Ibrahim Youssef
The process of spontaneous emission can be dramatically modified by optical micro- and nanostructures. We studied the modification of fluorescence dynamics using a polymer spacer layer fabricated through layer-by-layer (LbL) self-assembly. The advantages of this method are numerous: The self-assembled spacers can possess exceptional smooth surface morphology; The thickness of the spacer can be controlled with nanometer accuracy; And depending on fabrication conditions, the spacer layer is stimuli responsive and its thickness can be dynamically tuned. This thesis contains three interlinked components. First, we vary LbL spacer layer thickness and explore the change in fluorescence lifetime induced by the modified photonic density of states (PDOS), i.e., Purcell effects. Our experimental results agree well with theoretical predictions based on a classical dipole model, which also yields consistent values for the fluorophores' intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical micro- and nano-structures. These results naturally lead to the second component of our research. In particularly, based on the PDOS-induced changes in fluorescent lifetime, we develop a non-contact method that can measure morphological changes with nanoscale resolution. Our method relies on quantitatively linking fluorophore position with PDOS, and is validated through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. To demonstrate the potential application of this method, we investigated the swelling/deswelling of LbL films induced by pH changes. Our results indicate significant difference between a LbL film composed of a single polymer monolayer and a LbL film with 3 monolayers. Such stimuli-responsive polymers can be used to construct active and tunable plasmonic nano-devices. As a proof-of-principle demonstration, we experimentally confirm that it is possible to utilize the swelling/deswelling behavior of stimuli-responsive films to dynamically control the separation between Au nanoparticles and Texas Red (TR) dyes. This result is based on the strong correlation of TR fluorescence lifetime and nanoparticles-TR separation. Finally, we investigate the impact of different lithography processes on the fluorescence properties of self-assembled fluorophores. We consider three methods: direct fluorophore patterning through ultraviolet (UV) ablation, focused ion beam (FIB) milling of self-assembled fluorophores, and self-assembly of fluorescent materials over plasmonic nano-patterns.
Ghosh, Anup; Chatterjee, Tanmay; Mandal, Prasun K
2012-06-25
An excitation and emission wavelength dependent non-exponential fluorescence decay behaviour of room temperature ionic liquids (RTILs) has been noted. Average fluorescence lifetimes have been found to vary by a factor of three or more. Red emitting dyes dissolved in RTILs are found to follow hitherto unobserved single exponential fluorescence decay behaviour.
In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse
McGinty, James; Stuckey, Daniel W.; Soloviev, Vadim Y.; Laine, Romain; Wylezinska-Arridge, Marzena; Wells, Dominic J.; Arridge, Simon R.; French, Paul M. W.; Hajnal, Joseph V.; Sardini, Alessandro
2011-01-01
Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct. PMID:21750768
Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph
2012-06-08
Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.
The Photoluminescence of a Fluorescent Lamp: Didactic Experiments on the Exponential Decay
ERIC Educational Resources Information Center
Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano
2017-01-01
The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras,…
Harms, Floor A; de Boon, Wadim M I; Balestra, Gianmarco M; Bodmer, Sander I A; Johannes, Tanja; Stolker, Robert J; Mik, Egbert G
2011-10-01
Mitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that delayed fluorescence is readily observed from skin in rat and man after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Delayed fluorescence lifetimes respond to changes in inspired oxygen fraction and blood supply. The signals contain lifetime distributions and the fitting of rectangular distributions to the data appears more adequate than mono-exponential fitting. The use of topically applied ALA for delayed fluorescence lifetime measurements might pave the way for clinical use of this technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana
2014-09-01
Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.
Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Neil, Mark A. A.; König, Karsten; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris
2011-01-01
We explore the diagnostic potential of imaging endogenous fluorophores using two photon microscopy and fluorescence lifetime imaging (FLIM) in human skin with two spectral detection channels. Freshly excised benign dysplastic nevi (DN) and malignant nodular Basal Cell Carcinomas (nBCCs) were excited at 760 nm. The resulting fluorescence signal was binned manually on a cell by cell basis. This improved the reliability of fitting using a double exponential decay model and allowed the fluorescence signatures from different cell populations within the tissue to be identified and studied. We also performed a direct comparison between different diagnostic groups. A statistically significant difference between the median mean fluorescence lifetime of 2.79 ns versus 2.52 ns (blue channel, 300-500 nm) and 2.08 ns versus 1.33 ns (green channel, 500-640 nm) was found between nBCCs and DN respectively, using the Mann-Whitney U test (p < 0.01). Further differences in the distribution of fluorescence lifetime parameters and inter-patient variability are also discussed. PMID:22162820
In situ optical measurements for characterization of flame species and remote sensing
NASA Astrophysics Data System (ADS)
Cullum, Brian Michael
1998-12-01
The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.
Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich
2016-09-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer's principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer's principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer's principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality.
Nam, Hyeong Soo; Kang, Woo Jae; Lee, Min Woo; Song, Joon Woo; Kim, Jin Won; Oh, Wang-Yuhl; Yoo, Hongki
2018-01-01
The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement. PMID:29675330
Zhao, Ming; Li, Yu; Peng, Leilei
2014-05-05
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.
Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.
2017-01-01
We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756
Lifetime and linewidth of individual quantum dots interfaced with graphene.
Miao, Xin; Gosztola, David J; Sumant, Anirudha V; Grebel, Haim
2018-04-19
We report on luminescence lifetimes and linewidths from an array of individual quantum dots (QDs) that were either interfaced with graphene surface guides or dispersed on aluminum electrodes. The observed fluorescence quenching is consistent with screening by charge carriers. Fluorescence quenching is typically mentioned as a sign that chromophores are interfacing with a conductive surface (metal or graphene); we find that the QDs interfaced with the metal film exhibit shortened lifetime and line-broadening but not necessarily fluorescence quenching as the latter may be impacted by molecular concentration, reflectivity and conductor imperfections. We also comment on angle-dependent lifetime measurements, which we postulate depend on the specifics of the local density-of-states involved.
In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique
Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can
2008-01-01
Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065
NASA Astrophysics Data System (ADS)
Sedarous, Salah S.
1996-03-01
Despite the large quantity of data on the macroscopic changes in the physical properties of ferroelectric crystals during phase transition, there is a continued need for understanding their microscopic origin. Here we describe a novel method for examining the microscopic dynamics of the ferroelectric phase transition using time-resolved fluorescence spectroscopy. The fluorescence properties of organic chromophores embedded in the ferroelectric crystals triglycine sulfate and potassium dihydrogen phosphate are altered in response to the structural phase transitions. The lifetime and the fractional intensity decay show large changes around Tc and the order of the phase transition is readily recovered (first or second order). To explain the fluorescence lifetime data we present a novel theoretical model based on the concept of polaritons in these crystals. Deactivation of the excited state chromophore involves the participation of the vibrational modes of the chromophore. These modes are coupled to the polarization dispersion of the matrix and facilitate the coupling of the excited state to the collective modes in the crystal. The net result is the flow of energy from the excited state chromophore to the lattice phonon. The data indicate that changes in fluorescence lifetime can be used to examine directly the collective modes in these crystals. Our work provides important insight into the emergence of macroscopic phase transition behavior out of microscopic fluctuations.
NASA Astrophysics Data System (ADS)
Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann
2018-02-01
Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p < 0.05). This relationship was no longer seen at three-weeks post-implantation, suggesting comparable tissue integration independent of preimplantation health. Histology confirmed re-epithelialization of these constructs independent of pre-implantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.
pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten
2010-02-01
Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.
Wilkening, Svea; Schmitt, Franz-Josef; Horch, Marius; Zebger, Ingo; Lenz, Oliver; Friedrich, Thomas
2017-09-01
The fluorescent biosensor Frex, recently introduced as a sensitive tool to quantify the NADH concentration in living cells, was characterized by time-integrated and time-resolved fluorescence spectroscopy regarding its applicability for in vivo measurements. Based on the purified sensor protein, it is shown that the NADH dependence of Frex fluorescence can be described by a Hill function with a concentration of half-maximal sensor response of K D ≈ 4 µM and a Hill coefficient of n ≈ 2. Increasing concentrations of NADH have moderate effects on the fluorescence lifetime of Frex, which changes by a factor of two from about 500 ps in the absence of NADH to 1 ns under fluorescence-saturating NADH concentrations. Therefore, the observed sevenfold rise of the fluorescence intensity is primarily ascribed to amplitude changes. Notably, the dynamic range of Frex sensitivity towards NADH highly depends on the NAD + concentration, while the apparent K D for NADH is only slightly affected. We found that NAD + has a strong inhibitory effect on the fluorescence response of Frex during NADH sensing, with an apparent NAD + dissociation constant of K I ≈ 400 µM. This finding was supported by fluorescence lifetime measurements, which showed that the addition of NAD + hardly affects the fluorescence lifetime, but rather reduces the number of Frex molecules that are able to bind NADH. Furthermore, the fluorescence responses of Frex to NADH and NAD + depend critically on pH and temperature. Thus, for in vivo applications of Frex, temperature and pH need to be strictly controlled or considered during data acquisition and analysis. If all these constraints are properly met, Frex fluorescence intensity measurements can be employed to estimate the minimum NADH concentration present within the cell at sufficiently low NAD + concentrations below 100 µM.
NASA Astrophysics Data System (ADS)
Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura
2017-02-01
Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
Fluorescence lifetime measurements in heterogeneous scattering medium
NASA Astrophysics Data System (ADS)
Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke
2016-07-01
Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.
Correlated oxygen-sensing PLIM, cell metabolism FLIM and applications
NASA Astrophysics Data System (ADS)
Rück, A. C.; Kalinina, S.; Schäfer, P.; von Einem, B.; von Arnim, C.
2017-02-01
Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. Mitochondrial dysfunction associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimeŕs disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect oxygen concentration and distribution are therefore of prominent interest. Moreover, they offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways, whereas oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NAD(P)H and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.
NASA Astrophysics Data System (ADS)
Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus
2006-10-01
Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.
High-performance time-resolved fluorescence by direct waveform recording.
Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D
2010-10-01
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.
NASA Astrophysics Data System (ADS)
Evers, Michael; Salma, Nunciada; Birngruber, Reginald; Evans, Conor L.; Manstein, Dieter
2017-02-01
Traditional assessments of cellular metabolism are often destructive, time consuming and without visual information. Fluorescence lifetime imaging microscopy (FLIM) provides a highly sensitive, non-invasive, and label-free alternative. This study uses FLIM in combination with two-photon microscopy to investigate pharmacological induced metabolic changes of adipocytes via changes in the fluorescence of the metabolic co-factors NADH and FAD. In agreement with recent publications NADH fluorescence suggests the presence of four distinct lifetimes in cell culture and tissue with two unbound and two protein bound states which show different responses to treatment with metabolic modifiers. We evaluated the effects on NADH fluorescence lifetime after systematic manipulations to change the balance between oxidative and glycolytic metabolism using five pharmacological reagents - Oligomycin, 2-DG, FCCP, Rotenone, and Glucose - which interact with different parts of the metabolic pathway. We established several ratios between the four distinct lifetimes of NADH after treatment and compared the results to oxygen consumption rate and extracellular acidification rate. We demonstrated, for the first time, a correlation between the two unbound fluorescence lifetimes components and glycolytic and oxidative metabolic activity with a significant higher sensitivity compared to the commonly used free-to-bound ratio of NADH. Analyzing all four lifetime components of NADH has the potential to become a powerful tool to evaluate metabolic activity of adipocytes with subcellular resolution.
Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.
Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S
2005-01-01
Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.
[Quenched fluorescein: a reference dye for instrument response function of TCSPC].
Pan, Hai-feng; Ding, Jing-xin; Liang, Rong-rong; Tao, Zhan-dong; Liu, Meng-wei; Zhang, San-jun; Xu, Jian-hua
2014-08-01
Measuring the instrument response function (IRF) and fitting by reconvolution algorithms are routines to improve time resolution in fluorescence lifetime measurements. Iodide ions were successfully used to quench the fluorescence of fluorescein in this study. By systematically adding saturated NaI water solution in basic fluorescein solution, the lifetimes of fluorescein were reduced from 4 ns to 24 ps. The quenched lifetime of fluorescein obtained from the analysis of Time-Correlated Single Photon Counting (TCSPC) measurement agrees well with that from femtosecond frequency up-conversion measurement. In time resolved excitation spectra measurements, the IRF should be measured at various detection wavelengths providing scattring materials are used. This study could not only reduce the complexity of IRF measurement, but also avoid the existing color effect in system. This study should have wide applications in time resolved fluorescence spectroscopy and fluorescence lifetime imaging.
Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors
NASA Astrophysics Data System (ADS)
Kumar, Anand T. N.; Carp, Stefan A.; Yang, Jing; Ross, Alana; Medarova, Zdravka; Ran, Chongzhao
2017-04-01
Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.
ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore
NASA Astrophysics Data System (ADS)
Cummins, Brian; Simpson, Jonathan; Gryczynski, Zygmunt; Sørensen, Thomas Just; Laursen, Bo W.; Graham, Duncan; Birch, David; Coté, Gerard
2014-02-01
Fluorescent glucose sensing technologies have been identified as possible alternatives to current continuous glucose monitoring approaches. We have recently introduced a new, smart fluorescent ligand to overcome the traditional problems of ConA-based glucose sensors. For this assay to be translated into a continuous glucose monitoring device where both components are free in solution, the molecular weight of the smart fluorescent ligand must be increased. We have identified ovalbumin as a naturally-occurring glycoprotein that could serve as the core-component of a 2nd generation smart fluorescent ligand. It has a single asparagine residue that is capable of displaying an N-linked glycan and a similar isoelectric point to ConA. Thus, binding between ConA and ovalbumin can potentially be monovalent and sugar specific. This work is the preliminary implementation of fluorescently-labeled ovalbumin in the ConA-based assay. We conjugate the red-emitting, long-lifetime azadioxatriangulenium (ADOTA+) dye to ovalbumin, as ADOTA have many advantageous properties to track the equilibrium binding of the assay. The ADOTA-labeled ovalbumin is paired with Alexa Fluor 647-labeled ConA to create a Förster Resonance Energy Transfer (FRET) assay that is glucose dependent. The assay responds across the physiologically relevant glucose range (0-500 mg/dL) with increasing intensity from the ADOTA-ovalbumin, showing that the strategy may allow for the translation of the smart fluorescent ligand concept into a continuous glucose monitoring device.
Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio
2012-01-01
The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.
Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun
2014-07-09
Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.
New Measurements of the Lifetimes of Excited States of Mn-55 Below 2.7 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caggiano, Joseph A.; Hasty, R.; Korbly, Steve
The lifetimes of the excited states of 55 Mn between 1.5 and 2.7 MeV were measured using nuclear resonance fluorescence. The absolute lifetimes of the excited levels were determined from simultaneous measurements of manganese and aluminum. In this approach, the precisely known aluminum states serves as a means to normalize the results. Our findings differ from the evaluated level lifetimes in ENSDF, but agree with earlier nuclear resonance fluorescence measurements.
van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees
2008-01-01
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002
BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.
Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy
2014-01-01
Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.
Tomographic imaging of flourescence resonance energy transfer in highly light scattering media
NASA Astrophysics Data System (ADS)
Soloviev, Vadim Y.; McGinty, James; Tahir, Khadija B.; Laine, Romain; Stuckey, Daniel W.; Mohan, P. Surya; Hajnal, Joseph V.; Sardini, Alessandro; French, Paul M. W.; Arridge, Simon R.
2010-02-01
Three-dimensional localization of protein conformation changes in turbid media using Förster Resonance Energy Transfer (FRET) was investigated by tomographic fluorescence lifetime imaging (FLIM). FRET occurs when a donor fluorophore, initially in its electronic excited state, transfers energy to an acceptor fluorophore in close proximity through non-radiative dipole-dipole coupling. An acceptor effectively behaves as a quencher of the donor's fluorescence. The quenching process is accompanied by a reduction in the quantum yield and lifetime of the donor fluorophore. Therefore, FRET can be localized by imaging changes in the quantum yield and the fluorescence lifetime of the donor fluorophore. Extending FRET to diffuse optical tomography has potentially important applications such as in vivo studies in small animal. We show that FRET can be localized by reconstructing the quantum yield and lifetime distribution from time-resolved non-invasive boundary measurements of fluorescence and transmitted excitation radiation. Image reconstruction was obtained by an inverse scattering algorithm. Thus we report, to the best of our knowledge, the first tomographic FLIM-FRET imaging in turbid media. The approach is demonstrated by imaging a highly scattering cylindrical phantom concealing two thin wells containing cytosol preparations of HEK293 cells expressing TN-L15, a cytosolic genetically-encoded calcium FRET sensor. A 10mM calcium chloride solution was added to one of the wells to induce a protein conformation change upon binding to TN-L15, resulting in FRET and a corresponding decrease in the donor fluorescence lifetime. The resulting fluorescence lifetime distribution, the quantum efficiency, absorption and scattering coefficients were reconstructed.
Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura
2012-10-01
We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.
Li, Lei; Yi, Hua; Jia, Menghui; Chang, Mengfang; Zhou, Zhongneng; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Chen, Jinquan; Xu, Jianhua
2016-06-20
In this paper, we report a pyridinium salt "turn-on" fluorescent probe, 4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (p-DASPMI), and applied its time-resolved fluorescence (TRF) to monitor the protein conformational changes. Both the fluorescence lifetime and quantum yield (QY) of p-DASPMI were increased about two orders of magnitude after binding to the protein bovine serum albumin (BSA). The free p-DASPMI in solution presents an ultrashort fluorescence lifetime (12.4 ps), thus it does not interfere the detection of bound p-DASPMI which has nanosecond fluorescence lifetime. Decay-associated spectra (DAS) show that p-DASPMI molecules bind to subdomains IIA and IIIA of BSA. The TRF decay profiles of p-DASPMI can be described by multi-exponential decay function ([Formula: see text]), and the obtained parameters, such as lifetimes ([Formula: see text]), fractional amplitudes ([Formula: see text]), and fractional intensities ([Formula: see text]), may be used to deduce the conformational changes of BSA. The pH and Cu 2+ induced conformational changes of BSA were investigated through the TRF of p-DASPMI. The results show that the p-DASPMI is a candidate fluorescent probe in studying the conformational changes of proteins through TRF spectroscopy and microscopy in the visible range. © The Author(s) 2016.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
NASA Astrophysics Data System (ADS)
Natal, Rodrigo de Andrade; Pelegati, Vitor B.; Bondarik, Caroline; Mendonça, Guilherme R.; Derchain, Sophie F.; Lima, Carmen P.; Cesar, Carlos L.; Sarian, Luís. O.; Vassallo, José
2015-07-01
Introduction: In breast cancer (BC), desmoplastic reaction, assembled primarily by fibroblasts, is associated with unfavorable prognosis, but the reason of this fact remains still unclear. In this context, nonlinear optics microscopy, including Fluorescence Lifetime Imaging Microscopy (FLIM), has provided advancement in cellular metabolism research. In this paper, our purpose is to differentiate BC cells metabolism with or without contact to desmoplastic reaction. Formalin fixed, paraffin embedded samples were used at different points of hematoxylin stained sections. Methodology: Sections from 14 patients with invasive ductal breast carcinoma were analyzed with FLIM methodology to NAD(P)H and FAD fluorescence lifetime on a Confocal Upright LSM780 NLO device (Carl Zeiss AG, Germany). Quantification of the fluorescence lifetime and fluorescence intensity was evaluated by SPC Image software (Becker &Hickl) and ImageJ (NIH), respectively. Optical redox ratio was calculated by dividing the FAD fluorescence intensity by NAD(P)H fluorescence intensity. Data value for FLIM measurements and fluorescence intensities were calculated using Wilcoxon test; p< 0.05 was considered significant. Results: BC cells in contact with desmoplastic reaction presented a significantly lower NAD(P)H and FAD fluorescence lifetime. Furthermore, optical redox ratio was also lower in these tumor cells. Conclusion: Our results suggest that contact of BC cells with desmoplastic reaction increase their metabolic activity, which might explain the adverse prognosis of cases associated with higher peritumoral desmoplastic reaction.
Yasuda, Ryohei; Harvey, Christopher D; Zhong, Haining; Sobczyk, Aleksander; van Aelst, Linda; Svoboda, Karel
2006-02-01
To understand the biochemical signals regulated by neural activity, it is necessary to measure protein-protein interactions and enzymatic activity in neuronal microcompartments such as axons, dendrites and their spines. We combined two-photon excitation laser scanning with fluorescence lifetime imaging to measure fluorescence resonance energy transfer at high resolutions in brain slices. We also developed sensitive fluorescent protein-based sensors for the activation of the small GTPase protein Ras with slow (FRas) and fast (FRas-F) kinetics. Using FRas-F, we found in CA1 hippocampal neurons that trains of back-propagating action potentials rapidly and reversibly activated Ras in dendrites and spines. The relationship between firing rate and Ras activation was highly nonlinear (Hill coefficient approximately 5). This steep dependence was caused by a highly cooperative interaction between calcium ions (Ca(2+)) and Ras activators. The Ras pathway therefore functions as a supersensitive threshold detector for neural activity and Ca(2+) concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Hongwei; Pan, Shanlin; Hu, Dehong
In this paper, we studied the luminescence property and fluorescence lifetime mapping of MEH-PPV/PCBM system by using electrogenerated chemiluminescence (ECL) and time-correlated single photo counting (TC-SPC) technologies. The ECL results showed that the oxidation peak of MEH-PPV near 0.7 V (vs. SCE) and ECL response of films shifted positively towards 1.2 V when in the presence of PCBM. At the same time, the oxidation peak current density of MEH-PPV increases while the ECL response decreased with the loading of PCBM in the composite films. The fluorescence lifetime images clearly show that the lifetime fluctuation is effected by different substrates andmore » MEH-PPV/PCBM ratios. Meanwhile, the lifetime of MEH-PPV decreases with the increasing of film thickness. The lifetimes of MEH-PPV films on TiO2 substrate are lower than them of films on cover slips.« less
NASA Astrophysics Data System (ADS)
Mo, Weirong; Rohrbach, Daniel; Sunar, Ulas
2012-07-01
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Phase-sensitive flow cytometer
Steinkamp, J.A.
1993-12-14
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.
Characterization of porcine eyes based on autofluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten
2015-03-01
Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.
Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi; Tanaka, Fumio
2008-02-27
Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.
Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes.
1987-08-15
Spectroscopy iip 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number) FIELD GROUP SUB-GROUP fluorescence lifetime...measurements cyclodextrins spectroscopic techniques 19. TRACT (Continue on revere if necsary and identify by block number
Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation
NASA Astrophysics Data System (ADS)
Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young
2014-03-01
Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.
NASA Astrophysics Data System (ADS)
Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.
2011-03-01
A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.
Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics
NASA Astrophysics Data System (ADS)
Fang, Qiyin; Papaioannou, Thanassis; Jo, Javier A.; Vaitha, Russel; Shastry, Kumar; Marcu, Laura
2004-01-01
We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output imaging spectrograph, a gated multichannel plate photomultiplier (MCP-PMT), an intensified charge-coupled-device (ICCD) camera, and a fast digitizer. It can accommodate various types of light sources and optical fiber probes for selective excitation and remote light delivery/collection as required by different applications. The apparatus allows direct recording of the entire fluorescence decay with high sensitivity (nM range fluorescein dye concentration with signal-to-noise ratio of 46) and with four decades dynamic range. It is capable of resolving a broad range of fluorescence lifetimes from hundreds of picoseconds (as low as 300 ps) using the MCP-PMT coupled to the digitizer to milliseconds using the ICCD. The data acquisition and analysis process is fully automated, enabling fast recording of fluorescence intensity decay across the entire emission spectrum (0.8 s per wavelength or ˜40 s for a 200 nm wavelength range at 5 nm increments). The spectral and temporal responses of the apparatus were calibrated and its performance was validated using fluorescence lifetime standard dyes (Rhodamin B, 9-cyanoanthracene, and rose Bengal) and tissue endogenous fluorophores (elastin, collagen, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide). Fluorescence decay lifetimes and emission spectra of all tested compounds measured with the current tr-LIFS apparatus were found in good agreement with the values reported in the literature. The design and performance of tr-LIFS apparatus have enabled in vivo studies of atherosclerotic plaques and brain tumors.
Homulle, H A R; Powolny, F; Stegehuis, P L; Dijkstra, J; Li, D-U; Homicsko, K; Rimoldi, D; Muehlethaler, K; Prior, J O; Sinisi, R; Dubikovskaya, E; Charbon, E; Bruschini, C
2016-05-01
In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores' lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ 3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG-E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG-c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions.
NASA Astrophysics Data System (ADS)
Khoo, Geoffrey; Kuennemeyer, Rainer; Claycomb, Rod W.
2005-04-01
Currently, the state of the art of mastitis detection in dairy cows is the laboratory-based measurement of somatic cell count (SCC), which is time consuming and expensive. Alternative, rapid, and reliable on-farm measurement methods are required for effective farm management. We have investigated whether fluorescence lifetime measurements can determine SCC in fresh, unprocessed milk. The method is based on the change in fluorescence lifetime of ethidium bromide when it binds to DNA from the somatic cells. Milk samples were obtained from a Fullwood Merlin Automated Milking System and analysed within a twenty-four hour period, over which the SCC does not change appreciably. For reference, the milk samples were also sent to a testing laboratory where the SCC was determined by traditional methods. The results show that we can quantify SCC using the fluorescence photon migration method from a lower bound of 4x105 cells mL-1 to an upper bound of 1 x 107 cells mL-1. The upper bound is due to the reference method used while the cause of the lower boundary is unknown, yet.
Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich
2016-01-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer’s principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer’s principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer’s principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality. PMID:27699092
New measurements of the lifetimes of excited states of {sup 55}Mn below 2.7 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caggiano, J. A.; Warren, G. A.; Hasty, R. D.
The lifetimes of the excited states of {sup 55}Mn between 1.5 and 2.7 MeV were measured using nuclear resonance fluorescence. The absolute lifetimes of the excited levels were determined from simultaneous measurements of manganese and aluminum. In this approach, the precisely known aluminum state serves as a means to normalize the results. Our findings differ from the evaluated level lifetimes in the Evaluated Nuclear Structure Data File (ENSDF), but agree with earlier nuclear resonance fluorescence measurements.
NASA Astrophysics Data System (ADS)
Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.
2016-03-01
Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.
Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells
NASA Astrophysics Data System (ADS)
He, Ying; Samanta, Soham; Gong, Wanjun; Liu, Wufan; Pan, Wenhui; Yang, Zhigang; Qu, Junle
2018-02-01
Unfolded or misfolded protein accumulation inside Endoplasmic Reticulum (ER) will cause ER stress and subsequently will activate cellular autophagy to release ER stress, which would ultimately result in microviscosity changes. However, even though, it is highly significant to gain a quantitative assessment of microviscosity changes during ER autophagy to study ER stress and autophagy behaviors related diseases, it has rarely been reported yet. In this work, we have reported a BODIPY based fluorescent molecular rotor that can covalently bind with vicinal dithiols containing nascent proteins in ER and hence can result in ER stress through the inhibition of the folding of nascent proteins. The change in local viscosity, caused by the release of the stress in cells through autophagy, was quantified by the probe using fluorescence lifetime imaging. This work basically demonstrates the possibility of introducing synthetic chemical probe as a promising tool to diagnose ER-viscosity-related diseases.
Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy
Paredes, Jose M.; Casares, Salvador; Ruedas-Rama, Maria J.; Fernandez, Elena; Castello, Fabio; Varela, Lorena; Orte, Angel
2012-01-01
Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies. PMID:22949804
Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas
2018-01-24
The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.
Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong
2017-01-01
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence–based applications. PMID:28560347
Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging
NASA Astrophysics Data System (ADS)
Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle
2014-02-01
Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.
Gryczynski, Z; Bucci, E
1993-11-01
Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.
Clinical multiphoton FLIM tomography
NASA Astrophysics Data System (ADS)
König, Karsten
2012-03-01
This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.
Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.
Ishii, Kunihiko; Tahara, Tahei
2013-10-03
In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.
Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.
2014-01-01
Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662
Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens
2015-01-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.
Towards metabolic mapping of the human retina.
Schweitzer, D; Schenke, S; Hammer, M; Schweitzer, F; Jentsch, S; Birckner, E; Becker, W; Bergmann, A
2007-05-01
Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1 = 190 ps) originates from the retinal pigment epithelium and the second lifetime (t2 = 1,000 ps) from the neural retina. The lifetime t3 approximately 5.5 ns might be influenced by the long decay of the fluorescence in the crystalline lens. In vitro analysis of the spectral properties of expected fluorophores under the condition of the living eye lightens the interpretation of in vivo measurements. Taking into account the transmission of the ocular media, the excitation of NADH is unlikely at the fundus. Copyright 2007 Wiley-Liss, Inc.
Study of the high pressure effect on nanoparticles GdVO4: Eu3+ optical properties
NASA Astrophysics Data System (ADS)
Jovanić, B. R.; Bettinelli, M.; Piccinelli, F.; Radenković, B.; Despotović-Zrakić, M.; Bogdanović, Z.
2015-07-01
This study considers the effects of hydrostatic pressure on the line position and fluorescence lifetime τ for 5D0 → 7F2 transitions in GdVO4: Eu3+ nanocrystals. The results indicate that the pressure induced the red shift toward longer wavelengths for all the considered lines with different rate. The fluorescence lifetime τ nonlinearly decreases with pressure in the considered pressure range. High pressure induced the fluorescence lifetime τ that can be explained with a simple theoretical model. The measured line position and τ are in a satisfactory agreement with the theoretical calculations.
NASA Astrophysics Data System (ADS)
Bisby, Roger H.; Botchway, Stanley W.; Greetham, Greg M.; Hadfield, John A.; McGown, Alan T.; Parker, Anthony W.; Scherer, Kathrin M.; Towrie, Mike
2012-08-01
Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation, the intracellular concentrations of a fluorinated derivative of E-combretastatin A-4 in HUVECs are between two and three orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW), it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast, the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps. DedicationThis paper is dedicated to the memory of Professor Christopher G Morgan (1949-2011). He was a valued colleague and friend at the University of Salford and made significant contributions to the development and applications of fluorescence lifetime imaging.
NASA Astrophysics Data System (ADS)
Elangovan, Masilamani; Day, Richard N.; Periasamy, Ammasi
2002-06-01
Visualizing and quantifying protein-protein interactions is a recent trend in biomedical imaging. The current advances in fluorescence microscopy coupled with the development of new fluorescent probes provide the tools to study protein interactions in living specimens. Spectral bleed-through or cross talk is a problem in one- and two-photon microscopy to recognize whether one is observing the sensitized emission or the bleed-through signals. In contrast, FLIM (fluorescence lifetime imaging microscopy) or lifetime measurements are independent of excitation intensity or fluorophore concentration. The combination of FLIM and FRET will provide high spatial (nanometer) and temporal (nanoseconds) resolution when compared to steady state FRET imaging. Importantly, spectral bleed-through is not an issue in FLIM imaging because only the donor fluorophore lifetime is measured. The presence of acceptor molecules within the local environment of the donor that permit energy transfer will influence the fluorescence lifetime of the donor. By measuring the donor lifetime in the presence and the absence of acceptor one can accurately calculate the FRET efficiency and the distance between donor- and acceptor-labeled proteins. Moreover, the FRET-FLIM technique allows monitoring more than one pair of protein interactions in a single living cell.
NASA Astrophysics Data System (ADS)
Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder
2016-02-01
Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases.
Genetically encoded sensors and fluorescence microscopy for anticancer research
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.
2017-02-01
Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities
NASA Astrophysics Data System (ADS)
Bhatta, H.; Goldys, E. M.; Ma, J.
2006-02-01
We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.
NASA Technical Reports Server (NTRS)
Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.
2002-01-01
Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.
Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors
NASA Astrophysics Data System (ADS)
Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.
2017-11-01
Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.
Schwalb, Nina K; Michalak, Thomas; Temps, Friedrich
2009-12-24
The optically excited electronic states of hydrogen-bonded homo- and heterodimers of guanosine (G) and deoxycytidine (C) were investigated by femtosecond fluorescence up-conversion spectroscopy. The base pairs were prepared in CHCl(3) solution by employing tert-butyldimethylsilyl (TBDMS) groups at the OH positions of the ribose (G) or deoxyribose (C) moieties to enhance the solubilities of the nucleosides in organic solvents. The H-bonded complexes that were obtained were characterized by FTIR spectroscopy. Fluorescence lifetime measurements were performed following electronic excitation at a series of UV wavelengths from lambda(pump) = 294 nm, close to the electronic origins of the bases, to lambda(pump) = 262 nm, where significant excess vibronic energy is deposited in the molecules, at nucleoside concentrations of c(0) = 0.1 and 1.0 mM. The experimental results revealed the existence of an ultrafast deactivation pathway for the optically prepared electronically excited state(s) of the G.C Watson-Crick base pair, which was found to have a lifetime of tau(GC) = 0.30(3) ps (with 2sigma error limits) irrespective of the pump wavelength. A similar short decay time, tau(GG) = 0.32(2) ps, was observed for the respective excited G.G homodimer. In contrast, the excited G monomer displayed a significantly longer-lived and wavelength-dependent deactivation, requiring three time constants, between 0.43(6) ps < or = tau(G,1) < or = 1.2(1) ps, 4.2(8) ps < or = tau(G,2) < or = 8(1) ps, and tau(G,3) = 195(32) ps. Self-complexation of C, on the other hand, led to a longer-lived excited state with a lifetime estimated between 1 ps < or = tau(CC) < or = 10 ps, compared to the dominant initial subpicosecond decay time of the C monomer of tau(C,1) = 0.80(4) ps.
Sauer, Lydia; Peters, Sven; Schmidt, Johanna; Schweitzer, Dietrich; Klemm, Matthias; Ramm, Lisa; Augsten, Regine; Hammer, Martin
2017-08-01
To investigate the impact of macular pigment (MP) on fundus autofluorescence (FAF) lifetimes in vivo by characterizing full-thickness idiopathic macular holes (MH) and macular pseudo-holes (MPH). A total of 37 patients with MH and 52 with MPH were included. Using the fluorescence lifetime imaging ophthalmoscope (FLIO), based on a Heidelberg Engineering Spectralis system, a 30° retinal field was investigated. FAF decays were detected in a short (498-560 nm; ch1) and long (560-720 nm; ch2) wavelength channel. τ m , the mean fluorescence lifetime, was calculated from a three-exponential approximation of the FAF decays. Macular coherence tomography scans were recorded, and macular pigment's optical density (MPOD) was measured (one-wavelength reflectometry). Two MH subgroups were analysed according to the presence or absence of an operculum above the MH. A total of 17 healthy fellow eyes were included. A longitudinal FAF decay examination was conducted in nine patients, which were followed up after surgery and showed a closed MH. In MH without opercula, significant τ m differences (p < 0.001) were found between the hole area (MHa) and surrounding areas (MHb) (ch1: MHa 238 ± 64 ps, MHb 181 ± 78 ps; ch2: MHa 275 ± 49 ps, MHb 223 ± 48 ps), as well as between MHa and healthy eyes or closed MH. Shorter τ m , adjacent to the hole, can be assigned to areas with equivalently higher MPOD. Opercula containing MP also show short τ m . In MPH, the intactness of the Hele fibre layer is associated with shortest τ m . Shortest τ m originates from MP-containing retinal layers, especially from the Henle fibre layer. Fluorescence lifetime imaging ophthalmoscope (FLIO) provides information on the MP distribution, the pathogenesis and topology of MH. Macular pigment (MP) fluorescence may provide a biomarker for monitoring pathological changes in retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Bednarkiewicz, Artur; Whelan, Maurice P
2008-01-01
Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.
Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylak-Glassman, Emily J.; Zaks, Julia; Amarnath, Kapil
2015-03-12
A technique is described to measure the fluorescence decay profiles of intact leaves during adaptation to high light and subsequent relaxation to dark conditions. We illustrate how to ensure that photosystem II reaction centers are closed and compare data for wild type Arabidopsis thaliana with conventional pulse-amplitude modulated (PAM) fluorescence measurements. Unlike PAM measurements, the lifetime measurements are not sensitive to photobleaching or chloroplast shielding, and the form of the fluorescence decay provides additional information to test quantitative models of excitation dynamics in intact leaves.
Margineanu, Anca; Hotta, Jun-ichi; Van der Auweraer, Mark; Ameloot, Marcel; Stefan, Alina; Beljonne, David; Engelborghs, Yves; Herrmann, Andreas; Müllen, Klaus; De Schryver, Frans C.; Hofkens, Johan
2007-01-01
A new membrane probe, based on the perylene imide chromophore, with excellent photophysical properties (high absorption coefficient, quantum yield (QY) ≈ 1, high photostability) and excited in the visible domain is proposed for the study of membrane rafts. Visualization of separation between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases can be achieved in artificial membranes by fluorescence lifetime imaging due to the different decay times of the membrane probe in the two phases. Rafts on micrometer-scale in cell membranes due to cellular activation can also be observed by this method. The decay time of the dye in the Lo phase is higher than in organic solvents where its QY is 1. This allows proposing a (possible general) mechanism for the decay time increase in the Lo phase, based on the local field effects of the surrounding molecules. For other fluorophores with QY < 1, the suggested mechanism could also contribute, in addition to effects reducing the nonradiative decay pathways, to an increase of the fluorescence decay time in the Lo phase. PMID:17573424
Near-infrared squaraine dyes for fluorescence enhanced surface assay
Matveeva, Evgenia G.; Terpetschnig, Ewald A.; Stevens, Megan; Patsenker, Leonid; Kolosova, Olga S.; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces. The fluorescence signal enhancement obtained for the two dyes was greater than that previously recorded for Rhodamine Red-X and AlexaFluor-647 labels. PMID:20046935
Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi
2015-10-15
Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.
Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada
2017-06-01
The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.
Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory
2010-06-01
The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory
2011-01-01
OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355
NASA Astrophysics Data System (ADS)
Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.
Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A
2016-11-22
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Identification of gram-negative and gram-positive bacteria by fluorescence studies
NASA Astrophysics Data System (ADS)
Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian
2011-03-01
Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.
Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates.
Cordina, Nicole M; Sayyadi, Nima; Parker, Lindsay M; Everest-Dass, Arun; Brown, Louise J; Packer, Nicolle H
2018-03-14
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.
In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers
Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin
2012-01-01
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092
Li, Ling-Ling; Li, Kun; Li, Meng-Yang; Shi, Lei; Liu, Yan-Hong; Zhang, Hong; Pan, Sheng-Lin; Wang, Nan; Zhou, Qian; Yu, Xiao-Qi
2018-05-01
The viscosity of lysosome is reported to be a key indicator of lysosomal functionality. However, the existing mechanical methods of viscosity measurement can hardly be applied at the cellular or subcellular level. Herein, a BODIPY-based two-photon fluorescent probe was presented for monitoring lysosomal viscosity with high spatial and temporal resolution. By installing two morpholine moieties to the fluorophore as target and rotational groups, the TICT effect between the two morpholine rings and the main fluorophore scaffold endowed the probe with excellent viscosity sensitivity. Moreover, Lyso-B succeeded in showing the impact of dexamethasone on lysosomal viscosity in real time.
NASA Astrophysics Data System (ADS)
Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.
2017-12-01
Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.
Kumaran, R; Varalakshmi, T; Malar, E J Padma; Ramamurthy, P
2010-09-01
Photophysical studies of photoinduced electron transfer (PET) and non-PET based acridinedione dyes with guanidine hydrochloride (GuHCl) were carried out in water and methanol. Addition of GuHCl to photoinduced electron transfer (PET) based acridinedione dye (ADR 1) results in a fluorescence enhancement, whereas a non-PET based dye (ADR 2) shows no significant change in the fluorescence intensity and lifetime. Addition of GuHCl to ADR 1 dye in methanol results in single exponential decay behaviour, on the contrary a biexponential decay pattern was observed on the addition of GuHCl in water. Absorption and emission spectral studies of ADR 1 dye interaction with GuHCl reveals that the dye molecule is not in the protonated form in aqueous GuHCl solution, and the dye is confined to two distinguishable microenvironment in the aqueous phase. A large variation in the microenvironment around the dye molecule is created on the addition of GuHCl and this was ascertained by time-resolved area normalized emission spectroscopy (TRANES) and time-resolved emission spectroscopy (TRES). The dye molecule prefers to reside in the hydrophobic microenvironment, rather in the hydrophilic aqueous phase is well emphasized by time-resolved fluorescence lifetime studies. The mechanism of fluorescence enhancement of ADR 1 dye by GuHCl is attributed to the suppression of the PET process occurring through space.
NASA Astrophysics Data System (ADS)
Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.
2010-02-01
As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.
Intra-operative probe for brain cancer: feasibility study
NASA Astrophysics Data System (ADS)
Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.
2007-07-01
The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.
NASA Astrophysics Data System (ADS)
Clarke, James; Cheng, Kwan; Shindell, Orrin; Wang, Exing
We have designed and constructed a high-throughput electrofusion chamber and an incubator to fabricate Giant Unilamellar Vesicles (GUVs) consisting of high-melting lipids, low-melting lipids, cholesterol and both ordered and disordered phase sensitive fluorescent probes (DiIC12, dehydroergosterol and BODIPY-Cholesterol). GUVs were formed in a 3 stage pulse sequence electrofusion process with voltages ranging from 50mVpp to 2.2Vpp and frequencies from 5Hz to 10Hz. Steady state and time-correlated single-photon counting (TCSPC) fluorescence lifetime (FLIM) based confocal and/or multi-photon microscopic techniques were used to characterize phase separated lipid domains in GUVs. Confocal imaging measures the probe concentration and the chemical environment of the system. TCSPC techniques determine the chemical environment through the perturbation of fluorescent lifetimes of the probes in the system. The above techniques will be applied to investigate the protein-lipid interactions involving domain formation. Specifically, the mechanisms governing lipid domain formations in the above systems that mimic the lipid rafts in cells will be explored. Murchison Fellowship at Trinity University.
Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong
2017-08-09
Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.
Development of LEDs-based microplate reader for bioanalytical assay measurements
NASA Astrophysics Data System (ADS)
Alaruri, Sami D.; Katzlinger, Michael; Schinwald, Bernhard; Kronberger, Georg; Atzler, Joseph
2013-10-01
The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0-3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL-1 fluorescein (384-well plate), 25 fmol 100 µL-1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL-1 europium solution (white 384-well plate), respectively.
Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M
2004-11-01
In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.
Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens
2015-01-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation. PMID:26192624
NASA Astrophysics Data System (ADS)
Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike
2018-05-01
We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.
Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K; Chen, Ying-Pin; McDougald, Roy N; Ivy, Joshua F; Yakovenko, Andrey A; Feng, Dawei; Omary, Mohammad A; Zhou, Hong-Cai
2014-06-11
We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.
NASA Astrophysics Data System (ADS)
Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.
2010-09-01
The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.
Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit
2015-11-01
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua
2015-08-01
Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.
High rectification in organic diodes based on liquid crystalline phthalocyanines.
Apostol, Petru; Eccher, Juliana; Dotto, Marta Elisa Rosso; Costa, Cassiano Batesttin; Cazati, Thiago; Hillard, Elizabeth A; Bock, Harald; Bechtold, Ivan H
2015-12-28
The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates viaπ-π intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the π-π intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials.
Wong, Z C; Fan, W Y; Chwee, T S; Sullivan, Michael B
2017-08-09
Fluorescence lifetimes were evaluated using TD-DFT under different approximations for the emitting molecule and various exchange-correlation functionals, such as B3LYP, BMK, CAM-B3LYP, LC-BLYP, M06, M06-2X, M11, PBE0, ωB97, ωB97X, LC-BLYP*, and ωB97X* where the range-separation parameters in the last two functionals were tuned in a non-empirical fashion. Changes in the optimised molecular geometries between the ground and electronically excited states were found to affect the quality of the calculated lifetimes significantly, while the inclusion of vibronic features led to further improvements over the assumption of a vertical electronic transition. The LC-BLYP* functional was found to return the most accurate fluorescence lifetimes with unsigned errors that are mostly within 1.5 ns of experimental values.
Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder
2016-02-05
Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases. Copyright © 2015 Elsevier B.V. All rights reserved.
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.
Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J
2009-03-24
Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.
Rich, Ryan M; Stankowska, Dorota L; Maliwal, Badri P; Sørensen, Thomas Just; Laursen, Bo W; Krishnamoorthy, Raghu R; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal
2013-02-01
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.
Lassiter, S J; Stryjewski, W; Legendre, B L; Erdmann, R; Wahl, M; Wurm, J; Peterson, R; Middendorf, L; Soper, S A
2000-11-01
A compact time-resolved near-IR fluorescence imager was constructed to obtain lifetime and intensity images of DNA sequencing slab gels. The scanner consisted of a microscope body with f/1.2 relay optics onto which was mounted a pulsed diode laser (repetition rate 80 MHz, lasing wavelength 680 nm, average power 5 mW), filtering optics, and a large photoactive area (diameter 500 microns) single-photon avalanche diode that was actively quenched to provide a large dynamic operating range. The time-resolved data were processed using electronics configured in a conventional time-correlated single-photon-counting format with all of the counting hardware situated on a PC card resident on the computer bus. The microscope head produced a timing response of 450 ps (fwhm) in a scanning mode, allowing the measurement of subnano-second lifetimes. The time-resolved microscope head was placed in an automated DNA sequencer and translated across a 21-cm-wide gel plate in approximately 6 s (scan rate 3.5 cm/s) with an accumulation time per pixel of 10 ms. The sampling frequency was 0.17 Hz (duty cycle 0.0017), sufficient to prevent signal aliasing during the electrophoresis separation. Software (written in Visual Basic) allowed acquisition of both the intensity image and lifetime analysis of DNA bands migrating through the gel in real time. Using a dual-labeling (IRD700 and Cy5.5 labeling dyes)/two-lane sequencing strategy, we successfully read 670 bases of a control M13mp18 ssDNA template using lifetime identification. Comparison of the reconstructed sequence with the known sequence of the phage indicated the number of miscalls was only 2, producing an error rate of approximately 0.3% (identification accuracy 99.7%). The lifetimes were calculated using maximum likelihood estimators and allowed on-line determinations with high precision, even when short integration times were used to construct the decay profiles. Comparison of the lifetime base calling to a single-dye/four-lane sequencing strategy indicated similar results in terms of miscalls, but reduced insertion and deletion errors using lifetime identification methods, improving the overall read accuracy.
Prostate cancer diagnosis with fluorescence lifetime imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sridharan, Shamira; Gandour-Edwards, Regina F.; Dall'Era, Marc; Marcu, Laura
2017-02-01
More than 1 million men in the United States undergo a prostate biopsy procedure annually and approximately 200,000 men receive a diagnosis of prostate cancer. 5-10% of these men have to undergo a repeat biopsy due to insufficient tissue sampling. We are studying the utility of a multi-spectral time resolved fluorescence spectroscopy (MS-TRFS) technique for real-time prostate cancer diagnosis. The MS-TRFS imaging setup, which includes a fiberoptic set-up with a 355nm excitation light source coupled with a blue (450nm) aiming beam, was used to image ex-vivo prostatectomy specimen. The prostate tissue from 11 patients was sectioned at 2mm thickness and the fluorescence lifetime information was overlaid spatially for histology and thus, diagnostic co-registration. Initial results show that fluorescence lifetime in the 390±40nm channel, which measures collagen and elastin signatures, is longer for glandular regions than in the stromal regions. Additionally, lifetime in the 452±45nm channel, corresponding to NAD redox state, is longer in the cancerous glandular region in comparison with the normal glandular regions. Current work is focused on developing real-time quantitative algorithms to combine the fluorescence signatures from the two channels for performing prostate cancer diagnosis on biopsies.
Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates
NASA Astrophysics Data System (ADS)
Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael
2018-03-01
Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.
Fluorescence dynamics of biological systems using synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gratton, E.; Mantulin, W.W.; Weber, G.
1996-09-01
A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less
Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar
2009-01-01
Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242
Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping
NASA Astrophysics Data System (ADS)
Kalinina, Sviatlana; Schaefer, Patrick; Breymayer, Jasmin; Bisinger, Dominik; Chakrabortty, Sabyasachi; Rueck, Angelika
2018-02-01
Otical imaging techniques based on time correlated single photon counting (TCSPC) has found wide applications in medicine and biology. Non-invasive and information-rich fluorescence lifetime imaging microscopy (FLIM) is successfully used for monitoring fluorescent intrinsic metabolic coenzymes as NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) and FAD+ (flavin adenine dinucleotide) in living cells and tissues. The ratio between proteinbound and free coenzymes gives an information about the balance between oxidative phosphorylation and glycolysis in the cells. The changes of the ratio reflects major cellular disorders. A correlation exists between metabolic activity, redox ratio and fluorescence lifetime during stem cell differentiation, neurodegenerative diseases, and carcinogenesis. A multichannel FLIM detection system was designed for monitoring the redox state of NAD(P)H and FAD+ and other intrinsic fluorophores as protoporphyrin IX. In addition, the unique upgrade is useful to perform FLIM and PLIM (phosphorescence lifetime imaging microscopy) simultaneously. PLIM is a promising method to investigate oxygen sensing in biomedical samples. In detail, the oxygen-dependent quenching of phosphorescence of some compounds as transition metal complexes enables measuring of oxygen partial pressure (pO2). Using a two-channel FLIM/PLIM system we monitored intrinsic pO2 by PLIM simultaneously with NAD(P)H by FLIM providing complex metabolic and redox imaging of living cells. Physico-chemical properties of oxygen sensitive probes define certain parameters including their localisation. We present results of some ruthenium based complexes including those specifically bound to mitochondria.
McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.
2014-01-01
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220
NASA Astrophysics Data System (ADS)
Peters, Sven; Hammer, Martin; Schweitzer, Dietrich
2011-07-01
Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).
Gakamsky, Anna; Duncan, Rory R.; Howarth, Nicola M.; Dhillon, Baljean; Buttenschön, Kim K.; Daly, Daniel J.; Gakamsky, Dmitry
2017-01-01
The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of “free” Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their “free” counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age. PMID:28071717
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Skala, Melissa C.
2016-03-01
Measurement of relative fluorescence intensities of NAD(P)H and FAD with fluorescence lifetime imaging (FLIM) allows metabolic characterization of cancerous populations and correlation to treatment response. However, quiescent populations of cancer cells introduce heterogeneity to the tumor and exhibit resistance to standard therapies, requiring a better understanding of this influence on treatment outcome. Significant differences were observed between proliferating and quiescent cell populations upon comparison of respective redox ratios (p<0.05) and FAD lifetimes (p<0.05) across monolayers and in mixed samples. These results demonstrate that metabolic activity may function as a marker for separation and characterization of proliferating and quiescent cancer cells within mixed samples, contributing to comprehensive investigation of heterogeneity-dependent drug resistance.
Remote fluorescence lifetime inspection of hermeticity of packaged food containers
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of a remote "frequency-domain" fluorescence lifetime (SeePhase™) monitor used for the real time hermetic seal leak inspection of packaged food containers. A multitude of food goods, meets, vegetables, and beverages are typically packaged within an inert environment to reduce the risk of bacteria growth and increase the storage life of the food product. The SeePhase™ system uses a multi-parameter oxygen, carbon dioxide, and moisture sensitive patch that is placed within the hermetic sealed food package. Upon the presence of gases oxygen, carbon dioxide, or moisture inside the hermetic sealed food package, the sensor patch produces a fluorescence lifetime signature characteristic of a hermetic seal leak damage of the package.
NASA Astrophysics Data System (ADS)
Jyothikumar, Vinod; Sun, Yuansheng; Periasamy, Ammasi
2013-06-01
A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.
Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media
NASA Astrophysics Data System (ADS)
Cerussi, Albert Edward
1999-09-01
In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of ethidium bromide increases by an order of magnitude upon binding to DNA. In this thesis, I demonstrated that the fluorescence photon migration model is capable of accurately determining the somatic cell count (SCC) in a milk sample. Although meant as a demonstration of fluorescence tissue spectroscopy, this specific problem has important implications for the dairy industry's warfare against subclinical mastitis (i.e., mammary gland inflammation), since the SCC is often used as an indication of bovine infection.
Direct observation of laser guided corona discharges
Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan
2015-01-01
Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271
NASA Astrophysics Data System (ADS)
Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura
2017-02-01
Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.
Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang
2016-05-15
Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, M.; Davis, P.
LLNL and Optiphase resarched fiber optic based fluorescence lifetime instrumentation which, through the incorporation of innovative technology supplied by Optiphase Inc., could lead to a reliable, simplified, and low-cost system mutually compatible with future interests of the company and the long-term stability requirements of ESP sensors.
Collot, Mayeul; Loukou, Christina; Yakovlev, Aleksey V; Wilms, Christian D; Li, Dongdong; Evrard, Alexis; Zamaleeva, Alsu; Bourdieu, Laurent; Léger, Jean-François; Ropert, Nicole; Eilers, Jens; Oheim, Martin; Feltz, Anne; Mallet, Jean-Maurice
2012-09-12
We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.
Osseiran, Sam; Roider, Elisabeth M; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E; Evans, Conor L
2017-12-01
Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
NASA Astrophysics Data System (ADS)
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
Pradère, B; Poulon, F; Compérat, E; Lucas, I; Bazin, D; Doizi, S; Cussenot, O; Traxer, O; Abi Haidar, D
2018-05-28
In the framework of urologic oncology, mini-invasive procedures have increased in the last few decades particularly for urothelial carcinoma. One of the essential elements in the management of this disease is still the diagnosis, which strongly influences the choice of treatment. The histopathologic evaluation of the tumor grade is a keystone of diagnosis, and tumor characterization is not possible with just a macroscopic evaluation. Even today intraoperative evaluation remains difficult despite the emergence of new technologies which use exogenous fluorophore. This study assessed an optical multimodal technique based on endogenous fluorescence, combining qualitative and quantitative analysis, for the diagnostic of urothelial carcinoma. It was found that the combination of two photon fluorescence, second harmonic generation microscopy, spectral analysis and fluorescence lifetime imaging were all able to discriminate tumor from healthy tissue, and to determine the grade of tumors. Spectral analysis of fluorescence intensity and the redox ratio used as quantitative evaluations showed statistical differences between low grade and high grade tumors. These results showed that multimodal optical analysis is a promising technology for the development of an optical fiber setup designed for an intraoperative diagnosis of urothelial carcinoma in the area of endourology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine.
Alexiev, Ulrike; Volz, Pierre; Boreham, Alexander; Brodwolf, Robert
2017-07-01
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers. Here, we review some recent developments in the field of fluorescence microscopy, namely Fluorescence Lifetime Imaging Microscopy (FLIM)), for improved characterization of nanocarriers, their interactions and penetration into skin. In particular, FLIM allows for the discrimination of target molecules, e.g. fluorescently tagged nanocarriers, against the autofluorescent tissue background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle and its interactions with other biomolecules. Thus, FLIM shows the potential to overcome several limits of intensity based microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
The Design and Development of Fluorescent Nano-Optodes for in Vivo Glucose Monitoring
Balaconis, Mary K.; Billingsley, Kelvin; Dubach, J. Matthew; Cash, Kevin J.; Clark, Heather A.
2011-01-01
Background The advent of fluorescent nanosensors has enabled intracellular monitoring of several physiological analytes, which was previously not possible with molecular dyes or other invasive techniques. We have extended the capability of these sensors to include the detection of small molecules with the development of glucose-sensitive nano-optodes. Herein, we discuss the design and development of glucose-sensitive nano-optodes, which have been proven functional both in vitro and in vivo. Methods Throughout the design process, each of the sensor formulations was evaluated based on their response to changes in glucose levels. The percent change in signal, sensor reversibility, and the overall fluorescence intensity were the specific parameters used to assess each formulation. Results A hydrophobic boronic acid was selected that yielded a fully reversible fluorescence response to glucose in accordance with the sensor mechanism. The change in fluorescence signal in response to glucose was approximately 11%. The use of different additives or chromophores did not improve the response; however, modifications to the plasticized polymeric membrane extended sensor lifetime. Conclusions Sensors were developed that yielded a dynamic response to glucose and through further modification of the components, sensor lifetime was improved. By following specific design criteria for the macrosensors, the sensors were miniaturized into nano-optodes that track changes in glucose levels in vivo. PMID:21303627
The design and development of fluorescent nano-optodes for in vivo glucose monitoring.
Balaconis, Mary K; Billingsley, Kelvin; Dubach, Matthew J; Cash, Kevin J; Clark, Heather A
2011-01-01
The advent of fluorescent nanosensors has enabled intracellular monitoring of several physiological analytes, which was previously not possible with molecular dyes or other invasive techniques. We have extended the capability of these sensors to include the detection of small molecules with the development of glucose-sensitive nano-optodes. Herein, we discuss the design and development of glucose-sensitive nano-optodes, which have been proven functional both in vitro and in vivo. Throughout the design process, each of the sensor formulations was evaluated based on their response to changes in glucose levels. The percent change in signal, sensor reversibility, and the overall fluorescence intensity were the specific parameters used to assess each formulation. A hydrophobic boronic acid was selected that yielded a fully reversible fluorescence response to glucose in accordance with the sensor mechanism. The change in fluorescence signal in response to glucose was approximately 11%. The use of different additives or chromophores did not improve the response; however, modifications to the plasticized polymeric membrane extended sensor lifetime. Sensors were developed that yielded a dynamic response to glucose and through further modification of the components, sensor lifetime was improved. By following specific design criteria for the macrosensors, the sensors were miniaturized into nano-optodes that track changes in glucose levels in vivo. © 2010 Diabetes Technology Society.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.
Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W
2017-01-18
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy
Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.
2017-01-01
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060
Connally, Russell; Veal, Duncan; Piper, James
2004-01-01
The ubiquity of naturally fluorescing components (autofluorophores) encountered in most biological samples hinders the detection and identification of labeled targets through fluorescence-based techniques. Time-resolved fluorescence (TRF) is a technique by which the effects of autofluorescence are reduced by using specific fluorescent labels with long fluorescence lifetimes (compared with autofluorophores) in conjunction with time-gated detection. A time-resolved fluorescence microscope (TRFM) is described that is based on a standard epifluorescence microscope modified by the addition of a pulsed excitation source and an image-intensified time-gateable CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flash lamp with rapid discharge characteristics was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, the flash output decayed with an approximate lifetime of 18 micros and the TRFM required a long-lived lanthanide chelate label to ensure that probe fluorescence was visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the waterborne parasite Giardia lamblia. For a 600-nm bandpass filter set and a gate delay of 60 micros, the TRFM provided an 11.3-fold improvement in the signal-to-noise ratio (S/N) of labeled Giardia over background. A smaller gain in an SNR of 9.69-fold was achieved with a 420-nm longpass filter set; however, the final contrast ratio between labeled cyst and background was higher (11.3 versus 8.5). Despite the decay characteristics of the light pulse, flash lamps have many practical advantages compared with optical chopper wheels and modulated lasers for applications in TRFM.
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander
1999-05-01
Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.
Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding
Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem
2014-01-01
Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076
Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?
Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng
2016-06-01
This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long
2018-04-21
Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
Feldman, Tatiana B; Yakovleva, Marina A; Larichev, Andrey V; Arbukhanova, Patimat M; Radchenko, Alexandra Sh; Borzenok, Sergey A; Kuzmin, Vladimir A; Ostrovsky, Mikhail A
2018-05-22
The aim of this work is the determination of quantitative diagnostic criteria based on the spectral characteristics of fundus autofluorescence to detect early stages of degeneration in the retina and retinal pigment epithelium (RPE). RPE cell suspension samples were obtained from the cadaver eyes with and without signs of age-related macular degeneration (AMD). Fluorescence analysis at an excitation wavelength of 488 nm was performed. The fluorescence lifetimes of lipofuscin-granule fluorophores were measured by counting time-correlated photon method. Comparative analysis of fluorescence spectra of RPE cell suspensions from the cadaver eyes with and without signs of AMD showed a significant difference in fluorescence intensity at 530-580 nm in response to fluorescence excitation at 488 nm. It was notably higher in eyes with visual pathology than in normal eyes regardless of the age of the eye donor. Measurements of fluorescence lifetimes of lipofuscin fluorophores showed that the contribution of photooxidation and photodegradation products of bisretinoids to the total fluorescence at 530-580 nm of RPE cell suspensions was greater in eyes with visual pathology than in normal eyes. Because photooxidation and photodegradation products of bisretinoids are markers of photodestructive processes, which can cause RPE cell death and initiate degenerative processes in the retina, quantitative determination of increases in these bisretinoid products in lipofuscin granules may be used to establish quantitative diagnostic criteria for degenerative processes in the retina and RPE.
NASA Astrophysics Data System (ADS)
Vetrova, Elena; Kudryasheva, N.; Cheng, K.
2006-10-01
Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.
Rich, Ryan M.; Stankowska, Dorota L.; Maliwal, Badri P.; Sørensen, Thomas Just; Laursen, Bo W.; Krishnamoorthy, Raghu R.; Gryczynski, Zygmunt; Borejdo, Julian
2013-01-01
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background. PMID:23254457
NASA Astrophysics Data System (ADS)
Schweitzer, D.; Klemm, M.; Quick, S.; Deutsch, L.; Jentsch, S.; Hammer, M.; Dawczynski, J.; Kloos, C. H.; Mueller, U. A.
2011-07-01
Measurements of time-resolved autofluorescence (FLIM) at the human ocular fundus of diabetic patients permit the detection of early pathologic alterations before signs of diabetic retinopathy are visible. The measurements were performed by the Jena Fluorescence Lifetime Laser Scanner Ophthalmoscope applying time-correlated single photon counting (TCSPC) in two spectral channels (K1: 490-560 nm, K2:560-700ps). The fluorescence was excited by 70 ps pulses (FWHM) at 448 nm. The decay of fluorescence intensity was triple-exponentially approximated. The frequency of amplitudes, lifetimes, and relative contributions was compared in fields of the same size and position in healthy subjects and in diabetic patients. The most sensitive parameter was the lifetime T2 in the short-wavelength channel, which corresponds to the neuronal retina. The changes in lifetime point to a loss of free NADH and an increased contribution of protein-bound NADH in the pre-stage of diabetic retinopathy.
NASA Technical Reports Server (NTRS)
Houston, W. R.; Stephenson, D. G.; Measures, R. M.
1975-01-01
A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.
Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers
Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.
1978-01-01
The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524
Paper-polymer composite devices with minimal fluorescence background.
Wang, Chang-Ming; Chen, Chong-You; Liao, Wei-Ssu
2017-04-22
Polymer film incorporated paper-based devices show advantages in simplicity and rugged backing. However, their applications are restricted by the high fluorescence background interference of conventional laminating pouches. Herein, we report a straightforward approach for minimal fluorescence background device fabrication, in which filter paper was shaped and laminated in between two biaxially oriented polypropylene (OPP) and polyvinyl butyral (PVB) composite films. This composite film provides mechanical strength for enhanced device durability, protection from environmental contamination, and prevents reagent degradation. This approach was tested by the determination of copper ions with a fluorescent probe, while the detection of glucose was used to illustrate the improved device durability. Our results show that lamination by the polymer composite lengthens device lifetime, while allowing for fluorescence detection methods combination with greatly reduced fluorescent background widely present in commercially available lamination pouches. By the combination of rapid device prototyping with low cost materials, we believe that this composite design would further expand the potential of paper-based devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Kollmann, Heiko; Becker, Simon F; Shirdel, Javid; Scholten, Alexander; Ostendorp, Anna; Lienau, Christoph; Koch, Karl-Wilhelm
2012-06-15
We report fluorescence lifetime and rotational anisotropy measurements of the fluorescent dye Alexa647 attached to the guanylate cyclase-activating protein 2 (GCAP2), an intracellular myristoylated calcium sensor protein operating in photoreceptor cells. By linking the dye to different protein regions critical for monitoring calcium-induced conformational changes, we could measure fluorescence lifetimes and rotational correlation times as a function of myristoylation, calcium, and position of the attached dye, while GCAP2 was still able to regulate guanylate cyclase in a Ca(2+)-sensitive manner. We observe distinct site-specific variations in the fluorescence dynamics when externally changing the protein conformation. A clear reduction in fluorescence lifetime suggests that in the calcium-free state a dye marker in amino acid position 131 senses a more hydrophobic protein environment than in position 111. Saturating GCAP2 with calcium increases the fluorescence lifetime and hence leads to larger exposure of position 111 to the solvent and at the same time to a movement of position 131 into a hydrophobic protein cleft. In addition, we find distinct, biexponential anisotropy decays reflecting the reorientational motion of the fluorophore dipole and the dye/protein complex, respectively. Our experimental data are well described by a "wobbling-in-a-cone" model and reveal that for dye markers in position 111 of the GCAP2 protein both addition of calcium and myristoylation results in a pronounced increase in orientational flexibility of the fluorophore. Our results provide evidence that the up-and-down movement of an α-helix that is situated between position 111 and 131 is a key feature of the dynamics of the protein-dye complex. Operation of this piston-like movement is triggered by the intracellular messenger calcium.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Fluorescence lifetime imaging with near-infrared dyes
NASA Astrophysics Data System (ADS)
Becker, Wolfgang; Shcheslavskiy, Vladislav
2013-02-01
Near-infrared (NIR) dyes are used as fluorescence markers in small-animal imaging and in diffuse optical tomography of the human brain. In these applications it is important to know whether the dyes bind to proteins or other tissue constituents, and whether their fluorescence lifetimes depend on the targets they are bound to. Unfortunately, neither the lasers nor the detectors of commonly used confocal and multiphoton laser scanning microscopes allow for excitation and detection of NIR fluorescence. We therefore upgraded existing confocal TCSPC FLIM systems with NIR lasers and NIR sensitive detectors. In multiphoton systems we used the Ti:Sa laser as a one-photon excitation source in combination with an NIR-sensitive detector in the confocal beam path. We tested a number of NIR dyes in biological tissue. Some of them showed clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information on the tissue constitution and on local biochemical parameters.
Whang, Dong Ryeol; You, Youngmin; Chae, Weon-Sik; Heo, Jeongyun; Kim, Sehoon; Park, Soo Young
2012-11-06
In this study, we have demonstrated the reconstruction of encrypted information by employing photoluminescence spectra and lifetimes of a phosphorescent Ir(III) complex (IrHBT). IrHBT was constructed on the basis of a heteroleptic structure comprising a fluorescent N^O ancillary ligand. From the viewpoint of information security, the transformation of the Ir(III) complex between phosphorescent and fluorescent states can be encoded with chemical/photoirradiation methods. Thin polymer films (poly(methylmethacrylate), PMMA) doped with IrHBT display long-lived emission typical of phosphorescence (λ(max) = 586 nm, τ(obs) = 2.90 μs). Meanwhile, exposure to HCl vapor switches the emission to fluorescence (λ(max) = 514 nm, τ(obs) = 1.53 ns) with drastic changes in both the photoluminescence color and lifetime. Security printing on paper impregnated with IrHBT or on a PMMA film containing IrHBT and photoacid generator (triphenylsulfonium triflate) enables the bimodal readout of photoluminescence color and lifetime.
NASA Astrophysics Data System (ADS)
Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.
2004-03-01
Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.
Fluorescence Lifetime Imaging and Spectroscopy as Tools for Nondestructive Analysis of Works of Art
NASA Astrophysics Data System (ADS)
Comelli, Daniela; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; Colombo, Chiara; Toniolo, Lucia
2004-04-01
A system for advanced fluorescence investigation of works of art has been assembled and integrated in a characterization procedure that allows one to localize and identify organic compounds that are present in artworks. At the beginning of the investigation, fluorescence lifetime imaging and spectroscopy address a selective microsampling of the artwork. Then analytical measurements of microsamples identify the chemical composition of the materials under investigation. Finally, on the basis of fluorescence lifetime and amplitude maps, analytical data are extended to the whole artwork. In such a way, information on the spatial distribution of organic materials can be inferred. These concepts have been successfully applied in an extensive campaign for analysis of Renaissance fresco paintings in Castiglione Olona, Italy. Residue of various types of glue and stucco left from a restoration carried out in the early 1970s was localized and classified. Insight into the technique used by the painter to make gilded reliefs was also obtained.
Processes Affecting Variability of Fluorescence Signals from Benthic Targets in Shallow Waters
1997-09-30
processes in the Department of Chemistry at Brookhaven National Laboratory. The model organisms used are primarily cultured zooxanthellae obtained from...and closed (Fm) photosystem II reaction centers in the zooxanthellae isolated from the fire coral, Montipora. The short lifetime curve corresponds...individual zooxanthellae strains, is highly correlated Figure 2. The correlation between the average fluorescence lifetimes, calculated from a four
NASA Astrophysics Data System (ADS)
Silva, Norberto De Jesus
Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural microheterogeneity which is consistent with the hypothesis of conformational substates. Further analysis show that, during denaturation, the monomeric form of HSOD is an intermediate which displays native-like secondary structure and fluctuating tertiary structure; i.e., the monomeric form of HSOD is a molten globule.
Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.
Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel
2014-01-01
The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range.
Fluorescence lifetime of normal, benign, and malignant thyroid tissues
NASA Astrophysics Data System (ADS)
Brandao, Mariana; Iwakura, Ricardo; Basilio, Fagne; Haleplian, Kaique; Ito, Amando; de Freitas, Luiz Carlos Conti; Bachmann, Luciano
2015-06-01
Fine-needle aspiration cytology is the standard technique to diagnose thyroid pathologies. However, this method results in a high percentage of inconclusive and false negatives. The use of time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help to develop a portable, minimally invasive, and nondestructive method to assist during surgical procedures. This study aimed to use fluorescence lifetimes to differentiate healthy and benign tissues from malignant thyroid tissue. The thyroid tissue was excited at 298-300 nm and the fluorescence decay registered at 340 and 450 nm. We observed fluorescence lifetimes at 340 nm emission of 0.80±0.26 and 3.94±0.47 ns for healthy tissue; 0.90±0.24 and 4.05±0.46 ns for benign lesions; and 1.21±0.14 and 4.63±0.25 ns for malignant lesions. For 450 nm emissions, we obtain lifetimes of 0.25±0.18 and 3.99±0.39 ns for healthy tissue, 0.24±0.17 and 4.20±0.48 ns for benign lesions, 0.33±0.32 and 4.55±0.55 ns for malignant lesions. Employing analysis of variance, we differentiate malignant lesions from benign and healthy tissues. In addition, we use quadratic discriminant analysis to distinguish malignant from benign and healthy tissues with an accuracy of 76.1%, sensitivity of 74.7%, and specificity of 83.3%. These results indicate that time-resolved fluorescence can assist medical evaluation of thyroid pathologies during surgeries.
Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2
NASA Astrophysics Data System (ADS)
Shakya, Jyoti; Kasana, Parath; Mohanty, T.
2018-04-01
Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.
Pinhole shifting lifetime imaging microscopy
Ramshesh, Venkat K.; Lemasters, John J.
2009-01-01
Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu3+), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu3+ microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 μs was estimated for the Eu3+ microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648
Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy
Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura
2010-01-01
The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337nm, 700ps), and the intensity decay profiles were recorded in the 360-to550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390nm(lifetime=1.8±0.3ns) and 460nm(lifetime=0.8±0.1ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1ns) and reduced in high-grade glioma (N=9; lifetime=1.7±0.4ns). The emission characteristics at 460nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440to460nm; lifetime: 0.8to1.0ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens. PMID:20459282
Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.
Butte, Pramod V; Fang, Qiyin; Jo, Javier A; Yong, William H; Pikul, Brian K; Black, Keith L; Marcu, Laura
2010-01-01
The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm; lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.
Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura
2010-03-01
The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.
Measurement of the Fluorescence Lifetime of Chlorophyll a In Vivo
Singhal, G. S.; Rabinowitch, E.
1969-01-01
New measurements have been made of fluorescence lifetime (τ) of chlorophyll a in the algae Chlorella pyrenoidosa, Porphyridium cruentum, Anacystis nidulans, and in spinach chloroplast. τ-values of 0.6 and 0.7 nsec were obtained with green plants. Anacystis and Porphyridium gave a τ of 0.5 nsec. The previously described two stage decay of fluorescence in vivo in these organisms could not be confirmed. This observation could have been caused by a second wave of light emission from the exciting hydrogen lamp (not detected in earlier work). The lifetimes found in this study (calculated, as before, by the method of convolution integrals) were close to those found by other observers for “low” excitation intensities; the value first reported from this laboratory (1.0-1.7 nsec) may have corresponded to “high” excitation intensity. PMID:5778187
Time-gated FLIM microscope for corneal metabolic imaging
NASA Astrophysics Data System (ADS)
Silva, Susana F.; Batista, Ana; Domingues, José Paulo; Quadrado, Maria João.; Morgado, António Miguel
2016-03-01
Detecting corneal cells metabolic alterations may prove a valuable tool in the early diagnosis of corneal diseases. Nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent metabolic co-factors that allow the assessment of metabolic changes through non-invasive optical methods. These co-factors exhibit double-exponential fluorescence decays, with well-separated short and lifetime components, which are related to their protein-bound and free-states. Corneal metabolism can be assessed by measuring the relative contributions of these two components. For that purpose, we have developed a wide-field time-gated fluorescence lifetime microscope based on structured illumination and one-photon excitation to record FAD lifetime images from corneas. NADH imaging was not considered as its UV excitation peak is regarded as not safe for in vivo measurements. The microscope relies on a pulsed blue diode laser (λ=443 nm) as excitation source, an ultra-high speed gated image intensifier coupled to a CCD camera to acquire fluorescence signals and a Digital Micromirror Device (DMD) to implement the Structured Illumination technique. The system has a lateral resolution better than 2.4 μm, a field of view of 160 per 120 μm and an optical sectioning of 6.91 +/- 0.45 μm when used with a 40x, 0.75 NA, Water Immersion Objective. With this setup we were able to measure FAD contributions from ex-vivo chicken corneas collected from a local slaughterhouse..
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J.; Alerstam, E.; Maruyama, Y.; Blacksberg, J.
2013-12-01
Mars sample return has been identified as a top priority in the planetary science decadal survey. A Mars sample selection and caching mission would be the likely first step in this endeavor. Such a mission would aim to select and prioritize for return to Earth aqueously formed geological samples present at a selected site on Mars, based upon their potential for biosignature capture and preservation. If evidence of past life exists and is found, it is likely to come via the identification of fossilized carbonaceous matter of biological origin (kerogen) found in the selected samples analyzed in laboratories after return to Earth. Raman spectroscopy is considered one of the primary techniques for analyzing materials in situ and selecting the most promising samples for Earth return. We have previously performed a pilot study to better understand the complexities of identifying kerogen using Raman spectroscopy. For the study, we examined a variety of Mars analog materials representing a broad range of mineral compositions and kerogen maturities. The study revealed that kerogen identification in many of the most promising lithologies is often impeded by background fluorescence that originates from long (>10 ns to ms) and short (<1 ns) lifetime fluorophores in both the mineral matrixes and preserved organic matter in the samples. This work explores the potential for time-gated Raman spectroscopy to enable clear kerogen and mineral identifications in such samples. The JPL time-resolved Raman system uses time gating to reduce background fluorescence. It uses a custom-built SPAD (single photon avalanche diode) detector, featuring a 1-ns time-gate, and electronically variable gate delay. Results for a range of fluorescent samples show that the JPL system reduces fluorescence, allowing the identification of both kerogen and mineral components more successfully than with conventional Raman systems. In some of the most challenging samples, the detection of organic matter is hindered by a combination of short lifetime fluorescence and weak Raman scattering coming from preserved kerogen grains. Fluorescence Lifetime Imaging Microscopy (FLIM) measurements were also performed to characterize the lifetimes of both components in the samples and to inform future system improvements such as shorter time gating. Here, we will discuss the results, along with identified challenges to the consistent and reliable in situ identification of kerogen in samples on Mars.
Hontani, Yusaku; Shcherbakova, Daria M; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V; Kennis, John T M
2016-11-18
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.
NASA Technical Reports Server (NTRS)
Kleinherenbrink, F. A.; Cheng, P.; Amesz, J.; Blankenship, R. E.
1993-01-01
Fluorescence lifetimes of isolated membranes of Rhodopseudomonas viridis were measured in the temperature range of 77 K to 25 K. At room temperature, the main component of the fluorescence decay of bacteriochlorophyll (BChl) b had a time constant of 50 ps. In contrast to other purple bacteria, the emission at low temperature was spectrally homogeneous and showed essentially single lifetimes of 140 ps at 77 K and 180 ps at 25 K, with the primary electron donor in the oxidized state. Taking into account the relative fluorescence yields with open and closed reaction centers, we arrive at numbers of 125 ps and 215 ps, respectively, for open reaction centers. These numbers are significantly smaller than expected on the basis of measurements of the efficiency of charge separation, perhaps suggesting that the excitation decay in the absence of reaction centers is considerably faster at low temperature than at room temperature. At least four different spectral components with different lifetimes were observed at 25 K in the emission of Heliobacterium chlorum, a short-wavelength component of about 30 ps and three longer-wavelength components of about 100 ps, 300 ps, and 900 ps. This indicates a strong heterogeneity in the emitting pigment, BChl g-808. The component with the shortest lifetime does not appear to be affected by the redox state of the reaction center and might reflect energy transfer to BChl g species which are connected to the reaction center.
Fluorescence lifetime dynamics of eGFP in protein aggregates with expanded polyQ
NASA Astrophysics Data System (ADS)
Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao
2009-02-01
Expanding a polyglutamine (polyQ) stretch at the N-terminus of huntingtin protein is the main cause of the neurodegenerative disorder Huntington's disease (HD). Expansion of polyQ above 39 residues has an inherent propensity to form amyloid-like fibrils and aggregation of the mutant protein is found to be a critical component for abnormal pathology of HD. Using yeast Saccharomyces cerevisiae as a model system, we have observed a decrease in fluorescence lifetime of the enhanced green fluorescence protein (eGFP) fused to 97 successive glutamine residues (97Q). Compared to the sample expressing evenly distributed eGFP, the 97Q-eGFP fusion proteins show the formation of grain-like particles and the reduction of eGFP lifetime by ~250 ps as measured by time-correlated single-photon counting technique (TCSPC). More importantly, this phenomenon does not appear in Hsp104-deficient cells. The gene product of HSP104 is required for the formation of polyQ aggregates in yeast cells; therefore, the cellular 97Q-eGFP become soluble and evenly distributive in the absence of Hsp104. Under this condition, the lifetime value of 97Q-eGFP is close to the one exhibited by eGFP alone. The independence of the effect of the environmental parameters, such as pH and refraction index is demonstrated. These data indicate that the fluorescence lifetime dynamics of eGFP is linked to the process of polyQ protein aggregation per se.
NASA Astrophysics Data System (ADS)
Fragola, Alexandra; Bouccara, Sophie; Pezet, Sophie; Lequeux, Nicolas; Loriette, Vincent; Pons, Thomas
2017-02-01
The in vivo detection of rare circulating cells using non invasive fluorescence imaging would provide a key tool to study migration of eg. tumoral or immunological cells. Fluorescence detection is however currently limited by a lack of contrast between the small emission of isolated, fast circulating cells and the strong autofluorescence background of the surrounding tissues. We present the development of near infrared emitting quantum dots (NIR-QDs) with long fluorescence lifetime for sensitive time-gated in vivo imaging of circulating cells. These QDs are composed of low toxicity ZnCuInSe/ZnS materials and made biocompatible using a novel multidentate imidazole zwitterionic block copolymer, ensuring their long term intracellular stability. Cells of interest can thus be labeled ex vivo with QDs, injected intravenously and imaged in the near infrared range. Excitation using a pulsed laser coupled to time-gated detection enables the efficient rejection of short lifetime (≈ ns) autofluorescence background and detection of long lifetime (≈ 150 ns) fluorescence from QD-labeled cells. We demonstrate efficient in vivo imaging of single fast-flowing cells, which opens opportunities for future biological studies. [1] M. Tasso et al, "Sulfobetaine-Vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging's horizons", ACS Nano, 9(11), 2015 [2] S. Bouccara et al, "Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection", J Biomed Optc, 19(5), 2014
NASA Astrophysics Data System (ADS)
de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.
2014-03-01
Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.
Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.
2004-01-01
Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.
Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.
2012-01-01
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477
Spectral Characterization of a Novel Luminescent Organogel
ERIC Educational Resources Information Center
Waguespack, Yan; White, Shawn R.
2007-01-01
The spectroscopic-based luminescence experiments were designed to expose the students to various concepts of single-triplet excited states, electron spin, vibrational relaxation, fluorescence-phosphorescence lifetimes and quenching. The students were able to learn about luminescence spectra of the gel and have the experience of synthesizing a…
2013-03-01
characterization and toward future intravital studies. Preliminary fluorescence lifetime images were also collected intravitally through a mammary imaging window...intend to use this characterization to understand shifts in fluorescence lifetime collected by intravital imaging using a mammary imaging window...collected intravitally through a mammary imaging window implanted in a female, PyVT positive, Col1a1 heterozygote, mouse (Figure 7). A paper has
NASA Astrophysics Data System (ADS)
Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.
2011-11-01
Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.
Toward two-photon excited fluorescence lifetime endomicroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hage, Charles-Henri; Leclerc, Pierre; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frédéric
2017-02-01
Fluorescence lifetime imaging microscopy (FLIM) represents a powerful tool for biological studies. Endoscopic FLIM applied to the intracellular native biomarker NADH and FAD represents a promising mean for in vivo in situ malignant tissue diagnosis in the medical field. Else, 2-photon-excited fluorescence (2PEF) provides increased 3D resolution and imaging depth. But very few demonstrations about 2PEF lifetime measurement through a fiber have been reported and none about endoscopic 2P-FLIM through a practical fiber length (< 3m). Our group has recently demonstrated the possibility to efficiently deliver through a very long optical fiber the short and intense excitation pulses required for 2P-FLIM. Our goal is now to check that collecting fluorescence through the same endoscopic fiber does not deteriorate the lifetime measurement. Relying on the basis previously published in case of 1PEF by P. French and co-workers (J. Biophotonics, 2015), we have experimentally quantitatively evaluated the influence on the lifetime measurement of the fiber chromatic and intermodal dispersions. The main result is that the fiber contribution to the system impulse response function, even in the case of a 3-meter long double-clad optical fiber, does not hinder the separation between free and bound NADH states using FLIM. Related calibrations and measurements will be detailed. Ongoing experiments about the development of a 2P-FLIM endomicroscope on the basis of an previously reported 2P-endomicroscope (Ducourthial et al., Sc. Reports, 2015), used under various configurations (i.e. point measurement in the center of the 2P-endomicroscope image, averaged lifetime, binned endoscopic 2P-FLIM image), will be also presented.
Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S
2001-01-01
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432
Fluorescent BODIPY Rotor: Viscometer for Cellular Organelles and Membrane-Mimicking Vesicles
NASA Astrophysics Data System (ADS)
Kimball, J.; Raut, S.; Fudala, R.; Doan, H.; Maliwal, B.; Sabnis, N.; Lacko, A.; Gryczynski, I.; Dzyuba, S.; Gryczynski, Z.
2015-03-01
Many cellular processes, such as mass and signal transport, metabolism and protein-protein interactions are governed in part by diffusion, and thus affected by their local microviscosity. Changes in this microviscosity has also been linked to various diseases, including atherosclerosis, Alzheimer's disease and diabetes. Therefore, directly measuring the heterogeneous viscosity of cellular constitutes can lead to greater understanding of these processes. To this effect, a novel homodiemeric BODIPY dye was evaluated as a fluorescent rotor probe for this application. A linear dependence on viscosity in the range of typical cellular microviscosity was established for steady-state and time-resolved properties of the dye. It was then embedded in vitro to membrane-mimicking lipid vesicles (DPPC, POPC, and POPC plus cholesterol) and results indicated it to be a viable sensor for lifetime-based determination of microviscosity. The BODIPY dye was lastly endocytosed by SKOV3 cells and Fluorescence Lifetime Imaging Microscopy (FLIM) was performed, successfully mapping the viscosity of internal cell components. This work was supported by the NIH Grant R01EB12003, the NSF Grant CBET-1264608, and the INFOR Grant from TCU.
NASA Astrophysics Data System (ADS)
Svindrych, Zdenek; Wang, Tianxiong; Hu, Song; Periasamy, Ammasi
2017-02-01
NADH and FAD are important endogenous fluorescent coenzymes participating in key enzymatic reactions of cellular metabolism. While fluorescence intensities of NADH and FAD have been used to determine the redox state of cells and tissues, this simple approach breaks down in the case of deep-tissue intravital imaging due to depth- and wavelength-dependent light absorption and scattering. To circumvent this limitation, our research focuses on fluorescence lifetimes of two-photon excited NADH and FAD emission to study the metabolic state of live tissues. In our custom-built scanning microscope we combine tunable femtosecond Ti:sapphire laser (operating at 740 nm for NADH excitation and 890 nm for FAD excitation), two GaAsP hybrid detectors for registering individual fluorescence photons and two Becker and Hickl time correlator boards for high precision lifetime measurements. Together with our rigorous FLIM analysis approach (including image segmentation, multi-exponential decay fitting and detailed statistical analysis) we are able to detect metabolic changes in cancer xenografts (human pancreatic cancer MPanc96 cells injected subcutaneously into the ear of an immunodeficient nude mouse), relative to surrounding healthy tissue. Advantageously, with the same instrumentation we can also take high-resolution and high-contrast images of second harmonic signal (SHG) originating from collagen fibers of both the healthy skin and the growing tumor. The combination of metabolic measurements (NADH and FAD lifetime) and morphological information (collagen SHG) allows us to follow the tumor growth in live mouse model and the changes in tumor microenvironment.
Design and synthesis of the BODIPY-BSA complex for biological applications.
Vedamalai, Mani; Gupta, Iti
2018-02-01
A quinoxaline-functionalized styryl-BODIPY derivative (S1) was synthesized by microwave-assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro-encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1-BSA complex was characterized systematically using ultraviolet (UV)-visible absorption, fluorescence emission, kinetics, circular dichroism and time-resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1-BSA complex could be used as a new biomaterial for fluorescence-based high-throughput assay for kinase enzymes. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Varlamova, Larisa; Abramov, Dmitrii; Golovin, Arsenii; Seledkina, Ekaterina
2017-05-01
One of the promising methods for early diagnosis of malignant diseases of the respiratory organs and the gastrointestinal tract (GIT) is now considered a fluorescence method. Application autofluorescence phenomenon in endoscopy allows to obtain a fluorescent image of the mucosa, which shows the difference in the intensity of the autofluorescence of healthy and the affected tissue in the green and red regions of the spectrum. The result of the work is to determine on the basis of scientific research and prototyping capabilities of creating fluorescence video endoscope and the development of fluorescent light (illuminator FLU) for videoendoscopy complex. The solution of this problem is based on the method of studying biological objects in lifetime condition.
Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
Wen, Amy M; Infusino, Melissa; De Luca, Antonio; Kernan, Daniel L; Czapar, Anna E; Strangi, Giuseppe; Steinmetz, Nicole F
2015-01-21
Virus-based nanoparticles (VNPs) have been used for a wide range of applications, spanning basic materials science and translational medicine. Their propensity to self-assemble into precise structures that offer a three-dimensional scaffold for functionalization has led to their use as optical contrast agents and related biophotonics applications. A number of fluorescently labeled platforms have been developed and their utility in optical imaging demonstrated, yet their optical properties have not been investigated in detail. In this study, two VNPs of varying architectures were compared side-by-side to determine the impact of dye density, dye localization, conjugation chemistry, and microenvironment on the optical properties of the probes. Dyes were attached to icosahedral cowpea mosaic virus (CPMV) and rod-shaped tobacco mosaic virus (TMV) through a range of chemistries to target particular side chains displayed at specific locations around the virus. The fluorescence intensity and lifetime of the particles were determined, first using photochemical experiments on the benchtop, and second in imaging experiments using tissue culture experiments. The virus-based optical probes were found to be extraordinarily robust under ultrashort, pulsed laser light conditions with a significant amount of excitation energy, maintaining structural and chemical stability. The most effective fluorescence output was achieved through dye placement at optimized densities coupled to the exterior surface avoiding conjugated ring systems. Lifetime measurements indicate that fluorescence output depends not only on spacing the fluorophores, but also on dimer stacking and configurational changes leading to radiationless relaxation-and these processes are related to the conjugation chemistry and nanoparticle shape. For biological applications, the particles were also examined in tissue culture, from which it was found that the optical properties differed from those found on the benchtop due to effects from cellular processes and uptake kinetics. Data indicate that fluorescent cargos are released in the endolysosomal compartment of the cell targeted by the virus-based optical probes. These studies provide insight into the optical properties and fates of fluorescent proteinaceous imaging probes. The cellular release of cargo has implications not only for virus-based optical probes, but also for drug delivery and release systems.
Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer
NASA Astrophysics Data System (ADS)
Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young
2018-02-01
A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.
Demonstration of FRET in solutions
NASA Astrophysics Data System (ADS)
Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy
2016-03-01
We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.
Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi
2009-10-22
Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.
Replaceable Sensor System for Bioreactor Monitoring
NASA Technical Reports Server (NTRS)
Mayo, Mike; Savoy, Steve; Bruno, John
2006-01-01
A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.
Enhanced Fluorescence Emission of Me-ADOTA+ by Self-Assembled Silver Nanoparticles on a Gold Film
Sørensen, Thomas J.; Laursen, Bo W.; Luchowski, Rafal; Shtoyko, Tanya; Akopova, Irina; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
We report a multi-fold enhancement of the fluorescence of methyl-azadioxatriangulenium chloride (Me-ADOTA•Cl) in PVA deposited on a 50 nm thick gold mirror carrying an evaporation induced self-assembly of colloidal silver nanoparticles (Ag-SACs). The average measured increase in fluorescence emission of about 50-fold is accompanied by hot spots with a local enhancement in brigthness close to 200. The long lifetime of the dye allows for the first direct determination of the correlation between the enhancement of emission intensity and the decrease in fluorescence lifetime. The Ag-SACs surface preparation and observed enhancements are highly reproducible. We believe that these robust plasmonic surfaces will find use in sensing platforms for ultrasensitive detection. PMID:20161182
Plasmonic enhancement of ultraviolet fluorescence
NASA Astrophysics Data System (ADS)
Jiao, Xiaojin
Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been experimentally demonstrated for the first time. Lifetime reduction as a function of aperture size and native quantum yield has been accurately predicted by simulation. Simulation further predicts greater net fluorescence enhancement for tryptophan compared to p-terphenyl. In order to increase fluorescence enhancement, the "poor" molecules and structures with proper undercuts are required. Third, UV lifetime modification by Mg nanoapertures has been experimentally demonstrated for the fisrt time. Lifetime reductions of ~13x have been observed for the laser dye p-terphenyl with high QY in a 50 nm diameter aperture with 125 nm undercut. In addition, extraordinary optical transmission of Mg nanohole arrays in the UV has been measured for the first time. By using Al as a reference, the feasibility of applying Mg in the UV plasmonic applications has been evaluated both numerically and experimentally. Finally, this work has established a methodology for the study of plasmonic enhancement of UV fluorescence, including design method, thin-film characterization, nanofabrication with focus ion beam milling, and fluorescence measurement. It has paved the way for more extensive research on UV fluorescence enhancement.
Blom, H; Gösch, M
2004-04-01
The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.
Sauer, Lydia; Klemm, Matthias; Peters, Sven; Schweitzer, Dietrich; Schmidt, Johanna; Kreilkamp, Lukas; Ramm, Lisa; Meller, Daniel; Hammer, Martin
2018-05-01
To investigate fundus autofluorescence (FAF) lifetimes in geographic atrophy (GA) with a focus on macular pigment (MP) and foveal sparing. The study included 35 eyes from 28 patients (mean age 79.2 ± 8.0 years) with GA. A 30° retinal field, centred at the macula, was investigated using fluorescence lifetime imaging ophthalmoscopy (FLIO). The FLIO technology is based on a Heidelberg Engineering Spectralis system. Decays of FAF were detected in a short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channel. The mean fluorescence lifetime, τ m , was calculated from a three-exponential approximation of the FAF decays. Macular optical coherence tomography (OCT) scans as well as fundus photography were recorded. Review of FLIO data reveals specific patterns of significantly prolonged τ m in regions of GA (SSC 616 ± 343 ps, LSC 615 ± 154 ps) as compared to non-atrophic regions. Large τ m differences between the fovea and atrophic areas correlate with better visual acuity (VA). Shorter τ m at the fovea than within other non-atrophic regions indicates sparing, which was identified in 16 eyes. Seventy per cent of patients treated with lutein supplementation showed foveal sparing, whereas the rate among non-supplemented patients was 22%. Using FLIO, we present a novel way to detect foveal sparing, investigate MP, and analyse variability of τ m in different foveal regions (including the prognostic valuable border region) in GA. These findings support the potential utility of FLIO in monitoring disease progression. The findings also highlight the possibly protective effect of lutein supplementation, with implication in recording the presence and distributional pattern of MP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Duan, Weikuan; Zhang, Yanyan; Wang, Zhongyue; Jiang, Jingyi; Liang, Chen; Wei, Wei
2014-06-07
K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd(3+) ions (1 × 10(20) cm(-3)) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers.
Decreasing photobleaching by silver island films: application to muscle⋆
Muthu, P.; Gryczynski, I.; Gryczynski, Z.; Talent, J.; Akopova, I.; Jain, K.; Borejdo, J.
2007-01-01
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule—typically of the order of attoliters (10−18 L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine–phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4- to 5- fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible. PMID:17531183
Chen, Yi-Ju; Tzeng, Hsin-Yu; Fan, Hsiu-Fang; Chen, Ming-Shiang; Huang, Jer-Shing; Lin, King-Chuen
2010-06-01
Kinetics of photoinduced electron transfer (ET) from oxazine 1 dye to TiO(2) nanoparticles (NPs) surface is studied at a single molecule level by using confocal fluorescence microscopy. Upon irradiation with a pulsed laser at 630 nm, the fluorescence lifetimes sampled among 100 different dye molecules are determined to yield an average lifetime of 2.9 +/- 0.3 ns, which is close to the value of 3.0 +/- 0.6 ns measured on the bare coverslip. The lifetime proximity suggests that most interfacial electron transfer (IFET) processes for the current system are inefficient, probably caused by physisorption between dye and the TiO(2) film. However, there might exist some molecules which are quenched before fluorescing and fail to be detected. With the aid of autocorrelation analysis under a three-level energy system, the IFET kinetics of single dye molecules in the conduction band of TiO(2) NPs is evaluated to be (1.0 +/- 0.1) x 10(4) s(-1) averaged over 100 single molecules and the back ET rate constant is 4.7 +/- 0.9 s(-1). When a thicker TiO(2) film is substituted, the resultant kinetic data do not make a significant difference. The trend of IFET efficacy agrees with the method of fluorescence lifetime measurements. The obtained forward ET rate constants are about ten times smaller than the photovoltage response measured in an assembled dye-sensitized solar cell. The discrepancy is discussed. The inhomogeneous and fluctuation characters for the IFET process are attributed to microenvironment variation for each single molecule. The obtained ET rates are much slower than the fluorescence relaxation. Such a small ET quantum yield is yet feasibly detectable at a single molecule level.
Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime
NASA Technical Reports Server (NTRS)
Lin, C.; Dienes, A.
1973-01-01
By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.
Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors
Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.
2013-01-01
Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.
Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy
Hage, C. H.; Leclerc, P.; Brevier, J.; Fabert, M.; Le Nézet, C.; Kudlinski, A.; Héliot, L.; Louradour, F.
2017-01-01
In situ fluorescence lifetime imaging microscopy (FLIM) in an endoscopic configuration of the endogenous biomarker nicotinamide adenine dinucleotide (NADH) has a great potential for malignant tissue diagnosis. Moreover, two-photon nonlinear excitation provides intrinsic optical sectioning along with enhanced imaging depth. We demonstrate, for the first time to our knowledge, nonlinear endogenous FLIM in a fibered microscope with proximal detection, applied to NADH in cultured cells, as a first step to a nonlinear endomicroscope, using a double-clad microstructured fiber with convenient fiber length (> 3 m) and excitation pulse duration (≈50 fs). Fluorescence photons are collected by the fiber inner cladding and we show that its contribution to the impulse response function (IRF), which originates from its intermodal and chromatic dispersions, is small (< 600 ps) and stable for lengths up to 8 m and allows for short lifetime measurements. We use the phasor representation as a quick visualization tool adapted to the endoscopy speed requirements. PMID:29359093
NASA Astrophysics Data System (ADS)
Burri, Samuel; Powolny, François; Bruschini, Claudio E.; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo
2014-05-01
This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor's illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns.
Implementing biological logic gates using gold nanoparticles conjugated to fluorophores
NASA Astrophysics Data System (ADS)
Barnoy, Eran A.; Popovtzer, Rachela; Fixler, Dror
2018-02-01
We describe recent research in which we explored biologically relevant logic gates using gold nanoparticles (GNPs) conjugated to fluorophores and tracing the results remotely by time-domain fluorescence lifetime imaging microscopy (FLIM). GNPs have a well-known effect on nearby fluorophores in terms of their fluorescence intensity (FI - increase or decrease) as well as fluorescence lifetime (FLT). We have designed a few bio-switch systems in which the FLIMdetected fluorescence varies after biologically relevant stimulation. Some of our tools include fluorescein diacetate (FDA) which can be activated by either esterases or pH, peptide chains cleavable by caspase 3, and the polymer polyacrylic acid which varies in size based on surrounding pH. After conjugating GNPs to chosen fluorophores, we have successfully demonstrated the logic gates of NOT, AND, OR, NAND, NOR, and XOR by imaging different stages of activation. These logic gates have been demonstrated both in solutions as well as within cultured cells, thereby possibly opening the door for nanoparticulate in vivo smart detection. While these initial probes are mainly tools for intelligent detection systems, they lay the foundation for logic gates functioning in conjunction so as to lead to a form of in vivo biological computing, where the system would be able to release proper treatment options in specific situations without external influence.
Janovská, Marika; Kubala, Martin; Simánek, Vilím; Ulrichová, Jitka
2009-09-01
The quaternary isoquinoline alkaloid, sanguinarine (SG) plays an important role in both traditional and modern medicine, exhibiting a wide range of biological activities. Under physiological conditions, there is an equilibrium between the quaternary cation (SG+) and a pseudobase (SGOH) forms of SG. In the gastrointestinal tract, SG is converted to dihydrosanguinarine (DHSG). All forms exhibit bright fluorescence. However, their spectra overlap, which limited the use of powerful techniques based on fluorescence spectroscopy/microscopy. Our experiments using a combination of steady-state and time-resolved techniques enabled the separation of individual components. The results revealed that (a) the equilibrium constant between SG+ and SGOH is pKa = 8.06, while fluorescence of DHSG exhibited no changes in the pH range 5-12, (b) the SGOH has excitation/emission spectra with maxima at 327/418 nm and excited-state lifetime 3.2 ns, the spectra of the SG+ have maxima at 475/590 nm and excited-state lifetime 2.4 ns. The DHSG spectra have maxima at 327/446 nm and 2-exponential decay with components 4.2 and 2.0 ns, (c) NADH is able to convert SG to DHSG, while there is no apparent interaction between NADH and DHSG. These techniques are applicable for monitoring the SG to DHSG conversion in hepatocytes.
A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.
Wunderlich, Kirsten A; Wolfrum, Uwe
2016-01-01
The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.
Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO).
Andersen, Karl M; Sauer, Lydia; Gensure, Rebekah H; Hammer, Martin; Bernstein, Paul S
2018-06-01
We investigated fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa (RP) using fluorescence lifetime imaging ophthalmoscopy (FLIO). A total of 33 patients (mean age, 40.0 ± 17.0 years) with RP and an age-matched healthy group were included. The Heidelberg FLIO was used to detect FAF decays in short (SSC; 498-560 nm) and long (LSC; 560-720 nm) spectral channels. We investigated a 30° retinal field and calculated the amplitude-weighted mean fluorescence lifetime (τ m ). Additionally, macular pigment measurements, macular optical coherence tomography (OCT) scans, fundus photographs, visual fields, and fluorescein angiograms were recorded. Genetic studies were performed on nearly all patients. In RP, FLIO shows a typical pattern of prolonged τ m in atrophic regions in the outer macula (SSC, 419 ± 195 ps; LSC, 401 ± 111 ps). Within the relatively preserved retina in the macular region, ring-shaped patterns were found, most distinctive in patients with autosomal dominant RP inheritance. Mean FAF lifetimes were shortened in rings in the LSC. Central areas remained relatively unaffected. FLIO uniquely presents a distinct and specific signature in eyes affected with RP. The ring patterns show variations that indicate genetically determined pathologic processes. Shortening of FAF lifetimes in the LSC may indicate disease progression, as was previously demonstrated for Stargardt disease. Therefore, FLIO might be able to indicate disease progression in RP as well. Hyperfluorescent FLIO rings with short FAF lifetimes may provide insight into the pathophysiologic disease status of RP-affected retinas potentially providing a more detailed assessment of disease progression.
Fluorescent rhenium-naphthalimide conjugates as cellular imaging agents.
Langdon-Jones, Emily E; Symonds, Nadine O; Yates, Sara E; Hayes, Anthony J; Lloyd, David; Williams, Rebecca; Coles, Simon J; Horton, Peter N; Pope, Simon J A
2014-04-07
A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.
New developments in electronic reference controls for frequency domain optical sensing
NASA Astrophysics Data System (ADS)
Chatni, M. R.; Li, G.; Porterfield, D. M.
2009-05-01
The reference optical path is essential for optical systems which function on the basis of light interference. In the case of frequency domain (FD) fluorescence life-time optrodes, a reference LED is used as a standard for calculating the phase angle. The reference LED is configured so that radiation travels the same length to the detector as that of the fluorescence signal being analyzed. The phase shift, which provides details of fluorescence lifetime, is measured between these two signals - the fluorescence signal and reference LED signal, using a photodetector. We have designed, developed and implemented a FD optrode system without a reference LED. The key requirement of such a system is that phase shifts due to optics at wavelength of fluorescence and electronics have to be calibrated. In the reference-free system, the reference signal comes from the lock-in-amplifier which also drives the excitation LED. The lock-in-amplifier measures the phase shift between the excitation signal and the fluorescence emission signal from the photodetector and is locked at the frequency of modulation of the excitation signal. This insures higher signal to noise ratio and low-noise measurements. The reference-free optrode system removes some constraints on the coupling optics, which help improve the overall performance of the system. After development of electronics, and optimization of coupling optics, the system was calibrated in different oxygen concentration solutions to measure fluorescence intensity and lifetime of the oxygen sensitive dye platinum tetrakis (pentafluorophenyl) porphine (PtTFPP).
Spectral and time-resolved studies on ocular structures
NASA Astrophysics Data System (ADS)
Schweitzer, D.; Jentsch, S.; Schenke, S.; Hammer, M.; Biskup, C.; Gaillard, E.
2007-07-01
Measurements of endogeous fluorophores open the possibility for evaluation of metabolic state at the eye. For interpretation of 2-dimensional measurements of time-resolved auto fluorescence in 2 separate spectral ranges at the human eye, comparing measurements were performed on porcine eyes. Determining excitation and emission spectra, attention was drawn of proof of coenzymes NADH and FAD in isolated anatomical structures cornea, aqueous humor, lens, vitreous, neuronal retina, retinal pigment epithelium (RPE), choroid, and sclera. All these structures exhibit auto fluorescence, highest in lens. Excitation at 350 nm results in local fluorescence maxima at 460 nm, corresponding to NADH, in all structures. This short-wave excitation allows metabolic studies only at the anterior eye, because of the limited transmission of the ocular media. During excitation at 446 nm the existence of FAD is expressed by local fluorescence maxima at 530 nm. The composition fluorescence spectra allow no discrimination between single ocular structures. Approximating the dynamic fluorescence by a double exponential function, the shortest lifetimes were detected in RPE and neuronal retina. The histograms of mean lifetime t M cover each other on lens with cornea and also on sclera with choroid. Despite the lifetimes are close between RPE and neuronal retina, the relative contributions Q I are wide different. The gradient of trend lines in cluster diagrams of amplitudes α II vs. α I allows a discrimination of ocular structures.
High-Speed Fluorescence Microscopy: Lifetime Imaging in the Biomedical Sciences
NASA Astrophysics Data System (ADS)
Periasamy, Ammasi; Wang, Xue F.; Wodnick, Pawel; Gordon, Gerald W.; Kwon, Seongwook; Diliberto, Pamela A.; Herman, Brian
1995-02-01
The ability to observe the behavior of living cells and tissues provides unparalleled access to information regarding the organization and dynamics of complex cellular structures. While great strides have been made over the past 30 to 40 years in the design and application of a variety of novel optical microscopic techniques, until recently, it has not been possible to image biological phenomena that occur over very short time periods (nanosecond to millisecond) or over short distances (10 to 1000 [Angstrom capital A, ring]). However, the recent combination of (1) very rapidly gated and sensitive image intensifiers and (2) the ability to deliver fluorescence excitation energy to intact living biological specimens in a pulsed or sinusoidally modulated fashion has allowed such measurements to become a reality through the imaging of the lifetimes of fluorescent molecules. This capability has resulted in the ability to observe the dynamic organization and interaction of cellular components on a spatial and temporal scale previously not possible using other microscopic techniques. This paper discusses the implementation of a fluorescence lifetime imaging microscope (FLIM) and provides a review of some of the applications of such an instrument. These include measurements of receptor topography and subunit interactions using fluorescence resonance energy transfer (FRET), fluorescence anisotropy of phospholipids in cell membranes, cytosolic free calcium (Ca2+)i and the detection of human papillomavirus (HPV) infection in clinical cervicovaginal smears.
Fluorescence spectra of Cr3+ dimers in LiNbO3
NASA Astrophysics Data System (ADS)
Jia, Weiyi; Liu, Huimin; Knutson, R.; Yen, W. M.
1990-06-01
Fine spectral structure has been observed in both fluorescence and excitation spectra of Cr3+:LiNbO3 on the high-energy side of the broadband emission from 4T2 at 10 K. The lifetimes of the structures are found to be much longer than the lifetime of the broadband 4T2 fluorescence. These sharp lines are assigned to the 2E-->4A2 emissions (R lines) from two types of Cr3+ sites arising from charge compensation; Cr3+ ions are found to substitute both for Li+ and for Nb5+ sites and to form dimerlike pairs.
Frequency-domain phase fluorometry in the presence of dark states: A numerical study
NASA Astrophysics Data System (ADS)
Zhu, Xinxin; Min, Wei
2011-11-01
Fluorescence anomalous phase advance (FAPA) is a newly discovered spectroscopy phenomenon: instead of lagging behind the modulated light, fluorescence signal can exhibit FAPA as if it precedes the excitation source in time. While FAPA offers a promising technique for probing dark state lifetime, the underlying mechanism is not fully elucidated. Herein we investigate frequency-domain phase fluorometry as a result of intricate interplay between a short-lived fluorescent state and a long-lived dark state. In particular, the quantitative dependence on modulation frequency, excitation intensity, nonradiative decay, intersystem crossing and dark-state lifetime are explored respectively. A comprehensive view of phase fluorometry emerges consequently.
Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein
Pickup, John C.; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J. S.
2013-01-01
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously. PMID:23439161
Lukina, Maria; Orlova, Anna; Shirmanova, Marina; Shirokov, Daniil; Pavlikov, Anton; Neubauer, Antje; Studier, Hauke; Becker, Wolfgang; Zagaynova, Elena; Yoshihara, Toshitada; Tobita, Seiji; Shcheslavskiy, Vladislav
2017-02-15
The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optic probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of a nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on an iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions and in living mice.
Imaging the environment of green fluorescent protein.
Suhling, Klaus; Siegel, Jan; Phillips, David; French, Paul M W; Lévêque-Fort, Sandrine; Webb, Stephen E D; Davis, Daniel M
2002-01-01
An emerging theme in cell biology is that cell surface receptors need to be considered as part of supramolecular complexes of proteins and lipids facilitating specific receptor conformations and distinct distributions, e.g., at the immunological synapse. Thus, a new goal is to develop bioimaging that not only locates proteins in live cells but can also probe their environment. Such a technique is demonstrated here using fluorescence lifetime imaging of green fluorescent protein (GFP). We first show, by time-correlated single-photon counting, that the fluorescence decay of GFP depends on the local refractive index. This is in agreement with the Strickler Berg formula, relating the Einstein A and B coefficients for absorption and spontaneous emission in molecules. We then quantitatively image, by wide-field time-gated fluorescence lifetime imaging, the refractive index of the environment of GFP. This novel approach paves the way for imaging the biophysical environment of specific GFP-tagged proteins in live cells. PMID:12496126
Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model
NASA Astrophysics Data System (ADS)
Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2004-07-01
Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano
A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on themore » sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.« less
Triphenylbenzene Sensor for Selective Detection of Picric Acid.
Nagendran, S; Vishnoi, Pratap; Murugavel, Ramaswamy
2017-07-01
A C 3 -symmetric triphenylbenzene based photoluminescent compound, 1,3,5-tris(4'-(N-methylamino)phenyl) benzene ([NHMe] 3 TAPB), has been synthesized by mono-N-methylation of 1,3,5-tris(4'-aminophenyl) benzene (TAPB) and structurally characterized. [NHMe] 3 TAPB acts as a selective fluorescent sensor for picric acid (PA) with a detection limit as low as 2.25 ppm at a signal to noise ratio of 3. Other related analytes (i.e. TNT, DNT and DNB) show very little effect on the fluorescence intensity of [NHMe] 3 TAPB. The selectivity is triggered by proton transfer from picric acid to the fluorophore and ground-state complex formation between the protonated fluorophore and picrate anion through hydrogen bonding interactions. The fluorescence lifetime measurements reveal static nature of fluorescence quenching.
Containerless high temperature property measurements by atomic fluorescence
NASA Technical Reports Server (NTRS)
Schiffman, R. A.; Walker, C. A.
1984-01-01
Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.
Effect of DNA-CTMA complex on optical properties of LDS 821 dye
NASA Astrophysics Data System (ADS)
Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu
2017-07-01
We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.
NASA Astrophysics Data System (ADS)
Hall, David J.; Han, Sung-Ho; Dugan, Laura
2009-02-01
Reactive oxygen species (ROS) are believed to be involved in many diseases and injuries to the brain, but the molecular processes are not well understood due to a lack of in vivo imaging techniques to evaluate ROS. The fluorescent oxidation products of dihydroethidium (DHE) can monitor ROS production in vivo. Here we demonstrate the novel optical imaging of brain in live mice to measure ROS production via generation of fluorescent DHE oxidation products (ox-DHE) by ROS. We show that in Sod2+/- mice, which have partial loss of a key antioxidant enzyme, superoxide dismutase-2, that ox-DHE fluorescence intensity was significantly higher than in hSOD1 mice, which have four-fold overexpression of superoxide dismutase-1 activity, which had almost no ox-DHE fluorescence, confirming specificity of ox-DHE to ROS production. The DHE oxidation products were also confirmed by detecting a characteristic fluorescence lifetime of the oxidation product, which was validated with ex vivo measurements.
NASA Astrophysics Data System (ADS)
Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.
2012-03-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.
Fluorescence lifetime, dipole orientation and bilayer polymer films
NASA Astrophysics Data System (ADS)
Ho, Xuan Long; Chen, Po-Jui; Woon, Wei-Yen; White, Jonathon David
2017-10-01
Bilayer films consisting of the optically transparent polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were spin-cast on glass substrates. The upper 13.5 nm layer (PS) was lightly doped with Rhodamine-6 G (RH6G) or MEH-PPV. While the fluorescence of MEH-PPV was independent of PMMA thickness, the lifetime of RH6G increased 3-fold as the underlying PMMA thickness increased from 0 to 500 nm while the collected flux decreased suggesting a reorientation of the smaller molecule's dipole with respect to the air-polymer interface with PMMA thickness. This suggests lifetime may find application for nondestructive thickness measurements of transparent films with sub-micron lateral resolution and large range.
Malo, Gabrielle D; Pouwels, Lauren J; Wang, Meitian; Weichsel, Andrzej; Montfort, William R; Rizzo, Mark A; Piston, David W; Wachter, Rebekka M
2007-09-04
The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 A. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10-15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (+/-2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.
Shah, Rachit; Zhou, Andrew; Wagner, Carston R
2017-12-13
Histidine Triad Nucleotide Binding Protein 1 (Hint1) has emerged to be an important post-synaptic protein associated with a variety of central nervous system disorders such as pain, addiction, and schizophrenia. Recently, inhibition of histidine nucleotide binding protein 1 (Hint1) with a small nucleoside inhibitor has shown promise as a new therapeutic strategy for the treatment of neuropathic pain. Herein, we describe the first rationally designed small molecule switch-on probes with dual fluorescence and FRET properties to study Hint1. Two non-natural fluorescent nucleosides with a fluorescent lifetime of 20 and 25 ns were each coupled through a linker to the indole ring, i.e. probes 7 and 8. Both probes were found to be water soluble and quenched intramolecularly via photoinduced electron transfer (PET) resulting in minimal background fluorescence. Upon incubating with Hint1, compound 7 and 8 exhibited a 40- and 16-fold increase in the fluorescence intensity compared to the control. Compounds 7 and 8 bind Hint1 with a dissociation constant of 0.121 ± 0.02 and 2.2 ± 0.36 μM, respectively. We demonstrate that probe 8 exhibits a switch-on FRET property with an active site tryptophan residue (W123). We show the utility of probes in performing quantitative ligand displacement studies, as well as in selective detection of Hint1 in the cell lysates. These probes should be useful for studying the dynamics of the active site, as well as for the development of fluorescence lifetime based high throughput screening assay to identify novel inhibitors for Hint1 in future.
Akers, Walter J.; Kim, Chulhong; Berezin, Mikhail; Guo, Kevin; Fuhrhop, Ralph; Lanza, Gregory M.; Fischer, Georg M.; Daltrozzo, Ewald; Zumbusch, Andreas; Cai, Xin; Wang, Lihong V.; Achilefu, Samuel
2010-01-01
The contrast mechanisms used for photoacoustic tomography (PAT) and fluorescence imaging differ in subtle but significant ways. Design of contrast agents for each or both modalities requires an understanding of the spectral characteristics as well as intra- and intermolecular interactions that occur during formulation. We found that fluorescence quenching that occurs in the formulation of near infrared (NIR) fluorescent dyes in nanoparticles results in enhanced contrast for PAT. The ability of the new PAT method to utilize strongly absorbing chromophores for signal generation allowed us to convert a highly fluorescent dye into an exceptionally high PA contrast material. Spectroscopic characterization of the developed NIR dye-loaded perfluorocarbon-based nanoparticles for combined fluorescence and PA imaging revealed distinct dye-dependent photophysical behavior. We demonstrate that the enhanced contrast allows detection of regional lymph nodes of rats in vivo with time-domain optical and photoacoustic imaging methods. The results further show that the use of fluorescence lifetime (FLT) imaging, which is less dependent on fluorescence intensity, provides a strategic approach to bridge the disparate contrast reporting mechanisms of fluorescence and PA imaging methods. PMID:21171567
Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min
2017-08-15
In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Conversion of red fluorescent protein into a bright blue probe.
Subach, Oksana M; Gundorov, Illia S; Yoshimura, Masami; Subach, Fedor V; Zhang, Jinghang; Grüenwald, David; Souslova, Ekaterina A; Chudakov, Dmitriy M; Verkhusha, Vladislav V
2008-10-20
We used a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic backgrounds, such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which all were converted into blue probes. Further improvement of the blue variant of TagRFP by random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by the substantially higher brightness, the faster chromophore maturation, and the higher pH stability than blue fluorescent proteins with a histidine in the chromophore. The detailed biochemical and photochemical analysis indicates that mTagBFP is the true monomeric protein tag for multicolor and lifetime imaging, as well as the outstanding donor for green fluorescent proteins in Förster resonance energy transfer applications.
2015-01-01
In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293
NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2
USDA-ARS?s Scientific Manuscript database
ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...
Photophysics of a coumarin based Schiff base in solvents of varying polarities
NASA Astrophysics Data System (ADS)
Ghosh, Saptarshi; Roy, Nayan; Singh, T. Sanjoy; Chattopadhyay, Nitin
2018-01-01
The present work reports detailed photophysics of a coumarin based Schiff base, namely, (E)-7-(((8-hydroxyquinolin-2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (HMC) in different solvents of varying polarity exploiting steady state absorption, fluorescence and time resolved fluorescence spectroscopy. The dominant photophysical features of HMC are discussed in terms of emission from an intramolecular charge transfer (ICT) excited state. Molecular orbital (MO) diagrams as obtained from DFT based computational analysis confirms the occurrence of charge transfer from 8‧-hydroxy quinoline moiety of the molecule to the coumarin part. The notable difference in the photophysical response of HMC from its analogous coumarin (C480) lies in a lower magnitude of fluorescence quantum yield of the former, particularly in the solvents of low polarity, which is rationalized by considering the higher rate of non-radiative decay of HMC in apolar solvents. Phosphorescence emission as well as phosphorescence lifetime of HMC has also been reported in 77 K frozen matrix.
NASA Astrophysics Data System (ADS)
Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen
2015-05-01
Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.
Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen
2015-01-01
Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541
Uncertainty analysis for fluorescence tomography with Monte Carlo method
NASA Astrophysics Data System (ADS)
Reinbacher-Köstinger, Alice; Freiberger, Manuel; Scharfetter, Hermann
2011-07-01
Fluorescence tomography seeks to image an inaccessible fluorophore distribution inside an object like a small animal by injecting light at the boundary and measuring the light emitted by the fluorophore. Optical parameters (e.g. the conversion efficiency or the fluorescence life-time) of certain fluorophores depend on physiologically interesting quantities like the pH value or the oxygen concentration in the tissue, which allows functional rather than just anatomical imaging. To reconstruct the concentration and the life-time from the boundary measurements, a nonlinear inverse problem has to be solved. It is, however, difficult to estimate the uncertainty of the reconstructed parameters in case of iterative algorithms and a large number of degrees of freedom. Uncertainties in fluorescence tomography applications arise from model inaccuracies, discretization errors, data noise and a priori errors. Thus, a Markov chain Monte Carlo method (MCMC) was used to consider all these uncertainty factors exploiting Bayesian formulation of conditional probabilities. A 2-D simulation experiment was carried out for a circular object with two inclusions. Both inclusions had a 2-D Gaussian distribution of the concentration and constant life-time inside of a representative area of the inclusion. Forward calculations were done with the diffusion approximation of Boltzmann's transport equation. The reconstruction results show that the percent estimation error of the lifetime parameter is by a factor of approximately 10 lower than that of the concentration. This finding suggests that lifetime imaging may provide more accurate information than concentration imaging only. The results must be interpreted with caution, however, because the chosen simulation setup represents a special case and a more detailed analysis remains to be done in future to clarify if the findings can be generalized.
Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui
2013-05-07
The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.
Johnson, Matthew P.; Ruban, Alexander V.
2009-01-01
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 ± 5 cm−1) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus. PMID:19567871
Johnson, Matthew P; Ruban, Alexander V
2009-08-28
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.
NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2
USDA-ARS?s Scientific Manuscript database
Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ...
Kumar, Anand T N; Rice, William L; López, Jessica C; Gupta, Suresh; Goergen, Craig J; Bogdanov, Alexei A
2016-04-22
Enzymatic activity sensing in fluorescence lifetime (FLT) mode with "self-quenched" macromolecular near-infrared (NIR) sensors is a highly promising strategy for in vivo imaging of proteolysis. However, the mechanisms of FLT changes in such substrate-based NIR sensors have not yet been studied. We synthesized two types of sensors by linking the near-infrared fluorophore IRDye 800CW to macromolecular graft copolymers of methoxy polyethylene glycol and polylysine (MPEG-gPLL) with varying degrees of MPEGylation and studied their fragmentation induced by trypsin, elastase, plasmin and cathepsins (B,S,L,K). We determined that the efficiency of such NIR sensors in FLT mode depends on sensor composition. While MPEG-gPLL with a high degree of MPEGylation showed rapid (τ 1/2 =0.1-0.2 min) FLT increase (Δτ=0.25 ns) upon model proteinase-mediated hydrolysis in vivo , lower MPEGylation density resulted in no such FLT increase. Temperature-dependence of fluorescence de-quenching of NIR sensors pointed to a mixed dynamic/static-quenching mode of MPEG-gPLL-linked fluorophores. We further demonstrated that although the bulk of sensor-linked fluorophores were de-quenched due to the elimination of static quenching, proteolysis-mediated deletion of a fraction of short (8-10kD) negatively charged fragments of highly MPEGylated NIR sensor is the most likely event leading to a rapid FLT increase phenomenon in quenched NIR sensors. Therefore, the optimization of "built-in" dynamic quenching elements of macromolecular NIR sensors is a potential avenue for improving their response in FLT mode.
Emission lifetimes of a fluorescent dye under shock compression
Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...
2015-10-15
The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less
Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coon , Steven; Stark, Azadeh; Peterson, Edward
2006-12-01
We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual.more » Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.« less
NASA Astrophysics Data System (ADS)
Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei
2018-01-01
In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.
Talbot, Clifford B; Lagarto, João; Warren, Sean; Neil, Mark A A; French, Paul M W; Dunsby, Chris
2015-09-01
A correction is proposed to the Delta function convolution method (DFCM) for fitting a multiexponential decay model to time-resolved fluorescence decay data using a monoexponential reference fluorophore. A theoretical analysis of the discretised DFCM multiexponential decay function shows the presence an extra exponential decay term with the same lifetime as the reference fluorophore that we denote as the residual reference component. This extra decay component arises as a result of the discretised convolution of one of the two terms in the modified model function required by the DFCM. The effect of the residual reference component becomes more pronounced when the fluorescence lifetime of the reference is longer than all of the individual components of the specimen under inspection and when the temporal sampling interval is not negligible compared to the quantity (τR (-1) - τ(-1))(-1), where τR and τ are the fluorescence lifetimes of the reference and the specimen respectively. It is shown that the unwanted residual reference component results in systematic errors when fitting simulated data and that these errors are not present when the proposed correction is applied. The correction is also verified using real data obtained from experiment.
NASA Technical Reports Server (NTRS)
Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.
1986-01-01
Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.
NASA Astrophysics Data System (ADS)
El-Daly, Samy A.; Ebeid, E. M.
2014-04-01
The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (ϕc) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.
NASA Astrophysics Data System (ADS)
Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2016-04-01
This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.
NASA Astrophysics Data System (ADS)
Hosny, Neveen A.; Lee, David A.; Knight, Martin M.
2010-02-01
Extracellular oxygen concentrations influence cell metabolism and tissue function. Fluorescence Lifetime Imaging Microscopy (FLIM) offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods show limited spatial resolution and/or require custom made systems. This study describes a new optimised approach for quantitative extracellular oxygen detection, providing an off-the-shelf system with high spatial resolution and an improved lifetime determination over previous techniques, while avoiding systematic photon pile-up. Fluorescence lifetime detection of an oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was measured using a Becker&Hickl time-correlated single photon counting (TCSPC) card with excitation provided by a multi-photon laser. This technique was able to identify a subpopulation of isolated chondrocyte cells, seeded in three-dimensional agarose gel, displaying a significant spatial oxygen gradient. Thus this technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Two-Photon Optical Properties of Near-Infrared Dyes at 1.55 microns Excitation
Berezin, Mikhail; Zhan, Chun; Lee, Hyeran; Joo, Chulmin; Akers, Walter; Yazdanfar, Siavash; Achilefu, Samuel
2011-01-01
Two-photon (2P) optical properties of cyanine dyes were evaluated using a 2P fluorescence spectrophotometer with 1.55 μm excitation. We report the 2P characteristics of common NIR polymethine dyes, including their 2P action cross-sections and the 2P excited fluorescence lifetime. One of the dyes, DTTC showed the highest 2P action cross-section (~103 ± 19 GM) and relatively high 2P excited fluorescence lifetime and can be used as a scaffold for the synthesis of 2P molecular imaging probes. The 2P action cross-section of DTTC and the lifetime were also highly sensitive to the solvent polarity, providing other additional parameters for its use in optical imaging and the mechanism for probing environmental factors Overall, this study demonstrated the quantitative measurement of 2P properties of NIR dyes and established the foundation for designing molecular probes for 2P imaging applications in the NIR region. PMID:21866928
Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Peng, Leilei
2016-03-01
Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.
Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.
Qi, Zewan; Chen, Yang
2017-01-15
Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lagarto, João. L.; Phipps, Jennifer E.; Unger, Jakob; Faller, Leta M.; Gorpas, Dimitris; Ma, Dinglong M.; Bec, Julien; Moore, Michael G.; Bewley, Arnaud F.; Yankelevich, Diego R.; Sorger, Jonathan M.; Farwell, Gregory D.; Marcu, Laura
2017-02-01
Autofluorescence lifetime spectroscopy is a promising non-invasive label-free tool for characterization of biological tissues and shows potential to report structural and biochemical alterations in tissue owing to pathological transformations. In particular, when combined with fiber-optic based instruments, autofluorescence lifetime measurements can enhance intraoperative diagnosis and provide guidance in surgical procedures. We investigate the potential of a fiber-optic based multi-spectral time-resolved fluorescence spectroscopy instrument to characterize the autofluorescence fingerprint associated with histologic, morphologic and metabolic changes in tissue that can provide real-time contrast between healthy and tumor regions in vivo and guide clinicians during resection of diseased areas during transoral robotic surgery. To provide immediate feedback to the surgeons, we employ tracking of an aiming beam that co-registers our point measurements with the robot camera images and allows visualization of the surgical area augmented with autofluorescence lifetime data in the surgeon's console in real-time. For each patient, autofluorescence lifetime measurements were acquired from normal, diseased and surgically altered tissue, both in vivo (pre- and post-resection) and ex vivo. Initial results indicate tumor and normal regions can be distinguished based on changes in lifetime parameters measured in vivo, when the tumor is located superficially. In particular, results show that autofluorescence lifetime of tumor is shorter than that of normal tissue (p < 0.05, n = 3). If clinical diagnostic efficacy is demonstrated throughout this on-going study, we believe that this method has the potential to become a valuable tool for real-time intraoperative diagnosis and guidance during transoral robot assisted cancer removal interventions.
Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.
2015-01-01
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241
NASA Astrophysics Data System (ADS)
Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques
1990-05-01
Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Trp was substituted either for leucine-31 ,located in the calcium binding loop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MIEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-31: a major local conformation corresponding to a lifetime class with a barycenter value of ~5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes ((tau)1 and (tau)2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the t4lifetime class at the expense of c2. A more restricted rotation of the Trp-31 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.
NASA Astrophysics Data System (ADS)
Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques
1990-05-01
Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Tip was substituted either for leucine-3 1 ,located in the calcium binding ioop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is. dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-3 1: a major local conformation corresponding to a lifetime class with a barycenter value of -5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes (τ1 and τ2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the τ4 lifetime class at the expense of c2. A more restricted rotation of the Trp-3 1 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.
Anomalous conformer dependent S 1 lifetime of L-phenylalanine
NASA Astrophysics Data System (ADS)
Hashimoto, Takayo; Takasu, Yuichi; Yamada, Yuji; Ebata, Takayuki
2006-04-01
The fluorescence lifetimes were measured for six conformers of L-phenylalanine cooled in a supersonic jet. It was found that the S 1 state lifetimes differ by a factor of three among the conformers. Especially, the most stable conformer (intramolecular hydrogen-bonded form) in S 0 had the shortest lifetime. Time-dependent DFT calculation suggested an importance of the mixing of the nπ ∗ character to S 1(ππ ∗) in this conformer dependent dynamics.
Enhanced emission of fluorophores on shrink-induced wrinkled composite structures.
Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha; Gratton, Enrico; Khine, Michelle
2014-01-01
We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite 'wrinkles'. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution.
Müller, Claus B; Weiss, Kerstin; Loman, Anastasia; Enderlein, Jörg; Richtering, Walter
2009-05-07
Remote temperature measurements in microfluidic devices with micrometer spatial resolution are important for many applications in biology, biochemistry and chemistry. The most popular methods use the temperature-dependent fluorescence lifetime of Rhodamine B, or the temperature-dependent size of thermosensitive materials such as microgel particles. Here, we use the recently developed method of dual-focus fluorescence correlation spectroscopy (2fFCS) for measuring the absolute diffusion coefficient of small fluorescent molecules at nanomolar concentrations and show how these data can be used for remote temperature measurements on a micrometer scale. We perform comparative temperature measurements using all three methods and show that the accuracy of 2fFCS is comparable or even better than that achievable with Rhodamine B fluorescence lifetime measurements. The temperature dependent microgel swelling leads to an enhanced accuracy within a narrow temperature range around the volume phase transition temperature, but requires the availability of specific microgels, whereas 2fFCS is applicable under very general conditions.
Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.
2016-01-01
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322
Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3.
Liu, Bin; Shi, Jiaojiao; Wang, Qingguo; Tang, Huili; Liu, Junfang; Zhao, Hengyu; Li, Dongzhen; Liu, Jian; Xu, Xiaodong; Wang, Zhanshan; Xu, Jun
2018-07-05
Tb 3+ -doped YAlO 3 (YAP) single crystal was grown by Czochralski (Cz) method. Based on the polarized absorption spectra, the spectroscopic parameters were calculated to be Ω 2 =3.49×10 -20 cm 2 , Ω 4 =5.87×10 -20 cm 2 and Ω 6 =2.55×10 -20 cm 2 , and then the spontaneous transition rate, fluorescent branching ratio and radiative lifetime of 5 D 4 multiplet were obtained. The yellow emission cross sections of 5 D 4 → 7 F 4 transition were calculated to be 1.72×10 -22 cm 2 , 2.73×10 -22 cm 2 and 2.65×10 -22 cm 2 for a, b and c polarization, respectively. The fluorescence lifetime of the 5 D 4 multiplet was fitted to be 1.72ms. All the data indicate that Tb:YAP crystal is a promising candidate for yellow laser operation. Copyright © 2018. Published by Elsevier B.V.
Photon-number statistics in resonance fluorescence
NASA Astrophysics Data System (ADS)
Lenstra, D.
1982-12-01
The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.
NASA Astrophysics Data System (ADS)
Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.
2018-01-01
Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.
Time-resolved fluorescence and FCS studies of dye-doped DNA
NASA Astrophysics Data System (ADS)
Nicolaou, N.; Marsh, R. J.; Blacker, T.; Armoogum, D. A.; Bain, A. J.
2009-08-01
Fluorescence lifetime, anisotropy and intensity dependent single molecule fluorescence correlation spectroscopy (I-FCS) are used to investigate the mechanism of fluorescence saturation in a free and nucleotide bound fluorophore (NR6104) in an antioxidising ascorbate buffer. Nucleotide attachment does not appreciably affect the fluorescence lifetime of the probe and there is a decrease in the rate of intersystem crossing relative to that of triplet state deactivation. The triplet state fraction is seen to plateau at 72% (G-attached) and 80% (free fluorophore) in agreement with these observations. Measurements of translational diffusion times show no intensity dependence for excitation intensities between 1 and 105kW cm-2 and photobleaching is therefore negligible. The dominant mechanism of fluorescence saturation is thus triplet state formation. I-FCS measurements for Rhodamine 6G in water were compared with those in the ascorbate buffer. In water the triplet fraction was saturated at considerably higher powers (45% at ca. 1.5 × 103kW cm-2) than in the ascorbate buffer (55%ca. 1 1kW cm-2)
Time-Resolved Measurements in Optoelectronic Microbioanalysis
NASA Technical Reports Server (NTRS)
Bearman, Gregory; Kossakovski, Dmitri
2003-01-01
A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.
2015-12-01
Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.
The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique
2013-04-01
Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less
Interpretation of measurements of dynamic fluorescence of the eye
NASA Astrophysics Data System (ADS)
Schweitzer, Dietrich; Hammer, Martin; Jentsch, Susanne; Schenke, Stefan
2007-09-01
First pathological alterations occur at cellular level, most in metabolism. An indirect estimation of metabolic activity in cells is measurement of microcirculation. Measurements of tissue autofluorescence are potentially suited for direct investigation of cellular metabolism. Besides redox pairs of co-enzymes (NADH-NAD, FADH2-FAD) several other fluorophores are excited in tissue. In addition, a number of anatomical structures are simultaneously excited, when investigating the eye-ground. In this study, spectral and time resolved comparison was performed between purified substances, single ocular structures and in vivo measurements of the time-resolved autofluorescence at the human eye. In human eyes, the ageing pigment lipofuscin covers other fluorophores at the fundus in long - wave visible range. Applying lifetime measurements, weakly emitting fluorophores can be detected, when the lifetimes are different from the strongly emitting fluorophore. For this, the autofluorescence was excited at 468 nm and detected in two spectral ranges (500 nm-560 nm, 560 nm-700 nm). In tri-exponential fitting, the short lifetime corresponds to retinal pigment epithelium, the mean lifetime corresponds probably to neural retina and the long lifetime is caused by fluorescence of connective tissue.
Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L
2007-11-01
This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.
NASA Astrophysics Data System (ADS)
Ehn, Andreas; Jonsson, Malin; Johansson, Olof; Aldén, Marcus; Bood, Joakim
2013-01-01
Fluorescence lifetimes of toluene as a function of oxygen concentration in toluene/nitrogen/oxygen mixtures have been measured at room temperature using picosecond-laser excitation of the S1-S0 transition at 266 nm. The data satisfy the Stern-Volmer relation with high accuracy, providing an updated value of the Stern-Volmer slope. A newly developed fluorescence lifetime imaging scheme, called Dual Imaging with Modeling Evaluation (DIME), is evaluated and successfully demonstrated for quantitative oxygen concentration imaging in toluene-seeded O2/N2 gas mixtures.
NASA Astrophysics Data System (ADS)
Ehn, Andreas; Jonsson, Malin; Johansson, Olof; Aldén, Marcus; Bood, Joakim
2012-12-01
Fluorescence lifetimes of toluene as a function of oxygen concentration in toluene/nitrogen/oxygen mixtures have been measured at room temperature using picosecond-laser excitation of the S1-S0 transition at 266 nm. The data satisfy the Stern-Volmer relation with high accuracy, providing an updated value of the Stern-Volmer slope. A newly developed fluorescence lifetime imaging scheme, called Dual Imaging with Modeling Evaluation (DIME), is evaluated and successfully demonstrated for quantitative oxygen concentration imaging in toluene-seeded O2/N2 gas mixtures.
NASA Astrophysics Data System (ADS)
Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond
2010-02-01
Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.
Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs
Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham
2015-01-01
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136
NASA Astrophysics Data System (ADS)
Weger, Lukas; Hoffmann-Jacobsen, Kerstin
2017-09-01
Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.
Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa
2014-08-14
Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties
Liu, Yujing; Zang, Huidong; Wang, Ling; ...
2016-09-25
Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less
Berezin, Mikhail Y.; Lee, Hyeran; Akers, Walter; Achilefu, Samuel
2007-01-01
The polarity of biological mediums controls a host of physiological processes such as digestion, signaling, transportation, metabolism, and excretion. With the recent widespread use of near-infrared (NIR) fluorescent dyes for biological imaging of cells and living organisms, reporting medium polarity with these dyes would provide invaluable functional information in addition to conventional optical imaging parameters. Here, we report a new approach to determine polarities of macro- and microsystems for in vitro and potential in vivo applications using NIR polymethine molecular probes. Unlike the poor solvatochromic response of NIR dyes in solvents with diverse polarity, their fluorescence lifetimes are highly sensitive, increasing by a factor of up to 8 on moving from polar to nonpolar mediums. We also established a correlation between fluorescence lifetime and solvent orientation polarizability and developed a lifetime polarity index for determining the polarity of complex systems, including micelles and albumin binding sites. Because of the importance of medium polarity in molecular, cellular, and biochemical processes and the significance of reduced autofluorescence and deep tissue penetration of light in the NIR region, the findings reported herein represent an important advance toward using NIR molecular probes to measure the polarity of complex biological systems in vitro and in vivo. PMID:17573433
NASA Astrophysics Data System (ADS)
Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan
2010-04-01
Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).
NASA Astrophysics Data System (ADS)
Nouhi, Ayoub; Hajjoul, Houssam; Redon, Roland; Gagné, Jean-Pierre; Mounier, Stéphane
2017-04-01
Improved insight on the interactions between natural organic ligands and trace metals is of paramount importance for better understanding transport and toxicity pathways of metal ions in the environment. Fluorescence spectroscopy allows introspecting ligands-metals interactions. Time-resolved laser fluorescence spectroscopy (TRLFS) measures fluorophore lifetime probing the local molecular environment. Excitation Emission Fluorescence Matrices (EEFMs) and their statistical treatment : parallel factor analysis (PARAFAC) using PROGMEEF Matlab homemade program, can give insight on the number or nature of organic fluorophores involved in the interactions. Quenching of fluorescence by metals can occur following two processes: dynamic and static quenching (Lakowicz, 2013). In the first case, quenching is caused by physical collisions among molecules and in the second case fluorophores can form nonfluorescent complexes with quenchers. It is possible to identify the different mechanisms because each type of quenching corresponds to a different mathematical model (Lakowicz, 2013; Valeur and Berberan-Santos, 2012). In TRLFS, the study of fluorescence decay's laws induced by nanosecond pulsed laser will allow to exactly qualify the type of interaction. The crucial point of the temporal deconvolution will be the evaluation of the best fitting between the different physical models and the decays measured. From the most suitable time decay model, it will be possible to deduce the quenching which modifies the fluorescence. The aim of this study was to characterize interactions between natural organic ligands and trace metals using fluorescence tools to evaluate the fluorescence lifetime of the fluorophore, the occurrence of quenching in presence of metal, discuss its mechanism and estimate conditional stability constants if a complex organic ligand-metal is formed. This study has been done in two steps. First, we have examined the interactions between salicylic acid and copper in order to calibrate our assays and compare our results with literature. Several studies have shown that static quenching occurs in that case (Brun and Schröder, 1975; Lavrik and Mulloev, 2010; Ventry et al., 1991; Babko, 1968). Indeed, after processing the EEFMs and TRLFS data, we found a fluorescence intensity decay by about 50% and a constant lifetime for the fluorophore suggesting a static quenching, in agreement with the literature. In the second step, we have studied the interactions between metal and different types of natural organic matters. In this case, EEMFs and TRLFS experiments were done on samples prepared by dissolving copper in four different fractions of organic matter extracted from estuarine water (St. Lawrence Estuary, Canada). Organic matter was obtained using DAX-8 and XAD-4 resins in series. Humic and fulvic acids are obtained following the IHSS protocol. The results of interaction between humic substances and copper gathered after processing data on PROGMEEF have shown a fluorescence intensity decay by about 57% for the first component and 88% for the second component. The fluorescence lifetime for both components were close to 2 ns and 6 ns respectively and the pH range was stable and close to 6. This means that a static quenching takes place in this case in agreement with the literature. Our study also focused on the investigation of complexation of organic matter by other metals in particular Aluminum, Arsenic, Europium and Uranium.
NASA Astrophysics Data System (ADS)
Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta
2015-05-01
Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.
New fluorescence techniques for high-throughput drug discovery.
Jäger, S; Brand, L; Eggeling, C
2003-12-01
The rapid increase of compound libraries as well as new targets emerging from the Human Genome Project require constant progress in pharmaceutical research. An important tool is High-Throughput Screening (HTS), which has evolved as an indispensable instrument in the pre-clinical target-to-IND (Investigational New Drug) discovery process. HTS requires machinery, which is able to test more than 100,000 potential drug candidates per day with respect to a specific biological activity. This calls for certain experimental demands especially with respect to sensitivity, speed, and statistical accuracy, which are fulfilled by using fluorescence technology instrumentation. In particular the recently developed family of fluorescence techniques, FIDA (Fluorescence Intensity Distribution Analysis), which is based on confocal single-molecule detection, has opened up a new field of HTS applications. This report describes the application of these new techniques as well as of common fluorescence techniques--such as confocal fluorescence lifetime and anisotropy--to HTS. It gives experimental examples and presents advantages and disadvantages of each method. In addition the most common artifacts (auto-fluorescence or quenching by the drug candidates) emerging from the fluorescence detection techniques are highlighted and correction methods for confocal fluorescence read-outs are presented, which are able to circumvent this deficiency.
NASA Astrophysics Data System (ADS)
Ferulova, Inesa; Lihachev, Alexey; Spigulis, Janis
2013-11-01
The impact of visible cwlaser irradiation on skin autofluorescence lifetimes was investigated in spectral range from 450 nm to 600 nm. Skin optical provocations were performed during 1 min by 405 nm low power cw laser with power density up to 20 mW/cm2. Autofluorescence lifetimes were measured before and immediately after the optical provocation.
Development of Low-Cost Instrumentation for Single Point Autofluorescence Lifetime Measurements.
Lagarto, João; Hares, Jonathan D; Dunsby, Christopher; French, Paul M W
2017-09-01
Autofluorescence lifetime measurements, which can provide label-free readouts in biological tissues, contrasting e.g. different types and states of tissue matrix components and different cellular metabolites, may have significant clinical potential for diagnosis and to provide surgical guidance. However, the cost of the instrumentation typically used currently presents a barrier to wider implementation. We describe a low-cost single point time-resolved autofluorescence instrument, exploiting modulated laser diodes for excitation and FPGA-based circuitry for detection, together with a custom constant fraction discriminator. Its temporal accuracy is compared against a "gold-standard" instrument incorporating commercial TCSPC circuitry by resolving the fluorescence decays of reference fluorophores presenting single and double exponential decay profiles. To illustrate the potential to read out intrinsic contrast in tissue, we present preliminary measurements of autofluorescence lifetime measurements of biological tissues ex vivo. We believe that the lower cost of this instrument could enhance the potential of autofluorescence lifetime metrology for clinical deployment and commercial development.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
A practical implementation of multi-frequency widefield frequency-domain FLIM
Chen, Hongtao
2013-01-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945
Simon-Lukasik, Kristine V.; Persikov, Anton V.; Brodsky, Barbara; Ramshaw, John A. M.; Laws, William R.; Alexander Ross, J. B.; Ludescher, Richard D.
2003-01-01
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)n. About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5–9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter (∼3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels. PMID:12524302
Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.
Moreno, Andrew; Knee, J L; Mukerji, Ishita
2016-12-08
The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.
Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry
NASA Technical Reports Server (NTRS)
Cruce, Tommy Clay (Inventor); Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)
2007-01-01
The present invention additionally comprises a method and apparatus for generating and mixing signals for frequency-domain lifetime and spectral fluorometry. The present invention comprises a plurality of signal generators that generate a plurality of signals where the signal generators modulate the amplitude and/or the frequency of the signals. The present invention uses one of these signals to drive an excitation signal that the present invention then directs and transmits at a target mixture, which absorbs the energy from the excitation signal. The property of fluorescence causes the target mixture to emit an emitted signal that the present invention detects with a signal detector. The present invention uses a plurality of mixers to produce a processor reference signal and a data signal. The present invention then uses a processor to compare the processor reference signal with the data signal by analyzing the differences in the phase and the differences in the amplitude between the two signals. The processor then extracts the fluorescence lifetime and fluorescence spectrum of the emitted signal from the phase and amplitude information using a chemometric analysis.
Spagnol, Stephen T.; Dahl, Kris Noel
2016-01-01
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322
Non-invasive assessment of the liver using imaging
NASA Astrophysics Data System (ADS)
Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.
2016-12-01
Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.
Towards early detection of age-related macular degeneration with tetracyclines and FLIM
NASA Astrophysics Data System (ADS)
Szmacinski, Henryk; Hegde, Kavita; Zeng, Hui-Hui; Eslami, Katayoun; Puche, Adam; Lakowicz, Joseph R.; Lengyel, Imre; Thompson, Richard B.
2018-02-01
Recently, we discovered microscopic spherules of hydroxyapatite (HAP) in aged human sub-retinal pigment epithelial (sub-RPE) deposits in the retinas of aged humans (PMID: 25605911), and developed evidence that the spherules may act to nucleate the growth of sub-RPE deposits such as drusen. Drusen are clinical hallmarks of age-related macular degeneration (AMD). We found that tetracycline-family antibiotics, long known to stain HAP in teeth and bones, also stained the HAP spherules, but in general the HAP-bound fluorescence excitation and emission spectra overlapped with the well-known autofluorescence of the RPE overlying drusen, making them difficult to resolve. However, we also found that certain tetracyclines exhibited substantial increases in fluorescence lifetime upon binding to HAP, and moreover these lifetimes were substantially greater than those previously observed (Dysli, et al., 2014) for autofluorescence in the human retina in vivo. Thus we were able to image the HAP spherules by fluorescence lifetime imaging microscopy (FLIM) in cadaveric retinas of aged humans. These findings suggest that FLIM imaging of tetracycline binding to HAP could become a diagnostic tool for the development and progression of AMD.
Saha, Manik Lal; Yan, Xuzhou; Stang, Peter J
2016-11-15
Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages. As such, well-defined absorption and emission spectra are important for a given SCC to be used for sensing, bioimaging, and other applications with molecular fluorescence being an important component. In this Account, we summarize the photophysical properties of some bis(phosphine)organoplatinum(II) compounds and their discrete SCCs. The platinum(II) based organometallic precursors typically display spectral red-shifts and have low fluorescence quantum yields and short fluorescence lifetimes compared to their organic counterparts because the introduction of metal centers enhances both intersystem crossing (ISC) and intramolecular charge transfer (ICT) processes, which can compete with the fluorescence emissions. Likewise ligands with conjugation can also increase the ICT process; hence the corresponding organoplatinum(II) compounds undergo a further decrease in fluorescence lifetimes. The use of endohedral amine functionalized 120°-bispyridyl ligands can dramatically enhance the emission properties of the resultant organoplatinum(II) based SCCs. As such these SCCs display emissions in the visible region (ca. 400-500 nm) and are significantly red-shifted (ca. 80-100 nm) compared to the ligands. This key feature makes them suitable as supramolecular theranostic agents wherein these unique emission properties provide diagnostic spectroscopic handles and the organoplatinum(II) centers act as potential anticancer agents. Using steady state and time-resolved-spectroscopic techniques and quantum computations in concert, we have determined that the emissive properties stem from the ligand-centered transitions involving π-type molecular orbitals with modest contributions from the metal-based orbitals. The self-assembly and the photophysics of organoplatinum(II) ← 3-substituted pyridyl based SCCs are highly diverse. Subtle changes in the ligands' structures can form molecular congener systems with distinct conformational and photophysical properties. Furthermore, the heterometallic SCCs described herein possess rich photophysical properties and can be used for sensing based applications. Tetraphenylethylene (TPE) based SCCs display emissions in the aggregated state as well as in dilute solutions. This is a unique phenomenon that bridges the aggregation caused quenching (ACQ) and aggregation induced emission (AIE) effects. Moreover, a TPE based metallacage exhibits solvatoluminescence, including white light emission in THF solvent, and can act as a fluorescence-sensor for structurally similar ester compounds.
Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao
2014-01-01
Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323
Study on the fluorescence characteristics of carbon dots
NASA Astrophysics Data System (ADS)
Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo
2010-02-01
Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.
De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang
2016-02-10
Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.
NASA Astrophysics Data System (ADS)
Duan, Weikuan; Zhang, Yanyan; Wang, Zhongyue; Jiang, Jingyi; Liang, Chen; Wei, Wei
2014-05-01
K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers.K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers. Electronic supplementary information (ESI) available: Fitting curve of refractive index and detailed contents of Judd-Ofelt analysis. See DOI: 10.1039/c3nr06825k
Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David
2011-01-01
Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Baria, E.; Cicchi, R.; Nesi, G.; Massi, D.; Pavone, F. S.
2017-07-01
We combined Second Harmonic Generation, Two-Photon Fluorescence and Fluorescence Lifetime Imaging Microscopy for studying human carotid ex vivo tissue sections affected by atherosclerosis, resulting in the discrimination of different arterial regions within the plaques.
Moise, Nicolae; Moya, Ismaël
2004-06-28
The relationship between the fluorescence lifetime (tau) and yield (Phi) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the tau-Phi relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the tau-Phi relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.
Imaging autofluorescence temporal signatures of the human ocular fundus in vivo
NASA Astrophysics Data System (ADS)
Papour, Asael; Taylor, Zachary; Stafsudd, Oscar; Tsui, Irena; Grundfest, Warren
2015-11-01
We demonstrate real-time in vivo fundus imaging capabilities of our fluorescence lifetime imaging technology for the first time. This implementation of lifetime imaging uses light emitting diodes to capture full-field images capable of showing direct tissue contrast without executing curve fitting or lifetime calculations. Preliminary results of fundus images are presented, investigating autofluorescence imaging potential of various retina biomarkers for early detection of macular diseases.
NASA Astrophysics Data System (ADS)
Kaiser, Uwe; Sabir, Nadeem; Carrillo-Carrion, Carolina; del Pino, Pablo; Bossi, Mariano; Heimbrodt, Wolfram; Parak, Wolfgang J.
2016-02-01
Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes.
NASA Astrophysics Data System (ADS)
Lee, Song Eun; Lee, Ho Won; Lee, Jae Woo; Hwang, Kyo Min; Park, Soo Na; Yoon, Seung Soo; Kim, Young Kwan
2015-06-01
The hybrid blue organic light-emitting diodes (HB OLEDs) with triplet harvesting (TH) structures within an emitting layer (EML) are fabricated with fluorescent and phosphorescent EMLs. The TH is to transfer triplet excitons from fluorescence to phosphorescence, where they can decay radiatively. Remarkably, the half-decay lifetime of a hybrid blue device with fluorescent and phosphorescent EML thickness of 5 and 25 nm, measured at an initial luminance of 500 cd/m2, has improved twice than that of using a conventional structure. Additionally, the blue device’s efficiency improved. We attribute this improvement to the efficient triplet excitons energy transfer and the optimized distribution of the EML which depends on singlet and triplet excitons diffusion length that occurs within each the EML.
Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.
Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph
2017-07-01
The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.
CS band intensity and column densities and production rates of 15 comets
NASA Astrophysics Data System (ADS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-09-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
CS band intensity and column densities and production rates of 15 comets
NASA Technical Reports Server (NTRS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-01-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
NASA Astrophysics Data System (ADS)
Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.
2015-01-01
Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.
NASA Astrophysics Data System (ADS)
Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.
1994-08-01
The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.
Fluorescent measurements in whole blood and plasma using red-emitting dyes
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.
2000-04-01
We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.
Time resolved fluorescence of cow and goat milk powder
NASA Astrophysics Data System (ADS)
Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.
2017-01-01
Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.