Science.gov

Sample records for fluorescence microprobe sensitivity

  1. Analysis of the measurement sensitivity of multidimensional vibrating microprobes

    NASA Astrophysics Data System (ADS)

    van Riel, M. C. J. M.; Bos, E. J. C.; Homburg, F. G. A.

    2014-07-01

    A comparison is made between tactile and vibrating microprobes regarding the measurement of typical high aspect ratio microfeatures. It is found that vibrating probes enable the use of styli with higher aspect ratios than tactile probes and are still capable of measuring with high sensitivity. In addition to the one dimensional sensitivity, the directional measurement sensitivity of a vibrating probe is investigated. A vibrating microprobe can perform measurements with high sensitivity in a space spanned by its mode shapes. If the natural frequencies that correspond to these mode shapes are different, the probe shows anisotropic and sub-optimal measurement sensitivity. It is shown that the closer the natural frequencies of the probe are, the better its performance is when regarding optimal and isotropic measurement sensitivity. A novel proof-of-principle setup of a vibrating probe with two nearly equal natural frequencies is realized. This system is able to perform measurements with high and isotropic sensitivity.

  2. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  3. A High-Speed Detector System for X-ray Fluorescence Microprobes.

    SciTech Connect

    Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J.; O

    2006-10-29

    We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.

  4. A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    SciTech Connect

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-11-02

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 {micro}m (v) x 0.6 {micro}m (h), and a photon flux of 4 x 10{sup 9} photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 {micro}m in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L{sub a} line) of 80 attograms/{micro}m{sup 2} for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique.

  5. A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the advanced photon source

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    2000-05-01

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 μm(v)×0.6 μm(h), and a photon flux of 4×109photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 μm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (Lα line) of 80 attograms/μm2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique.

  6. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    SciTech Connect

    Punshon, T.; Guerinot, M; Lanzirotti, A

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  7. X-ray microprobe for micro x-ray fluorescence and absorption spectroscopies at GSECARS

    NASA Astrophysics Data System (ADS)

    Newville, M.; Sutton, S.; Rivers, M.

    2002-12-01

    The hard x-ray microprobe for x-ray fluorescence and absorption spectroscopy at GeoSoilEnviroCARS is presented. Using focused synchrotron radiation from an undulator beamline at the Advanced Photon Source at Argonne National Lab, the x-ray microprobe provides bright, monochromatic x-rays with typical spot sizes down to 1x1 μm for x-ray fluorescence and absorption spectroscopies. Quantitative x-ray fluorescence (XRF) analysis gives precise elemental composition and correlations, while x-ray absorption spectroscopy (XAS) gives the chemical state and local atomic coordination for a selected atomic species. These two techniques can be used in conjunction with one another on a wide range of samples, including minerals, glasses, fluid inclusions, soils, sediments, and plant tissue. This x-ray microprobe is part of the GeoSoilEnviroCARS user facility, available for use in all areas geological, soil, and environmental sciences, and selected examples from these fields will be given.

  8. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S. A.; Experimental Facilities Division; Stony Brook Univ.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10{sup -16} mol {mu}m{sup -2} for Si and between 5.0 x 10{sup -20} and 3.9 x 10{sup -19} mol {mu}m{sup -2} for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  9. Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe.

    PubMed

    Twining, Benjamin S; Baines, Stephen B; Fisher, Nicholas S; Maser, Jörg; Vogt, Stefan; Jacobsen, Chris; Tovar-Sanchez, Antonio; Sañudo-Wilhelmy, Sergio A

    2003-08-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard "bulk" element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10(-16) mol microm(-2) for Si and between 5.0 x 10(-20) and 3.9 x 10(-19) mol microm(-2) for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  10. Laser-excited fluorescence of rare earth elements in fluorite: Initial observations with a laser Raman microprobe

    USGS Publications Warehouse

    Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.

    1992-01-01

    Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.

  11. Asymmetri Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    SciTech Connect

    Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.; Ovsenek, N.; Nichol, H.; /Saskatchewan U. /SLAC, SSRL

    2009-04-29

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was also concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.

  12. Asymmetric Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    SciTech Connect

    Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.; Ovsenek, N.; Nichol, H.

    2009-06-04

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was also concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.

  13. The BioCAT Microprobe for X-Ray Fluorescence Imaging, MicroXAFS and Microdiffraction Studies on Biological Samples

    SciTech Connect

    Barrea, R.A.; Gore, D.; Kondrashkina, E.; Weng, T.; Heurich, R.; Vukonich, M.; Orgel, J.; Davidson, M.; Collingwood, J.F.; Mikhaylova, A.; Irving, T.C.

    2007-07-31

    Microbeam capabilities have been recently added to the Biophysics Collaborative Access Team (BioCAT) beamline 18-ID at the Advanced Photon Source to allow x-ray elemental mapping, micro x-ray absorption fine structure and microdiffraction studies on biological samples. The microprobe setup comprises a pair of platinum coated silicon KB mirrors; a sample holder mounted in a high precision positioner (100 nm accuracy); fluorescence detectors including a Si drift detector, Fe and Zn Bent Laue analyzers and a Ge detector; and a CCD detector for micro-diffraction experiments. The energy range of the microprobe is from 3.5 keV up to 17 keV. The fast scanning capabilities of the Bio-CAT beamline facilitate rapid acquisition of x-ray elemental images and micro-XAFS spectra. This paper reports the results of commissioning the KB mirror system and its performance in initial x-ray fluorescence mapping and micro-diffraction studies.

  14. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  15. Large detector array and real-time processing and elemental image projection of X-ray and proton microprobe fluorescence data

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Siddons, D. P.; Moorhead, G.; Kirkham, R.; Dunn, P. A.; Dragone, A.; De Geronimo, G.

    2007-07-01

    A detector concept is described that integrates a large solid-angle detector array developed at Brookhaven National Laboratory and a high speed pipelined parallel processing engine developed at CSIRO for machine vision, with an embedded implementation of the Dynamic Analysis method for fluorescence spectra deconvolution and image projection, to yield a detection system capable of energy-dispersive detection, spectral deconvolution and real-time elemental imaging at ˜10 8 events per second for PIXE elemental imaging using the nuclear microprobe and SXRF elemental imaging using the synchrotron X-ray microprobe.

  16. Fast-scanning high-flux microprobe for biological X-ray fluorescence microscopy and microXAS

    SciTech Connect

    Barrea, R.A.; Gore, D.; Kujala, N.; Karanfil, C.; Kozyrenko, S.; Heurich, R.; Vukonich, M.; Huang, R.; Paunesku, T.; Woloschak, G.; Irving, T.C.

    2010-07-23

    There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X-ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast-scanning high-flux X-ray microprobe, built around a recently commissioned pair of 200 mm-long Rh-coated silicon Kirkpatrick-Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 x 10{sup 12} photons s{sup -1} into a minimum focal spot size of {approx}3-5 {micro}m FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X-ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on-the-fly with minimal overhead time (<20 ms per pixel). Together, the high-flux X-ray microbeam and the rapid-scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X-ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.

  17. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    SciTech Connect

    Wang, Y.; Qun, Y; Ablett, J

    2008-01-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  18. A multielement Ge detector with complete spectrum readout for x-ray fluorescence microprobe and microspectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Rivers, Mark L.; Sutton, Stephen R.; Rarback, Harvey

    1995-02-01

    Multielement Ge and Si(Li) detectors have been used in recent years to improve the increase count rate capability and to improve the solid-angle efficiency in fluorescence x-ray absorption spectroscopy (XAS). Such systems have typically been equipped with one or more single-channel analyzers (SCAs) for each detector element. Such SCA-based electronics are sufficient when only the counts in one or two well-resolved peaks are of interest. For the fluorescence (XRF) microprobe at beamline X-26A at the NSLS, SCA-based electronics were not a satisfactory solution for two reasons: (1) for XRF experiments, the entire fluorescence spectrum is required; (2) for micro-XAS studies of trace elements in complex systems, the fluorescence peak often sits on a significant background or partially overlaps another fluorescence peak, requiring software background subtraction or peak deconvolution. An electronics system which permits collection of the entire fluorescence spectrum from each detector element has been designed. The system is made cost-effective by the use of analog multiplexors, reducing the number of analog-to-digital converters (ADCs) and multichannel analyzers (MCAs) required. The system was manufactured by Canberra Industries and consists of: (1) a 13 element Ge detector (11 mm diameter detector elements), (2) 13 NIM spectroscopy amplifiers with programmable gains, (3) four analog multiplexors with maximum of eight inputs each, (4) four ADCs with programmable offsets and gains and 800 ns conversion time, and (5) two MCAs with Ethernet communications ports and two ADC inputs each. The amplifiers have shaping times which are adjustable from 0.5 to 12 μs. The analog multiplexors were modified to perform pileup rejection. The analog multiplexing does not significantly reduce the count rate capability of the system, even at the shortest amplifier shaping times. The average detector resolution is 170 eV at 12 μs shaping time and 200 eV at 4 μs shaping time. The maximum

  19. Sensitized fluorescence in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Ingram, G.; Lu, Z. H.

    2014-10-01

    We have studied the effects of incorporating phosphorescent sensitizers into fluorescent organic-light emitting diode (OLED) devices. In the emissive layer of this system, the host material is co-doped at low concentrations with both a phosphorescent and a fluorescent dye. The purpose of the phosphorescent dopant is to capture both singlet and triplet excitons from the host material and to transfer them into the singlet state of the fluorescent dye. Ideally, recombination of excitons and the emission of light would occur solely on the fluorescent dye. This sensitized fluorescent system can potentially achieve 100% internal quantum efficiency as both triplet and singlet states are being harvested. We have observed an almost two-fold improvement in the quantum efficiency of a sensitized fluorescent system, utilizing rubrene as the fluorescent dye and Ir(ppy)2(acac) as the sensitizer, versus a standard rubrene-based host-guest system. By testing various dopant concentrations, the optimal emissive layer composition for this system was determine to be ~2 wt.% rubrene and ~7 wt.% Ir(ppy)2(acac) in a CBP host.

  20. Development of a High Resolution-High Sensitivity Ion Microprobe Facility for Cosmochemical Applications

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    1998-01-01

    NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.

  1. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    2005-01-01

    NASA supported the development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The primary investigations centered on measuring the microscopic distributions of key isotopic abundances in primitive meteoritic materials as a means of constraining the nature of important thermal and chemical processes in the solar nebula and the timescales associated with those processes. Our prior work on oxygen isotope anomalies in a wide variety of meteoritic materials had led us to a view of a spatially heterogeneous nebula, and in particular, a restricted region for CAI formation that is characterized by O-16-rich gas. Because of its production of CAIs in the energetic local environment near the protosun, the existence of a natural transport mechanism via bipolar outflows, and a general astrophysical plausibility, we were attracted to the fluctuating X-wind model which had been put forward by Frank Shu, Typhoon Lee, and colleagues. With our collaborators, we undertook a series of investigations to test the viability of this hypothesis; this work led directly to the discovery of live Be in CAIs and a clear demonstration of the existence of 160-rich condensates, which necessarily implies an O-16-rich gaseous reservoir in the nebula. Both of these observations fit well within the context of X-wind type models, i.e. formation of CAIs (or condensation of their precursors) in the reconnection ring sunward of the inner edge of the accretion disk, however much work remains to be done to test whether the physical parameters of the model can quantitatively predict not only the thermal histories of CAIs but also their radioactivity. The issue of spatial heterogeneity in the nebula, central to the X-wind model, is also at the heart of any chronology based on short-lived radioisotopes. In this work, we followed up on strong hints for presence of exireme:j: (53 day) short-lived Be-7, and have prepared a manuscript (in revision). We also measured A1-Mg

  2. The proton (nuclear) microprobe

    NASA Astrophysics Data System (ADS)

    Legge, G. J. F.

    1989-04-01

    The scanning proton microprobe (SPMP) is closely related to the scanning electron microprobe (SEMP) or scanning electron microscope (SEM) with X-ray detector. Though the much greater elemental sensitivity of the SPMP is inherent in the physics, the generally inferior spatial resolution of the SPMP is not inherent and big improvements are possible, As its alternative name would imply, the SPMP is often used with heavier particle beams and with nuclear rather than atomic reactions. Its versatility and quantitative accuracy have justified greater instrumentation and computer power than that associated with other microprobes. It is fast becoming an industrially and commercially important instrument and there are few fields of scientific research in which it has not played a part. Notable contributions have been made in biology, medicine, agriculture, semiconductors, geology, mineralogy, extractive metallurgy, new materials, archaeology, forensic science, catalysis, industrial problems and reactor technology.

  3. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  4. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Meyer, C.

    1984-01-01

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are alsoar reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y.

  5. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    SciTech Connect

    Compston, W.; Williams, I.S.

    1984-02-15

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are also reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y. 18 references.

  6. Fluorescence microscopy studies on ALA-sensitized tissues

    NASA Astrophysics Data System (ADS)

    Huettmann, Gereon; Achtelik, Wolfgang; Loening, Martin; Sommer, Konrad; Diddens, Heyke C.

    1996-12-01

    Fluorescence microscopy has the potential to study the spatial distribution of photosensitizers in tissue samples with cellular or subcellular resolution. A fluorescence microscope was developed to study the distribution of photosensitizer in tissue samples by acquiring fluorescence images in various spectral ranges and spatially resolved fluorescence spectra both from identical samples. Both methods provide complementary information, since the fluorescence images show the distribution of the sensitizers with a high spatial resolution whereas spatially resolved fluorescence spectra can identify the sensitizers and separate their fluorescence from background light emission by the spectral shape of the fluorescence. Protoporphyrin IX (PPIX) distribution induced by 5-aminolevulinic acid (ALA) was studied by fluorescence microscopy in basal cell carcinoma (BCC) and in cervical intraepithelial neoplasia (CIN). In an attempt to understand the varying success in treating BCC with topically applied ALA the PPIX distribution was studied in BCC samples of 10 patients. A strong fluorescence was observed in tumor cells as well as in epidermis, sebaceous glands, and hair follicles. The depth of PPIX sensitization of the BCCs ranged from 0.4 to 3 mm and the ratio of tumor versus epidermal fluorescence of uninvolved skin was near one. In the BCCs an uneven sensitization with a lower fluorescence in the center of the tumor was often observed. Samples of the cervical mucosa also showed PPIX fluorescence in the endothelial layer, the malignant tissues and the glands. No increased fluorescence of the dysplastic lesions compared to the epithelium was observed.

  7. Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector

    SciTech Connect

    Kuehl, M. ); Joergensen, B.B. )

    1992-12-01

    A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were coupled to the detector system and used for spectral light measurements in hypersaline microbial mats and in laminated phototrophic communities of coastal sediments. The vertical distribution of major photopigments of microalgae, cyanobacteria, and anoxygenic phototrophic bacteria could be identified from extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface as compared to incident light. IR light thus reached 200% of incident at the sediment surface. Maximal light penetration was found for IR light, whereas visible light was strongly attenuated in the upper 0-2 mm of the sediment. Measurements of photon scalar irradiance (400-700 nm) were combined with microelectrode measurements of oxygenic photosynthesis in the coastal sediment. With an incident light intensity of 200 [mu]Einst m[sup [minus]2]s[sup [minus]1], photon scalar irradiance reached a maximum of 283 [mu]Einst m[sup [minus]2]s[sup [minus]1] at the sediment surface. The lower boundary of the euphotic zone was 2.2 mm below the surface at a light intensity of 12 [mu]Einst m[sup [minus]2]s[sup [minus]1]. 20 refs., 6 figs.

  8. Development of a Laboratory Micron-Resolution X-ray Microprobe to Map Mineralogy and Trace Elements at PPM Sensitivity for Digital Rock, Magma, and Mining Applications

    NASA Astrophysics Data System (ADS)

    Yun, W.; Lewis, S.; Stripe, B.; Chen, S.; Reynolds, D.; Spink, I.; Lyon, A.

    2015-12-01

    We are developing a patent-pending x-ray microprobe with substantially unprecedented performance attributes: <5 μm spot on the sample (with 1 μm targeted), large working distances of >2 cm, narrow spectral bandwidth, and large x-ray flux. The outstanding performance is enabled by: (1) a revolutionary new type of high flux x-ray source designed to be >10X brighter than the brightest rotating anode x-ray source available; (2) an axially symmetric x-ray mirror lens with large solid angle collection and high focusing efficiency; and (3) a detector configuration that enables the collection of 10X more x-rays than current microXRF designs. The sensitivity will be ppm-scale, far surpassing charged particle analysis (e.g. EPMA and SEM-EDS), and >1000X throughput over the leading micro-XRFs. Despite the introduction of a number of laboratory microXRF systems in the past decade, the state-of-the-art has been limited primarily by low resolution (~30 μm) and low throughput. This is substantially attributable to a combination of low x-ray source brightness and poor performance x-ray optics. Here we present our initial results in removing the x-ray source bottleneck, in which we use a novel x-ray source using Fine Anode Array Source Technology (Sigray FAAST™). When coupled with our proprietary high efficiency x-ray mirror lens, the throughput achieved is comparable to that of many synchrotron microXRF beamlines. Potential applications of the x-ray microprobe include high throughput mapping of mineralogy at high resolution, including trace elements, such as rare earth metals, and deposits (e.g. siderite, clays), with ppm sensitivity, providing information for properties such as permeability and elastic/mechanical properties, and to provide compositional information for Digital Rock. Additional applications include those in which the limited penetration of electrons limits achieving adequate statistics, such as determining the concentration of precious minerals in mine

  9. Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip

    PubMed Central

    Li, Zhiyong; Xu, Yingxin; Fang, Wei; Tong, Limin; Zhang, Lei

    2015-01-01

    We report an ultra-sensitive and robust fluorescence sensor made by using a biconical taper with a waist diameter of 720 nm for both excitation and fluorescence collection. To enhance the stability of the fluorescence sensor, the biconical taper has been embedded in a 125 µm wide microchannel with a detection length of 2.5 cm. Investigated by measuring the fluorescence intensity of rhodamine 6G (R6G), the sensor shows a detection limit down to 100 pM, with excellent reversibility in a concentration range of 0–10 nM. The sensor has also been applied to quantum dot (QD)-labeled streptavidin measurements, yielding a detection sensitivity down to 10 pM for QDs. In addition, the small sample volume (ca. 500 nL), high sampling throughput, and seamless connection between the biconical taper and standard optical fibers offer a number of attractive advantages for chemical and biosensing applications. PMID:25808762

  10. Determination of ethambutol by a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Ying; Yang, Ji-Yuan; Du, Li-Ming; Wu, Hao; Li, Chang-Feng

    2011-08-01

    The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (Δ F) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL -1, with a correlation coefficient ( r) of 0.9997. The detection limit is 1.7 ng mL -1. The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.

  11. Near-infrared fluorescence lifetime pH-sensitive probes.

    PubMed

    Berezin, Mikhail Y; Guo, Kevin; Akers, Walter; Northdurft, Ralph E; Culver, Joseph P; Teng, Bao; Vasalatiy, Olga; Barbacow, Kyle; Gandjbakhche, Amir; Griffiths, Gary L; Achilefu, Samuel

    2011-04-20

    We report what we believe to be the first near-infrared pH-sensitive fluorescence lifetime molecular probe suitable for biological applications in physiological range. Specifically, we modified a known fluorophore skeleton, hexamethylindotricarbocyanine, with a tertiary amine functionality that was electronically coupled to the fluorophore, to generate a pH-sensitive probe. The pK(a) of the probe depended critically on the location of the amine. Peripheral substitution at the 5-position of the indole ring resulted in a compound with pK(a) ∼ 4.9 as determined by emission spectroscopy. In contrast, substitution at the meso-position shifted the pK(a) to 5.5. The resulting compound, LS482, demonstrated steady-state and fluorescence-lifetime pH-sensitivity. This sensitivity stemmed from distinct lifetimes for protonated (∼1.16 ns in acidic DMSO) and deprotonated (∼1.4 ns in basic DMSO) components. The suitability of the fluorescent dyes for biological applications was demonstrated with a fluorescence-lifetime tomography system. The ability to interrogate cellular processes and subsequently translate the findings in living organisms further augments the potential of these lifetime-based pH probes.

  12. U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; de Waele, B.; Liyungu, K. A.

    2006-12-01

    The Southern Irumide Belt (SIB) is a structurally and metamorphically complex region of mainly Mesoproterozoic igneous rocks in southern and eastern Zambia, northern Mozambique and northern Malawi that was strongly overprinted in the Neoproterozoic to Cambrian Damara-Lufilian-Zambezi (DLZ) orogeny. Because of the scarcity of geological data from this region, little is known about the timing of tectonomagmatic events; however, this belt has traditionally been considered to be a southerly continuation of the adjacent Irumide Belt (IB). Here we provide 27 new U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon ages that constrain the Paleoproterozoic to Cambrian tectonomagmatic history of this belt and which, for the first time, allow for direct comparison with the adjoining IB. The SIB is floored by a predominantly late Paleoproterozoic basement, which was intruded by voluminous continental margin arc-related magmas between 1.09 and 1.04 Ga and accompanied by high-temperature/low-pressure metamorphism. In contrast, the IB is floored by a late Paleoproterozoic basement that is generally older than 2.0 Ga, contains significant mid-Mesoproterozoic plutonic rocks that are not present within the SIB, and underwent moderate-pressure/moderate-temperature compressional metamorphism and S-type granitoid magmatism at circa 1.02 Ga. These data indicate that the crust underlying the SIB is not a continuation of that underlying the IB but represents an allocthonous continental margin arc terrane juxtaposed against the Congo-Tanzania-Bangweulu Craton during the late Mesoproterozoic Irumide orogeny. Reworking and shearing of the SIB occurred during the DLZ orogen, resulting in the present-day architecture as a series of stacked terranes which have been exploited by voluminous posttectonic granitoid batholiths.

  13. Coolwater culmination: Sensitive high-resolution ion microprobe (SHRIMP) U-Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho

    USGS Publications Warehouse

    Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; Fanning, C.M.

    2008-01-01

    During dextral oblique translation along Laurentia in western Idaho, the Blue Mountains superterrane underwent clockwise rotation and impinged into the Syringa embayment at the northern end of the Salmon River suture. Along the suture, the superterrane is juxtaposed directly against western Laurentia, making this central Cordilleran accretionary-margin segment unusually attenuated. In the embayment, limited orthogonal contraction produced a crustal wedge of oceanic rocks that delaminated Laurentian crust. The wedge is exposed through Laurentian crust in the Coolwater culmination as documented by mapping and by sensitive high-resolution ion microprobe U-Pb, Sri, and ??Nd data for gneisses that lie inboard of the suture. The predominant country rock is Mesoproterozoic paragneiss overlying Laurentian basement. An overlying Neoproterozoic (or younger) paragneiss belt in the Syringa embayment establishes the form of the Cordilleran miogeocline and that the embayment is a relict of Rodinia rifting. An underlying Cretaceous paragneiss was derived from arc terranes and suture-zone orogenic welt but also from Laurentia. The Cretaceous paragneiss and an 86-Ma orthogneiss that intruded it formed the wedge of oceanic rocks that were inserted into the Laurentian margin between 98 and 73 Ma, splitting supracrustal Laurentian rocks from their basement. Crustal thickening, melting and intrusion within the wedge, and folding to form the Coolwater culmination continued until 61 Ma. The embayment formed a restraining bend at the end of the dextral transpressional suture. Clockwise rotation of the impinging superterrane and overthrusting of Laurentia that produced the crustal wedge in the Coolwater culmination are predicted by oblique collision into the Syringa embayment. Copyright 2008 by the American Geophysical Union.

  14. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  15. Sensitive iodate sensor based on fluorescence quenching of gold nanocluster.

    PubMed

    Li, Ruiping; Xu, Pingping; Fan, Jun; Di, Junwei; Tu, Yifeng; Yan, Jilin

    2014-05-27

    In this report we described a highly selective and sensitive iodate sensor. Due to its interaction with fluorescent gold nanoclusters, iodate was capable of oxidizing and etching gold core of the nanoclusters, resulting in fluorescence quenching. Furthermore, it was found that extra iodide ion could enhance this etching process, and even a small amount of iodate could lead to significant quenching. Under an optimized condition, linear relationship between the iodate concentration and the fluorescence quenching was obtained in the range 10 nM-1 μM. The developed iodate sensor was found selective and capable of detecting iodate as low as 2.8 nM. The sensor was then applied for the analysis of iodate in real sample and satisfactory recoveries were obtained.

  16. Determination of phenformin hydrochloride employing a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xie, Jian-Hong; Du, Li-Ming; Chang, Yin-xia; Wu, Hao

    2016-06-01

    A complexation of non-fluorescent phenformin hydrochloride (PFH) with cucurbit [7]uril (CB [7]) in aqueous solution was investigated using the fluorescent probe of palmatine (PAL) coupled with CB [7]. The fluorescent probe of CB [7]-PAL exhibited strong fluorescence in aqueous solution, which was quenched gradually with the increase of PFH. This effect is observed because when PFH was added to the host-guest system of CB [7]-PAL, PFH and PAL competed to occupy the CB [7] cavity. Portions of the PAL molecule were expelled from the CB [7] cavity owing to the introduction of PFH. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescence method of high sensitivity and selectivity was developed to determine PFH with good precision and accuracy for the first time. The linear range of the method was 0.005-1.9 μg mL- 1 with a detection limit of 0.003 μg mL- 1. In this work, association constants (K) of PFH with CB [7] were also determined. KCB [7]-PFH = (2.52 ± 0.05) × 105 L mol- 1. The ability of PFH to bind with CB [7] is stronger than that of PAL. The results of a density functional theory calculation authenticated that the moiety of PFH was embedded in the hydrophobic cavity of CB [7] tightly, and the nitrogen atom is located in the vicinity of a carbonyl-laced portal in the energy-minimized structure. The molecular modelling of the interaction between PFH and CB [7] was also confirmed by 1H NMR spectra (Bruker 600 MHz).

  17. Determination of amantadine and rimantadine using a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Quan; Qin, Yan-Fang; Du, Li-Ming; Li, Jun-Fei; Jing, Xu; Chang, Yin-Xia; Wu, Hao

    2012-12-01

    Amantadine hydrochloride (AMA) and rimantadine hydrochloride (RIM) are non-fluorescent in aqueous solutions. This property makes their determination through direct fluorescent method difficult. The competing reactions and the supramolecular interaction mechanisms between the two drugs and coptisine (COP) as they fight for occupancy of the cucurbit[7]uril (CB[7]) cavity, were studied using spectrofluorimetry, 1H NMR, and molecular modeling calculations. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescent probe method of high sensitivity and selectivity was developed to determine AMA or RIM in their pharmaceutical dosage forms and in urine samples with good precision and accuracy. The linear range of the method was from 0.0040 to 1.0 μg mL-1 with a detection limit ranging from 0.0012 to 0.0013 μg mL-1. This shows that the proposed method has promising potential for therapeutic monitoring and pharmacokinetics and for clinical application.

  18. An ultra sensitive fluorescent nanosensor for detection of ionic copper

    NASA Astrophysics Data System (ADS)

    Kacmaz, Sibel; Ertekin, Kadriye; Mercan, Deniz; Oter, Ozlem; Cetinkaya, Engin; Celik, Erdal

    2015-01-01

    A stable and ultra sensitive nano-scale fluorescent chemo-sensor for trace amounts of Cu2+ was proposed. The Cu2+ selective fluoroionophore 2-{[(2-aminophenyl)imino]methyl}-4,6-di-tert-butylphenol (DMK-7) was encapsulated in polymeric ethyl cellulose. The sensing membranes were fabricated in form of nanofibers and thin films. When embedded in polymers, the exploited DMK-7 dye exhibited enhanced photophysical characteristics in absorbance, Stoke's shift, fluorescence quantum yield, and short and long-term photostability with respect to the solution phase. Sensing abilities of the nanofibers and thin films were tested by steady state and time resolved fluorescence spectroscopy. To our knowledge, this is the first attempt using the DMK-7-doped electrospun nanofibrous materials for copper sensing. The offered sensor displayed a sensitive response with a detection limit of 3.3 × 10-13 M for Cu2+ ions over a wide concentration range of 5.0 × 10-12-5.0 × 10-5. Additionally, exhibited high selectivity over convenient cations; Na+, K+, Ca2+, Mg2+, NH4+ and Ag+, Al3+, Ba2+, Co2+, Cr3+, Fe3+, Fe2+, Hg2+, Li+, Mn2+, Ni2+, Pb2+, Sn2+ and Zn2+.

  19. X-ray microprobe using multilayer mirrors

    NASA Astrophysics Data System (ADS)

    Underwood, J. H.; Thompson, A. C.; Wu, Y.; Giauque, R. D.

    1988-04-01

    Multilayer reflectors for the X-ray region have now progressed beyond the experimental stage to the point where they can be relied upon as optics for experimental systems, in synchrotron radiation research as well as in other fields. This paper reviews the design considerations for an X-ray microprobe, and summarizes experience with prototypes tested at both SSRL and NSLS. The optical systems described employ multilayer-coated spherical mirrors arranged in the Kirkpatrick-Baez configuration to demagnify the X-ray source by a factor of several hundred. By this means a spot of X-rays less than 10 μm square can be produced. The optical aberrations and other factors that limit the performance are detailed, and possible ways to improve the performance are discussed. In the prototypes the spot is directed on the specimen which is carried on a stage that can be translated horizontally and vertically. The characteristic fluorescent X-rays excited by the focused 10 keV photons are analysed by an energy-dispersive Si(Li) detector, so that by scanning the stage an elemental concentration map of the specimen is built up. In a companion paper [A.C. Thompson, J.H. Underwood, Y. Wu, R.D. Giauque, K.W. Jones and M.L. Rivers, these Proceedings, p. 318] some experimental programs are described, and estimates of the elemental sensitivity are provided.

  20. Monitoring sol-to-gel transitions via fluorescence lifetime determination using viscosity sensitive fluorescent probes.

    PubMed

    Hungerford, Graham; Allison, Archie; McLoskey, David; Kuimova, Marina K; Yahioglu, Gokhan; Suhling, Klaus

    2009-09-01

    The sol-to-gel transition was monitored via the use of time-resolved recording of the fluorescence emission of viscosity-sensitive probes. Two dyes were chosen for the study, water-soluble DASPMI and a hydrophobic BODIPY, and steady-state, time-resolved and time-tagged fluorescence measurements were performed. These techniques, coupled with the probes different solubility, allowed complementary fluorescence lifetime and intensity data to be obtained from the dyes introduced into the matrix-forming mixture to produce sol-gel derived monoliths. Two different precursors were used as examples. A hydrogel was formed from a commercially available gellan gum (Gelrite), and a glass-like monolith was formed using tetraethyl orthosilicate. Changes in fluorescence lifetime could be related to those in the local viscosity sensed by the probe. The combination of this type of probe with time-resolved measurements is extremely useful in monitoring the microscopic changes that occur during the sol-to-gel transition within this important class of materials.

  1. Ultra-sensitive fluorescent proteins for imaging neuronal activity

    PubMed Central

    Chen, Tsai-Wen; Wardill, Trevor J.; Sun, Yi; Pulver, Stefan R.; Renninger, Sabine L.; Baohan, Amy; Schreiter, Eric R.; Kerr, Rex A.; Orger, Michael B.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.

    2013-01-01

    Summary Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. PMID:23868258

  2. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  3. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  4. Increased sensitivity of bacterial detection in cerebrospinal fluid by fluorescent staining on low-fluorescence membrane filters.

    PubMed

    Durtschi, Jacob D; Erali, Maria; Bromley, L Kathryn; Herrmann, Mark G; Petti, Cathy A; Smith, Roger E; Voelkerding, Karl V

    2005-09-01

    A membrane-filter-based, fluorescent Gram stain method for bacterial detection in cerebrospinal fluid samples was developed and evaluated as a rapid, sensitive alternative to standard Gram stain protocols. A recently developed, modified version of the aluminium oxide membrane Anopore with low-fluorescence optical properties showed superior performance in this application. Other aspects of the fluorescent Gram stain system that were evaluated include membrane filter selection, strategies to reduce fluorescence fading and the effect of patient blood cells on bacterial detection in the fluorescently stained cerebrospinal fluid samples. The combination of the membrane filter's bacteria-concentrating ability and absolute retention along with high-contrast, fluorescent Gram discriminating dyes enabled rapid bacterial detection and Gram discrimination, with a 1-1.5 order of magnitude increase in the bacterial concentration limit of detection.

  5. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  6. Intracochlear microprobe analysis

    SciTech Connect

    Bone, R.C.; Ryan, A.F.

    1982-04-01

    Energy dispersive x-ray analysis (EDXA) or microprobe analysis provides cochlear physiologists with a means of accurately assessing relative ionic concentrations in selected portions of the auditory mechanism. Rapid freezing followed by lyophilization allows the recovery of fluid samples in crystalline form not only from perilymphatic and endolymphatic spaces, but also from much smaller subregions of the cochlea. Because samples are examined in a solid state, there is no risk of diffusion into surrounding or juxtaposed fluids. Samples of cochlear tissues may also be evaluated without the danger of intercellular ionic diffusion. During direct visualization by scanning electron microscopy, determination of the biochemical makeup of the material being examined can be simultaneously, assuring the source of the data collected. Other potential advantages and disadvantages of EDXA are reviewed. Initial findings as they relate to endolymph, perilymph, stria vascularis, and the undersurface of the tectorial membrane are presented.

  7. Fluorescent Probe Encapsulated in SNAP-Tag Protein Cavity To Eliminate Nonspecific Fluorescence and Increase Detection Sensitivity.

    PubMed

    Zeng, Yan-Syun; Gao, Ruo-Cing; Wu, Ting-Wei; Cho, Chien; Tan, Kui-Thong

    2016-08-17

    Despite the promising improvements made recently on fluorescence probes for the detection of enzymes and reactive small molecules, two fundamental problems remain: weaker fluorescence of many dyes in aqueous buffers and strong nonspecific signals in samples containing high protein levels. In this paper, we introduce a novel fluorescent probe encapsulated in protein cavity (FPEPC) concept as demonstrated by SNAP-tag protein and three environment-sensitive fluorescence probes to overcome these two problems. The probes were constructed by following the current probe design for enzymes and reactive small molecules but with an additional benzylguanine moiety for selective SNAP-tag conjugation. The SNAP-tag conjugated probes achieved quantitative nitroreductase and hydrogen sulfide detection in blood plasma, whereas analyte concentrations were overestimated up to 700-fold when bare fluorescent probes were employed for detection. Furthermore, detection sensitivity was increased dramatically, as our probes displayed 390-fold fluorescence enhancement upon SNAP-tag conjugation, in stark contrast to the weak fluorescence of the free probes in aqueous solutions. Compared with the conventional approaches where fluorescent probes are encapsulated into polymers and nanoparticles, our simple and general approach successfully overcame many key issues such as dye leakage, long preparation steps, inconsistent dye-host ratios, difficulty in constructing in situ in a complex medium, and limited application to detect only small metabolites. PMID:27463260

  8. Positron microprobe at LLNL

    SciTech Connect

    Asoka, P; Howell, R; Stoeffl, W

    1998-11-01

    The electron linac based positron source at Lawrence Livermore National Laboratory (LLNL) provides the world's highest current beam of keV positrons. We are building a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with sub-micron resolution. The widely spaced and intense positron packets from the tungsten moderator at the end of the 100 MeV LLNL linac are captured and trapped in a magnetic bottle. The positrons are then released in 1 ns bunches at a 20 MHz repetition rate. With a three-stage re-moderation we will compress the cm-sized original beam to a 1 micro-meter diameter final spot on the target. The buncher will compress the arrival time of positrons on the target to less than 100 ps. A detector array with up to 60 BaF2 crystals in paired coincidence will measure the annihilation radiation with high efficiency and low background. The energy of the positrons can be varied from less than 1 keV up to 50 keV.

  9. Plasmon-controlled fluorescence towards high-sensitivity optical sensing.

    PubMed

    Ray, K; Chowdhury, M H; Zhang, J; Fu, Y; Szmacinski, H; Nowaczyk, K; Lakowicz, J R

    2009-01-01

    Fluorescence spectroscopy is widely used in chemical and biological research. Until recently most of the fluorescence experiments have been performed in the far-field regime. By far-field we imply at least several wavelengths from the fluorescent probe molecule. In recent years there has been growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can dramatically be altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. Fluorophores in the excited state can create plasmons that radiate into the far-field and fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). An overview of the recent work on metal-fluorophore interactions is presented. Recent research combining plasmonics and fluorescence suggest that PCF could lead to new classes of experimental procedures, novel probes, bioassays, and devices.

  10. Trace Element Zoning and Incipient Metamictization in a Lunar Zircon: Application of Three Microprobe Techniques

    NASA Technical Reports Server (NTRS)

    Wopenka, Brigitte; Jollife, Bradley L.; Zinner, Ernst; Kremser, Daniel T.

    1996-01-01

    We have determined major (Si, Zr, Hf), minor (Al, Y, Fe, P), and trace element (Ca, Sc, Ti, Ba, REE, Th, U) concentrations and Raman spectra of a zoned, 200 microns zircon grain in lunar sample 14161,7069, a quartz monzodiorite breccia collected at the Apollo 14 site. Analyses were obtained on a thin section in situ with an ion microprobe, an electron microprobe, and a laser Raman microprobe. The zircon grain is optically zoned in birefringence, a reflection of variable (incomplete) metamictization resulting from zo- nation in U and Th concentrations. Variations in the concentrations of U and Th correlate strongly with those of other high-field-strength trace elements and with changes in Raman spectral parameters. Concentrations of U and Th range from 21 to 55 ppm and 6 to 31 ppm, respectively, and correlate with lower Raman peak intensities, wider Raman peaks, and shifted Si-O peak positions. Concentrations of heavy rare earth elements range over a factor of three to four and correlate with intensities of fluorescence peaks. Correlated variations in trace element concentrations reflect the original magmatic differentiation of the parental melt approx. 4 b.y. ago. Degradation of the zircon structure, as reflected by the observed Raman spectral parameters, has occurred in this sample over a range of alpha-decay event dose from approx. 5.2 x 10(exp 14) to 1.4 x 10(exp 15) decay events per milligram of zircon, as calculated from the U and Th concentrations. This dose is well below the approx. 10(exp 16) events per milligram cumulative dose that causes complete metamictization and indicates that laser Raman microprobe spectroscopy is an analytical technique that is very sensitive to the radiation-induced damage in zircon.

  11. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

    PubMed Central

    Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic

    2015-01-01

    In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218

  12. Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents.

    PubMed

    Nouizi, Farouk; Kwong, Tiffany C; Cho, Jaedu; Lin, Yuting; Sampathkumaran, Uma; Gulsen, Gultekin

    2015-11-01

    Conventional fluorescence tomography provides images of the distribution of fluorescent agents within highly scattering media, but suffers from poor spatial resolution. Previously, we introduced a new method termed "temperature-modulated fluorescence tomography" (TM-FT) that generates fluorescence images with high spatial resolution. TM-FT first uses focused ultrasound to locate the distribution of temperature-sensitive fluorescence probes. Afterward, this a priori information is utilized to improve the performance of the inverse solver for conventional fluorescence tomography and reveal quantitatively accurate fluorophore concentration maps. However, the disadvantage of this novel method is the long data acquisition time as the ultrasound beam was scanned in a step-and-shoot mode. In this Letter, we present a new, fast scanning method that reduces the imaging time 40 fold. By continuously scanning the ultrasound beam over a 50 mm by 25 mm field-of-view, high-resolution fluorescence images are obtained in less than 29 min, which is critical for in vivo small animal imaging. PMID:26512501

  13. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin

    PubMed Central

    Maclaurin, Dougal; Venkatachalam, Veena; Lee, Hohjai; Cohen, Adam E.

    2013-01-01

    Microbial rhodopsins were recently introduced as genetically encoded fluorescent indicators of membrane voltage. An understanding of the mechanism underlying this function would aid in the design of improved voltage indicators. We asked, what states can the protein adopt, and which states are fluorescent? How does membrane voltage affect the photostationary distribution of states? Here, we present a detailed spectroscopic characterization of Archaerhodopsin 3 (Arch). We performed fluorescence spectroscopy on Arch and its photogenerated intermediates in Escherichia coli and in single HEK293 cells under voltage-clamp conditions. These experiments probed the effects of time-dependent illumination and membrane voltage on absorption, fluorescence, membrane current, and membrane capacitance. The fluorescence of Arch arises through a sequential three-photon process. Membrane voltage modulates protonation of the Schiff base in a 13-cis photocycle intermediate (M ⇌ N equilibrium), not in the ground state as previously hypothesized. We present experimental protocols for optimized voltage imaging with Arch, and we discuss strategies for engineering improved rhodopsin-based voltage indicators. PMID:23530193

  14. Sensitive fluorescence detection of lysozyme using a tris(bipyridine)ruthenium(II) complex containing multiple cyclodextrins.

    PubMed

    Zhang, Fan; Zhao, Ying-Ying; Chen, Hong; Wang, Xiu-Hua; Chen, Qiong; He, Pin-Gang

    2015-04-18

    A new series of photoactive metallocyclodextrins with increased fluorescence intensity upon binding with ssDNAs/aptamers has been demonstrated to sensitively and selectively detect lysozyme. The detection mechanism relies on the formation of an aptamer-lysozyme complex, which leads to reduction of fluorescence intensity.

  15. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization.

    PubMed Central

    Pinkel, D; Straume, T; Gray, J W

    1986-01-01

    This report describes the use of fluorescence in situ hybridization for chromosome classification and detection of chromosome aberrations. Biotin-labeled DNA was hybridized to target chromosomes and subsequently rendered fluorescent by successive treatments with fluorescein-labeled avidin and biotinylated anti-avidin antibody. Human chromosomes in human-hamster hybrid cell lines were intensely and uniformly stained in metaphase spreads and interphase nuclei when human genomic DNA was used as a probe. Interspecies translocations were detected easily at metaphase. The human-specific fluorescence intensity from cell nuclei and chromosomes was proportional to the amount of target human DNA. Human Y chromosomes were fluorescently stained in metaphase and interphase nuclei by using a 0.8-kilobase DNA probe specific for the Y chromosome. Cells from males were 40 times brighter than those from females. Both Y chromosomal domains were visible in most interphase nuclei of XYY amniocytes. Human 28S ribosomal RNA genes on metaphase chromosomes were distinctly stained by using a 1.5-kilobase DNA probe. Images PMID:3458254

  16. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer.

    PubMed

    Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping

    2015-12-15

    Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis.

  17. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  18. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells.

    PubMed

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells. PMID:27299653

  19. Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, U.S.A

    USGS Publications Warehouse

    Santos, J.O.S.; Hartmann, L.A.; McNaughton, N.J.; Easton, R. M.; Rea, R.G.; Potter, P.E.

    2002-01-01

    A sensitive high resolution ion microprobe (SHRIMP) was used in combination with backscattered electron (BSE) and cathodoluminescence (CL) images to determine the age of detrital zircons from sandstones in the Neoproterozoic Middle Run Formation of the eastern Midwest, United States. Eleven samples from seven drill cores of the upper part of the Middle Run Formation contain detrital zircons ranging in age from 1030 to 1982 Ma (84 analyses), with six distinctive modes at 1.96, 1.63, 1.47, 1.34, 1.15, and 1.08 Ga. This indicates that most, but not all, of the zircon at the top of the Middle Run Formation was derived from the Grenville Orogen. The youngest concordant detrital zircon yields a maximum age of 1048 ?? 22 Ma for the Middle Run Formation, indicating that the formation is younger than ca. 1026 Ma minus the added extra time needed for later uplift, denudation, thrusting, erosion, and transport to southwestern Ohio. Thus, as judged by proximity, composition, thickness, and geochronology, it is a North American equivalent to other Neoproterozoic Grenvillian-derived basins, such as the Torridon Group of Scotland and the Palmeiral Formation of South America. An alternate possibility, although much less likely in our opinion, is that it could be much younger, any time between 1048 ?? 22 Ma and the deposition of the Middle Cambrian Mount Simon Sandstone at about 510 Ma, and still virtually almost all derived from rocks of the Grenville Orogen.

  20. Comparison of cone and cone shell configuration for depth sensitive fluorescence measurements in turbid media

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Liu, Quan

    2014-03-01

    We have developed a novel cone shell illumination and detection configurations using combination of axicon lenses for depth sensitive fluorescence spectroscopy. The probe was demonstrated experimentally to be able to selectively detecting fluorescence from different depths from a two-layered turbid agar phantom. In addition to enhanced contrast of subsurface fluorescence measurement as compared to a conventional cone configuration implemented by a microscope objective lens, the axicon lenses based setup eliminated the need of moving the objective lens up or down to achieve depth sensitive measurements, which effectively improves the consistency of optical coupling thus would be preferred in a clinical setting.

  1. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  2. Fluorescence probe for the convenient and sensitive detection of ascorbic acid.

    PubMed

    Matsuoka, Yuta; Yamato, Mayumi; Yamada, Ken-Ichi

    2016-01-01

    Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.

  3. Fluorescence probe for the convenient and sensitive detection of ascorbic acid

    PubMed Central

    Matsuoka, Yuta; Yamato, Mayumi; Yamada, Ken-ichi

    2016-01-01

    Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes. PMID:26798193

  4. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    The short-lived radionuclide 53Mn, which decays to 53Cr with a half-life of ∼3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. 53Mn-53Cr relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the 55Mn+ and 52Cr+ ions, for which a relative sensitivity factor [RSF = (55Mn+/52Cr+)SIMS/(55Mn/52Cr)true] is defined using appropriate standards. In the past, San Carlos olivine (Fa∼10) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa>90). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true 55Mn/52Cr ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn,Cr-bearing liquidus-phase ferromagnesian olivines (Fa31-99). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa10 is ∼0.9; it increases rapidly between Fa10 and Fa31 and reaches a plateau value of ∼1.5 ± 0.1 for Fa>34. The RSF is time-dependent: it increases during the measurements of olivines with fayalite content <30 and decreases during the measurements of olivines with fayalite content >50. The RSF measured on ferroan olivine (Fa>90) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa10) is less sensitive to changes in pit shape. For these reasons, 53Mn-53Cr

  5. Sensitive and selective tumor imaging with novel and highly activatable fluorescence strategies

    NASA Astrophysics Data System (ADS)

    Urano, Yasuteru

    2008-02-01

    Nowadays, several tumor imaging modalities such as MRI, PET and fluorescence imaging techniques have been extensively investigated. One of the central problems associated with these conventional tumor-targeted imaging methods, however, is the fact that the signal contrast between tumor and surrounding tissues relies on the efficient targeting to the tumor and the rapid sequestration or excretion of unbound agent. Among these modalities, only fluorescence imaging technique has a significant feature, in that great signal activation could be achieved which potentially leads to the selective imaging of cancer with higher tumor-to-background ratio. In this symposium, I will present some examples of fluorescence cancer imaging based on highly activatable strategies with using precisely designed novel fluorescence probes. Recently, we developed highly sensitive fluorescence probes for β-galactosidase which is applicable for living cell system. By utilizing these probes, we could establish a novel and highly activatable strategy for sensitive and selective optical imaging of imbedded tumor in the peritoneum. We took a two step procedure in that a lectin is used to localize β-galactosidase to cancer cells as an activating enzyme, and subsequent administration of a highly-sensitive fluorescence probe for the enzyme have afforded remarkable fluorescence activation selectively in tumor mass. Since the tumor-targeted enzyme can catalyze numerous substrate turnovers, a great number of fluorescent molecules could be produced and hence the rapid and sensitive detection of tumor in vivo with high tumor-to-background ratio could be achieved. Moreover, the consequent close-up investigation using fluorescence microscopy revealed that cancer microfoci as small as 200 μm could be successfully visualized.

  6. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  7. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection.

    PubMed

    Men, Dong; Zhou, Juan; Li, Wei; Leng, Yan; Chen, Xinwen; Tao, Shengce; Zhang, Xian-En

    2016-07-13

    Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent. PMID:27315221

  8. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen; Kanno, Hiroshi

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  9. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.

    PubMed

    Wang, Bin; Wu, Yuanya; Chen, Yanfen; Weng, Bo; Xu, Liqun; Li, Changming

    2016-07-15

    An optical aptasensor was developed for ultrasensitive detection of ochratoxin A (OTA) based on hybridization chain reaction (HCR) amplification strategy and fluorescent perylene probe (PAPDI)/DNA composites. Dendritic DNA concatamers were synthesized by HCR strategy and modified on magnetic nanoparticles through aptamer as medium. A large amount of PAPDI probe aggregated under the induction of DNA concatamers and caused fluorescence quenching. In the presence of OTA, the PAPDI/DNA composites were released from magnetic nanoparticles due to the strong affinity between aptamer and OTA. In ethanol, PAPDI monomers disaggregated and produced strong fluorescence. The present method displays excellent sensitivity and selectivity towards OTA.

  10. Pyoverdine as a fluorescent marker of antibiotic sensitivity of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Sosnin, E. A.; Zhdanova, O. S.; Kashapova, E. R.; Artyukhov, V. Ya.

    2014-12-01

    The electronic structure and physicochemical characteristics of the pyoverdine molecule are studied using the methods of quantum chemistry. The configurations of the absorbing and fluorescing conformers of the pyoverdine molecular fragments are optimized. The time-dependent density-functional theory is used to characterize the electronic-absorption and fluorescence spectra. The absorption and fluorescence spectra of pyoverdine from clinical isolates of P. aeruginosa are experimentally studied. An optical method is proposed to determine the sensitivity of P. aeruginosa to antibiotics using a XeBr excilamp.

  11. A novel high-sensitive miniaturized optical system for fluorescence detection

    NASA Astrophysics Data System (ADS)

    Yao, Mingjin; Fang, Ji

    2011-03-01

    This paper presents a novel, high sensitive and miniaturized fluorescence detection system which integrated a LED light source, all necessary optical components and a photodiode with preamplifier into one package about 2 cm x 2 cm x 2 cm especially for the applications of lab-on-a-chip, portable bio-detection system and point-of-care diagnostic system. The prototype has been tested using the fluorescence dye 5-Carboxyfluorescein (5-FAM) dissolved into solvent DMSO (Dimethyl Sulfoxide) and diluted with DI water as the testing solution samples. Resolution approximation method is accepted to evaluate the sensitivity. The testing results prove a remarkable sensitivity at pico-scale molar, around 1.08 pM/L, which should meet the most of bio-detection requirements. This cost-effective detection system can be widely integrated to the portable device and system for fluorescent detection in biological, chemical, medical, point-of-care applications.

  12. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity.

    PubMed

    Schorb, Martin; Briggs, John A G

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals.

  13. Temperature-dependent fluorescence lifetime of a fluorescent polymeric thermometer, poly(N-isopropylacrylamide), labeled by polarity and hydrogen bonding sensitive 4-sulfamoyl-7-aminobenzofurazan.

    PubMed

    Gota, Chie; Uchiyama, Seiichi; Yoshihara, Toshitada; Tobita, Seiji; Ohwada, Tomohiko

    2008-03-13

    Fluorescent molecular thermometers showing temperature-dependent fluorescence lifetimes enable thermal mapping of small spaces such as a microchannel and a living cell. We report the temperature-dependent fluorescence lifetimes of poly(NIPAM-co-DBD-AA), which is a random copolymer of N-isopropylacrylamide (NIPAM) and an environment-sensitive fluorescent monomer (DBD-AA) containing a 4-sulfamoyl-7-aminobenzofurazan structure. The average fluorescence lifetime of poly(NIPAM-co-DBD-AA) in aqueous solution increased from 4.22 to 14.1 ns with increasing temperature from 30 to 35 degrees C. This drastic change in fluorescence lifetime (27% increase per 1 degrees C) is the sharpest ever reported. Concentration independency, one of the advantages of fluorescence lifetime measurements, was seen in average fluorescence lifetime (13.7 +/- 0.18 ns) of poly(NIPAM-co-DBD-AA) at 33 degrees C over a wide concentration range (0.005-1 w/v%). With increasing temperature, polyNIPAM units in poly(NIPAM-co-DBD-AA) change their structure from an extended form to a globular form, providing apolar and aprotic environments to the fluorescent DBD-AA units. Consequently, the environment-sensitive DBD-AA units translate the local environmental changes into the extension of the fluorescence lifetime. This role of the DBD-AA units was revealed by a study of solvent effects on fluorescence lifetime of a model environment-sensitive fluorophore.

  14. Enhanced detection sensitivity of "fluorescence reduction" by shifting the analyte absorbance spectrum and use of a fluorescent paper with higher signal/noise ratio.

    PubMed

    Yarmola, E; Chen, N; Yi, D; Chrambach, A

    1998-02-01

    Nonfluorescing protein bands can be detected by the fluorescence optics of the commercial gel electrophoresis apparatus with automated scanning of the migration path (HPGE-1000, LabIntelligence, Belmont CA), taking advantage of the decrease of emission from a fluorescent paper placed below the gel by the absorbance of proteins ("fluorescence reduction"). That decrease of fluorescence gives rise to an inverted protein peak. Nonfluorescent colorless proteins appear to reduce the intensity of light emitted from the fluorescent paper due to absorbance of incident and emitted light. When the absorbance spectrum only slightly overlaps with the excitation and emission spectra of the fluorescent paper, that reduction is weak, and detection sensitivity in that application is consequently only 1/30 of that of fluorescent proteins. By contrast, when the protein is colored so that its absorbance spectrum overlaps widely with the excitation and emission spectra of the fluorescent paper, the sensitivity of "fluorescence reduction" equals 1/4 to 1/5 of that obtained for fluorescent proteins. Bands detected by "fluorescence reduction" provide a quantitative measure of protein load and mobility. The area of the inverted bands is proportional to protein loads up to 16 microg/lane of the gel tray. A theory of "fluorescence reduction" is presented which accounts for the existence of a linear relationship between band area and load.

  15. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  16. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  17. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. PMID:26485176

  18. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases.

    PubMed

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-05-18

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin-biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and beta-secretase.

  19. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases

    PubMed Central

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-01-01

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin–biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and β-secretase. PMID:15136731

  20. Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection.

    PubMed

    Kawasaki, Hideya; Yoshimura, Kouta; Hamaguchi, Kenji; Arakawa, Ryuichi

    2011-01-01

    We report on trypsin-stabilized fluorescent gold nanoclusters (Au NCs) for the sensitive and selective detection of Hg(2+) ions. The Au NCs have an average size of 1 nm and show a red emission at 645 nm. The photostable properties of the trypsin-stabilized Au NCs were examined, and their photochemical stability was found to be similar to that of CdSe quantum dots. The fluorescence was particularly quenched by Hg(2+), and therefore the Au NCs can be used as fluorescent sensors for sensitive and selective Hg(2+) detection to a detection limit of 50 ± 10 nM and the quantitative detection of Hg(2+) in wide and low concentration range of 50-600 nM.

  1. Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Deb, P.; Kalita, E.

    2013-06-01

    An efficient fluorescence probe based on ZnSe(S) alloyed quantum dots (QDs) has been reported here. The alloyed QDs were prepared through an aqueous route, where 3-mercaptopropionic acid (MPA) was employed as the effective precursor for both the sulfur source and stabilizer in the development of the alloyed system. Five-fold quantum yield (QY) enhancement was obtained for the ZnSe(S) QDs compared to the ZnSe QDs, formed in the initial stage of the refluxing process. The ultimate alloyed systems retained their high biocompatibility characteristics similar to the conventional ZnSe QDs. The photoluminescence of the ZnSe(S) QDs showed pH dependence, which was also evidenced in mammalian lymphocyte cells suspended in biological buffer over a wide pH range of 4.00-12.00. These characteristics make our prepared ZnSe(S) an efficient system for development of cell tracking, monitoring and sensing intracellular nanoprobes and devices.

  2. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan

    2015-07-01

    We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.

  3. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. PMID:27591625

  4. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex

    NASA Astrophysics Data System (ADS)

    Xiao, Xilin; Xue, Jinhua; Liao, Lifu; Huang, Mingyang; Zhou, Bin; He, Bo

    2015-06-01

    The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2]2+ and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10-9-7.70 × 10-7 mol L-1, with a correlation coefficient of r = 0.995 and detection limit 2.60 × 10-9 mol L-1. The relative standard deviation was 0.77% (n = 11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.

  5. Thermal Outlining using Focused Ultrasound (TOFU) with reversible temperature sensitive fluorescent probes

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Lin, Yuting; Zhu, Yue; Sampathkumaran, Uma; Gulsen, Gultekin

    2016-03-01

    Optical imaging has long been hindered by the high absorption and scattering of light in biological tissue. This makes it difficult to probe beyond a few millimeters beneath the surface without sacrificing image resolution and quantitative accuracy. Strong scattering and the inherent nature of the inverse problem makes fluorescence diffuse optical tomography (FT) extremely challenging. To this end, multi-modality techniques that combine anatomical imaging with the functional optical information have been used to improve the resolution and accuracy of FT. Previously, we have reported on the feasibility of a new imaging method, "Thermal Outlining using Focused Ultrasound" (TOFU), which combines the sensitivity of FT with the resolution of focused ultrasound using temperature reversible fluorescent probes. In this method, the position of the temperature reversible fluorescent probes is localized by an increase in fluorescent signal when the hot spot of the focused ultrasound beam is scanned over the medium. This a priori information is then utilized to guide and constrain conventional reconstruction algorithm to recover the position and concentration of the probes more accurately. The small size of the focal spot (~1.4 mm) up to a depth of 6 cm, allows imaging the distribution of these temperature sensitive agents with not only high spatial resolution but also high quantitative accuracy in deep tissue. In this work, the performance of the system will be evaluated using simulation and phantoms to investigate the dependence that size of the fluorescent distribution has on the TOFU system performance.

  6. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    SciTech Connect

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan; Liu, Yang; Tong, Cuiyan; Zhang, Xing; Kang, Zhenhui

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  7. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. PMID:27315521

  8. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  9. Rapid and sensitive determination of clenbuterol in porcine muscle and swine urine using a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Bai, Bing; Zhang, Chenxuan; Wu, Wenying; Du, Liming; Liu, Hailong; Yao, Guojun

    2015-02-01

    The feed additive Clenbuterol hydrochloric acid (CLB) is non-fluorescent, thus it is difficult to quantify through direct fluorescent method. Palmatine (PAL) can react with cucurbit[7]uril (CB[7]) to form stable complexes as a fluorescent probe. Significant quenching of the fluorescence intensity of the CB[7]-PAL complex was observed with the addition of CLB. Based on the significant quenching of the supramolecular complex fluorescence intensity, a novel spectrofluorimetric method with high convenience, selectivity and sensitivity was developed for the determination of CLB. The fluorescence quenching values (ΔF) showed good linear relationship with CLB concentrations from 0.011 μg mL-1 to 4.2 μg mL-1 with a detection limit 0.004 μg mL-1. In this research, an ultrasound treatment replaced the former time-consuming shake method to form stable complexes. The proposed spectrofluorimetric method had been successfully applied to the determination of CLB in porcine muscle and swine urine with good precision and accuracy. The competing reaction and the supramolecular interaction mechanisms between the CLB and PAL as they fight for occupancy of the CB[7] cavity were studied using spectrofluorimetry, 1H NMR, and molecular modeling calculations. Interestingly, results indicate that two stable CB[7]-CLB complexes were formed.

  10. MeV heavy ion microprobe PIXE for the analysis of the materials surface

    NASA Astrophysics Data System (ADS)

    Mokuno, Y.; Horino, Y.; Kinomura, A.; Chayahara, A.; Kiuchi, M.; Fujii, K.; Takai, M.

    1994-03-01

    Micro PIXE analysis using MeV phosphorus microprobes was performed to a surface structure which consists of multilevel aluminum wirings in silicon nitride and these results were compared with those from a proton microprobe. In the case of a 2 MeV phosphorus microprobe, the X-ray production was enhanced near the surface due to the large energy deposition rate or the short projectile range. As a result, the increase in surface sensitivity was clearly shown in PIXE mapping images of aluminum, silicon, and phosphorus.

  11. SYBR Gold Fluorescence Quenching is a Sensitive Probe of Chitosan-microRNA Interactions.

    PubMed

    Santos-Carballal, Beatriz; Swamy, Musti J; Moerschbacher, Bruno M; Goycoolea, Francisco M

    2016-01-01

    Competitive dye displacement titration has previously been used to characterize chitosan-DNA interactions using ethidium bromide. In this work, we aim to develop a fast and reliable method using SYBR Gold as a fluorescent probe to evaluate the binding affinity between ssRNA and chitosan. The interaction of chitosan with ssRNA was investigated as a function of temperature, molecular weight and degree of acetylation of chitosan, using competitive dye displacement titrations with fluorescence quenching. Affinity constants are reported, showing the high sensitivity of the interaction to the degree of acetylation of chitosan and barely dependent on the molecular weight. We propose that the mechanism of SYBR Gold fluorescence quenching is governed by both static and dynamic quenching.

  12. Determination of intracellular pH using sensitive, clickable fluorescent probes.

    PubMed

    Yapici, Nazmiye B; Mandalapu, Srinivas Rao; Chew, Teng-Leong; Khuon, Satya; Bi, Lanrong

    2012-04-01

    We synthesized and evaluated a series of acidic fluorescent pH probes exhibiting robust pH dependence, high sensitivity and photostability, and excellent cell membrane permeability. Titration analyses indicated that probe 3 could increase its fluorescence intensity 800-fold between pH 8.0 and 4.1. Additionally, its pK(a) value is optimal for intracellular probing of acidic organelles. Fluorescent imaging of HepG2 and Hela cells further revealed that probe 3 demonstrates outstanding capacity for monitoring of intracellular [H(+)] levels. The easily accessible terminal alkyne/azido function groups of these probes offer the possibility of rapidly constructing sensor molecule libraries using 'click' chemistry.

  13. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors.

    PubMed

    Oh, Wan-Kyu; Jeong, Yoon Seon; Song, Jooyoung; Jang, Jyongsik

    2011-11-15

    Novel fluorescent polyacrylonitrile nanoparticles were synthesized by microemulsion polymerization and Schiff base modification. By further modification with europium, the polyacrylonitrile nanoparticles could be used as a highly sensitive and rapid sensor for Bacillus anthracis spore detection in aqueous solution. The europium-modified polyacrylonitrile nanoparticles were readily combined with dipicolinic acid as a unique biomarker of B. anthracis, leading to high fluorescence emission. These nanoparticles enabled ratiometric detection without instrument-specific calibration due to the internal fluorescence reference. Additionally, the europium-modified polyacrylonitrile nanoparticle sensors exhibited a remarkable limit of detection (10pM) for dipicolinic acid and outstanding selectivity (160×) over aromatic ligands in aqueous solution. The ultrafine nanoparticle sensor showed a high capability for detecting anthrax due to the increased surface area-to-volume ratio and enhanced dispersibility. PMID:21893406

  14. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA.

    PubMed

    Li, J J; Geyer, R; Tan, W

    2000-06-01

    Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.

  15. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol

    NASA Astrophysics Data System (ADS)

    Tan, Xuanping; Liu, Shaopu; Shen, Yizhong; He, Youqiu; Yang, Jidong

    2014-12-01

    In this work, using the quenching of fluorescence of thioglycollic acid (TGA)-capped CdTe quantum dots (QDs), a novel method for the determination of kaempferol (KAE) has been developed. Under optimum conditions, a linear calibration plot of the quenched fluorescence intensity at 552 nm against the concentration of KAE was observed in the range of 4-44 μg mL-1 with a detection limit (3σ/K) of 0.79 μg mL-1. In addition, the detailed reaction mechanism has also been proposed on the basis of electron transfer supported by ultraviolet-visible (UV-vis) absorption and fluorescence (FL) spectroscopy. The method has been applied for the determination of KAE in pharmaceutical preparations with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation.

  16. The possibilities of improvement in the sensitivity of cancer fluorescence diagnostics by computer image processing

    NASA Astrophysics Data System (ADS)

    Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander

    2008-02-01

    Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.

  17. Fluorescently imaged particle counting immunoassay for sensitive detection of DNA modifications.

    PubMed

    Wang, Zhixin; Wang, Xiaoli; Liu, Shengquan; Yin, Junfa; Wang, Hailin

    2010-12-01

    Modifications of genomic DNA may change gene expression and cause adverse health effects. Here we for the first time demonstrate a particle counting immunoassay for rapid and sensitive detection of DNA modifications using benzo[a]pyrenediol epoxide (BPDE)-DNA adducts as an example. The BPDE-adducted DNA is specifically captured by immunomagnetic particles and then isolated from unmodified DNA by applying an external magnetic field. By taking advantage of the fluorescence signal amplification through multiple labeling of captured DNA by OliGreen dye, the captured BPDE-DNA adducts can be quantified by particle counting from fluorescence imaging. This clearly demonstrates that the number of fluorescently countable particles is proportional to the modification content in genomic DNA. It is interesting to note that the background fluorescence signal caused by nonspecific adsorption of OliGreen dye can be more effectively quenched than that induced by the binding of OliGreen dye to ssDNA, allowing for significant reduction in the background fluorescence and further enhancing the detection sensitivity. The developed method can detect trace BPDE-DNA adducts as low as 180 fM in the presence of 1 billion times more normal nucleotides in genomic DNA and has a dynamic range over 4 orders of magnitude. By using anti-5-methylcytosine antibody, the method is extended to the detection of global DNA methylation. With high sensitivity and specificity, this rapid and easy-to-perform analytical method for DNA modifications shows a broad spectrum of potential applications in genotoxical and epigenetic analysis.

  18. High-sensitivity DNA detection with a laser-excited confocal fluorescence gel scanner.

    PubMed

    Quesada, M A; Rye, H S; Gingrich, J C; Glazer, A N; Mathies, R A

    1991-05-01

    A high-sensitivity, laser-excited confocal fluorescence gel scanner has been developed and applied to the detection of fluorescently labeled DNA. An argon ion laser (1-10 mW at 488 nm) is focused in the gel with a high-numerical aperture microscope objective. The laser-excited fluorescence is gathered by the objective and focused on a confocal spatial filter, followed by a spectral filter and photodetector. The gel is placed on a computer-controlled scan stage, and the scanned image of the gel fluorescence is stored and analyzed in a computer. This scanner has been used to detect DNA separated on sequencing gels, agarose mapping gels and pulsed field gels. Sanger sequencing gels were run on M13mp18 DNA using a fluoresceinated primer. The 400-microns-thick gels, loaded with 30 fmol of DNA fragments in 3-mm lanes, were scanned at 78-microns resolution. The high resolution of our scanner coupled with image processing allows us to read up to approximately 300 bases in four adjacent sequencing lanes. The minimum band size that could be detected and read was approximately 200 microns. This instrument has a limiting detection sensitivity of approximately 10 amol of fluorescein-labeled DNA in a 1 x 3-mm band. In applications to agarose mapping gels, we have exploited the fact that DNA can be prestained with ethidium homodimer, followed by electrophoresis and fluorescence detection to achieve picogram sensitivity. We have also developed methods using both ethidium homodimer and thiazole orange staining which permit two-color detection of DNA in one lane.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  20. New Environment-Sensitive Multichannel DNA Fluorescent Label for Investigation of the Protein-DNA Interactions

    PubMed Central

    Vorobjev, Yuri N.; Barthes, Nicolas P. F.; Michel, Benoît Y.; Burger, Alain; Fedorova, Olga S.

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5′-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  1. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.

  2. Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions

    NASA Astrophysics Data System (ADS)

    Makwana, Bharat A.; Vyas, Disha J.; Bhatt, Keyur D.; Darji, Savan; Jain, Vinod K.

    2016-04-01

    The synthesis of metal nanoparticles by eco-friendly and reliable processes is an important aspect in many fields. In this study, octamethoxy resorcin [4] arene tetrahydrazide (OMRTH)-reduced and stabilized silver nanoparticles were synthesized via a simple one-pot method. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) and particle size analyzer (PSA). Furthermore, the application of OMRTH-AgNps as a simple, cost-effective and sensitive fluorescent sensor for rapid detection of cadmium was explored. Under optimum conditions, the fluorescence intensity of OMRTH-AgNps was inversely proportional to the cadmium concentration. Using OMRTH-AgNps as a selective and sensitive fluorescent probe, cadmium can be detected at a minimum concentration level of 10-8 M in a facile way of fluorescence quenching, i.e., by a "turn off" mechanism. The method has been successfully applied for determination of Cd[II] ions in groundwater and industrial effluent wastewater samples.

  3. Archaerhodopsin Variants with Enhanced Voltage Sensitive Fluorescence in Mammalian and Caenorhabditis elegans Neurons

    PubMed Central

    Flytzanis, Nicholas C.; Bedbrook, Claire N.; Chiu, Hui; Engqvist, Martin K. M.; Xiao, Cheng; Chan, Ken Y.; Sternberg, Paul W.; Arnold, Frances H.; Gradinaru, Viviana

    2014-01-01

    Probing the neural circuit dynamics underlying behavior would benefit greatly from improved genetically encoded voltage indicators. The proton pump Archaerhodopsin-3 (Arch), an optogenetic tool commonly used for neuronal inhibition, has been shown to emit voltage sensitive fluorescence. Here we report two Arch variants that in response to 655 nm light have 3–5 times increased fluorescence and 55–99 times reduced photocurrents compared to Arch WT. The most fluorescent variant, Archer1, has 25–40% fluorescence change in response to action potentials while using 9 times lower light intensity compared to other Arch-based voltage sensors. Archer1 is capable of wavelength specific functionality as a voltage sensor under red-light and as an inhibitory actuator under green-light. As a proof-of-concept for the application of Arch-based sensors in vivo, we show fluorescence voltage sensing in behaving C. elegans. Archer1’s characteristics contribute to the goal of all-optical detection and modulation of activity in neuronal networks in vivo. PMID:25222271

  4. Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water.

    PubMed

    Wankar, Shashwati; Turner, Nicholas W; Krupadam, Reddithota J

    2016-08-15

    Molecular imprints of the tobacco necrosis virus (TNV) have been formed within polythiophene nanofilms with an approximate thickness of 200nm. These films have been electrochemically deposited onto conducting Au surfaces. Upon rebinding, the TNV-polythiophene complex changes the fluorescence intensity of the nanofilm. The fluorescence intensity at 410nm was observed to be proportional to the concentration of viruses in the range of 0.1-10ngL(-1) (0.15-15pg) with the lower calculated detection limit of 2.29ngL(-1) (3.4pg). The intensity of the fluorescence emission is not affected by the thickness of the polythiophene film and the nature of TNV specific binding sites. Kinetic data analyses showed that the nanofilm responds to TNV within 2min; and cross-selectivity studies with tobacco mosaic virus (TMV) showed an excellent specificity for the targeted TNV. These binding experiments demonstrate the potential of fluorescence emission for the specific, label free and rapid detection of viruses using nanofilm sensors. Taking into account the lower limit of detection, the fluorescence sensing reported here is reliable, simple to perform, rapid, cost-effective and offers a sensitive analytical method for virus detection in water resources.

  5. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV

    PubMed Central

    Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki

    2016-01-01

    Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876

  6. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo.

    PubMed

    Asanuma, Daisuke; Sakabe, Masayo; Kamiya, Mako; Yamamoto, Kyoko; Hiratake, Jun; Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Nagano, Tetsuo; Kobayashi, Hisataka; Urano, Yasuteru

    2015-01-01

    Fluorescence-guided diagnostics is one of the most promising approaches for facile detection of cancer in situ. Here we focus on β-galactosidase, which is overexpressed in primary ovarian cancers, as a molecular target for visualizing peritoneal metastases from ovarian cancers. As existing fluorescence probes are unsuitable, we have designed membrane-permeable HMRef-βGal, in which the optimized intramolecular spirocyclic function affords >1,400-fold fluorescence enhancement on activation. We confirm that HMRef-βGal sensitively detects intracellular β-galactosidase activity in several ovarian cancer lines. In vivo, this probe visualizes metastases as small as <1 mm in diameter in seven mouse models of disseminated human peritoneal ovarian cancer (SHIN3, SKOV3, OVK18, OVCAR3, OVCAR4, OVCAR5 and OVCAR8). Because of its high brightness, real-time detection of metastases with the naked eye is possible. Endoscopic fluorescence detection of metastases is also demonstrated. The results clearly indicate preclinical potential value of the probe for fluorescence-guided diagnosis of peritoneal metastases from ovarian cancers.

  7. Fluorescent chitosan complex nanosphere diazeniumdiolates as donors and sensitive real-time probes of nitric oxide.

    PubMed

    Tan, Lianjiang; Wan, Ajun; Li, Huili

    2013-02-21

    A new CuFL (2-{2-chloro-6-hydroxy-5-[(2-methyl-quinolin-8-ylamino)-methyl]-3-oxo-3H-xanthen-9-yl}-benzoic acid)-CS (chitosan) NS diazeniumdiolates system consisting of NO donors and highly-sensitive NO probes is reported. FL-CS NS diazeniumdiolates were synthesized by incorporating the fluorescent molecule FL with chitosan (CS) and reacting the resultant FL-CS complex with pressurized NO and dimethyl sulfate (DMS). Then the FL-CS NS diazeniumdiolates were reacted with copper chloride (CuCl(2)) to generate non-fluorescent CuFL-CS NS diazeniumdiolates. The CuFL-CS NS diazeniumdiolates have a spherical outline with a dimension of ca. 250 nm. They have high selectivity for NO over other related substances. The results of in vitro and in vivo experiments indicate that the CuFL-CS NS diazeniumdiolates can release NO under physiological conditions and meanwhile detect the released NO based on the considerable fluorescence increase of the otherwise non-fluorescent system caused by the NO. The good fluorescence stability of the NO-FL-CS NS provides prospects for the CuFL-CS NS diazeniumdiolates in biomedical applications. PMID:23223327

  8. Luminescent conjugated oligothiophenes for sensitive fluorescent assignment of protein inclusion bodies.

    PubMed

    Klingstedt, Therése; Blechschmidt, Cristiane; Nogalska, Anna; Prokop, Stefan; Häggqvist, Bo; Danielsson, Olof; Engel, W King; Askanas, Valerie; Heppner, Frank L; Nilsson, K Peter R

    2013-03-18

    Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands.

  9. Microanalysis by monochromatic microprobe x-ray fluorescence—physical basis, properties, and future prospects

    NASA Astrophysics Data System (ADS)

    Chen, Z. W.; Wittry, D. B.

    1998-07-01

    A monochromatic microprobe for x-ray fluorescence is obtained by a doubly-curved crystal diffractor which focuses characteristic radiation from a small laboratory-based x-ray source. Monochromatic microprobe x-ray fluorescence (MMXRF) provides unique advantages over conventional XRF, i.e., smaller analytical volume, higher sensitivity for the detection of impurities, and more accurate quantitation. Possible photon energies, voltage for the x-ray source, and type of diffractor geometry are discussed. Calculations of geometric aberration, collection solid angle, and beam intensity are given for a Johann-based diffractor. Properties of a mica diffractor used to focus Cu Kα1 x rays are predicted by ray tracing and experimentally verified by x-ray topographs and images of the focal spot. With the mica diffractor and a 20 μm x-ray source at 30 kV and 0.1 mA, ˜1.1×108 photons/s were obtained in a probe of 57 μm×43 μm and probes less than 10 μm appear to be theoretically possible. Energy dispersive spectra for bulk specimens of Si, GaAs, Mg, and Muscovite obtained with the Cu Kα1 probe exhibited extremely high signal/background ratios. The sources of background and reasons for low values are discussed. The low background resulted in predicted detection limits as low as 1.6 ppm for a measurement time of 500 s. Detection limits in the ppb range should be possible with higher power for the x-ray source, better detectors for energy dispersive spectrometry, improved diffractor fabrication and appropriate selection of the exciting photon energy.

  10. Fluorescent immunochromatography for rapid and sensitive typing of seasonal influenza viruses.

    PubMed

    Sakurai, Akira; Takayama, Katsuyoshi; Nomura, Namiko; Kajiwara, Naoki; Okamatsu, Masatoshi; Yamamoto, Naoki; Tamura, Tsuruki; Yamada, Jitsuho; Hashimoto, Masako; Sakoda, Yoshihiro; Suda, Yoshihiko; Kobayashi, Yukuharu; Kida, Hiroshi; Shibasaki, Futoshi

    2015-01-01

    Lateral flow tests also known as Immunochromatography (IC) is an antigen-detection method conducted on a nitrocellulose membrane that can be completed in less than 20 min. IC has been used as an important rapid test for clinical diagnosis and surveillance of influenza viruses, but the IC sensitivity is relatively low (approximately 60%) and the limit of detection (LOD) is as low as 10³ pfu per reaction. Recently, we reported an improved IC assay using antibodies conjugated with fluorescent beads (fluorescent immunochromatography; FLIC) for subtyping H5 influenza viruses (FLIC-H5). Although the FLIC strip must be scanned using a fluorescent reader, the sensitivity (LOD) is significantly improved over that of conventional IC methods. In addition, the antibodies which are specific against the subtypes of influenza viruses cannot be available for the detection of other subtypes when the major antigenicity will be changed. In this study, we established the use of FLIC to type seasonal influenza A and B viruses (FLIC-AB). This method has improved sensitivity to 100-fold higher than that of conventional IC methods when we used several strains of influenza viruses. In addition, FLIC-AB demonstrated the ability to detect influenza type A and influenza type B viruses from clinical samples with high sensitivity and specificity (Type A: sensitivity 98.7% (74/75), specificity 100% (54/54), Type B: sensitivity 100% (90/90), specificity 98.2% (54/55) in nasal swab samples) in comparison to the results of qRT-PCR. And furthermore, FLIC-AB performs better in the detection of early stage infection (under 13 h) than other conventional IC methods. Our results provide new strategies to prevent the early-stage transmission of influenza viruses in humans during both seasonal outbreaks and pandemics.

  11. Fluorescent Immunochromatography for Rapid and Sensitive Typing of Seasonal Influenza Viruses

    PubMed Central

    Sakurai, Akira; Takayama, Katsuyoshi; Nomura, Namiko; Kajiwara, Naoki; Okamatsu, Masatoshi; Yamamoto, Naoki; Tamura, Tsuruki; Yamada, Jitsuho; Hashimoto, Masako; Sakoda, Yoshihiro; Suda, Yoshihiko; Kobayashi, Yukuharu; Kida, Hiroshi; Shibasaki, Futoshi

    2015-01-01

    Lateral flow tests also known as Immunochromatography (IC) is an antigen-detection method conducted on a nitrocellulose membrane that can be completed in less than 20 min. IC has been used as an important rapid test for clinical diagnosis and surveillance of influenza viruses, but the IC sensitivity is relatively low (approximately 60%) and the limit of detection (LOD) is as low as 10³ pfu per reaction. Recently, we reported an improved IC assay using antibodies conjugated with fluorescent beads (fluorescent immunochromatography; FLIC) for subtyping H5 influenza viruses (FLIC-H5). Although the FLIC strip must be scanned using a fluorescent reader, the sensitivity (LOD) is significantly improved over that of conventional IC methods. In addition, the antibodies which are specific against the subtypes of influenza viruses cannot be available for the detection of other subtypes when the major antigenicity will be changed. In this study, we established the use of FLIC to type seasonal influenza A and B viruses (FLIC-AB). This method has improved sensitivity to 100-fold higher than that of conventional IC methods when we used several strains of influenza viruses. In addition, FLIC-AB demonstrated the ability to detect influenza type A and influenza type B viruses from clinical samples with high sensitivity and specificity (Type A: sensitivity 98.7% (74/75), specificity 100% (54/54), Type B: sensitivity 100% (90/90), specificity 98.2% (54/55) in nasal swab samples) in comparison to the results of qRT-PCR. And furthermore, FLIC-AB performs better in the detection of early stage infection (under 13h) than other conventional IC methods. Our results provide new strategies to prevent the early-stage transmission of influenza viruses in humans during both seasonal outbreaks and pandemics. PMID:25650570

  12. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  13. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  14. The mutual influence of two different dyes on their sensitized fluorescence (cofluorescence) in nanoparticles from complexes

    NASA Astrophysics Data System (ADS)

    Mironov, L. Yu.; Sveshnikova, E. B.; Ermolaev, V. L.

    2013-10-01

    We have studied the fluorescence sensitization and quenching for pairs of different dyes simultaneously incorporated into nanoparticles from complexes M(diketone)3phen, where M(III) is La(III), Lu(III), or Sc(III); diketone is p-phenylbenzoyltrifluoroacetone (PhBTA) or naphthoyltrifluoroacetone (NTA); and phen is 1,10-phenanthroline. We have shown that, upon formation of nanoparticles in the solution in the presence of two dyes the concentrations of which are either comparable with or lower than the concentration of nanoparticles (<20 nM), the intensities of the sensitized fluorescence of dyes in nanoparticles in binary solutions and in solutions of either of the dyes coincide. We have found that the intensity of sensitized fluorescence of small (<20 nM) concentrations of rhodamine 6G (R6G) or Nile blue (NB) increases by an order of magnitude upon simultaneous introduction into nanoparticles of 1 μM of coumarin 30 (C30), while the intensity of fluorescence of C30 sensitized by complexes decreases by an order of magnitude. The same effect is observed as 1 μM of R6G are introduced into nanoparticles with NB ([NB] ≤ 20 nM). The increase in the fluorescence of dye molecules upon their incorporation from the solution into nanoparticles from complexes is noticeably lower than that expected from the proposed ratio of concentrations of complexes and dyes in nanoparticles. Analysis of the obtained data indicates that the introduction of large concentrations of C30 or R6G dyes into nanoparticles makes it possible to prevent large energy losses due to impurities or upon transition to a triplet state that arises during the migration of the excitation energy over S 1 levels of complexes. Energy accumulated by these dyes is efficiently transferred to another dye that is present in the solution at lower concentrations and that has a lower-lying S 1 level, which makes it possible to increase its fluorescence by an order of magnitude upon its incorporation into nanoparticles.

  15. Microprobe analysis of chlorpromazine pigmentation

    SciTech Connect

    Benning, T.L.; McCormack, K.M.; Ingram, P.; Kaplan, D.L.; Shelburne, J.D.

    1988-10-01

    We describe the histochemical, ultrastructural, and microanalytical features of a skin biopsy specimen obtained from a patient with chlorpromazine pigmentation. Golden-brown pigment granules were present in the dermis, predominantly in a perivascular arrangement. The granules stained positively with the Fontana-Masson stain for silver-reducing substances and negatively with Perl's stain for iron. Electron microscopy revealed dense inclusion bodies in dermal histiocytes, pericytes, endothelial cells, and Schwann cells, as well as lying free in the extracellular matrix. These ''chlorpromazine bodies'' were quite dense even in unosmicated, unstained ultrathin sections, indicating that the pigmentation is related, at least in part, to the inclusions. Microprobe analysis of the chlorpromazine bodies revealed a striking peak for sulfur, which strongly suggests the presence of the drug or its metabolite within these inclusions.

  16. Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin.

    PubMed

    Zhang, Zhong; Li, Jinhua; Wang, Xiaoyan; Shen, Dazhong; Chen, Lingxin

    2015-05-01

    Phycocyanin with important physiological/environmental significance has attracted increasing attention; versatile molecularly imprinted polymers (MIPs) have been applied to diverse species, but protein imprinting is still quite difficult. Herein, using phycocyanin as template via a sol-gel process, we developed a novel fluorescent probe for specific recognition and sensitive detection of phycocyanin by quantum dots (QDs) based mesoporous structured imprinting microspheres (SiO2@QDs@ms-MIPs), obeying electron-transfer-induced fluorescence quenching mechanism. When phycocyanin was present, a Meisenheimer complex would be produced between phycocyanin and primary amino groups of QDs surface, and then the photoluminescent energy of QDs would be transferred to the complex, leading to the fluorescence quenching of QDs. As a result, the fluorescent intensity of the SiO2@QDs@ms-MIPs was significantly decreased within 8 min, and accordingly a favorable linearity within 0.02-0.8 μM and a high detectability of 5.9 nM were presented. Excellent recognition specificity for phycocyanin over its analogues was displayed, with a high imprinting factor of 4.72. Furthermore, the validated probe strategy was successfully applied to seawater and lake water sample analysis, and high recoveries in the range of 94.0-105.0% were attained at three spiking levels of phycocyanin, with precisions below 5.3%. The study provided promising perspectives to develop fluorescent probes for convenient, rapid recognition and sensitive detection of trace proteins from complex matrices, and further pushed forward protein imprinting research. PMID:25875154

  17. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  18. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  19. A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine.

    PubMed

    Manibalan, Kesavan; Chen, Sin-Ming; Mani, Veerappan; Huang, Tsung-Tao; Huang, Sheng-Tung

    2016-07-01

    The development of sensitive fluorescence probes to detect biothiols such as cysteine and homocysteine has attracted great attention in recent times. Herein, we described the design and synthesis of coumarin based long-wavelength fluorescence probe, Bromo-2-benzothiazolyl-3-cyano-7-hydroxy coumarin (BBCH, 2) for selective detections of cysteine and homocysteine. The probe is rationally designed in such a way that both sulfhydryl and adjacent amino groups of thiols are involved in sensing process. Only cysteine/homocysteine able to react with BBCH to release fluorescence reporter (BCH, 1); while, glutathione and other amino acids unable to react with BBCH due to the absence of adjacent amino groups. In presence of cysteine, the color of BBCH is turns from colorless to red and thus BBCH is a naked eye fluorescence indicator for cysteine. Besides, BBCH can discriminate cysteine and homocysteine based on color changes and different reaction rates. The described sensing platform showed good sensing performances to detect cysteine and homocysteine with detection limits of 0.87 and 0.19 μM, respectively. Practical applicability was verified in biological and pharmaceutical samples. PMID:27290640

  20. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA.

    PubMed

    Lan, Guo-Yu; Chen, Wei-Yu; Chang, Huan-Tsung

    2011-01-15

    In this study, we prepared fluorescent, functional oligonucleotide-stabilized silver nanoclusters (FFDNA-Ag NCs) through one-pot synthesis and then employed them as probes for single nucleotide polymorphisms (SNPs). The FFDNA-Ag NCs were obtained through the NaBH(4)-mediated reduction of AgNO(3) in the presence of a DNA strand having the sequence 5'-C(12)-CCAGATACTCACCGG-3'. The specific DNA scaffold combines a fluorescent base motif (C(12)) and a specific sequence (CCAGATACTCACCGG) that recognizes a gene for fumarylacetoacetate hydrolase (FAH). The sensing mechanism of our new probe is based on the FFDNA-Ag NCs having different stabilities (fluorescence intensities) in solutions containing 150 mM NaCl in the absence and presence of perfect match DNA (DNA(pmt)). Under the optimal conditions (150 mM NaCl, 20 mM phosphate solution, pH 7.0), the fluorescence ratios of the FFDNA-Ag NC probes in the presence and absence of DNA(pmt), plotted against the concentration of DNA(pmt), was linear over the range 25-1000 nM (R(2)=0.98), with a limit of detection (S/N=3) of 14 nM. This cost-effective and simple FFDNA-Ag NC probe is sensitive and selective for SNPs of a gene for FAH.

  1. A Highly Sensitive ESIPT-Based Ratiometric Fluorescence Sensor for Selective Detection of Al(3.).

    PubMed

    Sinha, Sanghamitra; Chowdhury, Bijit; Ghosh, Pradyut

    2016-09-19

    An excited-state intramolecular proton transfer (ESIPT)-based highly sensitive ratiometric fluorescence sensor, 1H was developed for selective detection of aluminum (Al(3+)) in acetonitrile as well as in 90% aqueous system. Single-crystal X-ray diffraction analysis reveals almost planar and conjugated structure of 1H. Photophysical properties of the sensor as well as its selectivity toward Al(3+) are explored using UV-visible, steady-state, and time-resolved fluorescence spectroscopic studies. The bright cyan (λem = 445 nm) fluorescence of 1H in acetonitrile turns into deep blue (λem = 412 nm) with ∼2.3-fold enhancement in emission intensity, in the presence of parts per billion level Al(3+) (detection limit = 0.5 nM). Interestingly, the probe 1H exhibits increased selectivity toward Al(3+) in H2O/acetonitrile (9:1 v/v) solvent system with a change in fluorescence color from pale green to deep blue associated with ca. sixfold enhancement in emission intensity. Density functional theoretical (DFT) calculations provide the ground- and excited-state energy optimized structures and properties of the proposed aluminum complex [Al(1) (OH)]2(2+), which is in harmony with the solution-state experimental findings and also supports the occurrence of ESIPT process in 1H. The ESIPT mechanism was also ascertained by comparing the basic photophysical properties of 1H with a similar O-methylated analogue, 1'Me. PMID:27571218

  2. Quantification of nanoparticle endocytosis based on double fluorescent pH-sensitive nanoparticles.

    PubMed

    Kurtz-Chalot, Andréa; Klein, Jean-Philippe; Pourchez, Jérémie; Boudard, Delphine; Bin, Valérie; Sabido, Odile; Marmuse, Laurence; Cottier, Michèle; Forest, Valérie

    2015-04-01

    Amorphous silica is a particularly interesting material because of its inertness and chemical stability. Silica nanoparticles have been recently developed for biomedical purposes but their innocuousness must be carefully investigated before clinical use. The relationship between nanoparticles physicochemical features, their uptake by cells and their biological activity represents a crucial issue, especially for the development of nanomedicine. This work aimed at adapting a method for the quantification of nanoparticle endocytosis based on pH-sensitive and double fluorescent particles. For that purpose, silica nanoparticles containing two fluorophores: FITC and pHrodo(TM) were developed, their respective fluorescence emission depends on the external pH. Indeed, FITC emits a green fluorescence at physiological pH and pHrodo(TM) emits a red fluorescence which intensity increased with acidification. Therefore, nanoparticles remained outside the cells could be clearly distinguished from nanoparticles uptaken by cells as these latter could be spotted inside cellular acidic compartments (such as phagolysosomes, micropinosomes…). Using this model, the endocytosis of 60 nm nanoparticles incubated with the RAW 264.7 macrophages was quantified using time-lapse microscopy and compared to that of 130 nm submicronic particles. The amount of internalized particles was also evaluated by fluorimetry. The biological impact of the particles was also investigated in terms of cytotoxicity, pro-inflammatory response and oxidative stress. Results clearly demonstrated that nanoparticles were more uptaken and more reactive than submicronic particles. Moreover, we validated a method of endocytosis quantification.

  3. Nuclear microprobe - synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SCRF.

    SciTech Connect

    Ryan, C. G.; Etschmann, B. E.; Vogt, S.; Maser, J.; Harland, C. L.; van Achterbergh, E.; Legnini, D.; Experimental Facilities Division; CSIRO Exploration and Mining; Australian Synchrotron Research Program, ANSTO

    2005-01-01

    The Dynamic Analysis (DA) method, for the projection of quantitative elemental images using Proton Induced X-ray Emission (PIXE), has been extended for use with energy-dispersive Synchrotron X-ray Fluorescence (SXRF) data collected with the X-ray microprobe by making use of similarities and synergy with nuclear microscopy. The broad element sensitivity of PIXE is complemented by the selective nature of SXRF, where the beam energy can be tuned to optimize the sensitivity in a portion of the periodic table. PIXE combined with Proton Induced {gamma}-ray Emission (PIGE) in this study provided images of geological samples of 25 elements, including characteristic X-rays up to the energy of the Nd K lines (37 keV). Maximum sensitivity was achieved for elements around Z {approx} 33 with detection limits of {approx}250 ppb (in 5 h). SXRF using a 16.1 keV photon microbeam provided images of 16 elements, with optimum sensitivity around Z {approx} 35 with detection limits of {approx}70 ppb (in 11 h), an improvement of {approx}2.4 times when corrected for acquisition time.

  4. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  5. Linking fluorescence spectroscopy to the scale of spectral sensitivity: the BAM reference fluorometer

    NASA Astrophysics Data System (ADS)

    Monte, Christian; Pilz, Walter; Resch-Genger, Ute

    2005-08-01

    Providing fluorescence and fluorescence excitation spectra traceable to the scale of spectral sensitivity (responsivity) and spectral radiance at minimized uncertainty is currently limited by two factors: The uncertainty of the available transfer standards and the uncertainty of the measurement process itself. Here the requirements on a reference fluorometer enabling measurements at minimized uncertainty, its design, the simulation and the realization are presented. The fluorometer is designed with minimized chromatic and geometrical aberrations. To realize an efficient reduction of stray light and subtractive dispersion a double monochromator design was necessary. The basic element is a so-called U-type Czerny-Turner single monochromator featuring off-axis parabolas and an entrance and exit slit virtually at the same place. Thereby spherical aberration, coma and astigmatism are effectively minimized. The here employed special double monochromator design further cancels the remaining aberrations of the single monochromator. The design of the whole spectrometer was optimized with a ray tracing program. To minimize uncertainties due to the transfer standards, the reference fluorometer is exclusively traceable to the spectral sensitivity (responsivity) scale. This enables the use of transfer standards with much smaller uncertainty. Here trap detectors are employed of common design but specially calibrated for a divergent light bundle. Based on this instrument with its achromatic design and precisely known numerical apertures the determination of absolute fluorescence spectra will be addressed.

  6. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  7. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker.

    PubMed

    Chen, Hao; Xie, Yujie; Kirillov, Alexander M; Liu, Liangliang; Yu, Minghui; Liu, Weisheng; Tang, Yu

    2015-03-25

    A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots (CDs) was designed to detect dipicolinic acid (DPA) as an anthrax biomarker with high selectivity and sensitivity. CDs were generated by one-step synthesis using an ethylenediaminetetraacetic acid precursor, and served as a scaffold for coordination with Tb(3+) and a fluorescence reference.

  8. On the analysis of neonatal hamster tooth germs with the photon microprobe at Daresbury, UK

    NASA Astrophysics Data System (ADS)

    Tros, G. H. J.; Van Langevelde, F.; Vis, R. D.

    1990-04-01

    Complementary to the micro-PIXE experiments performed on hamster tooth germs to elucidate the role of fluoride during the growth, the photon microprobe at Daresbury was used to obtain information on the distribution of Zn. The germs of fluoride-administered hamsters, together with a control group, were analyzed with the micro-synchrotron radiation fluorescence method (micro-SXRF).

  9. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time.

  10. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. PMID:26455772

  11. A sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media.

    PubMed

    Ezeh, Vivian C; Harrop, Todd C

    2012-02-01

    Arsenic contamination is a leading environmental problem. As such, levels of this toxic metalloid must be constantly monitored by reliable and low-cost methodologies. Because the currently accepted upper limit for arsenic in water is 10 ppb, very sensitive and selective detection strategies must be developed. Herein we describe the synthesis and characterization of a fluorescent chemical probe, namely, ArsenoFluor1, which is the first example of a chemosensor for As(3+) detection in organic solvents at 298 K. AF1 exhibits a 25-fold fluorescence increase in the presence of As(3+) at λ(em) = 496 nm in THF, which is selective for As(3+) over other biologically relevant ions (such as Na(+), Mg(2+), Fe(2+), and Zn(2+)) and displays a sub-ppb detection limit.

  12. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  13. A novel fluorescent probe for rapid and sensitive detection of hydrogen sulfide in living cells

    NASA Astrophysics Data System (ADS)

    Pan, Jian; Xu, Junchao; Zhang, Youlai; Wang, Liang; Qin, Caiqin; Zeng, Lintao; Zhang, Yue

    2016-11-01

    A novel fluorescent probe for H2S was developed based on a far-red emitting indole-BODIPY, which was decorated with morpholine and 2,4-dinitrobenzenesulfonyl (DNBS) group. This probe showed rapid response (t1/2 = 3 min), high selectivity and sensitivity for H2S with significant colorimetric and fluorescence OFF-ON signals, which was triggered by cleavage of 2,4-dinitrobenzenesulfonyl group. This probe could quantitatively detect the concentrations of H2S ranging from 0 to 60 μM, and the detection of limit was found to be as low as 26 nM. Cell imaging results indicated that the probe could detect and visualize H2S in the living cells.

  14. Polyaniline microtubes with a hexagonal cross-section and pH-sensitive fluorescence properties.

    PubMed

    Liu, Zhaoyuan; Zhu, Ying; Wang, Liang; Ding, Chunmei; Wang, Nü; Wan, Meixiang; Jiang, Lei

    2011-03-16

    Polyaniline (PANI) microtubes with a hexagonal cross-section are successfully synthesized by a self-assembly process in the presence of 8-hydroxyquinoline-5-sulfonic acid (HQS) as a dopant and FeCl(3) as an oxidant. The wall thickness of the PANI/HQS microtubes can be adjusted by the content of the oxidant. It is proposed that the aniline/HQS salts serve as a hard template for the formation of the hexagonal-cross-section microtubes. Moreover, PANI/HQS microtubes combined with ZnSO(4) show pH-dependent fluorescence. PANI hexagonal-cross-section microtubes combined with a pH-sensitive fluorescence may promise potential applications in fields such as chemical sensors and confined reaction vessels.

  15. Functionalization of Polymers with Fluorescent and Neutron Sensitive Groups for Efficient Neutron and Gamma Detection

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Yemam, Henok; Remedes, Tyler; Stuntz, Jack; Koldemir, Unsal; Sellinger, Alan; Greife, Uwe

    2015-10-01

    This presentation will review the efforts made by an interdisciplinary development project aimed at cost-effective, thermal neutron sensitive, plastic scintillators as part of the communities efforts towards replacing 3He based detectors. Colorado School of Mines researchers with backgrounds in Physics and Chemistry have worked on the incorporation of 10B in plastics through admixture of various commercial and novel dopants developed at CSM. In addition, new fluorescent dopants have been developed for plastic scintillators in an effort towards better understanding quenching effects and scintillator response to thermal neutrons via pulse shape discrimination methods. Results on transparent samples using fluorescent spectroscopy and gamma/neutron excitation will be presented. Funded via Department of Homeland Security - Domestic Nuclear Detection Office.

  16. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial.

    PubMed

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2016-09-01

    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. PMID:27543015

  17. Highly selective, sensitive and fast-responsive fluorescent sensor for Hg2 +

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Wu, Xingxing; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan; Li, Xiaoyan

    2016-06-01

    A phenylamine-oligothiophene-based fluorescent sensor 2TBEA was reported. This sensor exhibited highly selective, sensitive and rapid detection of Hg2 + ion in THF/H2O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by the coexistence of other competitive metal cations including Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Cu2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A1:1 binding ratio for 2TBEA - Hg2 + was demonstrated by Job's plot and mole-ratio curves. The coordination process was chemically reversible with EDTA. The detection limit was evaluated to be as low as 6.164 × 10- 8 M.

  18. A simple "molecular beacon"-based fluorescent sensing strategy for sensitive and selective detection of mercury (II).

    PubMed

    Xu, Huifeng; Zhu, Xi; Ye, Hongzhi; Yu, Lishuang; Liu, Xianxiang; Chen, Guonan

    2011-11-28

    A novel fluorescent sensor for the detection of Hg(2+) in aqueous media was developed. The method takes advantages of the highly selective thymine-Hg(2+)-thymine coordination and the sensitive "signal-on" structure-switching molecular beacon.

  19. Triplex molecular beacons for sensitive recognition of melamine based on abasic-site-containing DNA and fluorescent silver nanoclusters.

    PubMed

    Wang, Ya; Sun, Qianqian; Zhu, Linling; Zhang, Junying; Wang, Fengyang; Lu, Linlin; Yu, Haijun; Xu, Zhiai; Zhang, Wen

    2015-05-01

    A melamine aptamer derived from an abasic-site-containing triplex molecular beacon (tMB) was designed and developed for sensitive recognition of melamine by integrating tMBs and fluorescent silver nanoclusters (Ag NCs).

  20. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: A comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies

    SciTech Connect

    Khan, Faaizah; Gnudi, Luigi; Pickup, John C.

    2008-01-04

    Fluorescence-based glucose sensors using glucose-binding protein (GBP) as the receptor have employed fluorescence resonance energy transfer (FRET) and environmentally sensitive dyes, but with widely varying sensitivity. We therefore compared signal changes in (a) a FRET system constructed by transglutaminase-mediated N-terminal attachment of Alexa Fluor 488/555 as donor and QSY 7 as acceptor at Cys 152 or 182 mutations with (b) GBP labelled with the environmentally sensitive dye badan at C152 or 182. Both FRET systems had a small maximal fluorescence change at saturating glucose (7% and 16%), badan attached at C152 was associated with a 300% maximal fluorescence increase with glucose, though with badan at C182 there was no change. We conclude that glucose sensing based on GBP and FRET does not produce a larger enough signal change for clinical use; both the nature of the environmentally sensitive dye and its site of conjugation seem important for maximum signal change; badan-GBP152C has a large glucose-induced fluorescence change, suitable for development as a glucose sensor.

  1. Sensitive and Selective Ratiometric Fluorescence Probes for Detection of Intracellular Endogenous Monoamine Oxidase A.

    PubMed

    Wu, Xiaofeng; Li, Lihong; Shi, Wen; Gong, Qiuyu; Li, Xiaohua; Ma, Huimin

    2016-01-19

    Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and β-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 μg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO

  2. Synthesis and Evaluation of Thermo-Sensitive, Magnetic Fluorescent Nanocomposite as Trifunctional Drug Delivery Carrier.

    PubMed

    Jiang, Wei; Chen, Binhua; Wu, Juan; Xu, Shanshan; Tian, Renbing

    2016-01-01

    The thermo-sensitive magnetic fluorescent trifunctional nanocomposite (Fe₃O₄/ZnS@PNIPAM) has been synthesized via a facile route. The obtained biocompatible nanocomposite was composed of monodisperse heterostructural Fe₃O₄/ZnS core and a thermo-sensitive poly(N-isopropyl acrylamide) (PNIPAM) shell. Fe₃O₄/ZnS acted as magnetic response and fluorescence luminous body, PNIPAM acted as drug loaded platform which can adsorb and release drug controllably. Fe₃O₄/ZnS@PNIPAM was characterized and all of the results showed that it had excellent magnetic response, photostability and thermo-sensitivity. Moreover, the drug release studies in vitro showed that the release rate increased with increasing temperature. MTT assays in model HepG2 cells demonstrated that Fe₃O₄/ZnS@PNIPAM was practically non-toxic. Thus, our results revealed that Fe₃O₄/ZnS@PNIPAM would be used in biomedical fields such as targeted drug delivery, as well as cancer diagnosis and treatment in the nearly future. PMID:27398451

  3. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  4. Wide area microprobe analyser (WAMPA)

    NASA Astrophysics Data System (ADS)

    Rogoyski, A.; Skidmore, B.; Maheswaran, V.; Wright, I.; Zarnecki, J.; Pillinger, C.

    2006-10-01

    Wide area microprobe analyser (WAMPA) represents a new scientific instrument concept for planetary exploration. WAMPA builds on recently published research such as sensor webs and distributed microsensors [The sensor web: a new instrument concept, SPIE Symposium on Integrated Optics, 20 26 January 2001, San Jose, CA; Design considerations for distributed microsensor systems, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (CICC ’99), May 1999, pp. 279 286] but adds new sensor and localisation concepts. WAMPA is driven by the recurrent theme in spacecraft and sensor design to achieve smaller, lighter and lower cost systems. The essential characteristics of the WAMPA design that differentiates it from other space science instruments are that WAMPA is both a wide area instrument, consisting of a distributed set of sensors, and that each probe is designed to use little, if any, power. It achieves the former by being utilised in large numbers (>10), requiring that the individual probes be low mass (<100g) and low volume (<10cm). It is envisaged that the probes would be dispersed by landers or rovers as mission support instruments rather than primary science instruments and would be used in hostile environments and rugged terrains where the lander/rover could not be risked (see Fig. 1).

  5. Highly CO2 sensitive extruded fluorescent plastic indicator film based on HPTS.

    PubMed

    Mills, Andrew; Yusufu, Dilidaer

    2016-02-01

    Highly-sensitive optical fluorescent extruded plastic films are reported for the detection of gaseous and dissolved CO2. The pH-sensitive fluorescent dye used is 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS, PTS(-)) coated on the surface of hydrophilic fumed silica and the base is tetrabutylammonium hydroxide (TBAH). The above components are used to create an HPTS pigment (i.e. HPTS/SiO2/TBAH) with a high CO2 sensitivity (%CO2 (S = 1/2) = 0.16%) and fast 50% response (t50↓) = 2 s and recovery (t50↑) = 5 s times. Highly CO2-sensitive plastic films are then fabricated, via the extrusion of the HPTS pigment powder in low-density polyethylene (LDPE). As with the HPTS-pigment, the luminescence intensity (at 515 nm) and absorbance (at 475 nm) of the HPTS plastic film decreases as the %CO2 in the ambient gas phase increases. The HPTS plastic film exhibits a high CO2 sensitivity, %CO2 (S = 1/2), of 0.29%, but a response time <2 min and recovery time <40 min, which is slower than that of the HPTS pigment. The HPTS plastic film is very stable under ambient conditions, (with a shelf life >six month when stored in the dark but under otherwise ambient conditions). Moreover, the HPTS-LDPE film is stable in water, salt solution and even in acid (pH = 2), and in each of these media it can be used to detect dissolved CO2.

  6. Transient absorption spectroscopy detection of sensitized delayed fluorescence in chiral benzophenone/naphthalene systems

    NASA Astrophysics Data System (ADS)

    Bonancía, Paula; Jiménez, M. Consuelo; Miranda, Miguel A.

    2011-10-01

    Transient absorption spectroscopy has proven to be a powerful tool to investigate the formation and decay of excited singlet states upon triplet-triplet annihilation, following T-T energy transfer from a selectively excited sensitizer. Thus, upon selective excitation of benzophenone (BZP) by laser flash photolysis (LFP) at λ = 355 nm in the presence of naphthalene (NPT), a negative band centered at 340 nm has been detected, with growth and decay in the microsecond timescale. It has been assigned to the P-type NPT delayed-fluorescence. In the case of chiral BZP/NPT systems, stereodifferentiation has been observed in the kinetics of the involved photophysical processes.

  7. (DNS)C: a fluorescent, environmentally sensitive cytidine derivative for the direct detection of GGG triad sequences.

    PubMed

    Kim, Ki Tae; Kim, Hyun Woo; Moon, Dohyun; Rhee, Young Min; Kim, Byeang Hyean

    2013-09-14

    With the goal of developing a fluorescent nucleoside sensitive to its environment, in this study we synthesized (DNS)C, a novel modified 2'-deoxycytidine bearing a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) moiety at the N4 position, and tested its properties in monomeric and oligomeric states. (DNS)C undergoes intramolecular photoinduced electron transfer between its dansyl and cytosine units, resulting in remarkable changes in fluorescence that depend on the choice of solvent. In addition, the fluorescence behavior and thermal stability of oligonucleotides containing (DNS)C are dependent on the nature of the flanking and neighboring bases. Notably, (DNS)C exhibits fluorescence enhancement only in fully matched duplex DNA containing a GGG triad sequence. The environmental sensitivity of (DNS)C can be exploited as a fluorescence tool for monitoring the interactions of DNA with other biomolecules, including DNA, RNA, and proteins.

  8. (DNS)C: a fluorescent, environmentally sensitive cytidine derivative for the direct detection of GGG triad sequences.

    PubMed

    Kim, Ki Tae; Kim, Hyun Woo; Moon, Dohyun; Rhee, Young Min; Kim, Byeang Hyean

    2013-09-14

    With the goal of developing a fluorescent nucleoside sensitive to its environment, in this study we synthesized (DNS)C, a novel modified 2'-deoxycytidine bearing a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) moiety at the N4 position, and tested its properties in monomeric and oligomeric states. (DNS)C undergoes intramolecular photoinduced electron transfer between its dansyl and cytosine units, resulting in remarkable changes in fluorescence that depend on the choice of solvent. In addition, the fluorescence behavior and thermal stability of oligonucleotides containing (DNS)C are dependent on the nature of the flanking and neighboring bases. Notably, (DNS)C exhibits fluorescence enhancement only in fully matched duplex DNA containing a GGG triad sequence. The environmental sensitivity of (DNS)C can be exploited as a fluorescence tool for monitoring the interactions of DNA with other biomolecules, including DNA, RNA, and proteins. PMID:23846401

  9. Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll a Fluorescence.

    PubMed

    Frydenvang, Jens; van Maarschalkerweerd, Marie; Carstensen, Andreas; Mundus, Simon; Schmidt, Sidsel Birkelund; Pedas, Pai Rosager; Laursen, Kristian Holst; Schjoerring, Jan K; Husted, Søren

    2015-09-01

    Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture. PMID:26162430

  10. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars.

  11. Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll a Fluorescence1

    PubMed Central

    Frydenvang, Jens; van Maarschalkerweerd, Marie; Carstensen, Andreas; Mundus, Simon; Schmidt, Sidsel Birkelund; Pedas, Pai Rosager; Laursen, Kristian Holst; Schjoerring, Jan K.; Husted, Søren

    2015-01-01

    Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb63, which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture. PMID:26162430

  12. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes.

    PubMed

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO-FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO-FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO-FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO-FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution.

  13. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars. PMID:27093113

  14. Quantum dots-based label-free fluorescence sensor for sensitive and non-enzymatic detection of caffeic acid.

    PubMed

    Xiang, Xia; Shi, Jianbin; Huang, Fenghong; Zheng, Mingming; Deng, Qianchun

    2015-08-15

    We have developed a label-free fluorescence sensor for caffeic acid (CA) by the use of CdTe:Zn(2+) quantum dots (CdTe:Zn(2+) QDs) as an output signal. The principle of sensor is based on the fluorescence quenching and binding properties of Fe(2+) toward QDs and CA, respectively. To provide a fluorescence turn-on mode for CA detection, Fe(2+) is first mixed with QDs solution, leading to a low fluorescence emission. With the addition of CA, the fluorescence of QDs is recovered due to the strong binding interaction between CA and Fe(2+). Thus, a QDs-based label-free fluorescence sensor, designed in a simple mix-and-detect format, is established for CA detection. This study demonstrated here not only offers simple, sensitive and non-enzymatic detection method for CA, but also brings to light a new application of QDs in the food analysis.

  15. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2015-02-15

    In this report, N, S-codoped fluorescent carbon nanodots (NSCDs) were prepared by a facile, simple, low-cost, and green thermal treatment of ammonium persulfate, glucose, and ethylenediamine. The as-prepared NSCDs displayed bright blue emission with a relatively high fluorescent quantum yield of 21.6%, good water solubility, uniform morphology, and excellent chemical stability, compared to pure CDs. The fluorescence of NSCDs can be significantly quenched by methotrexate (MTX) via fluorescence resonance energy transfer (FRET) between NSCDs and MTX, which was used for highly selective and sensitive detection of MTX with a wide linear range up to 50.0 μM and a low detection limit of 0.33 nM (S/N = 3). Moreover, this method was explored for practical detection of MTX in human serum with satisfied results. PMID:25310482

  16. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs.

    PubMed

    Liang, Yi; Huang, Xiaolin; Yu, Ruijin; Zhou, Yaofeng; Xiong, Yonghua

    2016-09-14

    The present study described a novel fluorescence enzyme-linked immunosorbent assay (ELISA) used to detect ochratoxin A (OTA) by using the glucose oxidase (GOx)-mediated fluorescence quenching of mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs), in which GOx was used as an alternative to horseradish peroxidase (HRP) for the oxidization of glucose into hydrogen peroxide (H2O2) and gluconic acid. The MPA-QDs were used as a fluorescent signal output, whose fluorescence variation was extremely sensitive to the presence of H2O2 or hydrogen ions in the solution. Under the optimized conditions, the proposed fluorescence ELISA demonstrated a good linear detection of OTA in corn extract from 2.4 pg mL(-1) to 625 pg mL(-1) with a limit of detection of 2.2 pg mL(-1), which was approximately 15-fold lower than that of conventional HRP-based ELISA. Our developed fluorescence immunoassay was also similar to HRP-based ELISA in terms of selectivity, accuracy, and reproducibility. In summary, this study was the first to use the GOx-mediated fluorescence quenching of QDs in immunoassay to detect OTA, offering a new possibility for the analysis of other mycotoxins and biomolecules. PMID:27566355

  17. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging

    PubMed Central

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen en Henegouwen, Paul M. P.; Jennings, Travis L.; Susumu, Kimihiro; Medintz, Igor L.; Hildebrandt, Niko; Miller, Lawrence W.

    2016-01-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide–mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions. PMID:27386579

  18. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect.

    PubMed

    Fang, Aijin; Long, Qian; Wu, Qiongqiong; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    Sudan dyes are banned as food additives due to the carcinogenicity of their metabolites in the human body. Therefore, it is of great significance for sensitive detection of Sudan dyes. This paper reports a novel nanosensor for Sudan dyes detection based on fluorescence (FL) quenching of hexadecyl trimethyl ammonium bromide (CTAB) stabilized upconversion nanoparticles (UCNPs) through the inner filter effect (IFE). In the presence of Sudan I-IV, the fluorescence emission of UCNPs was effectively quenched due to the absorption bands of Sudan I-IV largely covered the emission bands of UCNPs. Under the optimized conditions, the FL was quenched with Sudan concentration over the range of 0.05-40, 0.01-20, 0.01-40 and 0.05-40 μg/mL for Sudan I-IV, respectively. The corresponding limit of detection is 15.1, 2.83, 3.52 and 16.7 ng/mL (at 3σ/slope) respectively. Meanwhile, the nanosensor shows good selectivity, sensitivity and can be successfully applied to detection of Sudan in chili powder samples. PMID:26653433

  19. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide.

    PubMed

    Wen, Ying; Liu, Keyin; Yang, Huiran; Li, Yi; Lan, Haichuang; Liu, Yi; Zhang, Xinyu; Yi, Tao

    2014-10-01

    As a marker for oxidative stress and a second messenger in signal transduction, hydrogen peroxide (H2O2) plays an important role in living systems. It is thus critical to monitor the changes in H2O2 in cells and tissues. Here, we developed a highly sensitive and versatile ratiometric H2O2 fluorescent probe (NP1) based on 1,8-naphthalimide and boric acid ester. In response to H2O2, the ratio of its fluorescent intensities at 555 and 403 nm changed 1020-fold within 200 min. The detecting limit of NP1 toward H2O2 is estimated as 0.17 μM. It was capable of imaging endogenous H2O2 generated in live RAW 264.7 macrophages as a cellular inflammation response, and especially, it was able to detect H2O2 produced as a signaling molecule in A431 human epidermoid carcinoma cells through stimulation by epidermal growth factor. This probe contains an azide group and thus has the potential to be linked to various molecules via the click reaction. After binding to a Nuclear Localization Signal peptide, the peptide-based combination probe (pep-NP1) was successfully targeted to nuclei and was capable of ratiometrically detecting nuclear H2O2 in living cells. These results indicated that NP1 was a highly sensitive ratiometric H2O2 dye with promising biological applications.

  20. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect.

    PubMed

    Fang, Aijin; Long, Qian; Wu, Qiongqiong; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    Sudan dyes are banned as food additives due to the carcinogenicity of their metabolites in the human body. Therefore, it is of great significance for sensitive detection of Sudan dyes. This paper reports a novel nanosensor for Sudan dyes detection based on fluorescence (FL) quenching of hexadecyl trimethyl ammonium bromide (CTAB) stabilized upconversion nanoparticles (UCNPs) through the inner filter effect (IFE). In the presence of Sudan I-IV, the fluorescence emission of UCNPs was effectively quenched due to the absorption bands of Sudan I-IV largely covered the emission bands of UCNPs. Under the optimized conditions, the FL was quenched with Sudan concentration over the range of 0.05-40, 0.01-20, 0.01-40 and 0.05-40 μg/mL for Sudan I-IV, respectively. The corresponding limit of detection is 15.1, 2.83, 3.52 and 16.7 ng/mL (at 3σ/slope) respectively. Meanwhile, the nanosensor shows good selectivity, sensitivity and can be successfully applied to detection of Sudan in chili powder samples.

  1. Microprobe PIXE analysis of aluminium in the brains of patients with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Kakimi, S.; Fujii, K.

    1996-04-01

    To investigate the cause of Alzheimer's disease (senile dementia), we examined aluminium (Al) in the rat liver, and in the brains (hippocampus) of Alzheimer's disease patients using heavy ion (5 MeV Si 3+) microprobe and proton (2 MeV) microprobe PIXE analysis. Heavy ion microprobes (3 MeV Si 2+) have several time's higher sensitivity for Al detection than 2 MeV proton microprobes. (1) In the rat liver, Al was detected in the cell nuclei, where phosphorus (P) was most densely distributed. (2) We also demonstrated Al in the cell nuclei isolated from Alzheimer's disease brains using heavy ion (5 MeV Si 3+) microprobes. Al spectra were detected using 2 MeV proton microprobes in the isolated brain cell nuclei. Al could not be observed in areas where P was present in relatively small amounts, or was absent. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of Al in the nuclei of brain cells.

  2. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as antibody labels to increase the fluorescence signal and sensitivity. Ep...

  3. Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays.

    PubMed

    Wang, Yaqi; Gildersleeve, Jeffrey C; Basu, Amit; Zimmt, Matthew B

    2010-11-18

    Lectin-conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate-based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose-recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to those with biotin-ConA/Cy3-streptavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness values 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface-modified nanoparticles covers 15-30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to that of soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling.

  4. Design of a sensitive fluorescent polarization immunoassay for rapid screening of milk for cephalexin.

    PubMed

    Beloglazova, Natalia V; Eremin, Sergei A

    2015-11-01

    In this paper we describe the development of a sensitive, fast, and easily performed fluorescence polarization immunoassay for determination of cephalexin in milk. The experimental work was performed to increase sensitivity and specificity. Therefore, the structures of the tracers were varied by synthesis of both cephalexin (CEX) and cephalotin (CET) conjugates with a variety of fluorescent labels. Two rabbit antisera containing antibodies against cephalexin and cephalotin were tested in homologous and heterologous combinations with the tracers. For every working antibody-tracer combination, the analytical conditions and cross-reactivity for structural analogues-cephalosporins and other antibiotics that could also be present in milk-were determined. It was found that the highest sensitivity was achieved by use of the homologous pair CET-EDF-anti-CET antibody (limit of detection (LOD) 0.4 μg kg(-1) for standard solutions prepared in buffer), but this combination was not appropriate because of high cross-reactivity with CET. For subsequent experiments, therefore, CEX- EDF-anti-CEX antibody were chosen (LOD 0.8 μg kg(-1) for standard solutions prepared in buffer). Part of this manuscript is devoted to the variation of precipitation agents for pretreatment of milk before analysis; milk is an extremely complicated matrix. The optimum protein precipitation agent was methanol. This technique for cephalexin determination was characterized by a limit of detection of 1 μg kg(-1). The method was validated by using naturally contaminated and spiked milk samples. The results obtained corresponded very well with those obtained by HPLC, which was used as confirmation method. PMID:26416019

  5. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-01

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed. PMID:22531278

  6. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.

    PubMed

    Wang, Jie; Lv, Yanlin; Wan, Wei; Wang, Xuefei; Li, Alexander D Q; Tian, Zhiyuan

    2016-02-01

    As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching. PMID:26859429

  7. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.

    PubMed

    Wang, Jie; Lv, Yanlin; Wan, Wei; Wang, Xuefei; Li, Alexander D Q; Tian, Zhiyuan

    2016-02-01

    As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching.

  8. Microanalysis of metals in coal and coal ash using the Stanford/USGS SHRIMP-RG ion microprobe[Sensitive High-Resolution Ion MicroProbe--Reversed Geometry

    SciTech Connect

    Kolker, A.; Zielinski, R.A.; Wooden, J.L.; Persing, H.M.

    2000-07-01

    The capability of the SHRIMP-RG ion microprobe to determine the micro-distribution of selected trace metals in coal and coal ash was investigated as part of a larger study of the behavior of air toxic metals during coal combustion. Initial work, reported here, used the oxygen (O) ion source for in-situ determination of Cr and other elements in illite/smectite, a major inorganic constituent of the coals analyzed. This was followed by tests of the applicability of the SHRIMP-RG for trace-metal analysis of fly ash from a Kentucky power plant, in which U and Pb concentrations were determined in the coarse (63--150 micrometer) fraction of the fly ash. The results for illite/smectite confirm that it is an important source of chromium that may be emitted during coal burning. Results for fly-ash show that the {sup 75}As peak is resolvable from potential interferences in glass standards and partially resolvable in the fly ash, indicating that the SHRIMP-RG may be useful in characterizing the distribution of leachable metals condensed on fly ash surfaces.

  9. Enhancement of fluorescence development of end products by use of a fluorescence developer solution in a rapid and sensitive fluorescent spot test for specific detection of microbial beta-lactamases.

    PubMed

    Chen, K C; Holmes, K K

    1986-03-01

    A fluorescent spot test method for specific detection of microbial beta-lactamases as previously published (K. C. S. Chen, J. S. Knapp, and K. K. Holmes, J. Clin. Microbiol. 19:818-825, 1984) was improved by the use of a fluorescence developer solution. The fluorescence developer solution used in this study consisted of 0.78 M sodium tartrate buffer containing 12% formaldehyde at a final pH of 4.5. An addition of 1 volume of fluorescence developer solution to 5 volumes of ampicillin or cephalex substrate solution incubated with beta-lactamase-producing organisms, followed by heating the mixture at 45 degrees C for 10 min resulted in enhancement of fluorescence of the end products of beta-lactamase activity. This provides a more sensitive assay for microbial beta-lactamases and offers the potential for direct detection of beta-lactamases in clinical specimens.

  10. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity.

  11. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe

    NASA Astrophysics Data System (ADS)

    Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna

    2012-07-01

    We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.

  12. Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling

    NASA Astrophysics Data System (ADS)

    Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.

    2007-02-01

    We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.

  13. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  14. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing.

    PubMed

    Wang, Yaohui; Jiang, Caina; Wen, Guiqing; Zhang, Xinghui; Luo, Yanghe; Qin, Aimiao; Liang, Aihui; Jiang, Zhiliang

    2016-06-01

    Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2 PO4 -Na2 HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 10(4) to 3.53 × 10(7) , 4.95 × 10(5) to 2.475 × 10(8) and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 10(4) cfu/mL E. coli, 2.3 × 10(5) cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A naphthalene-based two-photon fluorescent probe for selective and sensitive detection of endogenous hypochlorous acid.

    PubMed

    Zhou, Xiao-Hong; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2016-11-01

    An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution. PMID:27591640

  16. A naphthalene-based two-photon fluorescent probe for selective and sensitive detection of endogenous hypochlorous acid.

    PubMed

    Zhou, Xiao-Hong; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2016-11-01

    An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution.

  17. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  18. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  19. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  20. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    PubMed Central

    Qiu, Jichuan; Zhang, Ruibin; Li, Jianhua; Sang, Yuanhua; Tang, Wei; Rivera Gil, Pilar; Liu, Hong

    2015-01-01

    Graphene quantum dots (GQDs) were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox). The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD) peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs). The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells. PMID:26604747

  1. An enzyme-aided amplification strategy for sensitive detection of DNA utilizing graphene oxide (GO) as a fluorescence quencher.

    PubMed

    Zhang, Jing; Tao, Mangjuan; Jin, Yan

    2014-07-01

    A facile, sensitive and rapid method has been developed for detection of disease-related DNA based on lambda exonuclease-aided signal amplification by utilizing graphene oxide (GO) as a fluorescence quencher. The fluorescence of the carboxyfluorescein-labeled DNA probe (F-DNA) was sharply quenched due to the electron or energy transfer between the fluorescence dye and GO. While in the presence of target DNA, the formation of a DNA hybrid released F-DNA from the surface of GO, leading to a fluorescence recovery. Then, the fluorescence enhancement was further amplified by using lambda exonuclease (λexo) to liberate target DNA for cyclic hybridization. Fluorescence polarization and gel electrophoresis further verified the reliability of the principle. Disease-related DNA can be sensitively detected based on the enzyme-aided amplification strategy. More importantly, single-base mismatched DNA can be effectively discriminated from complementary target DNA and random DNA. Therefore, it offered a universal, simple, sensitive and specific method for detection of disease-related genes. PMID:24840773

  2. Ratiometric fluorescent ion detection in water with high sensitivity via aggregation-mediated fluorescence resonance energy transfer using a conjugated polyelectrolyte as an optical platform.

    PubMed

    Le, Van Sang; Kim, Boram; Lee, Wonho; Jeong, Ji-Eun; Yang, Renqiang; Woo, Han Young

    2013-05-14

    A cationic conjugated polyelectrolyte was designed and synthesized based on poly(fluorene-co-phenylene) containing 5 mol% benzothiadiazole (BT) as a low energy trap and 15-crown-5 as a recognizing group for potassium ions. A potassium ion can form a sandwich-type 2:1 Lewis acid-based complex with 15-crown-5, to cause the intermolecular aggregation of polymers. This facilitates inter-chain fluorescence resonance energy transfer (FRET) to a low-energy BT segment, resulting in fluorescent signal amplification, even at dilute analyte concentrations. Highly sensitive and selective detection of K(+) ions was demonstrated in water. The linear response of ratiometric fluorescent signal as a function of [K(+) ] allows K(+) quantification in a range of nanomolar concentrations with a detection limit of ≈0.7 × 10(-9) M. PMID:23417971

  3. Microprobe analysis of teeth by synchrotron radiation: environmental contamination

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Carvalho, M. L.; Casaca, C.; Barreiros, M. A.; Cunha, A. S.; Chevallier, P.

    1999-10-01

    An X-ray fluorescence set-up with microprobe capabilities, installed at the Laboratoire pour l'Utilisation du Rayonnement Électromagnétique (LURE) synchrotron (France) was used for elemental determination in teeth. To evaluate the influence of living habits in dental elemental composition nine teeth collected post-mortem were analysed, five from a miner and four from a fisherman. All teeth from the fisherman were healthy. From the miner some teeth were carious and one of them was filled with metallic amalgam. Teeth were sliced under the vertical plane and each slice was scanned from the root to the enamel for elemental profile determination. The synchrotron microprobe resolution was of 100 μm and incident photons of 18 keV energy were used. The elemental concentration values found suggest heterogeneity of the teeth material. Moreover, the distinct profiles for Mn, Sr, Br and Pb were found when teeth from the miner and from the fisherman are compared which can be associated with dietary habits and environmental influence. Higher concentrations of Mn and Sr were found for the fisherman teeth. In addition, Br was only observed in this group of teeth. Pb levels are higher for the miner teeth in particular for dentine regions. The influence of amalgam, such as, increase of Zn and Hg contents in the teeth material, is only noticed for the immediate surroundings of the treated cavity.

  4. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  5. Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence.

    PubMed

    Hassanzadeh, Robab; Lotfi, Ali; Bagheri, Nafiseh; Hassanzadeh, Javad

    2016-09-01

    A novel spectrofluorimetric probe based on Ag nanoparticle (AgNPs)-enhanced terbium (III) (Tb) fluorescence was introduced for the sensitive determination of folic acid (FA). The effect of gold and silver nanoparticles in different size was investigated on the well-known Tb sensitized fluorescence emission of 1, 10-phenantroline (Phen). The greatest fluorescence intensity was observed in the presence of AgNPs with a diameter of ~6 nm maybe due to their highest surface area. Furthermore, it's discovered that FA can form Tb-Phen -FA ternary complexes and cause a notable diminution in this enhanced fluorescence system. Based on this finding, a high sensitive and selective method was developed for the determination of FA. Effects of various parameters like Ag NPs, Phen and Tb(3+) concentration and pH of media were investigated. In the optimum circumstances, the fluorescence emission of AgNPs-Phen-Tb collection was declined linearly by increasing the concentration of FA in the range of 0.5 to 110 nmol L(-1). Limits of detection and quantification were achieved to be 0.21 and 0.62 nmol  L(-1), respectively. The method has good linearity, recovery, reproducibility and sensitivity, and was adequately exploited to follow FA content in pharmaceutical, fortified flour and human urine samples.

  6. Sensitive fluorescence assay of organophosphorus pesticides based on the fluorescence resonance energy transfer between CdTe quantum dots and porphyrin.

    PubMed

    Xue, Gao; Yue, Zhao; Bing, Zhang; Yiwei, Tang; Xiuying, Liu; Jianrong, Li

    2016-08-01

    A sensitive and selective quantum dot (QD)-based fluorescence resonance energy transfer (FRET) biosensor was successfully fabricated for the detection of organophosphorus pesticides (OPs). 5,10,15,20-Tetra(4-pyridyl)porphyrin (TPyP) with meso-pyridyl substituents was bound to the surface of CdTe QDs to produce self-assembled nanosensors, and the process of FRET between QDs and TPyP occurred. However, the process of FRET was switched off with the addition of OPs, due to the combination between TPyP and OPs. The fluorescence intensity of TPyP (donor) would decrease gradually with the increasing concentration of OPs. Under optimal conditions, a linear correlation was established between the fluorescence intensity ratio ITPyP/IQDs and the concentration of paraoxon in the range of 9.09 × 10(-12)-1.09 × 10(-6) mol L(-1) with a detection limit of 3.15 × 10(-12) mol L(-1). The attractive sensitivity was obtained due to the efficient FRET and the superior fluorescence properties of QDs. The proposed method was successfully applied to the determination of the OPs in real fruit samples with satisfactory results. PMID:27305657

  7. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa

    PubMed Central

    Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134

  8. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2013-07-01

    Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb(3+)). Single-stranded oligonucleotides greatly enhance the Tb(3+) emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb(3+)/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb(3+), producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb(3+)/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb(3+)/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36±1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  9. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  10. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.

    PubMed

    Ong, Yi Hong; Zhu, Caigang; Liu, Quan

    2014-08-01

    Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we employed the Monte Carlo method to investigate the depth sensitivity achieved by various illumination and detection configurations including both the traditional cone configurations and new cone shell configurations, which are implemented by convex or axicon lenses. Phantom experiments have been carried out to validate the Monte Carlo modeling of fluorescence in a two-layered turbid, epithelial tissue model. The measured fluorescence and depth sensitivity of different illumination–detection configurations were compared with each other. The results indicate excellent agreement between the experimental and simulation results in the trends of fluorescence intensity and depth sensitivity. The findings of this study and the development of the Monte Carlo method for noncontact setups provide useful insight and assistance in the planning and optimization of optical designs for depth sensitive fluorescence measurements.

  11. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    NASA Astrophysics Data System (ADS)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  12. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Aluminum

    NASA Technical Reports Server (NTRS)

    Parker, Bradford, H.

    2009-01-01

    Historically both sensitivity level 3 and sensitivity level 4 fluorescent penetrants have been used to perform NASA Standard Level inspections of aerospace hardware. In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants were acceptable for inspections of NASA hardware. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections

  13. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence

    SciTech Connect

    D'Andrade, Brian W.; Baldo, Marc A.; Adachi, Chihaya; Brooks, Jason; Thompson, Mark E.; Forrest, Stephen R.

    2001-08-13

    We demonstrate high-efficiency yellow organic light-emitting devices (OLEDs) employing [2-methyl-6-[2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl-ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (Dcm{sup 2}) as a fluorescent lumophore, with a green electrophospho- rescent sensitizer, fac tris(2-phenylpyridine) iridium [Ir(ppy){sub 3}] co-doped into a 4,4{prime}-N,N{prime}dicarbazole-biphenyl host. The devices exhibit peak external fluorescent quantum and power efficiencies of 9%{+-}1% (25 cd/A) and 17{+-}2 lm/W at 0.01 mA/cm{sup 2}, respectively. At 10 mA/cm{sup 2}, the efficiencies are 4.1%{+-}0.5% (11 cd/A) and 3.1{+-}0.3 lm/W. We show that this exceptionally high performance for a fluorescent dye is due to the {approx}100% efficient transfer of both singlet and triplet excited states in the doubly doped host to the fluorescent material using Ir(ppy){sub 3} as a sensitizing agent. These results suggest that 100% internal quantum efficiency fluorescent OLEDs employing this sensitization process are within reach. {copyright} 2001 American Institute of Physics.

  14. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A. )

    1993-01-01

    A flow cytometric method has been developed that uses phase-sensitive detection to separate signals from simultaneous fluorescence emissions in cells labeled with fluorochromes having different fluorescence decay lifetimes. CHO cells were stained with propidium iodide (PI) and fluorescein isothiocyanate (FITC). These dyes bind to DNA and protein and the fluorescence lifetimes of the bound dyes are 15.0 and 3.6 ns, respectively. Cells were analyzed as they passed through a modulated (sinusoidal) laser excitation beam. Fluorescence was measured using only a long-pass filter to block scattered laser excitation light and a single photomultiplier tube detector. The fluorescence detector output signals were processed by dual-channel phase-sensitive detection electronics and the phase-resolved PI and FITC signals were displayed as frequency distribution histograms and bivariate plots. By shifting the phase of one detector channel reference signal by [pi]/2 + [phi][sub 1] degrees and the phase of the other detector channel reference signal by -[pi]/2 + [phi][sub 2] degrees, where [phi][sub 1] and [phi][sub 2] are the phase shifts associated with the PI and FITC lifetimes, the PI and FITC signals were separately resolved at their respective phase-sensitive detector outputs. This technology is also applicable to suppressing by cellular autofluorescence, unbound/free dye, nonspecific dye binding, and Raman and Rayleigh scattering. 21 refs., 2 figs.

  15. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.

    PubMed

    Scholz, Marek; Dědic, Roman; Breitenbach, Thomas; Hála, Jan

    2013-10-01

    Six common water-soluble singlet oxygen ((1)O2) photosensitizers - 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphine (TMPyP), meso-tetrakis(4-sulfonathophenyl)porphine (TPPS4), Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4), eosin Y, rose bengal, and methylene blue - were investigated in terms of their ability to produce delayed fluorescence (DF) in solutions at room temperature. All the photosensitizers dissolved in air-saturated phosphate buffered saline (PBS, pH 7.4) exhibit easily detectable DF, which can be nearly completely quenched by 10 mM NaN3, a specific (1)O2 quencher. The DF kinetics has a biexponential rise-decay character in a microsecond time domain. Therefore, we propose that singlet oxygen-sensitized delayed fluorescence (SOSDF), where the triplet state of a photosensitizer reacts with (1)O2 giving rise to an excited singlet state of the photosensitizer, is the prevailing mechanism. It was confirmed by additional evidence, such as a monoexponential decay of triplet-triplet transient absorption kinetics, dependence of SOSDF kinetics on oxygen concentration, absence of SOSDF in a nitrogen-saturated sample, or the effect of isotopic exchange H2O-D2O. Eosin Y and AlPcS4 show the largest SOSDF quantum yield among the selected photosensitizers, whereas rose bengal possesses the highest ratio of SOSDF intensity to prompt fluorescence intensity. The rate constant for the reaction of triplet state with (1)O2 giving rise to the excited singlet state of photosensitizer was estimated to be ~/>1 × 10(9) M(-1) s(-1). SOSDF kinetics contains information about both triplet and (1)O2 lifetimes and concentrations, which makes it a very useful alternative tool for monitoring photosensitizing and (1)O2 quenching processes, allowing its detection in the visible spectral region, utilizing the photosensitizer itself as a (1)O2 probe. Under our experimental conditions, SOSDF was up to three orders of magnitude more intense than the infrared (1)O2

  16. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    SciTech Connect

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  17. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay

    PubMed Central

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  18. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    PubMed

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  19. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    PubMed

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens.

  20. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe.

    PubMed

    Wang, Lu; Zhang, Jingye; Kim, Beomsue; Peng, Juanjuan; Berry, Stuart N; Ni, Yong; Su, Dongdong; Lee, Jungyeol; Yuan, Lin; Chang, Young-Tae

    2016-08-24

    Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules. PMID:27500425

  1. Development of a Tender-Energy Microprobe for Geosciences at NSLS and NSLS-II

    SciTech Connect

    Northrup, Paul A.

    2014-08-30

    We propose to develop a tender-energy (1-8 keV operational range, optimized for 1-5 keV) X-ray microprobe, to bring the functionality and scientific benefits of hard (>5 keV) X-ray microprobes to a largely untapped domain of lighter, geologically-important elements. This proposal seeks to extend and enhance user-facility capabilities particularly optimized for research in Geosciences. This will be accomplished through development and implementation of unique new synchrotron instrumentation for high-performance microspectroscopy and imaging in the distinctive tender energy range. This new user facility at Beamline X15B at the National Synchrotron Light Source (NSLS) will benefit the specific Earth Science research programs described in this proposal, and will be available for use by the broader community through the merit-based General User program and through the User Cooperative that operates X15B. Its development will provide immediate benefit to regional and national Earth Science research conducted at the NSLS. It will achieve even higher performance at the Tender Energy Spectroscopy (TES) Beamline at NSLS-II, a new state-of-the-art synchrotron under construction and scheduled to begin operation in 2014. Project Objectives: Our goals are threefold: 1. Develop superlative capabilities to extend hard X-ray microprobe functionality and ease of use to the tender energy range. 2. Bring high-performance XAS (including full EXAFS) to the micron scale, over the range of 1-8 keV. 3. Deliver high flux and element sensitivity for geoscience applications. Our user facility will be designed and optimized for tender-energy microbeam applications and techniques for Earth Science research, including XRF imaging and high-quality extended XAS. Its key attributes will be an energy range of 1 to 8 keV, user-tunable spot size ranging from 40x14 to 3x2 μm, high flux up to 2x1011 photons/s, beam positional stability and energy calibration stability optimized for high-quality and

  2. Boron analysis by electron microprobe using MoB4C layered synthetic crystals

    USGS Publications Warehouse

    McGee, J.J.; Slack, J.F.; Herrington, C.R.

    1991-01-01

    Preliminary electron microprobe studies of B distribution in minerals have been carried out using MoB4C-layered synthetic crystals to improve analytical sensitivity for B. Any microprobe measurements of the B contents of minerals using this crystal must include analyses for Cl to assess and correct for the interference of Cl X-rays on the BK?? peak. Microprobe analyses for B can be made routinely in tourmaline and other B-rich minerals, and minor B contents also can be determined in common rock-forming minerals. Incorporation of unusually high B contents in minerals other than borosilicates has been discovered in prograde and retrograde minerals in tourmalinites from the Broken Hill district, Australia, and may reflect high B activities produced during the metamorphism of tourmaline-rich rocks. -from Authors

  3. Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide.

    PubMed

    Gabe, Yu; Ueno, Tasuku; Urano, Yasuteru; Kojima, Hirotatsu; Nagano, Tetsuo

    2006-10-01

    4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is a well-known fluorophore, with a high molar extinction coefficient and high fluorescence quantum efficiency (Phi(fl)). Furthermore, its structure can be modified to change its excitation and emission wavelengths. However, little work has been done on the structural modification of fluorines at the B-4 position with other functional groups. We synthesized 4-methoxy-substituted BODIPY derivatives in satisfactory yields, and found that they exhibited improved solubility in aqueous solution. Moreover, their oxidation and reduction potentials were greatly decreased without any change in their absorbance and fluorescence properties. These features of 4-substituted BODIPYs may be useful for developing novel fluorescence probes based on the intramolecular photoinduced electron transfer (PeT) mechanism, because it is possible to optimize the PeT process precisely by modulating the electrochemical properties of the fluorophore. The value of this approach is exemplified by its application to the development of a highly sensitive and pH-independent fluorescence probe for nitric oxide.

  4. Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2-sensitive quantum dots for signal transduction.

    PubMed

    Zhan, Shengnan; Huang, Xiaolin; Chen, Rui; Li, Juan; Xiong, Yonghua

    2016-09-01

    A direct competitive fluorescent enzyme-linked immunosorbent assay (ELISA) was developed for the detection of zearalenone (ZEN) using ZEN labeled catalase (CAT) as a competing antigen with H2O2-sensitive CdTe quantum dots (QDs) for signal transduction. The novel fluorescent ELISA showed very high sensitivity for ZEN detection because it combined the high catalytic activity of CAT to H2O2 and H2O2-sensitive property of QDs. Under optimal conditions, the developed method showed a good dynamic linear detection for ZEN in the range of 2.4pg/mL to 1.25ng/mL with a detection limit of 4.1pg/mL. The median inhibition concentration (IC50) of ZEN was 75pg/mL, which was approximately 17-fold lower than that of horseradish peroxidase-based conventional ELISA. Moreover, our developed method also showed a high reproducibility and an excellent selectivity. In brief, the novel fluorescent ELISA shows great potential for the sensitive and economic detection of mycotoxins and other analytes in food analysis, clinical diagnosis and environmental monitoring.

  5. Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2-sensitive quantum dots for signal transduction.

    PubMed

    Zhan, Shengnan; Huang, Xiaolin; Chen, Rui; Li, Juan; Xiong, Yonghua

    2016-09-01

    A direct competitive fluorescent enzyme-linked immunosorbent assay (ELISA) was developed for the detection of zearalenone (ZEN) using ZEN labeled catalase (CAT) as a competing antigen with H2O2-sensitive CdTe quantum dots (QDs) for signal transduction. The novel fluorescent ELISA showed very high sensitivity for ZEN detection because it combined the high catalytic activity of CAT to H2O2 and H2O2-sensitive property of QDs. Under optimal conditions, the developed method showed a good dynamic linear detection for ZEN in the range of 2.4pg/mL to 1.25ng/mL with a detection limit of 4.1pg/mL. The median inhibition concentration (IC50) of ZEN was 75pg/mL, which was approximately 17-fold lower than that of horseradish peroxidase-based conventional ELISA. Moreover, our developed method also showed a high reproducibility and an excellent selectivity. In brief, the novel fluorescent ELISA shows great potential for the sensitive and economic detection of mycotoxins and other analytes in food analysis, clinical diagnosis and environmental monitoring. PMID:27343577

  6. Intrinsic and extrinsic temperature-dependency of viscosity-sensitive fluorescent molecular rotors.

    PubMed

    Howell, Sarah; Dakanali, Marianna; Theodorakis, Emmanuel A; Haidekker, Mark A

    2012-01-01

    Molecular rotors are a group of environment-sensitive fluorescent probes whose quantum yield depends on the ability to form twisted intramolecular charge-transfer (TICT) states. TICT formation is dominantly governed by the solvent's microviscosity, but polarity and the ability of the solvent to form hydrogen bonds play an additional role. The relationship between quantum yield ϕ(F) and viscosity η is widely accepted as a power-law, ϕ(F) = C · η(x). In this study, we isolated the direct influence of the temperature on the TICT formation rate by examining several molecular rotors in protic and aprotic solvents over a range of temperatures. Each solvent's viscosity was determined as a function of temperature and used in the above power-law to determine how the proportionality constant C varies with temperature. We found that the power-law relationship fully explains the variations of the measured steady-state intensity by temperature-induced variations of the solvent viscosity, and C can be assumed to be temperature-independent. The exponent x, however, was found to be significantly higher in aprotic solvents than in protic solvents. We conclude that the ability of the solvent to form hydrogen bonds has a major influence on the relationship between viscosity and quantum yield. To use molecular rotors for the quantitative determination of viscosity or microviscosity, the exponent x needs to be determined for each dye-solvent combination.

  7. Sensitive detection of tumour cells in effusions by combining cytology and fluorescence in situ hybridisation (FISH).

    PubMed

    Fiegl, M; Massoner, A; Haun, M; Sturm, W; Kaufmann, H; Hack, R; Krugmann, J; Fritzer-Szekeres, M; Grünewald, K; Gastl, G

    2004-08-01

    Diagnosis of malignant cells in effusions is important for staging procedures and resulting therapeutic decisions. Cytodiagnostics in effusions is sometimes difficult since reactive mesothelial cells can mimic malignant cells. We used fluorescence in situ hybridisation (FISH) in single-colour or if appropriate in dual-colour evaluation to detect chromosomal aberrations in effusion cells as markers of malignancy, to raise the diagnostic yield. Cytologic and FISH evaluations--by using probes representing several chromosomes always including chromosomes 11 and 17--were performed in 358 effusion fluids. Cytology was positive for malignancy in 44.4% of all effusions, whereas FISH was positive in 53.9% (P=0.0001). The combination of cytology and FISH was diagnostic for malignancy in 60.9% of effusions. Diagnostic superiority of FISH was demonstrated in effusions from breast cancer, lung cancer, pancreatic cancer, and in effusions from the entire group of gynaecological and gastrointestinal carcinomas. In transudates (effusion protein <2.5 g dl(-1)), malignant cells were detectable by cytology, FISH, and combined use of both methods in 18.6, 30, and 37.1% of effusions, respectively, suggesting that cytologic and molecular analysis should be performed also with transudates. In conclusion, FISH in combination with conventional cytology is a highly sensitive and specific diagnostic tool for detecting malignant cells in effusions.

  8. Sensitive detection of Ochratoxin A in food and drinks using metal-enhanced fluorescence.

    PubMed

    Todescato, Francesco; Antognoli, Agnese; Meneghello, Anna; Cretaio, Erica; Signorini, Raffaella; Bozio, Renato

    2014-07-15

    Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag-FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA-AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on-site detection. PMID:24583316

  9. Wavelength dispersive X-ray fluorescence imaging using a high-sensitivity imaging sensor

    NASA Astrophysics Data System (ADS)

    Ohmori, Takashi; Kato, Shuichi; Doi, Makoto; Shoji, Takashi; Tsuji, Kouichi

    2013-05-01

    A new wavelength-dispersive X-ray fluorescence (WD-XRF) imaging spectrometer equipped with a high-sensitivity imaging sensor was developed in our laboratory. In this instrument, a straight polycapillary optic was applied instead of a Soller slit as well as a 2D imaging X-ray detector instead of X-ray counters, which are used in conventional WD-XRF spectrometers. Therefore, images of elemental distribution were available after a short exposure time. Ni Kα images and Cu Kα images were clearly obtained at corresponding diffraction angles for a short exposure time of 10 s. By optimizing the spectrometer, the time required for imaging is reduced, leading to XRF image movies. It is difficult to distinguish two peaks (Ti Kα (4.508 keV) and Ba Lα (4.465 keV)) due to the poor energy resolution of EDXRS. However, Ti and Ba images could be successfully observed by the WD-XRF imaging spectrometer. The energy resolution of the developed spectrometer was 25 eV at the Ti Kα peak.

  10. Sensitive detection of Ochratoxin A in food and drinks using metal-enhanced fluorescence.

    PubMed

    Todescato, Francesco; Antognoli, Agnese; Meneghello, Anna; Cretaio, Erica; Signorini, Raffaella; Bozio, Renato

    2014-07-15

    Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag-FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA-AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on-site detection.

  11. Simple and sensitive determination of five quinolones in food by liquid chromatography with fluorescence detection.

    PubMed

    Ramos, Macarena; Aranda, Angela; Garcia, Elena; Reuvers, Thea; Hooghuis, Henny

    2003-06-15

    A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones. PMID:12742128

  12. Simple and sensitive determination of five quinolones in food by liquid chromatography with fluorescence detection.

    PubMed

    Ramos, Macarena; Aranda, Angela; Garcia, Elena; Reuvers, Thea; Hooghuis, Henny

    2003-06-15

    A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.

  13. Structural and permeability sensitivity of cells to low intensity ultrasound: Infrared and fluorescence evidence in vitro.

    PubMed

    Domenici, Fabio; Giliberti, Claudia; Bedini, Angelico; Palomba, Raffaele; Udroiu, Ion; Di Giambattista, Lucia; Pozzi, Deleana; Morrone, Stefania; Bordi, Federico; Congiu Castellano, Agostina

    2014-04-01

    This work is focused on the in vitro study of the effects induced by medical ultrasound (US) in murine fibroblast cells (NIH-3T3) at a low-intensity of exposure (spatial peak temporal average intensity Ita<0.1Wcm(-2)). Conventional 1MHz and 3MHz US devices of therapeutic relevance were employed with varying intensity and exposure time parameters. In this framework, upon cells exposure to US, structural changes at the molecular level were evaluated by infrared spectroscopy; alterations in plasma membrane permeability were monitored in terms of uptake efficiency of small cell-impermeable model drug molecules, as measured by fluorescence microscopy and flow cytometry. The results were related to the cell viability and combined with the statistical PCA analysis, confirming that NIH-3T3 cells are sensitive to therapeutic US, mainly at 1MHz, with time-dependent increases in both efficiency of uptake, recovery of wild-type membrane permeability, and the size of molecules entering 3T3. On the contrary, the exposures from US equipment at 3MHz show uptakes comparable with untreated samples.

  14. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-02-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. PMID:26653431

  15. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches.

  16. Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis

    NASA Astrophysics Data System (ADS)

    Su, Dongyue; Yang, Xin; Xia, Qingdong; Zhang, Qi; Chai, Fang; Wang, Chungang; Qu, Fengyu

    2014-09-01

    In this research, folic acid functionalized silver nanoparticles (FA-AgNPs) were selected as a colorimetric and a ‘turn on’ fluorescent sensor for detecting Hg2+. After being added into Hg2+, AgNPs can emit stable fluorescence at 440 nm when the excitation wavelength is selected at 275 nm. The absorbance and fluorescence of the FA-AgNPs could reflect the concentration of the Hg2+ ions. Thus, we developed a simple, sensitive analytical method to detect Hg2+ based on the colorimetric and fluorescence enhancement of FA-AgNPs. The sensor exhibits two linear response ranges between absorbance and fluorescence intensity with Hg2+ concentration, respectively. Meanwhile, a detection limit of 1 nM is estimated based on the linear relationship between responses with a concentration of Hg2+. The high specificity of Hg2+ with FA-AgNPs interactions provided the excellent selectivity towards detecting Hg2+ over other metal ions (Pb2+, Mg2+, Zn2+, Ni2+, Cu2+, Co2+, Ca2+, Mn2+, Fe2+, Cd2+, Ba2+, Cr6+ and Cr3+). This will provide a simple, effective and multifunctional colorimetric and fluorescent sensor for on-site and real-time Hg2+ ion detection. The proposed method can be applied to the analysis of trace Hg2+ in lake water. Additionally, the FA-AgNPs can be used as efficient catalyst for the reduction of 4-nitrophenol and potassium hexacyanoferrate (III).

  17. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg(2+) in water and food stuff.

    PubMed

    Hu, Xue; Wang, Wei; Huang, Yuming

    2016-07-01

    In this study, Hg(2+) ions were found to quench the fluorescence of glutathione (GSH)-capped copper clusters (Cu NCs). The Cu NCs were prepared by a simple reduction of CuSO4 in the presence of GSH serving both as a reducing and protecting agents, and characterized by ultraviolet-visible absorption spectroscopy (UV-vis), high resolution scanning electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectrometer (XPS). The GSH-Cu NCs displayed a small size, excellent water-dispersibility, good storage stability, good photostability and were stable in the presence of high concentrations of salt. The GSH-Cu NCs possessed strong blue fluorescence with a quantum yield of 10.6% and exhibited an excitation-independent fluorescence behavior. The zeta potential, TEM, resonance light scattering and dynamic light scattering measurements demonstrated that the Hg(2+) ion-induced aggregation of the Cu NCs contributed to the fluorescence quenching of the dispersed Cu NCs. On these findings, a sensitive and selective fluorescent probe was developed for detecting Hg(2+) in the linear range from 10nM to 10μM with a detection limit of 3.3nM (S/N=3). The proposed method has been successfully applied to determine Hg(2+) content in water sample and food stuff. The results of the proposed method were in good agreement with those obtained by a hydride generation atomic fluorescence spectrometry (HG-AFS). PMID:27154693

  18. Label-free silicon quantum dots as fluorescent probe for selective and sensitive detection of copper ions.

    PubMed

    Zhao, Jiangna; Deng, Jianhui; Yi, Yinhui; Li, Haitai; Zhang, Youyu; Yao, Shouzhuo

    2014-07-01

    In this work, label-free silicon quantum dots (SiQDs) were used as a novel fluorescence probe for the sensitive and selective detection of Cu(2+). The fluorescence of the SiQDs was effectively quenched by H2O2 from the reaction of ascorbic acid with O2, and hydroxyl radicals from Fenton reaction between H2O2 and Cu(+). The fluorescence intensity of SiQDs was quenched about 25% in 15 min after the addition of H2O2 (1mM). While the SiQDs was incubated with AA (1mM) and Cu(2+) (1 µM) under the same conditions, the fluorescence intensity of SiQDs decreased about 55%. Obviously, the recycling of Cu(2+) in the test system may lead to a dramatical decrease in the fluorescence of SiQDs. Under the optimized experimental conditions, the rate of fluorescence quenching of SiQDs was linearly dependent on the Cu(2+) concentration ranging from 25 to 600 nM with the limit of detection as low as 8 nM, which was much lower than that of existing methods. Moreover, the probe was successfully applied to the determination of Cu(2+) in different environmental water samples and human hair.

  19. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-01-01

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis. PMID:27428975

  20. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis

    PubMed Central

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-01-01

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3–10.0 µg·kg−1, with a limit of detection (LOD) of 0.1 µg·kg−1 and recoveries of 87.2%–114.3%, within 10 min. The results showed good correlation (R2 > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg−1. The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis. PMID:27428975

  1. Highly selective and sensitive fluorescence chemosensor for the detection of palladium species based on Tsuji-Trost reaction.

    PubMed

    Xu, Zhong-Yong; Li, Jing; Guan, Su; Zhang, Lei; Dong, Chang-Zhi

    2015-09-01

    A new chemosensor 7-nitro-2,1,3-benzoxadiazole-4-allyl-N-(thiophen-2-ylmethyl)carbamate (NBDTC) was synthesized and utilized for palladium detection based on the Tsuji-Trost reaction. NBDTC displayed specific and ratiometric fluorescent responses toward palladium species. The chemosensor showed more than 50-fold enhancement in fluorescence intensity with the presence of PEG400 and palladium because NBDTC can be transformed to NBDT under palladium-catalyzing Tsuji-Trost reaction. NBDTC displayed high selectivity and sensitivity for palladium species with the detection limit of 1.13×10(-9) M.

  2. Rhodamine 6G hydrazone bearing thiophene unit: A highly sensitive and selective off-on fluorescent chemosensor for Al3+

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Jia, Lei; Xu, Zhou-Qing

    2016-10-01

    A rhodamine derivative (R1) has been synthesized by a hydrazone formation of rhodamine 6G hydrazide with 3-methylthiophene-2-carbaldehyde, which exhibits high selectivity and sensitivity as an "off-on" fluorescent sensor toward Al3+ in water containing media. The binding process was confirmed by UV-vis absorption, fluorescence measurements, mass spectroscopy and DFT calculation. The probe functions by Al3+ induced hydrolytic cleavage of the imine-bond to produce an intense rhodamine-based emission. To test the practical use of the probe, the determination of Al3+ in real water samples was also evaluated.

  3. Rapid and sensitive determination of tryptophan, serotonin and psychoactive tryptamines by thin-layer chromatography/fluorescence detection.

    PubMed

    Kato, Noriyuki; Kojima, Takashi; Yoshiyagawa, Shinji; Ohta, Hikoto; Toriba, Akira; Nishimura, Hideo; Hayakawa, Kazuichi

    2007-03-23

    A rapid, sensitive and selective method for the determination of tryptophan (Trp), serotonin (5-HT) and psychoactive tryptamines (PATs) by thin-layer chromatography (TLC) with fluorescence detection is proposed. These compounds form fluorophores on the developing plate by heating after spraying with sodium hypochlorite, hydrogen peroxide or potassium hexacyanoferrate(III)-sodium hydroxide reagent. Fluorescent spots (vivid blue) were observed by irradiation with ultraviolet light (365 nm). The detection limits of Trp, 5-HT and PATs were in the range from 0.01 microg to 0.06 microg. This method was effectively applied to the detection of confiscated PAT powder and PAT in abusers' urine samples.

  4. Data acquisition with a nuclear microprobe

    SciTech Connect

    Maggiore, C.

    1980-01-01

    Spatially resolved information from the near surfaces of materials can be obtained with a nuclear microprobe. The spatial resolution is determined by the optics of the instrument and radiation damage in the specimen. Two- and three-dimensional maps of elemental concentration may be obtained from the near surfaces of materials. Data are acquired by repeated scans of a constantly moving beam over the region of interest or by counting for a preset integrated charge at each specimen location.

  5. The second Mars microprobe is unloaded

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars.

  6. Beam developments for the Harwell microprobe system

    SciTech Connect

    Read, P.M.; Cookson, J.A.; Alton, G.D.

    1986-01-01

    A consequence of the rapid development of micron and submicron size electronic devices is the diminished applicability of high energy ion microprobes with their present resolution limitations to the study of such components. Although submicron beams have been reported the available beam current is barely sufficiently for PIXE and is not adequate for RBS. This lack of lateral resolution is due to low beam brightness at the microprobe object and aberrations in the focusing elements. As part of a program to address these problems the Harwell microprobe lens has been relocated on a new 5 MV Laddertron accelerator. The increased brightness and improved stability of this facility has so far led to a reduction in beam size from 3 x 3 mS to about 2 x 2 mS. The feasibility of using a liquid metal ion source has been examined with a view to achieving more substantial increases in brightness. While such sources have brightness approximately 10V times greater than conventional gaseous sources the highly divergent nature of the beam presents problems for the beam transport system. The use of a liquid metal source on the accelerator has been successfully demonstrated but it indicates the need for a special low aberration injection lens if brightness is to be maintained.

  7. Ratiometric Fluorescence Live Imaging Analysis of Membrane Lipid Order in Arabidopsis Mitotic Cells Using a Lipid Order-Sensitive Probe.

    PubMed

    Gerbeau-Pissot, Patricia; Der, Christophe; Grebe, Markus; Stanislas, Thomas

    2016-01-01

    Eukaryotic cells contain membranes exhibiting different levels of lipid order mostly related to their relative amount of sterol-rich domains, thought to mediate temporal and spatial organization of cellular processes. We previously provided evidence in Arabidopsis thaliana that sterols are crucial for execution of cytokinesis, the last stage of cell division. Recently, we used di-4-ANEPPDHQ, a fluorescent probe sensitive to order of lipid phases, to quantify the level of membrane order of the cell plate, the membrane structure separating daughter cells during somatic cytokinesis of higher plant cells. By employing quantitative, ratiometric fluorescence microscopy for mapping localized lipid order levels, we revealed that the Arabidopsis cell plate represents a high-lipid-order domain of the plasma membrane. Here, we describe step-by-step protocols and troubleshooting for ratiometric live imaging procedures employing the di-4-ANEPPDHQ fluorescent probe for quantification of membrane lipid order during plant cell division in suspension cell cultures and roots of Arabidopsis thaliana.

  8. A Highly Sensitive Fluorescent Sensor for Palladium and Direct Imaging of Its Ecotoxicity in Living Model Organisms.

    PubMed

    Liu, Fei; Du, Juan; Xu, Meiying; Sun, Guoping

    2016-01-01

    Rhodamine is an ideal platform for fluorescence probes owing to its spiro-lactam framework and excellent photochemical properties. Herein, a novel rhodamine-based palladium fluorescent chemosensor, Rd-Eb, showing a fast response time (3 min), high sensitivity for palladium species over other ions, and a low detection limit (1.91×10(-7)  m), was synthesized. It can act as an obvious colorimetric as well as a fluorescent "off/on" sensor for Pd(2+) . In addition, it is also an excellent sensor for in vivo imaging of Pd(2+) in zebra fish and Daphnia magna, illuminating the impact of palladium on organisms at different growth stages with respect to biological toxicology.

  9. Detection of acid moisture in photovoltaic modules using a dual wavelength pH-sensitive fluorescent dye

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Iwami, Kentaro; Taguchi, Atsushi; Umeda, Norihiro; Masuda, Atsushi

    2014-01-01

    The formation of acetic acid via the penetration of moisture into ethylene vinyl acetate (EVA) in photovoltaic (PV) modules is cited as the main reason for PV modules’ degradation. Currently, there is no effective method for detecting acetic moisture in PV modules. We proposed a simple method for detecting acid moisture in PV modules using a dual-wavelength pH-sensitive dye that measures pH by the ratio of the intensities of two peaks in the fluorescence spectra of the dye. We detected the pH change caused by acetic acid with the change in the intensity ratio of the fluorescence spectra of the dried dye. Furthermore, we observed that the dry fluorescent dye is heat resistant to withstand the lamination process for the manufacturing of PV modules, and has good long-term durability.

  10. Fluorescence polarization immunoassays for rapid, accurate and sensitive determination of mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence polarization immunoassay (FPIA) is a type of homogeneous assay. For low molecular weight antigens, such as mycotoxins, it is based on the competition between an unlabeled antigen and its fluorescent-labeled derivative (tracer) for an antigen-specific antibody. The antigen content is det...

  11. Environment-sensitive fluorophores with benzothiadiazole and benzoselenadiazole structures as candidate components of a fluorescent polymeric thermometer.

    PubMed

    Uchiyama, Seiichi; Kimura, Kohki; Gota, Chie; Okabe, Kohki; Kawamoto, Kyoko; Inada, Noriko; Yoshihara, Toshitada; Tobita, Seiji

    2012-07-27

    An environment-sensitive fluorophore can change its maximum emission wavelength (λ(em)), fluorescence quantum yield (Φ(f)), and fluorescence lifetime in response to the surrounding environment. We have developed two new intramolecular charge-transfer-type environment-sensitive fluorophores, DBThD-IA and DBSeD-IA, in which the oxygen atom of a well-established 2,1,3-benzoxadiazole environment-sensitive fluorophore, DBD-IA, has been replaced by a sulfur and selenium atom, respectively. DBThD-IA is highly fluorescent in n-hexane (Φ(f) =0.81, λ(em) =537 nm) with excitation at 449 nm, but is almost nonfluorescent in water (Φ(f) =0.037, λ(em) =616 nm), similarly to DBD-IA (Φ(f) =0.91, λ(em) =520 nm in n-hexane; Φ(f) =0.027, λ(em) =616 nm in water). A similar variation in fluorescence properties was also observed for DBSeD-IA (Φ(f) =0.24, λ(em) =591 nm in n-hexane; Φ(f) =0.0046, λ(em) =672 nm in water). An intensive study of the solvent effects on the fluorescence properties of these fluorophores revealed that both the polarity of the environment and hydrogen bonding with solvent molecules accelerate the nonradiative relaxation of the excited fluorophores. Time-resolved optoacoustic and phosphorescence measurements clarified that both intersystem crossing and internal conversion are involved in the nonradiative relaxation processes of DBThD-IA and DBSeD-IA. In addition, DBThD-IA exhibits a 10-fold higher photostability in aqueous solution than the original fluorophore DBD-IA, which allowed us to create a new robust molecular nanogel thermometer for intracellular thermometry.

  12. A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition.

    PubMed

    Wang, Lei; Yan, Xu; Su, Xingguang

    2016-09-01

    In this paper, a label-free, highly sensitive and simple assay for one step detection of protein kinase (PKA) activity and inhibition that avoids the fluorescent dye process has been established. The detection was based on the fluorescence (FL) quenching of peptide-Ag nanoclusters (Ag NCs) caused by antibody modified Au nanoparticles (anti-Au NPs) via fluorescence resonance energy transfer (FRET). With PKA and adenosine 5'-triphosphate (ATP) introduced, the substrate peptide of Ag NCs could react with PKA via targeted phosphorylation, and followed by the linking interactions between peptide-Ag NCs and anti-Au NPs. According to the fluorescence quenching of Ag NCs, the activity of protein kinase can be facilely monitored in the range of 0.1-2000 mU/μL with high sensitivity. The detection limit for PKA is 0.039 mU/μL. We further explored the inhibitory effect of H-89 for protein kinase activity. The developed method was also applied to the investigation of drug-induced PKA activation in HeLa cells, which provides a promising means for screening of kinase-related drugs and the clinical diagnosis of disease. PMID:27543031

  13. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe.

    PubMed

    Xu, Min; Li, Baoxin

    2015-01-01

    A label-free and sensitive fluorescence assay for exonuclease activity is developed using commercially available SYBR Green I (SG) dye as signal probe. A proof-of-concept of this assay has been demonstrated by using exonuclease III (Exo III) as a model enzyme. In this assay, double-stranded DNA (dsDNA) can bind SG, resulting in a strong fluorescence signal of SG. Upon the addition of Exo III, dsDNA would be digested, and SG emits very weak fluorescence. Thus, Exo III activity can be facilely measured with a simple fluorescence reader. This method has a linear detection range from 1 U/mL to 200 U/mL with a detection limit of 0.7 U/mL. This label-free approach is selective, simple, convenient and cost-efficient without any complex DNA sequence design or fluorescence dye label. The method not only provides a platform for monitoring activity and inhibition of exonuclease but also shows great potential in biological process researches, drug discovery, and clinic diagnostics.

  14. A sensitive biosensor with a DNAzyme for lead(II) detection based on fluorescence turn-on.

    PubMed

    Guo, Yang; Li, Junting; Zhang, Xiaoqian; Tang, Yanli

    2015-07-01

    In this paper, we described a new DNAzyme-based fluorescent biosensor for the detection of Pb(2+). In the biosensor, the bulged structure is formed between the substrate labeled with fluorescein amidite (FAM) and DNAzyme after being annealed. Ethidium bromide (EB), the DNA intercalator, then intercalates into the double-stranded DNA section. Once FAM is excited, the FRET takes place from FAM to EB, which leads to the fluorescence of FAM decreasing greatly. In the presence of Pb(2+), the substrate is cleaved by DNAzyme, which breaks the bulged structure. Then EB is released and the FRET from FAM to EB is inhibited. In this case, the fluorescence of FAM increases dramatically. Thus, the Pb(2+) ions can be detected by measuring the fluorescence enhancement of FAM. Under optimal conditions, the increased fluorescence intensity ratio of FAM is dependent on the lead level in the sample, and exhibits a linear response over a Pb(2+) concentration range of 0-100 nM with a detection limit of 530 pM. The sensor showed high selectivity in the presence of a number of interference ions. The river water samples were also tested with satisfying results by using the new method. This sensor is highly sensitive and simple without any additional treatments, which provides a platform for other biosensors based on DNAzyme. PMID:25978496

  15. A sensitive "turn-on" fluorescent assay for quantification of ceftriaxone based on L-tryptophan-Pd(II) complex fluorophore

    NASA Astrophysics Data System (ADS)

    Qiao, Man; Jiang, Junze; Yang, Jidong; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2016-05-01

    Based on L-tryptophan-Pd(II) system, a sensitive and selective fluorimetric assay for the quantification of ceftriaxone (CTRX) had been developed. The experimental results showed that in pH 4.0 Britton-Robinson (BR) buffer medium, the fluorescence of L-tryptophan (L-Trp) (λex/λem = 276 nm/352 nm) could be efficiently quenched by Pd(II). When CTRX was added to the mixed solution of the L-tryptophan and Pd(II), the fluorescence of L-Trp recovered. The reaction mechanism and the reasons for the fluorescence recovery were also discussed. Pd(II) reacted with L-Trp to form a 1:1 chelate complex, and then, after CTRX was added in L-Try-Pd(II) system, the ligand exchange reaction occurred between L-Trp and CTRX, which resulted in the fluorescence recovery. Under the optimized experimental conditions, the recovered fluorescence intensities at 352 nm showed excellent linear relationship with the concentration of CTRX over the range of 6.0 × 10- 8-2.4 × 10-6 mol L- 1 (0.040-1.59 μg mL- 1). The correlation coefficient (R) was 0.9997 and the detection limit was 1.8 × 10-8 mol L- 1 (11.9 ng mL- 1). Furthermore, the assay had been applied to determine trace amount of CTRX human urine samples with satisfactory results.

  16. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun

    2016-09-20

    In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.

  17. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.

    PubMed

    Xu, Jinjia; Takai, Atsuro; Takeuchi, Masayuki

    2016-09-01

    A red-green-blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi-colour emission was constructed; the blue-emitting cationic oligofluorene nanoparticle acted as an energy-donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red-emitting dye embedded in the nanoparticle (interior FRET) and to a green-emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual-FRET system exhibits multi-colour emission, including white, in aqueous solution and film state. A characteristic white-emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.

  18. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.

    PubMed

    Xu, Jinjia; Takai, Atsuro; Takeuchi, Masayuki

    2016-09-01

    A red-green-blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi-colour emission was constructed; the blue-emitting cationic oligofluorene nanoparticle acted as an energy-donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red-emitting dye embedded in the nanoparticle (interior FRET) and to a green-emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual-FRET system exhibits multi-colour emission, including white, in aqueous solution and film state. A characteristic white-emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit. PMID:27487175

  19. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis

    NASA Astrophysics Data System (ADS)

    Posokhov, Yevgen

    2016-09-01

    Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.

  20. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  1. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA.

    PubMed

    Liu, Haiyun; Li, Lu; Wang, Qian; Duan, Lili; Tang, Bo

    2014-06-01

    MicroRNAs (miRNAs) play significant roles in a diverse range of biological progress and have been regarded as biomarkers and therapeutic targets in cancer treatment. Sensitive and accurate detection of miRNAs is crucial for better understanding their roles in cancer cells and further validating their function in clinical diagnosis. Here, we developed a stable, sensitive, and specific miRNAs detection method on the basis of cooperative amplification combining with the graphene oxide (GO) fluorescence switch-based circular exponential amplification and the multimolecules labeling of SYBR Green I (SG). First, the target miRNA is adsorbed on the surface of GO, which can protect the miRNA from enzyme digest. Next, the miRNA hybridizes with a partial hairpin probe and then acts as a primer to initiate a strand displacement reaction to form a complete duplex. Finally, under the action of nicking enzyme, universal DNA fragments are released and used as triggers to initiate next reaction cycle, constituting a new circular exponential amplification. In the proposed strategy, a small amount of target miRNA can be converted to a large number of stable DNA triggers, leading to a remarkable amplification for the target. Moreover, compared with labeling with a 1:1 stoichiometric ratio, multimolecules binding of intercalating dye SG to double-stranded DNA (dsDNA) can induce significant enhancement of fluorescence signal and further improve the detection sensitivity. The extraordinary fluorescence quenching of GO used here guarantees the high signal-to-noise ratio. Due to the protection for target miRNA by GO, the cooperative amplification, and low fluorescence background, sensitive and accurate detection of miRNAs has been achieved. The strategy proposed here will offer a new approach for reliable quantification of miRNAs in medical research and early clinical diagnostics. PMID:24823448

  2. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  3. Toxicant Induced Changes on Delayed Fluorescence Decay Kinetics of Cyanobacteria and Green Algae: A Rapid and Sensitive Biotest

    PubMed Central

    Leunert, Franziska; Grossart, Hans-Peter; Gerhardt, Volkmar; Eckert, Werner

    2013-01-01

    Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF) as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 3,5 Dichlorophenol (3,5 DCP) and copper) on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool. PMID:23646185

  4. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1.

    PubMed

    Wang, Bin; Chen, Yanfen; Wu, Yuanya; Weng, Bo; Liu, Yingshuai; Lu, Zhisong; Li, Chang Ming; Yu, Cong

    2016-04-15

    Novel fluorescent nitrogen-doped carbon dots (N,C-dots) were synthesized and assembled on aptamer modified gold nanoparticles (Aptamer/AuNPs) for the super sensitive detection of aflatoxin B1 (AFB1). Positively charged N,C-dots were synthesized by the hydrothermal treatment of pancreatin. The prepared N,C-dots were assembled on aptamer/AuNPs by electrostatic interactions. The fluorescence of the N,C-dots was efficiently quenched. When AFB1 was added to the assay solution, specific interactions between AFB1 and the aptamer caused release of the N,C-dots. The fluorescence of the N,C-dots recovered and the intensity increase could be used to calculate the amount of AFB1 added. The assay exhibits super-high sensitivity with a detection limit of 5 pg/mL (16 pM) and a wide range of linear response of 5 pg/mL to 2.00 ng/mL. A novel aptasensor is thus successfully constructed, it provides an efficient way for sensitive AFB1 sensing as well as a new technique for aptamer based novel sensor construction. PMID:26584079

  5. A sub-micrometer resolution hard X-ray microprobe system of BL8C at Pohang Light Source.

    PubMed

    Sung, Nark Eon; Lee, Ik Jae; Lee, Kug Seong; Jeong, Seong Hun; Kang, Seen Woong; Shin, Yong Bi

    2015-09-01

    A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS-II, South Korea. Owing to the reproducible switch of the gap of the in-vacuum undulator (IVU), the intense and brilliant hard X-ray beam of an IVU can be used in X-ray fluorescence (XRF) and X-ray absorption fine-structure (XAFS) experiments. For high-spatial-resolution microprobe experiments a Kirkpatrick-Baez mirror system has been used to focus the millimeter-sized X-ray beam to a micrometer-sized beam. The performance of this system was examined by a combination of micro-XRF imaging and micro-XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.

  6. Laser ablation laser induced fluorescence for sensitive detection of heavy metals in water

    NASA Astrophysics Data System (ADS)

    Godwal, Yogesh

    Laser Induced Breakdown Spectroscopy LIBS is a fast non-contact technique for the analysis of the elemental composition using spectral information of the emission from a laser-induced plasma. For the LIBS studies in this thesis the focus has been in using very low energy, microjoule pulses in order to give high spatial resolution and minimize the laser system requirements. This is a regime that we refer to as microLIBS. Under such conditions it is important to maximize the signal detected to give the lowest limit of detection LOD possible. One technique to improve the signal to noise ratios is by coupling LIBS with Laser Induced Fluorescence. This is a technique where the first pulse creates a vapor plume and the second pulse tuned to a resonant absorption line of the species of interest re-excites the plume. We term this technique as Laser ablation Laser Induced Fluorescence LA-LIF. We have been investigating the performance of LA-LIF at low pulse energies (≤ 1 mJ for both pulses) for the detection of elemental contaminants in water. This technique allows reasonable performance compared to high energy single-pulse LIBS, but at a much reduced total energy expenditure. This allows LODs in the parts per billion range ppb range which typically cannot be obtained with low energy single pulse probing of the systems. This approach or exceeds the sensitivities which can be obtained with many shots using much larger energy systems. In this thesis we investigated the performance of LIBS at low pulse energies for the detection of Pb as a contaminant in water. An LOD of 70 ppb was obtained for an accumulation of 100 shots with the ablation laser pulse energy of 250 muJ and an excitation laser pulse energy of 8 muJ. A systematic study of the detector conditions was made for the system for the detection of Pb. Scaling laws for the LOD in terms of the pump and probe energies were measured and also the effect of detector gain, the gate delay and the gate width were studied. In

  7. Fluorescent Brighteners as Visible LED-Light Sensitive Photoinitiators for Free Radical Photopolymerizations.

    PubMed

    Zuo, Xiaoling; Morlet-Savary, Fabrice; Graff, Bernadette; Blanchard, Nicolas; Goddard, Jean-Philippe; Lalevée, Jacques

    2016-05-01

    The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near-UV-visible absorption properties combined with outstanding fluorescent properties allow them to act as high-performance photoinitiators when used in combination with diaryliodonium salt. These two-component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener-initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron-spin resonance-spin trapping, fluorescence, cyclic voltammetry, and steady-state photolysis techniques. PMID:27072016

  8. Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species.

    PubMed

    Chen, Lu; Song, Liping; Zhang, Yichi; Wang, Ping; Xiao, Zhidong; Guo, Yuguo; Cao, Feifei

    2016-05-11

    Nitrogen (N) and sulfur (S) codoped reduced graphene oxide (N,S-rGO) was synthesized through a facile solvothermal process. The introduction of N and S heteroatoms into GO effectively activated the sp(2)-hybridized carbon lattice and made the material an ideal electron/energy acceptor. Such unique properties enable this material to perform as a general platform for rapid and sensitive detection of various biological species through simple fluorescence quenching and recovering. When quantum dot (QD)-labeled HBV (human being disease-related gene hepatitis B virus DNA) and HIV (human being disease-related gene human immunodeficiency virus DNA) molecular beacon probes were mixed with N,S-rGO, QD fluorescence was quenched; when target HBV and HIV DNA were added, QD fluorescence was recovered. By the recovered fluorescence intensity, the target virus DNA detection limits were reduced to 2.4 nM for HBV and 3.0 nM for HIV with detection time of less than 5 min. It must be stressed out that different viruses in the same homogeneous aqueous media could be discriminated and quantified simultaneously through choosing diverse QD probes with different colors. Moreover, even one mismatched target DNA could be distinguished using this method. When altering the molecular beacon loop domain to protein aptamers, this sensing strategy was also able to detect thrombin and IgE in 5 min with detection limits of 0.17 ng mL(-1) and 0.19 ng mL(-1), respectively, which was far more rapid and sensitive than bare GO-based fluorescence detection strategy. PMID:27089122

  9. Near real time, accurate, and sensitive microbiological safety monitoring using an all-fibre spectroscopic fluorescence system

    NASA Astrophysics Data System (ADS)

    Vanholsbeeck, F.; Swift, S.; Cheng, M.; Bogomolny, E.

    2013-11-01

    Enumeration of microorganisms is an essential microbiological task for many industrial sectors and research fields. Various tests for detection and counting of microorganisms are used today. However most of the current methods to enumerate bacteria require either long incubation time for limited accuracy, or use complicated protocols along with bulky equipment. We have developed an accurate, all-fibre spectroscopic system to measure fluorescence signal in-situ. In this paper, we examine the potential of this setup for near real time bacteria enumeration in aquatic environment. The concept is based on a well-known phenomenon that the fluorescence quantum yields of some nucleic acid stains significantly increase upon binding with nucleic acids of microorganisms. In addition we have used GFP labeled organisms. The fluorescence signal increase can be correlated to the amount of nucleic acid present in the sample. In addition we have used GFP labeled organisms. Our results show that we are able to detect a wide range of bacteria concentrations without dilution or filtration (1-108 CFU/ml) using different optical probes we designed. This high sensitivity is due to efficient light delivery with an appropriate collection volume and in situ fluorescence detection as well as the use of a sensitive CCD spectrometer. By monitoring the laser power, we can account for laser fluctuations while measuring the fluorescence signal which improves as well the system accuracy. A synchronized laser shutter allows us to achieve a high SNR with minimal integration time, thereby reducing the photobleaching effect. In summary, we conclude that our optical setup may offer a robust method for near real time bacterial detection in aquatic environment.

  10. Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye.

    PubMed

    Namin, Shabnam M; Nofallah, Sara; Joshi, Mahesh S; Kavallieratos, Konstantinos; Tsoukias, Nikolaos M

    2013-01-15

    Nitric oxide (NO) research in biomedicine has been hampered by the absence of a method that will allow quantitative measurement of NO in biological tissues with high sensitivity and selectivity, and with adequate spatial and temporal resolution. 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) is a NO sensitive fluorescence probe that has been used widely for qualitative assessment of cellular NO production. However, calibration of the fluorescent signal and quantification of NO concentration in cells and tissues using fluorescent probes, have provided significant challenge. In this study we utilize a combination of mathematical modeling and experimentation to elucidate the kinetics of NO/DAF-FM reaction in solution. Modeling and experiments suggest that the slope of fluorescent intensity (FI) can be related to NO concentration according to the equation: ddtFI=2αk(1)NO(2)O(2)DAF-FMkNO+DAF-FM where α is a proportionality coefficient that relates FI to unit concentration of activated DAF-FM, k(1) is the NO oxidation rate constant, and k was estimated to be 4.3±0.6. The FI slope exhibits saturation kinetics with DAF-FM concentration. Interestingly, the effective half-maximum constant (EC(50)) increases proportionally to NO concentration. This result is not in agreement with the proposition that N(2)O(3) is the NO oxidation byproduct that activates DAF-FM. Kinetic analysis suggests that the reactive intermediate should exhibit NO-dependent consumption and thus NO(2)() is a more likely candidate. The derived rate law can be used for the calibration of DAF-FM fluorescence and the quantification of NO concentration in biological tissues.

  11. Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species.

    PubMed

    Chen, Lu; Song, Liping; Zhang, Yichi; Wang, Ping; Xiao, Zhidong; Guo, Yuguo; Cao, Feifei

    2016-05-11

    Nitrogen (N) and sulfur (S) codoped reduced graphene oxide (N,S-rGO) was synthesized through a facile solvothermal process. The introduction of N and S heteroatoms into GO effectively activated the sp(2)-hybridized carbon lattice and made the material an ideal electron/energy acceptor. Such unique properties enable this material to perform as a general platform for rapid and sensitive detection of various biological species through simple fluorescence quenching and recovering. When quantum dot (QD)-labeled HBV (human being disease-related gene hepatitis B virus DNA) and HIV (human being disease-related gene human immunodeficiency virus DNA) molecular beacon probes were mixed with N,S-rGO, QD fluorescence was quenched; when target HBV and HIV DNA were added, QD fluorescence was recovered. By the recovered fluorescence intensity, the target virus DNA detection limits were reduced to 2.4 nM for HBV and 3.0 nM for HIV with detection time of less than 5 min. It must be stressed out that different viruses in the same homogeneous aqueous media could be discriminated and quantified simultaneously through choosing diverse QD probes with different colors. Moreover, even one mismatched target DNA could be distinguished using this method. When altering the molecular beacon loop domain to protein aptamers, this sensing strategy was also able to detect thrombin and IgE in 5 min with detection limits of 0.17 ng mL(-1) and 0.19 ng mL(-1), respectively, which was far more rapid and sensitive than bare GO-based fluorescence detection strategy.

  12. Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity.

    PubMed

    Chub, Nikolai; Mentis, George Z; O'donovan, Michael J

    2006-01-01

    Intracellular Cl(-) ([Cl(-)](in)) homeostasis is thought to be an important regulator of spontaneous activity in the spinal cord of the chick embryo. We investigated this idea by visualizing the variations of [Cl(-)](in) in motoneurons retrogradely labeled with the Cl-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ) applied to cut muscle nerves in the isolated E10-E12 spinal cord. This labeling procedure obviated the need for synthesizing the reduced, cell-permeable dihydro-MEQ (DiH-MEQ). The specificity of motoneuron labeling was confirmed using retrograde co-labeling with Texas Red Dextran and immunocytochemistry for choline acetyltransferase (ChAT). In MEQ-labeled motoneurons, the GABA(A) receptor agonist isoguvacine (100 muM) increased somatic and dendritic fluorescence by 7.4 and 16.7%, respectively. The time course of this fluorescence change mirrored that of the depolarization recorded from the axons of the labeled motoneurons. Blockade of the inward Na(+)/K(-)/2Cl(-) co-transporter (NKCC1) with bumetanide (20 microM) or with a low-Na(+) bath solution (12 mM), increased MEQ fluorescence by 5.3 and 11.4%, respectively, consistent with a decrease of [Cl(-)](in). After spontaneous episodes of activity, MEQ fluorescence increased and then declined to the pre-episode level during the interepisode interval. The largest fluorescence changes occurred over motoneuron dendrites (19.7%) with significantly smaller changes (5.2%) over somata. Collectively, these results show that retrogradely loaded MEQ can be used to detect [Cl(-)](in) in motoneurons, that the bumetanide-sensitive NKCC1 co-transporter is at least partially responsible for the elevated [Cl(-)](in) of developing motoneurons, and that dendritic [Cl(-)](in) decreases during spontaneous episodes and recovers during the inter-episode interval, presumably due to the action of NKCC1. PMID:16192339

  13. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    PubMed

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  14. A convenient and label-free fluorescence "turn off-on" nanosensor with high sensitivity and selectivity for acid phosphatase.

    PubMed

    Liu, Ziping; Lin, Zihan; Liu, Linlin; Su, Xingguang

    2015-05-30

    In this study, we reported a convenient label-free fluorescence nanosensor for rapid detection of acid phosphatase on the basis of aggregation-caused quenching (ACQ) and enzymolysis approach. The selectivity nanosensor was based on the fluorescence "turn off-on" mode, which possessed high sensitivity features. The original strong fluorescence intensity of CuInS2 QDs was quenched by sodium hexametaphosphate (NaPO3)6. The high efficiency of the quenching was caused by the non-covalent binding of positively charged CuInS2 QDs to the negatively charged (NaPO3)6 through electrostatic interactions, aggregating to form a CuInS2 QDs/(NaPO3)6 complex. Adding acid phosphatase caused intense fluorescence of CuInS2 QDs/(NaPO3)6 to be recovered, and this was because of enzymolysis. (NaPO3)6 was hydrolyzed into small fragments and the high negative charge density decreased, which would weaken the strong electrostatic interactions. As a result, the quenched fluorescence "turned on". Under the optimum conditions, there was a good linear relationship between I/I0 (I and I0 were the fluorescence intensity of CuInS2 QDs/(NaPO3)6 system in the presence and absence of acid phosphatase, respectively) and acid phosphatase concentration in the range of 75-1500 nU mL(-1) with the detection limit of 9.02 nU mL(-1). The proposed nanosensor had been utilized to detect and accurately quantify acid phosphatase in human serum samples with satisfactory results.

  15. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  16. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  17. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.

  18. Improved fluorescence properties of core-sheath electrospun nanofibers sensitized by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, Shipeng; Zhang, Rong; Hu, Shui; Zhang, Liqun; Liu, Li

    2015-09-01

    Silver nanoparticles (Ag-NPs) were used to enhance the fluorescence properties of nanofibers containing the Tb(acac)3phen (Tb = terbium, acac = acetylacetone, phen = 1,10-phenanthroline) complex. Tb(acac)3phen/PLLA//Ag-NPs/PVP (PLLA = polylacticacid, PVP = polyvinylpyrrolidone) core-sheath fluorescence nanofibers were prepared by coaxial electrospinning. SEM images demonstrated that the fibers had an average diameter of 550 nm. TEM images illustrated that the Ag-NPs and Tb(acac)3phen were uniformly dispersed in the outer and inner fibrous layers in the form of nanoparticles and molecular clusters, respectively. The fluorescence intensity of the Tb(acac)3phen/PLLA//Ag-NPs/PVP core-sheath nanofibers with a molar ratio Ag/Tb of 1 increased by 69%, the quantum efficiency increased by 53%, and the fluorescence lifetime increased by 4% over those of the fibers without Ag-NPs because of the localized surface plasmon resonance (LSPR) effect of Ag-NPs. The prepared fibers with a core-sheath structure have great potential in a wide range of fluorescence applications.

  19. τFCS: Multi-Method Global Analysis Enhances Resolution and Sensitivity in Fluorescence Fluctuation Measurements

    PubMed Central

    Anthony, Neil R.; Berland, Keith M.

    2014-01-01

    Fluorescence fluctuation methods have become invaluable research tools for characterizing the molecular-level physical and chemical properties of complex systems, such as molecular concentrations, dynamics, and the stoichiometry of molecular interactions. However, information recovery via curve fitting analysis of fluctuation data is complicated by limited resolution and challenges associated with identifying accurate fit models. We introduce a new approach to fluorescence fluctuation spectroscopy that couples multi-modal fluorescence measurements with multi-modal global curve fitting analysis. This approach yields dramatically enhanced resolution and fitting model discrimination capabilities in fluctuation measurements. The resolution enhancement allows the concentration of a secondary species to be accurately measured even when it constitutes only a few percent of the molecules within a sample mixture, an important new capability that will allow accurate measurements of molecular concentrations and interaction stoichiometry of minor sample species that can be functionally important but difficult to measure experimentally. We demonstrate this capability using τFCS, a new fluctuation method which uses simultaneous global analysis of fluorescence correlation spectroscopy and fluorescence lifetime data, and show that τFCS can accurately recover the concentrations, diffusion coefficients, lifetimes, and molecular brightness values for a two component mixture over a wide range of relative concentrations. PMID:24587370

  20. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity.

    PubMed

    Tan, Hongliang; Li, Qian; Zhou, Zhengchen; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Wang, Li

    2015-01-26

    Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis-Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis.

  1. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe.

    PubMed

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN(-)) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu(2+) and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu(2+) complex can act as an effective OFF-ON type fluorescent probe for sensing CN(-) anion. Due to the strong binding affinity of CN(-) to Cu(2+), CN(-) can extract Cu(2+) from C-GGH-Cu(2+) complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu(2+) allowed detection of CN(-) in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN(-) in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN(-) towards other anions, including F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), N3 (-), NO3 (-), AcO(-), SO4 (2-), and CO3 (2-).

  2. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    PubMed Central

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO43−, N3−, NO3−, AcO−, SO42−, and CO32−. PMID:26881185

  3. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    PubMed

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  4. pH-sensitive fluorescent hepatocyte-targeting multilayer polyelectrolyte hollow microspheres as a smart drug delivery system.

    PubMed

    Zhao, Xubo; Liu, Peng

    2014-05-01

    Novel multilayer polyelectrolyte hollow microspheres with pH-sensitive fluorescence and hepatocyte-targeting functions were successfully fabricated via a layer-by-layer (LbL) assembly of fluorescein isothiocyanate (FITC)-modified chitosan (CSFITC) and sodium hyaluronate (HA) (as the polycation and polyanion, respectively) on polystyrene sulfonate (PSS) templates with galactosylated chitosan (GC) as the outermost layer; after etching the templates by dialysis, the aim was to use the microspheres to target hepatocytes specifically. TEM analysis revealed that they have a hollow structure with a particle size of about 260 nm, and DLS analysis demonstrated that they have pH and ionic strength dual-responsive characteristics. The hollow microspheres showed pH-sensitive fluorescence at a very low concentration by fluorescent emission spectra. MTT assays revealed that doxorubicin (a water-insoluble anticancer drug)-loaded (CSFITC/HA)4/GC hollow microspheres can specifically target hepatocytes and exhibit favorable cytocompatibility. Three typical model drugs were loaded into the (CSFITC/HA)4/GC hollow microspheres, and their drug-release kinetics in simulated body fluid (SBF) were estimated with different mathematical models. The results demonstrated that the drug-loading mechanism is chemosorption and the primary governing force for drug release is diffusion. Thus, the designed hollow microspheres are expected to be used for the diagnosis and therapy of hepatic cancer.

  5. Real time monitoring of superoxide dynamics in vivo through fluorescent proteins using a sensitive fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ken, Chuian-Fu; Hsu, Che-Wei; Liu, Ya-Ging

    2014-03-01

    Superoxide anion is the primary oxygen free radical generated in mitochondria that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express fluorescent proteins, which are recently developed as reversible superoxide-specific indicators, in the liver. A fiber-optic fluorescent probe was used to noninvasively monitor superoxide generation in the liver in real time. The fish were placed in microfluidic channels for manipulation and reagents administration. Several superoxide-inducing and scavenging reagents were administrated onto the fish to investigate their effects on superoxide anion balancing. The biochemical dynamics of superoxide due to the application reagents were revealed in the transient behaviors of fluorescence time courses. With the ability to monitor superoxide dynamics in vivo in real time, this method can be used as an in vivo pharmaceutical screening platform.

  6. The first Mars microprobe is unloaded

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on the Mars Polar Lander. From left, they are Satish Krishnan, Charles Cruzan, Chris Voorhees and Arden Acord. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars.

  7. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-01

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08278a

  8. Analysis of biological materials using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  9. A triazole Schiff base-based selective and sensitive fluorescent probe for Zn2 +: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Yuan, Caixia; Liu, Xinyu; Wu, Yanbo; Lu, Liping; Zhu, Miaoli

    2016-02-01

    A triazole-Schiff base, 4-(5-Chloro-2-hydroxybenzylideneamino)-1H-1,2,4-triazole-5(4H)-thione (HL), exhibits the high selectivity and sensitivity for Zn2 + in the fluorescence spectrometry over other common metal ions, especially Cd2 + in DMSO:H2O (1:9, v/v) solution. A 1:1 binding ratio of Zn2 +/L for the complex has been obtained by Uv-Vis titration experiments and Job's plot with the detection limit of 51 nmol/L. The coordination mode of the complex in solution was further confirmed by density functional theory (DFT) calculations. Time-dependent density functional theory (TD-DFT) calculations indicate that a chelation-enhanced fluorescence (CHEF) effect occurs in the process of detecting Zn ion.

  10. BODIPY fluorescent chemosensor for Cu2+ detection and its applications in living cells: fast response and high sensitivity.

    PubMed

    Quan, Li; Sun, Tingting; Lin, Wenhai; Guan, Xingang; Zheng, Min; Xie, Zhigang; Jing, Xiabin

    2014-05-01

    Copper is an essential trace element for the proper functioning of organ and metabolic process in humans. However, both its excess and deficiency in the body can result in adverse health effects. A BODIPY containing 2,2'-bipyridyl group was synthesized and used as a fluorescent chemodosimeter for selective Cu2+ detection in mild condition. This BODIPY shows fast response (~1 min) and high sensitivity for Cu2+ in aqueous solution due to the photoinduced electron transfer from the excited state of fluorophore to the bipyridyl unit complexed to Cu2+. The fluorescence quenching mechanism revealed by MALDI-TOF Mass spectra showed one Cu2+ could coordinate with two BODIPY molecules, and this coordination is reversible. This simple BODIPY dyes also could be used for sensing the Cu2+ in living cell. This work contributes to extend the potential applications of BODIPY to the biological and environmental areas. PMID:24522344

  11. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2 + based on phenylamine-oligothiophene derivative

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Wu, Xingxing; Zhang, Shanshan; Li, Tianduo; Cui, Yuezhi; Li, Xiaoyan

    2016-01-01

    A fast-responsive fluorescent phenylamine-oligothiophene sensor 3TDDA was reported. This sensor exhibited highly selective and sensitive detection of Hg2 + ion in aqueous solution (THF/CH3CN/H2O, 45/50/5, v/v) through fluorescence quenching. The detection was not affected by the coexistence of other competitive metal ions such as Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A stoichiometric ratio (1:1) of the sensor and Hg2 + was determined by a Job's plot and mole-ratio curves. The binding of sensor 3TDDA and Hg2 + was also chemically reversible with EDTA. The detection limit was calculated as low as 4.392 × 10- 7 M.

  12. A cobalt oxyhydroxide nanoflake-based nanoprobe for the sensitive fluorescence detection of T4 polynucleotide kinase activity and inhibition

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Yang, Yuan; Yu, Ru-Qin; Chen, Ting-Ting; Chu, Xia

    2016-04-01

    Phosphorylation of nucleic acids with 5'-OH termini catalyzed by polynucleotide kinase (PNK) is an inevitable process and has been implicated in many important cellular events. Here, we found for the first time that there was a significant difference in the adsorbent ability of cobalt oxyhydroxide (CoOOH) nanoflakes between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which resulted in the fluorescent dye-labeled dsDNA still retaining strong fluorescence emission, while the fluorescence signal of ssDNA was significantly quenched by CoOOH nanoflakes. Based on this discovery, we developed a CoOOH nanoflake-based nanoprobe for the fluorescence sensing of T4 PNK activity and its inhibition by combining it with λ exonuclease cleavage reaction. In the presence of T4 PNK, dye-labeled dsDNA was phosphorylated and then cleaved by λ exonuclease to generate ssDNA, which could adsorb on the CoOOH nanoflakes and whose fluorescence was quenched by CoOOH nanoflakes. Due to the high quenching property of CoOOH nanoflakes as an efficient energy acceptor, a sensitive and selective sensing approach with satisfactory performance for T4 PNK sensing in a complex biological matrix has been successfully constructed and applied to the screening of inhibitors. The developed approach may potentially provide a new platform for further research, clinical diagnosis, and drug discovery of nucleotide kinase related diseases.Phosphorylation of nucleic acids with 5'-OH termini catalyzed by polynucleotide kinase (PNK) is an inevitable process and has been implicated in many important cellular events. Here, we found for the first time that there was a significant difference in the adsorbent ability of cobalt oxyhydroxide (CoOOH) nanoflakes between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which resulted in the fluorescent dye-labeled dsDNA still retaining strong fluorescence emission, while the fluorescence signal of ssDNA was significantly quenched by Co

  13. A Concept for a Sensitive Micro Total Analysis System for High Throughput Fluorescence Imaging

    PubMed Central

    Rabner, Arthur; Shacham, Yosi

    2006-01-01

    This paper discusses possible methods for on-chip fluorescent imaging for integrated bio-sensors. The integration of optical and electro-optical accessories, according to suggested methods, can improve the performance of fluorescence imaging. It can boost the signal to background ratio by a few orders of magnitudes in comparison to conventional discrete setups. The methods that are present in this paper are oriented towards building reproducible arrays for high-throughput micro total analysis systems (μTAS). The first method relates to side illumination of the fluorescent material placed into micro-compartments of the lab-on-chip. Its significance is in high utilization of excitation energy for low concentration of fluorescent material. The utilization of a transparent μLED chip, for the second method, allows the placement of the excitation light sources on the same optical axis with emission detector, such that the excitation and emission rays are directed controversly. The third method presents a spatial filtering of the excitation background.

  14. Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling.

    PubMed

    Sulmann, Stefan; Wallisch, Melanie; Scholten, Alexander; Christoffers, Jens; Koch, Karl-Wilhelm

    2016-05-10

    Myristoylation of most neuronal calcium sensor proteins, a group of EF-hand calcium-binding proteins mainly expressed in neuronal tissue, can have a strong impact on protein dynamics and functional properties. Intracellular oscillations of the free Ca(2+) concentration can trigger conformational changes in Ca(2+) sensors. The position and possible movements of the myristoyl group in the photoreceptor cell-specific Ca(2+) sensor GCAP2 are not well-defined but appear to be different from those of the highly homologous cognate GCAP1. We designed and applied a new group of diaminoterephthalate-derived fluorescent probes to label GCAP2 at a covalently attached 12-azido-dodecanoic acid (a myristoyl substitute) and at cysteine residues in critical positions. Fluorescence emission of dye-labeled GCAP2 decreased when going from low (10(-9) M) to high [Ca(2+)] (10(-3) M), reaching a half-maximal effect of fluorescence emission at 0.44 ± 0.07 μM. The modified acyl group can therefore monitor changes in the protein conformation during binding and dissociation of Ca(2+) in the physiological range of free [Ca(2+)]. However, fluorescence quenching studies showed that the dye-acyl chain was shielded from the quencher by an adjacent polypeptide region. Further probing three cysteine positions (C35, C111, and C131) by dye labeling revealed that all positions were also sensitive to a change in [Ca(2+)], but only one (C131) was sensitive to a change in [Mg(2+)]. We suggest a scenario during illumination of the photoreceptor cell in which Ca(2+) dissociates first from low and medium affinity binding sites. These steps are sensed by dyes in cysteines at positions 35 and 111. Release of Ca(2+) from high affinity sites is sensed by regions adjacent to the dye-labeled fatty acid and involves the critical conformational change leading to activating guanylate cyclase.

  15. Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water.

    PubMed

    Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S

    2011-09-15

    Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.

  16. Ion-induced electron emission ERDA with a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, I.; Medunić, Z.; Jakšić, M.; Siketić, Z.; Skukan, N.

    2005-04-01

    With intention to be used for the 3D analysis of hydrogen, a new ion-induced electron emission (IEE) ERDA system has been installed on the nuclear microprobe. A better depth resolution has been obtained with IEE particle identification system when compared to conventional ERDA systems that use stopping foil. Spectra of the forward scattered ions as well as the recoiled atoms are collected using the same particle detector. This simplifies normalization needed for quantitative analysis without the use of an additional detector. However, well defined but rather small solid angle of the IEE detector requires higher ion beam currents if sufficient sensitivity for H detection needs to be achieved. High beam currents focused to several micrometer spot size lead to rather high current densities and increased probability of H loss from the sample, which may limit the achievable sensitivity. By positioning IEE ERDA system at 45° instead of 30°, as well as by using heavier ions (O ions instead of He), two orders of magnitude better sensitivity can be obtained without a significant deterioration of depth resolution due to the increased recoil cross-section. In this work, several different sample types containing H have been studied. The capabilities of system for 3D imaging of H in samples have been demonstrated.

  17. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A hemagglutinin antigen.

    PubMed

    Chen, Longyan; Neethirajan, Suresh

    2015-01-01

    Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs). The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs), and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs). When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human) and H5 (avian). The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures. PMID:25884789

  18. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB.

    PubMed

    Lai, Xiao-Hong; Liang, Rong-Liang; Liu, Tian-Cai; Dong, Zhi-Ning; Wu, Ying-Song; Li, Lin-Hai

    2016-05-01

    The isoenzyme creatine kinase MB is very important for diagnosis of acute myocardial infarction (AMI). Some CK-MB immunoassays are sensitive, accurate and available for clinical application, but they are expensive and time-consuming procedures. Furthermore, conventional fluorescence immunochromatographic assays (FL-ICAs) have suffered from background fluorescence interference and low analytical sensitivity. A rapid and simple FL-ICA with Eu (III) chelate polystyrene microparticles was developed to determine CK-MB in 50uL serum samples using a portable test strip reader by measuring the fluorescence peak heights of the test line (HT) and the control line (HC) in 12 min. The assay was reliable with a good correlation coefficient between HT/HC ratio and CK-MB concentration in samples. A linear range was 0.85-100.29 ng/mL for CK-MB, and the LOD was 0.029 ng/mL. The intra- and inter-assay coefficients of variation (CV) were both <10 % and the average recoveries were from 90.17 % -112.63 % for CK-MB. The system performed well in interference experiments. Furthermore, a highly significant correlation (r = 0.9794, P < 0.001) between this method and the commercially available bioMérieux mini VIDAS system were attained for measuring 120 CK-MB samples. These results indicated that the Eu (III) chelate microparticles-based FL-ICA is simple, fast, highly sensitive, reliable, and reproducible for point-of-care testing of CK-MB concentrations in serum. Graphical Abstract ᅟ.

  19. A Homogenous Fluorescence Quenching Based Assay for Specific and Sensitive Detection of Influenza Virus A Hemagglutinin Antigen

    PubMed Central

    Chen, Longyan; Neethirajan, Suresh

    2015-01-01

    Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs). The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs), and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs). When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human) and H5 (avian). The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures. PMID:25884789

  20. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB.

    PubMed

    Lai, Xiao-Hong; Liang, Rong-Liang; Liu, Tian-Cai; Dong, Zhi-Ning; Wu, Ying-Song; Li, Lin-Hai

    2016-05-01

    The isoenzyme creatine kinase MB is very important for diagnosis of acute myocardial infarction (AMI). Some CK-MB immunoassays are sensitive, accurate and available for clinical application, but they are expensive and time-consuming procedures. Furthermore, conventional fluorescence immunochromatographic assays (FL-ICAs) have suffered from background fluorescence interference and low analytical sensitivity. A rapid and simple FL-ICA with Eu (III) chelate polystyrene microparticles was developed to determine CK-MB in 50uL serum samples using a portable test strip reader by measuring the fluorescence peak heights of the test line (HT) and the control line (HC) in 12 min. The assay was reliable with a good correlation coefficient between HT/HC ratio and CK-MB concentration in samples. A linear range was 0.85-100.29 ng/mL for CK-MB, and the LOD was 0.029 ng/mL. The intra- and inter-assay coefficients of variation (CV) were both <10 % and the average recoveries were from 90.17 % -112.63 % for CK-MB. The system performed well in interference experiments. Furthermore, a highly significant correlation (r = 0.9794, P < 0.001) between this method and the commercially available bioMérieux mini VIDAS system were attained for measuring 120 CK-MB samples. These results indicated that the Eu (III) chelate microparticles-based FL-ICA is simple, fast, highly sensitive, reliable, and reproducible for point-of-care testing of CK-MB concentrations in serum. Graphical Abstract ᅟ. PMID:27034063

  1. Distribution of lead in human bone: 2. Proton microprobe measurements

    SciTech Connect

    Schidlovsky, G.; Jones, K.W. ); Burger, D.E.; Milder, F.L. ); Hu, H. )

    1989-01-01

    Little is known about the distribution of lead in the human tibia on a microscopic scale. The radial distribution of lead in a 2-mm thick section of the human femur has been measured; it was observed that the concentration peaked in a region close to the periosteal and endosteal surfaces. The distribution in the interior of the bone was relatively uniform with the exception of a peak located about 1.8 mm from the periphery along a straight radial scan from periosteum to endosteum. Lindh also mapped the distribution of lead over a single osteon and showed that the concentration was highest at the edges. We have investigated the radial distribution of lead in the human tibia. Our motivation was to obtain data that can be used to understand the biological mechanisms for deposition of lead in bone and for use in the interpretation of in-vivo bone x-ray fluorescence (XRF) measurements of lead concentration. This paper presents the results of proton microprobe line scans of several tibial sections from periosteum to endosteum with spatial resolutions from less than 100 micrometers to about 1000 micrometers. The results are complementary to those reported in a companion paper. 3 refs.

  2. Environmental applications of the LANL nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Hickmott, D. D.; Herrin, J. M.; Abell, R.; George, M.; Stimac, J.; Gauerke, E. R.; Denniston, R. F.

    1997-07-01

    The LANL nuclear microprobe has been used to study the distributions of trace elements (TE) of environmental interest including: (1) metals in coal and fly ash, (2) Pb in the Bandelier Tuff (BT), (3) Ba in tree rings, (4) Mn, Fe, Sr and Y in Yucca Mountain calcites. These studies illustrate environmental problems that can be addressed using nuclear microprobes. Micro-PIXE (MP) analyses with 5-10 micrometer spatial resolution provide constraints on processes that redistribute contaminants in the environment, and hence may help answer environmental problems where fine-scale chemical records are important. MP analyses of particulates in coal and ash show that pyrite contains As, Se, Hg and Pb; macerals contain Cr, halogens and S; cenospheres contain As, Se and Ni; and hematite ash contains Ni and As. Understanding these elemental modes of occurrence allows prediction of metal behavior in boilers and may enhance compliance with the Clean Air Act Amendments. Fine-grained high-Pb minerals were identified using SEM and MP analyses of BT minerals. These minerals were from samples associated with deep-groundwater wells containing Pb at levels greater than regulatory limits. Pb is concentrated in Pb minerals (e.g. cerussite), smectite, and hematite formed during low-T alteration of tuff. Understanding mineralogic speciation of metals may provide insights into sources of groundwater pollution. Tree rings from ponderosa pines that grew in a Ba-contaminated drainage were analyzed using MP. Ba concentrations are typically higher in rings that formed after operations discharging Ba to the environment began. Such tree-ring analyses may ultimately provide information on rates of contaminant migration in the environment. TE in zoned calcites from Yucca Mountain were analyzed by MP. Calcites from the saturated zone (SZ) have distinct chemical signatures (high Fe, Mn and low Y). No calcites in the unsaturated zone with SZ chemical signatures were found using MP. MP analyses of vein

  3. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    PubMed

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  4. Endoscopic fluorescence of gastrointestinal neoplasia after sensitization with 5-aminolaevulinic acid (ALA) or Photofrin

    NASA Astrophysics Data System (ADS)

    Messmann, Helmut; Mlkvy, Peter; Montan, Sune; Wang-Nordman, Ingrid; Nilsson, Annika M.; Svanberg, Katarina; Svanberg, Sune; MacRobert, Alexander J.; Bown, Stephen G.

    1995-03-01

    Fluorescence after photosensitization has the potential to identify lesions not visible on conventional endoscopy. We assessed 12 patients at high risk of or with established GI cancers (u ulcerative colitis, 1 colon polyp, 2 familial polyposis with duodenal polyps, 2 early oesophageal cancers). Fluorescence images (excitation 390 nm) were recorded with endoscopic equipment and additional spot measurements (optical multichannel analyzer). Patients were given 10 - 60 mg/kg ALA orally or 2 mg/kg Photofrin i.v. 60 mg/kg ALA gave high levels of PP IX (proto-porphyrin IX) in all areas, but 10 - 15 mg/kg resulted in selectivity in macroscopically inflamed colon. Photofrin gave oesophageal tumors selectivity at 4 and 48 hours. Photofrin patients subsequently had PDT. Photobleaching was documented in 3. We conclude that these techniques have potential as `optical biopsy tools' and for screening for early neoplastic changes.

  5. Sensitivity and specificity of the fluorescent antibody technique for detection of infectious laryngotracheitis virus.

    PubMed Central

    Ide, P R

    1978-01-01

    The specificity of a fluorescent conjugate to infectious laryngotracheitis virus was examined using chick trachea organ culture or tissue sections infected with other avian viruses (adenovirus, infectious bronchitis, poxvirus, reovirus, Newcastle disease virus, Marek's disease virus, avian encephalomyelitis and infectious bursal agent) or Mycoplasma gallisepticum. Confirmation of virus replication in these preparations was obtained by either 1) demonstration of virus titre increase or 2) demonstration of fluorescence when using the homologous conjugate. Once either of these criteria had been satisfied, negative results with the infectious laryngotracheitis conjugate were taken to indicate that the conjugate would not present false positive results in differentiated cells infected with these heterologous viruses. The spectrum of reactivity of the infectious laryngotracheitis conjugate was then examined on organ cultures infected with several infectious laryngotracheitis isolates from across Canada. Finally, the conjugate was applied to experimental and natural cases of infectious laryngotracheitis and its efficiency was compared to routine virus isolation methods. Images Fig. 1. Fig. 2. PMID:206327

  6. High Sensitivity Low Fluorescence Detection for Beryllium Particulates SBIR Phase I Final Report ER84587

    SciTech Connect

    Anoop Agrawal; Juan Carlos Lopez Tonazzi; John Cronin

    2007-04-17

    Abstract: The technical objective in Phase I was to enhance the detection limit of beryllium using fluorescence system by a minimum factor of 10. This was to be achieved by modifying the chemistry and instrumentation. Both of these were completed independently. In each case we were able to lower the detection limit as desired. The objectives in Phase II are to adapt these changes for commercial activity (chemicals and instrument changes including automation).

  7. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets.

    PubMed

    Wüstner, Daniel; Faergeman, Nils J

    2008-08-01

    Intrinsically fluorescent sterols, like dehydroergosterol (DHE), mimic cholesterol closely and are therefore suitable to determine cholesterol transport by fluorescence microscopy. Disadvantages of DHE are its low quantum yield, rapid bleaching, and the fact that its excitation and emission is in the UV region of the spectrum. Thus, one has to deal with chromatic aberration and low signal-to-noise ratio. We developed a method to correct for chromatic aberration between the UV channel and the red/green channel in multicolor imaging of DHE compared with the lipid droplet marker Nile Red in living macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport.

  8. A ratiometric fluorescence nanosensor for highly selective and sensitive detection of selenite.

    PubMed

    Chen, Linfeng; Tian, Xike; Zhao, Yuan; Li, Yong; Yang, Chao; Zhou, Zhaoxin; Liu, Xiangwen

    2016-08-01

    The instant and on-site detection of selenium still remains a challenge for environmental monitoring and medical prevention. We herein developed a ratiometric fluorescent nanosensor for accurate and on-site sensing of SeO3(2-) by linking the recognition molecule 3,3'-diaminobenzidine (DAB) onto the surface of carboxyl group modified CdTe@SiO2. The fluorescence of DAB on the surface of silica nanospheres could be selectively and efficiently enhanced by SeO3(2-) through a surface chelating reaction between DAB and SeO3(2-). Thus, in the presence of SeO3(2-), the nanosensor would show two characteristic fluorescence emissions of Se-DAB and CdTe QDs under a single excitation wavelength. The selectivity and the optimal conditions for the detection of SeO3(2-) were carefully investigated. The ratio of F530/F635 linearly increased with increasing SeO3(2-) concentration in the range of 0 to 2.5 μM and the detection limit reaches as low as 6.68 nM (0.53 ppb). This developed nanosensor has the capability of on-site detection in an aqueous system without any separation step. The Se concentrations in selenium-rich food were detected and the results were consistent with the values determined by ICP-AES. PMID:27241591

  9. Microprobe and oxygen fugacity study of armalcolite

    NASA Technical Reports Server (NTRS)

    Friel, J. J.

    1976-01-01

    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  10. The electron microprobe as a metallographic tool

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1974-01-01

    The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.

  11. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization integrated approaches combining different chemical, biological and in silico methods are recommended to r...

  12. Sensitive and selective turn-on fluorescence method for cetyltrimethylammonium bromide determination based on acridine orange-polystyrene sulfonate complex.

    PubMed

    Li, Na; Hao, Xia; Kang, Bei Hua; Li, Nian Bing; Luo, Hong Qun

    2016-06-01

    This work proposed a rapid and novel fluorescence-sensing system using a complex of acridine orange (AO) and polystyrene sulfonate (PSS) to sensitively recognize and monitor cetyltrimethylammonium bromide (CTAB) in an aqueous medium. AO can interact with PSS and a complex is formed via electrostatic attraction and hydrophobic interaction. The fluorescence of AO is greatly quenched after the introduction of PSS. Upon its subsequent addition, CTAB can interact and form a complex with PSS because the electrostatic attraction between CTAB and PSS is much stronger than that between AO and PSS, which results in significant fluorescence recovery. Interestingly, the proposed method can be applied for the discrimination and detection of surfactants with different hydrocarbon chain lengths due to their different binding affinity toward PSS. The detection limit for CTAB is as low as 0.2 µg/mL and the linear range is from 0.5 to 3.5 µg/mL. Moreover, we applied the sensor to the successful detection of CTAB in water samples. Copyright © 2015 John Wiley & Sons, Ltd.

  13. The inhibition of fluorescence resonance energy transfer between multicolor quantum dots for rapid and sensitive detection of Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Wang, Beibei; Wang, Qi; Ma, Meihu; Cai, Zhaoxia

    2015-01-01

    In this paper, we constructed the fluorescence resonance energy transfer (FRET) system between two multi-color quantum dots (QDs) of two sizes for rapid and sensitive detection of Staphylococcus aureus. In this system, green-emitting QDs conjugated with rabbit anti-S. aureus antibodies were used as energy donors while orange-emitting QDs conjugated with goat-anti-rabbit IgG were used as energy acceptors to form FRET system. Pre-binding of Staphylococcus aureus (S. aureus) on the donor occupied the binding sites and thus blocked resonance energy transfer between two colors QDs, leading to the quenching fluorescence of the acceptor. The fluorescence of acceptor has a linear calibration graph with the concentrations of S. aureus from 52 to 2.6 × 105 CFU mL-1. The low detection limit was 10 CFU/mL. It was worth mentioning that the detection method of S. aureus had been applied to the analysis of apple juice and milk samples, which could potentially be developed into a sensor in the further study.

  14. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification.

    PubMed

    Tao, Mangjuan; Zhang, Jing; Jin, Yan; Li, Baoxin

    2014-11-01

    DNA phosphorylation catalyzed by polynucleotide kinase (PNK) is an indispensable process in the repair, replication, and recombination of nucleic acids. Here, an enzyme-assisted amplification strategy was developed for the ultrasensitive monitoring activity and inhibition of T4 PNK. A hairpin oligonucleotide (hpDNA) was designed as a probe whose stem can be degraded from the 5' to 3' direction by lambda exonuclease (λ exo) when its 5' end is phosphorylated by PNK. So, the 3' stem and loop part of hpDNA was released as an initiator strand to open a molecular beacon (MB) that was designed as a fluorescence reporter, leading to a fluorescence restoration. Then, the initiator strand was released again by the nicking endonuclease (Nt.BbvCI) to hybridize with another MB, resulting in a cyclic reaction and accumulation of fluorescence signal. Based on enzyme-assisted amplification, PNK activity can be sensitively and rapidly detected with a detection limit of 1.0×10(-4)U/ml, which is superior to those of most existing approaches. Furthermore, the application of the proposed strategy for screening PNK inhibitors also demonstrated satisfactory results. Therefore, it provided a promising platform for monitoring activity and inhibition of PNK as well as for studying the activity of other nucleases.

  15. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical

  16. Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination

    NASA Astrophysics Data System (ADS)

    Jiang, Guohua; Jiang, Tengteng; Li, Xia; Wei, Zheng; Du, Xiangxiang; Wang, Xiaohong

    2014-04-01

    Nitrogen doped carbon quantum dots (NCQDs) of about 10 nm in diameter have been obtained by hydrothermal reaction from collagen. Because of the superiority of water dispersion, low toxicity and ease of functionlization, the NCQDs were designed as a glucose sensor after covalent grafting by 3-aminophenylboronic (APBA) (APBA-NCQDs). The as-prepared APBA-NCQDs were imparted with glucose sensitivity and selectivity from other saccharides via fluorescence (FL) quenching effect at physiological pH and at room temperature, which show high sensitivity and specificity for glucose determination with a wide range from 1 mM to 14 mM. FL quenching mechanism of APBA-NCQDs was also investigated by adding an external quencher. The APBA-NCQDs-based platform is an environmentally friendly way to substitute inorganic quantum dots containing heavy metals which offer a facile and low cost detection method.

  17. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs

    NASA Astrophysics Data System (ADS)

    Nuthanakanti, Ashok; Srivatsan, Seergazhi G.

    2016-02-01

    Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their

  18. An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons

    PubMed Central

    Ade, Kristen K.; Wan, Yehong; Chen, Meng; Gloss, Bernd; Calakos, Nicole

    2011-01-01

    The development of BAC transgenic mice expressing promoter-specific fluorescent reporter proteins has been a great asset for neuroscience by enabling detection of neuronal subsets in live tissue. For the study of basal ganglia physiology, reporters driven by type 1 and 2 dopamine receptors have been particularly useful for distinguishing the two classes of striatal projection neurons – striatonigral and striatopallidal. However, emerging evidence suggests that some of the transgenic reporter lines may have suboptimal features. The ideal transgenic reporter line should (1) express a reporter with high sensitivity and specificity for detecting the cellular subset of interest and that does not otherwise alter the biology of the cells in which it is expressed, and (2) involve a genetic manipulation that does not cause any additional genetic effects other than expression of the reporter. Here we introduce a new BAC transgenic reporter line, Drd1a-tdTomato line 6, with features that approximate these ideals, offering substantial benefits over existing lines. In this study, we investigate the integrity of dopamine-sensitive behaviors and test the sensitivity and specificity of tdTomato fluorescence for identifying striatonigral projection neurons in mice. Behaviorally, hemizygous Drd1a-tdTomato line 6 mice are similar to littermate controls; while hemizygous Drd2-EGFP mice are not. In characterizing the sensitivity and specificity of line 6 mice, we find that both are high. The results of this characterization indicate that line 6 Drd1a-tdTomato+/− mice offer a useful alternative approach to identify both striatonigral and striatopallidal neurons in a single transgenic line with a high degree of accuracy. PMID:21713123

  19. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  20. Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology.

    PubMed

    Cantera, Jason L; Chen, Wilfred; Yates, Marylynn V

    2010-01-01

    The rapid and effective detection of virus infection is critical for clinical management and prevention of disease spread during an outbreak. Several methods have been developed for this purpose, of which classical serological and viral nucleic acid detection are the most common. We describe an alternative approach that utilizes engineered cells expressing fluorescent proteins undergoing fluorescence resonance energy transfer (FRET) upon cleavage by the viral 2A protease (2A(pro)) as an indication of infection. Quantification of the infectious-virus titers was resolved by using flow cytometry, and utility was demonstrated for the detection of poliovirus 1 (PV1) infection. Engineered buffalo green monkey kidney (BGMK) cells expressing the cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) substrate linked by a cleavage recognition site for PV1 2A(pro) were infected with different titers of PV1. After incubation at various time points, cells were harvested, washed, and subjected to flow cytometry analysis. The number of infected cells was determined by counting the number of cells with an increased CFP-to-YFP ratio. As early as 5 h postinfection, a significant number of infected cells (3%) was detected by flow cytometry, and cells infected with only 1 PFU were detected after 12 h postinfection. When applied to an environmental water sample spiked with PV1, the flow cytometry-based assay provided a level of sensitivity similar to that of the plaque assay for detecting and quantifying infectious virus particles. This approach, therefore, is more rapid than plaque assays and can be used to detect other viruses that frequently do not form clear plaques on cell cultures.

  1. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  2. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy.

    PubMed

    Toma, Mana; Tawa, Keiko

    2016-08-31

    Polydopamine (PDA) thin films are introduced to the surface modification of biosensor surfaces utilizing surface plasmon enhanced fluorescence spectroscopy (SPFS) as the linker layer of capture antibody on to the sensor surfaces. The capture antibody can be directly attached to the sensor surface without using any coupling agent by functionalizing the gold sensor surface with PDA thin films. The PDA coating is performed by a single-step preparation process by applying the dopamine solution on the sensor surface, which requires an extremely short incubation time (10 min). The real-time in situ measurement of the adsorption kinetics of the capture antibody onto the PDA-coated sensor surface is studied by surface plasmon resonance (SPR) spectroscopy. It reveals that the immobilization of capture antibody immediately occurs after introduction of a solution containing capture antibody, and the sensor surface is fully covered with the capture antibody. The sensitive detection of the cytokine marker interleukin-6 (IL-6) is performed by SPFS using a sandwich assay format with fluorescently labeled detection antibody. The sensor chips functionalized by PDA chemistry exhibited sensitive sensor responses with low nonspecific adsorption of the detection antibody onto the sensor surface. The detection limit of IL-6 with the developed SPFS biosensor is determined to be 2 pg/mL (100 fM), which is within the range of the diagnostic criteria. Our observation elucidates the remarkable utility of PDA coatings for chemical modification of the metallic sensor surfaces by a simple, brief, and inexpensive manner. PMID:27484114

  3. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    PubMed

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  4. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change.

    PubMed

    Li, Hongmei; Wang, Cuiling; She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng; Liu, Ping; Wang, Yaoyu; Li, Jianli

    2015-11-01

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4-6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H(+) in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging.

  5. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes

    SciTech Connect

    Zhu, H.; Clark, S.M.; Benson, S.C.; Rye, H.S.; Glazer, A.N.; Mathies, R.A. )

    1994-07-01

    Fluorescence-detected capillary electrophoresis separations of [phi]X174/HaeIII DNA restriction fragments have been performed using monomeric and dimeric intercalating dyes. Replaceable hydroxyethyl cellulose solutions were used as the separation medium. Confocal fluorescence detection was performed following 488-nm laser excitation. The limits of DNA detection for on-column staining with monomeric dyes (ethidium bromide, two propidium dye derivatives, oxazole yellow, thiazole orange, and a polycationic thiazole orange derivative) were determined. The thiazole orange dyes provide the most sensitive detection with limiting sensitivities of 2-4 amol of DNA base pairs per band, and detection of the 603-bp fragment was successful, injecting from [phi]X174/HaeIII samples containing only 1-2 fg of this fragment per microliter. Separations of preformed DNA-dimeric dye complexes were also performed. The breadth of the bands observed in separations of preformed DNA-dimeric dye complexes is due to the presence of DNA fragments with different numbers of bound dye molecules that can be resolved as closely spaced subbands in many of our separations. The quality of these DNA-dye complex separations can be dramatically improved by performing the electrophoresis with 9-aminoacridine (9AA) in the column and running buffers. 43 refs., 10 figs., 1 tab.

  6. Highly sensitive fluorescence detection of target DNA by coupling exonuclease-assisted cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Cheng, Chuanbin; Liu, Tao; Wang, Li; Gong, Hongwei; Li, Feng

    2015-01-15

    Because of the intrinsic importance of nucleic acid as bio-targets, the simple and sensitive detection of nucleic acid is very essential for biological studies and medical diagnostics. Herein, a simple, isothermal and highly sensitive fluorescence detection of target DNA was developed with the combination of exonuclease III (Exo III)-assisted cascade target recycling and DNAzyme amplification. A hairpin DNA probe was designed, which contained the 3'-protruding DNA fragment as target recognition unit, the caged DNA fragment in the stem region as target analogue, and the caged 8-17 DNAzyme sequence in the loop region as signal response unit. Upon sensing of target DNA, the 3'-strand of hairpin DNA probe could be stepwise removed by Exo III, accompanied by the releasing of target DNA and autonomous generation of new target analogues for the successive hybridization and cleavage process. Simultaneously, the 8-17 DNAzyme unit could be exponentially released from this hairpin DNA probe and activated for the cyclic cleavage toward the ribonucleotide-containing molecular beacon substrate, inducing a remarkable fluorescence signal amplification for target detection. A low detection limit of 20 fM with an excellent selectivity toward target DNA could be achieved. The developed cascade amplification strategy may be further extended for the detection of a wide spectrum of analytes including protein and biological small molecules by combining DNA aptamer technology.

  7. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy.

    PubMed

    Toma, Mana; Tawa, Keiko

    2016-08-31

    Polydopamine (PDA) thin films are introduced to the surface modification of biosensor surfaces utilizing surface plasmon enhanced fluorescence spectroscopy (SPFS) as the linker layer of capture antibody on to the sensor surfaces. The capture antibody can be directly attached to the sensor surface without using any coupling agent by functionalizing the gold sensor surface with PDA thin films. The PDA coating is performed by a single-step preparation process by applying the dopamine solution on the sensor surface, which requires an extremely short incubation time (10 min). The real-time in situ measurement of the adsorption kinetics of the capture antibody onto the PDA-coated sensor surface is studied by surface plasmon resonance (SPR) spectroscopy. It reveals that the immobilization of capture antibody immediately occurs after introduction of a solution containing capture antibody, and the sensor surface is fully covered with the capture antibody. The sensitive detection of the cytokine marker interleukin-6 (IL-6) is performed by SPFS using a sandwich assay format with fluorescently labeled detection antibody. The sensor chips functionalized by PDA chemistry exhibited sensitive sensor responses with low nonspecific adsorption of the detection antibody onto the sensor surface. The detection limit of IL-6 with the developed SPFS biosensor is determined to be 2 pg/mL (100 fM), which is within the range of the diagnostic criteria. Our observation elucidates the remarkable utility of PDA coatings for chemical modification of the metallic sensor surfaces by a simple, brief, and inexpensive manner.

  8. Sets of RNA Repeated Tags and Hybridization-Sensitive Fluorescent Probes for Distinct Images of RNA in a Living Cell

    PubMed Central

    Kubota, Takeshi; Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2010-01-01

    Background Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. Methodology/Principal Findings Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO) probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3′-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag–probe pairs. Conclusions/Significance A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging. PMID:20885944

  9. Fluorescence molecular probes for sensitive point detection of amyloid fibrils and protofibrils

    NASA Astrophysics Data System (ADS)

    Lindgren, Mikael; Jonsson, Per; Sörgjerd, Karin; Hammarström, Per

    2005-10-01

    Protein based infections such as prion diseases have lately attracted a large amount of interest, primarily due to the Mad Cow Epidemic in Great Britain, and the increase of Alzheimer's disease and related diseases in the ageing Western society. Infective proteins are very stable and almost untraceable prior to infection making them ideal as biological weapons. Particularly if the used agent is of human origin, the immunoresponse can be avoided, leaving no trace of the infectious agent. The transient nature of infectious oligomeric intermediates of misfolded proteins or peptide fragments that later matures into fibrillar aggregates makes them hard to study, and methods to detect and study these species are sparse. There exist a number of fluorescent probes that bind specifically to protein amyloidic structures. Thioflavins (ThT, ThS), Congo and Nile red, 4-(dicyanovinyl)-julolidine (DCVJ), as well as derivatives amino-8-naphtalene sulphonate (ANS, Bis-ANS) which are known to bind to the fibrillar or pre-fibrillar states with dissociation constants of typically 1 - 20 μM. Here, transthyretin (TTR), insulin and lysozyme were used as model proteins to detect different amyloid precursor states for diseases such as senile systemic amyloidosis, familial amyloidotic polyneuropathy (FAP) and iatrogenic amyloidosis. Specifically, the probes were employed in static assays to characterize protofibrillar and mature amyloid fibrillar states using steady state and time-resolved fluorescence techniques. Particularly, we investigate and report on the possibility to detect protofibrillar states at low concentration levels using modern fluorescence array detector systems in conjunction with lasers operating in the blue or ultraviolett wavelengths as excitation source. Results of ANS, ThT and a ThT analogue (abbreviated ThC) are discussed.

  10. PROTON MICROPROBE ANALYSIS OF TRACE-ELEMENT VARIATIONS IN VITRINITES IN THE SAME AND DIFFERENT COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.

    1987-01-01

    The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.

  11. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    NASA Astrophysics Data System (ADS)

    Kovalev, Valeri I.; Bartona, James S.; Richardson, Patricia R.; Jones, Anita C.

    2006-07-01

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ~10 attomole/cm2 with a scan speed of ~3-10 cm2/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  12. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    PubMed Central

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-01-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications – a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+. PMID:27752120

  13. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.

    PubMed

    Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2016-08-24

    Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples. PMID:27471907

  14. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.

  15. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences. PMID:26860566

  16. Use of Time-Resolved Fluorescence To Improve Sensitivity and Dynamic Range of Gel-Based Proteomics.

    PubMed

    Sandberg, AnnSofi; Buschmann, Volker; Kapusta, Peter; Erdmann, Rainer; Wheelock, Åsa M

    2016-03-15

    Limitations in the sensitivity and dynamic range of two-dimensional gel electrophoresis (2-DE) are currently hampering its utility in global proteomics and biomarker discovery applications. In the current study, we present proof-of-concept analyses showing that introducing time-resolved fluorescence in the image acquisition step of in-gel protein quantification provides a sensitive and accurate method for subtracting confounding background fluorescence at the photon level. In-gel protein detection using the minimal difference gel electrophoresis workflow showed improvements in lowest limit of quantification in terms of CyDye molecules per pixel of 330-fold in the blue-green region (Cy2) and 8000-fold in the red region (Cy5) over conventional state-of-the-art image acquisition instrumentation, here represented by the Typhoon 9400 instrument. These improvements make possible the detection of low-abundance proteins present at sub-attomolar levels, thereby representing a quantum leap for the use of gel-based proteomics in biomarker discovery. These improvements were achieved using significantly lower laser powers and overall excitation times, thereby drastically decreasing photobleaching during repeated scanning. The single-fluorochrome detection limits achieved by the cumulative time-resolved emission two-dimensional electrophoresis (CuTEDGE) technology facilitates in-depth proteomics characterization of very scarce samples, for example, primary human tissue materials collected in clinical studies. The unique information provided by high-sensitivity 2-DE, including positional shifts due to post-translational modifications, may increase the chance to detect biomarker signatures of relevance for identification of disease subphenotypes. PMID:26854653

  17. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-08-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases.Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the

  18. Highly sensitive fluorescent stain for detecting lipopolysaccharides in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Wang, Xu; Zhou, Ayi; Cai, Wanhui; Yu, Dongdong; Zhu, Zhongxin; Jiang, Chengxi; Jin, Litai

    2015-08-01

    A sensitive and simple technique was developed for the visualization of gel-separated lipopolysaccharides by using a hydrazide derivative, UGF202. As low as 0.5-1 ng total LPS could be detected by UGF202 stain, which is 2- and 16-fold more sensitive than that of the commonly used Pro-Q Emerald 300 and Keenan et al. developed silver stain, respectively. The results indicated that UGF202 stain could be a good choice for LPS determination in polyacrylamide gels. PMID:25930092

  19. [Application of Cationic Aluminum Phthalocyanine, a Red-Emitting Fluorescent Probe, for Sensitive Quantitative Analysis of RNA at Nanogram Level].

    PubMed

    Guo, Meng-lin; Yang, Hui-qing; Huang, Ping; Chen, Lin; Li, Dong-hui

    2016-03-01

    Tetrasubstituted trimethyl ammonium iodide aluminum phthalocyanine (TTMAAlPc), a positively charged phthalocyanine compound, is an emerging and potentially useful red-emitting fluorescence probe. The study showed that the fluorescence of TTMAAlPc could be quenched by RNA with high efficiency in weak alkaline media, and the degree of quenching has a linear relationship with RNA in a wide concentration range. The mechanism of quenching behavior of RNA on TTMAAlPc was discussed. It was attributed by the static interaction between RNA and TTMAAlPc, and the assembly of TTMAAlPc induced by RNA. Based on this new discovery, a novel method for quantitative determination of RNA at nanogram level has been established. The factors, including the pH of medium, buffer system, reaction time, reaction temperature, the usage of TTMAAlPc as well as the interferences, which affected the determination, were investigated and discussed. Under optimum conditions, the linear range of the calibration curve was 7.71-1 705.57 ng x mL(-1). The detection limit for RNA was 1.55 ng x mL(-1). This method has been applied to the analysis of practical samples with satisfied results. The constructed method is of high sensitivity and has a wide linear range, it also showed strong ability in the tolerance of foreign substances from anions, cations, surfactants and vitamins, all of which are common interferences encountered in the determination of RNA. Besides, it is the first report that the fluorescence quantum yield of TTMAAlPc has been measured at different pH by reference method in this work. The achieved data indicated that the fluorescence quantum yield of TTMAAlPc is larger than 20% and it keeps constant in a wide range of acidity, implying that TTMAAlPc is a high-quality red-emitting fluorescence probe, it has great potential for practical applications, thus is worthy of further study. This work expands the application of phthalocyanine compound in analytical sciences.

  20. [Application of Cationic Aluminum Phthalocyanine, a Red-Emitting Fluorescent Probe, for Sensitive Quantitative Analysis of RNA at Nanogram Level].

    PubMed

    Guo, Meng-lin; Yang, Hui-qing; Huang, Ping; Chen, Lin; Li, Dong-hui

    2016-03-01

    Tetrasubstituted trimethyl ammonium iodide aluminum phthalocyanine (TTMAAlPc), a positively charged phthalocyanine compound, is an emerging and potentially useful red-emitting fluorescence probe. The study showed that the fluorescence of TTMAAlPc could be quenched by RNA with high efficiency in weak alkaline media, and the degree of quenching has a linear relationship with RNA in a wide concentration range. The mechanism of quenching behavior of RNA on TTMAAlPc was discussed. It was attributed by the static interaction between RNA and TTMAAlPc, and the assembly of TTMAAlPc induced by RNA. Based on this new discovery, a novel method for quantitative determination of RNA at nanogram level has been established. The factors, including the pH of medium, buffer system, reaction time, reaction temperature, the usage of TTMAAlPc as well as the interferences, which affected the determination, were investigated and discussed. Under optimum conditions, the linear range of the calibration curve was 7.71-1 705.57 ng x mL(-1). The detection limit for RNA was 1.55 ng x mL(-1). This method has been applied to the analysis of practical samples with satisfied results. The constructed method is of high sensitivity and has a wide linear range, it also showed strong ability in the tolerance of foreign substances from anions, cations, surfactants and vitamins, all of which are common interferences encountered in the determination of RNA. Besides, it is the first report that the fluorescence quantum yield of TTMAAlPc has been measured at different pH by reference method in this work. The achieved data indicated that the fluorescence quantum yield of TTMAAlPc is larger than 20% and it keeps constant in a wide range of acidity, implying that TTMAAlPc is a high-quality red-emitting fluorescence probe, it has great potential for practical applications, thus is worthy of further study. This work expands the application of phthalocyanine compound in analytical sciences. PMID:27400518

  1. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    PubMed

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50.

  2. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    NASA Astrophysics Data System (ADS)

    Kovalev, Valeri I.; Barton, James S.; Richardson, Patricia R.; Jones, Anita C.

    2006-02-01

    There is a risk of contamination of surgical instruments by nfectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ~100 zeptomoles/mm2 with an area scan speed of ~20 cm2/s and for using the system to detect other agents of biomedical interest. A theoretical analysis and experimental measurements will be discussed.

  3. Sensitivity of detection of bacteria with fluorescent and luminescent phenotypes using different instruments

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2000-04-01

    The problem of bacterial enumeration in different samples is of great importance in many fields of research. Construction of recombinant fluorescent and luminescent bacteria that can be easily detected by nondestructive instrumental methods proves us with an opportunity to monitor bacteria in a wide variety of clinical, environmental and food samples in real time. Three different labels were employed: Green Fluorescent Protein (GFP), Bacterial luciferase (BL) and Firefly Luciferase (FFL). Both plasmid and chromosomal transformants of different strains of E. coli, P. putida and S. enteritidis were used. For the detection of the in vivo GFP the Shimadzu RF 540 spectrofluorimeter, Labsystems FL- 500 plate fluorimeter and Night Owl LB 98 CCD-camera from EG and G Berthold supplied with excitation light source and proper spectral filters both in macroscopic and microscopic mode were used. For the detection of in vivo luminescence of BL and FFL, tube luminometer BG-P from GEM Biomedical Inc., luminometric plate reader from BioOrbit, BIQ Bioview CCD camera from Cambridge Imaging Ltd and Night Owl LB 98 CCD camera both in macroscopic and microscopic mode were used. The expression levels of the labels, their stability, stability of the signal and detection limits of tagged bacteria were investigated. The detection limits for GFP tagged bacteria were 5 X 104 - 6 X 106, for BL tagged bacteria 5 X 102 - 2 X 105, and for FFL tagged bacteria - 4 X 103 - 106 CFU/ml, depending on the instrument used. Single bacteria could be detected with the help of the Night Owl in the microscopic mode.

  4. Fluorescence polarization immunoassays for rapid, accurate, and sensitive determination of mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...

  5. Stand-alone microprobe at Livermore

    SciTech Connect

    Antolak, A J; Bench, G S; Brown, T A; Frantz, B R; Grant, P G; Morse, D H; Roberts, M L

    1998-10-02

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new stand-alone microprobe facility. Although the facility was built to develop a method to rapidly locate and determine elemental concentrations of micron scale particulates on various media using PIXE, the facility has found numerous applications in biology and materials science. The facility is located at LLNL and uses a General Ionex Corporation Model 358 duoplasmatron negative ion source, a National Electrostatics Corporation 5SDH-2 tandem accelerator, and an Oxford triplet lens. Features of the system include complete computer control of the beam transport using LabVIEWTM for Macintosh, computer controlled beam collimating and divergence limiting slits, automated sample positioning to micron resolution, and video optics for beam positioning and sample observation. Data collection is accomplished with the simultaneous use of as many as four EG&G Ortec IGLET-XTM X-Ray detectors, digital amplifiers made by X-Ray Instruments and Associates (XIA), and LabVIEWTM for Macintosh acquisition software.

  6. Aerothermal Heating Predictions for Mars Microprobe

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; DiFulvio, M.; Horvath, T. J.; Braun, R. D.

    1998-01-01

    A combination of computational predictions and experimental measurements of the aerothermal heating expected on the two Mars Microprobes during their entry to Mars are presented. The maximum, non-ablating, heating rate at the vehicle's stagnation point (at alpha = 0 degrees) is predicted for an undershoot trajectory to be 194 Watts per square centimeters with associated stagnation point pressure of 0.064 atm. Maximum stagnation point pressure occurs later during the undershoot trajectory and is 0.094 atm. From computations at seven overshoot-trajectory points, the maximum heat load expected at the stagnation point is near 8800 Joules per square centimeter. Heat rates and heat loads on the vehicle's afterbody are much lower than the forebody. At zero degree angle-of-attack, heating over much of the hemi-spherical afterbody is predicted to be less than 2 percent of the stagnation point value. Good qualitative agreement is demonstrated for forebody and afterbody heating between CFD calculations at Mars entry conditions and experimental thermographic phosphor measurements from the Langley 20-Inch Mach 6 Air Tunnel. A novel approach which incorporates six degree-of-freedom trajectory simulations to perform a statistical estimate of the effect of angle-of-attack, and other off-nominal conditions, on heating is included.

  7. TEAM – Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes –scientific probes derived from an existing cubesat bus architecture (CAPE – the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface – land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  8. The new nuclear microprobe at Livermore

    NASA Astrophysics Data System (ADS)

    Roberts, M. L.; Bench, G. S.; Heikkinen, D. W.; Morse, D. H.; Bach, P. R.; Pontau, A. E.

    1995-09-01

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new nuclear microprobe beamline. This beamline is located on the LLNL 10 MV tandem accelerator and can be used for multidisciplinary research using PIXE, PIGE, energy loss tomography, or IBS techniques. Distinctive features of the beamline include incorporation of magnet power supplies into the accelerator control system, computer-controlled object and image slits, automated target positioning to sub-micron resolution, and video optics for beam positioning and observation. Mitigation of vibrations was accomplished with vibration isolators and a rigid beamline design while integral beamline shielding was used to shield from stray magnetic fields. Available detectors include a wavelength dispersive X-ray spectrometer, a High-Purity Germanium detector (HPGe), a Lithium-Drifted Silicon X-Ray detector (SiLi), and solid state surface barrier detectors. Along with beamline performance, results from recent measurements on determination of trace impurities in an International Thermonuclear Experimental Reactor (ITER) super conducting wire strand, determination of Ca/Sr ratios in seashells, and determination of minor and trace element concentrations in sperm cells are presented.

  9. A Novel Sensor for Sensitive and Selective Detection of Iodide Using Turn-on Fluorescence Graphene Quantum Dots/Ag Nanocomposite.

    PubMed

    Xu, Xianghong; Wang, Yanhui

    2015-01-01

    Based on the principle of fluorescence enhancing, by the strong and specific interreaction between iodide (I(-)) ions and nanoAg on the surface of graphene quantum dots/Ag (GQDs/Ag) nanocomposite, we propose a simple label-free and turn-on method for the detection of I(-) ions with high selectivity and sensitivity by using fluorescent GQDs/Ag nanocomposite in aqueous media. PMID:26256602

  10. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. PMID:26592607

  11. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  12. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma.

    PubMed

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-09-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co(2+), leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases. PMID:26222243

  13. Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Li, Xing-Ying; Pang, Xiao-Qing; Cao, Jun; Ye, Li-Hong; Dai, Han-Bin; Liu, Xiao-Juan; Da, Jian-Hua; Chu, Chu

    2014-09-01

    A rapid zwitterionic microemulsion electrokinetic chromatography (ZI-MEEKC) approach coupled with light-emitting-diode-induced fluorescence (LED-IF, 480nm) detection was proposed for the analysis of flavonoids. In the optimization process, we systematically investigated the separation conditions, including the surfactants, cosurfactants, pH, buffers and fluorescence parameters. It was found that the baseline separation of the seven flavonoids was obtained in less than 5min with a running buffer consisting of 92.9% (v/v) 5mM sodium borate, 0.6% (w/v) ZI surfactant, 0.5% (w/v) ethyl acetate and 6.0% (w/v) 1-butanol. High sensitivity was obtained by the application of LED-IF detection. The limits of detection for seven flavonoids were in the range of 3.30×10(-8) to 2.15×10(-6)molL(-1) without derivatization. Ultimately, the detection method was successfully applied to the analysis of flavonoids in hawthorn plant and food products with satisfactory results. PMID:25047822

  14. A highly selective and sensitive near-infrared fluorescent probe for imaging of hydrogen sulphide in living cells and mice

    PubMed Central

    Zhang, Ling; Zheng, Xi Emily; Zou, Fang; Shang, Yanguo; Meng, Wenqi; Lai, En; Xu, Zhichen; Liu, Yi; Zhao, Jing

    2016-01-01

    Hydrogen sulphide (H2S), the third endogenous gaseous signalling molecule, has attracted attention in biochemical research. The selective detection of H2S in living systems is essential for studying its functions. Fluorescence detection methods have become useful tools to explore the physiological roles of H2S because of their real-time and non-destructive characteristics. Herein we report a near-infrared fluorescent probe, NIR-HS, capable of tracking H2S in living organisms. With high sensitivity, good selectivity and low cytotoxicity, NIR-HS was able to recognize both the exogenous and endogenous H2S in living cells. More importantly, it realized the visualization of endogenous H2S generated in cells overexpressing cystathionine β-synthase (CBS), one of the enzymes responsible for producing endogenous H2S. The probe was also successfully applied to detect both the exogenous and endogenous H2S in living mice. The superior sensing properties of the probe render it a valuable research tool in the H2S-related medical research. PMID:26743682

  15. Laser-microprobe studies of rare gas isotopes in meteorites

    SciTech Connect

    Kirschbaum, C.L.

    1986-01-01

    A new rare gas mass spectrometer of high sensitivity coupled to a laser microprobe extraction system (constructed by the author) is described. The laser microprobe is applied to a long standing problem in cosmochemistry - determining the minerals which carry /sup 129/Xe from the decay of the extinct radioactive isotope /sup 129/I (this /sup 129/Xe is referred to as /sup 129/Xe/sub r/). The /sup 129/Xe/sub r//sup 127/I ratios and the inferred relative formation times of these minerals are also determined. In the Allende meteorite, sodalite (Na/sub 8/(Al/sub 6/Si/sub 6/O/sub 24/)Cl/sub 2/) has been verified to be the major carrier for /sup 129/Xe/sub r/ in fine-grained inclusions. Although the exact mineral phase responsible has not been identified a carrier other than sodalite is also present in matrix from Allende. The /sup 129/Xe/sub r/ of this carrier is physically correlated with trapped xenon in the matrix and has a chlorine/iodine ratio which is lower than the ratio in the fine-grained inclusions. The /sup 129/Xe/sub r///sup 127/I ratios for sodalite from the fine-grained inclusions, and matrix are similar - between 1.25 and 1.35 x 10/sup -4/. This implies an age for these samples within 2 million years of the Bjurbole meteorite (Bjurbole is commonly used as a standard for meteorite formation intervals). The /sup 129/Xe/sub r///sup 127/I ratio of the sample of the fine-grained inclusion in which sodalite was thermally decomposed by laboratory preheating, is 2.4 x 10/sup -4/ or 16 million years before Bjurbole. The alteration-product-free coarse-grained inclusion on the other hand showed a ratio of 3.15 x 10/sup -5/ or 35 million years after Bjurbole. These relative formation intervals are much longer than expected for nebular processes and hence are either due to parent body processes or heterogeneity of the /sup 129/I//sup 127/I ratio in the early solar system.

  16. Investigation of shear force of a single adhesion cell using a self-sensitive cantilever and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shigetaka; Adachi, Makoto; Iwata, Futoshi

    2015-08-01

    In this paper, we describe a measurement system based on an atomic force microscope (AFM) for the measurement of the shear force and detachment energy of a single adhesion cell on a substrate. The shear force was quantitatively measured from the deflection of a self-sensitive cantilever that was employed for the simple configuration of the AFM manipulator. The shear force behavior of a single cell detaching from the substrate was observed. By staining cells with a fluorescence dye, the deformation shape of the cell being pushed with the cantilever could be clearly observed. The shear force and detachment energy of the cell increased with the size of the cell. The difference in the shear force of single cells on different substrates with different surface energies was quantitatively evaluated. The loading force applied to a single cell increased with the feed speed of the cantilever. The viability of cells after measurement under different feed speeds of the cantilever was also evaluated.

  17. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media.

    PubMed

    Song, Chunxia; Zhang, Xiaolin; Jia, Cuiying; Zhou, Peng; Quan, Xie; Duan, Chunying

    2010-04-15

    A new Rhodamine-based chemosensor RBSN designed for the selective detection of Hg(2+) in aqueous media is synthesized and structural characterized. It features brightness blue emission in the presence of Hg(2+) with the fluorescent detection limit for Hg(2+) in aqueous media being ppb levels and exhibits excellent Hg(2+)-specific luminescence enhancement over various competitive cations, including alkali and alkaliearth, the first-row transition metals and heavy metals. By immobilizing RBSN to the mesoporous SBA-15, a highly selective and sensitive chemosensor toward mercury cations in aqueous solution was achieved. RBSN/SBA-15 could quantitatively determinate mercury cations at ppb level in the practical environmental media, suggesting the possibility for real-time quantitative detection of Hg(2+) and the convenience for potential application in toxicological and environmental science.

  18. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Reversible Chemosensors for Al3+ Based on the Rhodamine Fluorophore

    PubMed Central

    Mergu, Naveen; Singh, Ashok Kumar; Gupta, Vinod Kumar

    2015-01-01

    A series of rhodamine derivatives L1–L3 have been prepared and characterized by IR, 1H-NMR, 13C-NMR and ESI-MS. These compounds exhibited selective and sensitive “turn-on” fluorescent and colorimetric responses to Al3+ in methanol. Upon the addition of Al(III), the spiro ring was opened and a metal-probe complex was formed in a 1:1 stoichiometry, as was further confirmed by ESI-MS spectroscopy. The chemo-dosimeters L1–L3 exhibited good binding constants and low detection limits towards Al(III). We also successfully demonstrate the reversibility of the metal to ligand complexation (opened ring to spirolactam ring). PMID:25897498

  19. Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection.

    PubMed

    Watanabe, Eiki; Baba, Koji

    2015-03-13

    This paper describes a highly sensitive analytical method using high-performance liquid chromatography and fluorescence detection (HPLC-FLD) capable of quantifying trace amounts of synthetic pyrethroid insecticide etofenprox residue in six vegetable samples: bell pepper, cucumber, eggplant, Japanese mustard spinach, spinach, and tomato. After extraction with acetonitrile, the crude sample extract was cleaned up with a solid-phase extraction cartridge. The matrix interference derived from the tested vegetable samples was evaluated. Quantification was conducted using external calibrators prepared in pure acetonitrile. The limits of quantification for etofenprox in each sample were 1.87-3.87 ng/g. Recoveries obtained by application of the proposed analytical method of vegetable samples spiked at the considerably low levels (5-100 ng/g) were 85-111% with relative standard deviations of less than 12%. The proposed method using the HPLC-FLD was applied for trace analysis of the insecticide residue in vegetable samples.

  20. Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor.

    PubMed

    In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung

    2016-09-15

    A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. PMID:27503680

  1. Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection.

    PubMed

    Watanabe, Eiki; Baba, Koji

    2015-03-13

    This paper describes a highly sensitive analytical method using high-performance liquid chromatography and fluorescence detection (HPLC-FLD) capable of quantifying trace amounts of synthetic pyrethroid insecticide etofenprox residue in six vegetable samples: bell pepper, cucumber, eggplant, Japanese mustard spinach, spinach, and tomato. After extraction with acetonitrile, the crude sample extract was cleaned up with a solid-phase extraction cartridge. The matrix interference derived from the tested vegetable samples was evaluated. Quantification was conducted using external calibrators prepared in pure acetonitrile. The limits of quantification for etofenprox in each sample were 1.87-3.87 ng/g. Recoveries obtained by application of the proposed analytical method of vegetable samples spiked at the considerably low levels (5-100 ng/g) were 85-111% with relative standard deviations of less than 12%. The proposed method using the HPLC-FLD was applied for trace analysis of the insecticide residue in vegetable samples. PMID:25662063

  2. Electron microprobe analysis of zinc incorporation into rumen protozoa

    SciTech Connect

    Bonhomme, A.; Quintana, C.; Durand, M.

    1980-11-01

    With the aid of electron microprobe analysis on ciliate spreads, we detected zinc in ciliates and its accumulation in the endoplasm. A correlation was found between the amount of zinc accumulation and its concentration in the medium. By the same microprobe analysis of of ultrathin sections, we determined semiquantitatively the zinc accumulation in the intracytoplasmic granules and its presence in macronuclei and in intra- and extracellular bacteria.

  3. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    SciTech Connect

    Rahmanseresht, Sheema; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.; Milas, Peker

    2015-05-11

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  4. Biological Effects in Coral Biomineralization: The Ion-Microprobe Revolution

    NASA Astrophysics Data System (ADS)

    Meibom, A.

    2004-12-01

    Scleractinian corals are among the most prolific biomineralizing organisms on Earth and massive, reef-building corals are used extensively as proxies for past variations in the global climate. It is therefore of wide interest to understand the degree to which biological versus inorganic processes control the chemistry of the coral skeleton. Early workers considered aragonitic coral skeleton formation to be a purely physiochemical process. More recent studies have increasingly emphasized the role of a skeletal organic matrix, or intercalated organic macro-molecules that control the macroscopic shape and size of the growing crystals. It is now well established that organic compounds play a key role in controlling the morphology of crystals in a wide variety of calcium carbonate biomineralization processes by binding to specific sites, thereby causing direction-specific binding energies on the crystal surfaces. Macro-molecules, such as aspartic acid-rich or glutamic proteins and sulfated polysaccharides, are known to be embedded within the aragonitic skeletal components of coral. In addition, endosymbiotic algae and the layer of cells adjacent to the mineralizing surface, the calicoblastic ectoderm, are believed to play important roles in driving and controlling hermatypic coral skeletogenesis. However, until recently, further progress has been somewhat limited because it was not possible to obtain chemical analyses of the coral skeleton with sufficiently high spatial resolution and sensitivity to correlate chemical variations with the micrometer scale organization of its different structural components. The recent emergence of new ion microprobe technology is changing this situation radically. Conventional ion microprobe and laser ablation techniques have already contributed substantially to our knowledge about the micro-distribution of key trace elements such as B, Mg, Sr, Ba and U. However, with the development of the NanoSIMS, a newly designed ion microprobe

  5. The Perils of Electron Microprobe Analysis of Apatite

    NASA Astrophysics Data System (ADS)

    Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.

    2010-12-01

    . Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.

  6. X-ray microprobe characterization of materials: the case for undulators on advanced storage rings

    SciTech Connect

    Sparks, C.J. Jr.

    1984-03-17

    The unique properties of X rays offer many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signals to backgrounds than obtained with electrons. Detectable limits for X rays are a few parts per billion and are 10/sup -3/ to 10/sup -5/ less than for electrons. Energy deposition in the sample by X rays is 10/sup -3/ to 10/sup -4/ less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 6 GeV class with undulators, will be approximately 10/sup 3/ brighter in the X-ray energy range from 5 keV to 35 keV than existing storage rings and provide for X-ray microprobes that are as bright as the most advanced electron probes. Such X-ray microprobes will produce unprecedented low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for both chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine.

  7. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration.

  8. A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection.

    PubMed

    Wang, Xu; Adams, Erwin; Van Schepdael, Ann

    2012-08-15

    Analysis of nitrite, the indicator of nitric oxide (NO) generation in vivo, provides a useful tool to study NO synthesis in vivo. A fast and sensitive fluorometric CE method was developed for determination of nitrite in human plasma through its derivatization with 2,3-diaminonaphthalene (DAN). Nitrite in human plasma was easily reacted with DAN under acid conditions to yield the highly fluorescent 2,3-naphthotriazole (NAT). Fluorescence detection was optimized to achieve subnanomolar detection which allows a direct analysis of plasma samples unlike most CE-UV methods using sample stacking. Acetonitrile was used to remove the protein. Short-end injection and a high voltage (-30 kV) were used to shorten the analysis time. The good separation was achieved with 20 mM borate buffer at pH 9.23. The separation of NAT was obtained within 1.4 min. The deproteinized plasma sample was injected hydrodynamically for 5s at -50 mbar into a 60 cm × 75 μm internal diameter uncoated fused-silica capillary. Excitation wavelength was selected with a broad-band filter (240-400 nm), and the emitted light was measured at 418 nm by the use of a cutoff filter. A good linearity (R(2)=0.9975) was obtained in the range from 2 to 500 nM. The detection limit of nitrite was 0.6 nM in original plasma samples, which is 750 times lower than our previous CE-UV method. The developed fluorometric CE method offers the advantages of more simple system and lower cost compared with the current fluorometric HPLC methods without losing sensitivity. The detected mean nitrite concentration in human plasma by this method was consistent with the most frequently reported values. PMID:22841058

  9. Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction

    NASA Astrophysics Data System (ADS)

    Frey, O.; van der Wal, P. D.; Spieth, S.; Brett, O.; Seidl, K.; Paul, O.; Ruther, P.; Zengerle, R.; de Rooij, N. F.

    2011-10-01

    This paper reports on silicon-based microprobes, 8 mm long and 250 µm × 250 µm cross-section, comprising four recessed biosensor microelectrodes (50 µm × 150 µm) per probe shank coated with an enzymatic layer for the selective detection of choline at multiple sites in brain tissue. Integrated in the same probe shank are up to two microfluidic channels for controlled local liquid delivery at a defined distance from the biosensor microelectrodes. State-of-the-art silicon micromachining processing was applied for reproducible fabrication of these experiment-tailored multi-functional probe arrays. Reliable electric and fluidic interconnections to the microprobes are guaranteed by a custom-made holder. The reversible packaging method implemented in this holder significantly reduces cost and assembly time and simplifies storage of the biosensor probes between consecutive experiments. The functionalization of the electrodes is carried out using electrochemically aided adsorption. This spatially controlled deposition technique enables a parallel deposition of membranes and is especially useful when working with microelectrode arrays. The achieved biosensors show adequate characteristics to detect choline in physiologically relevant concentrations at sufficient temporal and spatial resolution for brain research. Sensitivity to choline better than 10 pA µm-1, detection limit below 1 µM and response time of 2 s were obtained. The proposed combination of biosensors and microfluidic injectors on the same microprobe allows simultaneous chemical stimulation and recording as demonstrated in an agarose gel-based brain phantom.

  10. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    SciTech Connect

    Vazehrad, S.; Diószegi, A.

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  11. Near Infrared Voltage Sensitive Fluorescent Dyes Optimized for Optical Mapping in Blood-Perfused Myocardium

    PubMed Central

    Matiukas, Arvydas; Mitrea, Bogdan G.; Qin, Maochun; Pertsov, Arkady M.; Shvedko, Alexander G.; Warren, Mark D.; Zaitsev, Alexey V.; Wuskell, Joseph P.; Wei, Mei-de; Watras, James; Loew, Leslie M.

    2007-01-01

    Background Styryl voltage-sensitive dyes (e.g. di-4-ANEPPS) have been successfully used for optical mapping in cardiac cells and tissues. However, their utility for probing electrical activity deep inside the myocardial wall and in blood-perfused myocardium has been limited because of light scattering and high absorption by endogenous chromophores and hemoglobin at blue-green excitation wavelengths. Objectives The purpose of this study was to characterize two new styryl dyes Di-4-ANBDQPQ (JPW-6003) and Di-4-ANBDQBS (JPW-6033) optimized for blood-perfused tissue and intramural optical mapping. Methods Voltage-dependent spectra were recorded in a model lipid bilayer. Optical mapping experiments were conducted in 4 species (mouse, rat, guinea pig, and pig). Hearts were Langendorff-perfused using Tyrode’s solution and blood (pig). Dyes were loaded via bolus injection into perfusate. Transillumination experiments were conducted in isolated coronary-perfused pig right ventricular wall preparations. Results The optimal excitation wavelength in cardiac tissues (650nm) was >70nm beyond the absorption maximum of hemoglobin. Voltage-sensitivity of both dyes was ~10–20%. Signal decay half-life due to dye internalization was 80–210 minutes, which is 5–7 times slower than for di-4-ANEPPS. In transillumination mode, ΔF/F was as high as 20%. In blood-perfused tissues, ΔF/F reached 5.5% (1.8 times higher than for di-4-ANEPPS). Conclusion We have synthesized and characterized two new NIR dyes with excitation/emission wavelengths shifted >100nm to the red. They provide both high voltage-sensitivity, and 5–7 times slower internalization rate compared to conventional dyes. The dyes are optimized for deeper tissue probing and optical mapping of blood-perfused tissue, and can also be used for conventional applications. PMID:17954405

  12. Simple and sensitive bacterial quantification by a flow-based kinetic exclusion fluorescence immunoassay.

    PubMed

    Su, Feng-yi; Endo, Yumie; Saiki, Hiroshi; Xing, Xin-Hui; Ohmura, Naoya

    2007-05-15

    A flow-based immunoassay system utilizing secondary-antibody coated microbeads and Cy5-secondary antibody for signal production was successfully developed to quantitate target bacteria with a kinetic exclusion assay (KinExA 3000 Instrument). It directly measured the concentration of unliganded antibody separated from the equilibrated mixture of antibody and bacteria through a 0.2 microm polyethersulfone membrane, enabling it to quantify the concentration of bacteria. The novel method demonstrated the qualities of rapidness, sensitivity, high accuracy and reproducibility, and ease to perform. Detection of Pseudomonas aeruginosa and Staphylococcus aureus was accomplished with low detection limits of 4.10 x 10(6) and 5.20 x l0(4)cells/mL, respectively, with an assay time of less than 15 min. The working ranges for quantification were 4.10 x l0(6) to 1.64 x l0(10)cells/mL for P. aeruginosa, and 5.20 x l0(4) to 1.04 x l0(9)cells/mL for S. aureus. It yielded an assay with at least 10-fold greater sensitivity than ELISA and could correctly assess the concentration of predominant bacterium spiked in the mixture of P. aeruginosa and S. aureus. With this reliable platform, the average amount of antibody bound by one cell in the maximum capability could be further provided: (1.6-2.5) x l0(5) antibodies for one P. aeruginosa cell and (2.2-2.7) x l0(8) antibodies for one S. aureus cell. The KinExA system is flexible to determine different kinds of bacteria conveniently by using anti-mouse IgG as the same immobilizing agent. However, a higher specificity of the antibodies to the target bacteria will be required for the use of this system with higher detection sensitivity.

  13. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery.

    PubMed

    Aslan, Kadir; Holley, Patrick; Geddes, Chris D

    2006-05-30

    Fluorescence detection is the basis of most assays used in drug discovery and High Throughput Screening (HTS) today. In all of these assays, assay rapidity and sensitivity is a primary concern, the sensitivity determined by both the quantum yield of the fluorophores and efficiency of the detection system, while rapidity is determined by the physical and biophysical parameters of temperature, concentration, assay bioaffinity, etc. In this paper we describe a platform technology that promises to fundamentally address these two physical constraints of sensitivity and rapidity. By combining the use of Metal-Enhanced Fluorescence (MEF), a near-field effect that can significantly enhance fluorescence signatures, with low power microwave heating, we can significantly increase the sensitivity of surface assays as well as >95% kinetically complete the assay within a few seconds. In addition, the metallic nanostructures used to facilitate MEF appear to be preferentially heated as compared to the surface assay fluid, advantageously localizing the MEF and heating around the nanostructures. To demonstrate proof of principle, a 96-well plate has been functionalized with silver nanostructures, and a model protein avidin-biotin assay studied. In our findings, a greater than 5-fold fluorescence enhancement coupled with a approximately 90-fold increase in assay kinetics was observed, but with no assay washing steps needed due to the silver-enhanced evanescent field mode of excitation. These findings promise to strongly facilitate high throughput fluorescence-based processes, such as in biology, drug discovery and general compound screening.

  14. pH microprobe manipulated in microchannels using optical tweezers

    NASA Astrophysics Data System (ADS)

    Sinclair, Gavin S.; Klauke, Norbert; Monaghan, Paul; Padgett, Miles J.; Cooper, Jon

    2005-03-01

    SNARF-1 fluorochrome was used to functionalize 3μm diameter latex spheres making them sensitive to the pH of their environment, manifested as a change in their fluorescence. The fluorescence emission at 580nm was excited using a filtered xenon arc lamp at 515nm. A solution of functionalized latex spheres was placed between gold microelectrodes in a microfluidic channel. Optical tweezers were used to trap and manipulate the spheres in the vicinity of the microelectrodes, to map out the pH profile in the electrolyte solution, induced by passing 20 microsecond transient current pulses through the microelectrodes.

  15. Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer.

    PubMed

    Wang, Shizhen; Makhina, Elena N; Masia, Ricard; Hyrc, Krzysztof L; Formanack, Mary Lynn; Nichols, Colin G

    2013-02-01

    K(ATP) channels link cell metabolism to excitability in many cells. They are formed as tetramers of Kir6.2 subunits, each associated with a SUR1 subunit. We used mutant GFP-based FRET to assess domain organization in channel complexes. Full-length Kir6.2 subunits were linked to YFP or cyan fluorescent protein (CFP) at N or C termini, and all such constructs, including double-tagged YFP-Kir6.2-CFP (Y6.2C), formed functional K(ATP) channels. In intact COSm6 cells, background emission of YFP excited by 430-nm light was ∼6%, but the Y6.2C construct expressed alone exhibited an apparent FRET efficiency of ∼25%, confirmed by trypsin digestion, with or without SUR1 co-expression. Similar FRET efficiency was detected in mixtures of CFP- and YFP-tagged full-length Kir6.2 subunits and transmembrane domain only constructs, when tagged at the C termini but not at the N termini. The FRET-reported Kir6.2 tetramer domain organization was qualitatively consistent with Kir channel crystal structures: C termini and M2 domains are centrally located relative to N termini and M1 domains, respectively. Additional FRET analyses were performed on cells in which tagged full-length Kir6.2 and tagged SUR1 constructs were co-expressed. These analyses further revealed that 1) NBD1 of SUR1 is closer to the C terminus of Kir6.2 than to the N terminus; 2) the Kir6.2 cytoplasmic domain is not essential for complexation with SUR1; and 3) the N-terminal half of SUR1 can complex with itself in the absence of either the C-terminal half or Kir6.2.

  16. Characterization of photoacid generation in chemically amplified photoresists usingpH-sensitive fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Feke, Gilbert David

    Chemically amplified resists (CARs) are widely used throughout the semiconductor industry due to the necessity for high throughput in the lithography process. In this class of resists image transfer is achieved by generation of catalyst concentration gradients. The catalyst is typically a strong acid which is generated by the photolytic decomposition of a photoacid generator compound (PAG) during exposure to the lithographic radiation. The photoacid is activated by a postexposure bake (PEB) to locally diffuse and catalytically generate reactions in the resist matrix. The purpose of these reactions (linking reactions in a negative-tone resist or deprotection reactions in a positive-tone resist) is to alter the solubility of the resist in response to the subsequent development step. The creation of the differential dissolution rate between the exposed and unexposed resist areas is the fundamental step required for patterning the resist. The chemical amplification occurs during PEB with the multiple recycling of the photoacid to promote many chemical reactions. This dissertation describes novel, quantitative, non- destructive techniques for characterizing acid generation in CARs, specifically measurements of the efficiency or quantum yield of PAGs and imaging of latent microlithographic features. The techniques involve doping the resists with fluorescent molecules whose spectroscopic properties are functions of the local acid concentration. Spectroscopic imaging of the exposed resist films therefore provides a means to spatially map the quantity and distribution of photoacid on wafer. An understanding of acid generation is of paramount importance for resist design and the process control of the image formation of almost all the lithographic techniques used in the semiconductor industry today, as well as those expected for the long-term future. Hence, industrial relevance is in fact a significant goal for the research described herein.

  17. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    PubMed

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area. PMID:26672294

  18. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    PubMed

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area.

  19. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling.

    PubMed

    Zuo, Xiaolei; Xia, Fan; Xiao, Yi; Plaxco, Kevin W

    2010-02-17

    A limitation of many traditional approaches to the detection of specific oligonucleotide sequences, such as molecular beacons, is that each target strand hybridizes with (and thus activates) only a single copy of the relevant probe sequence. This 1:1 hybridization ratio limits the gain of most approaches and thus their sensitivity. Here we demonstrate a nuclease-amplified DNA detection scheme in which exonuclease III is used to "recycle" target molecules, thus leading to greatly improved sensitivity relative to, for example, traditional molecular beacons without any significant restriction in the choice of target sequences. The exonuclease-amplified assay can detect target DNA at concentrations as low as 10 pM when performed at 37 degrees C, which represents a significant improvement over the equivalent molecular beacon alone. Moreover, at 4 degrees C we can obtain a detection limit as low as 20 aM, albeit at the cost of a 24 h incubation period. Finally, our assay can be easily interrogated with the naked eye and is thus amenable to deployment in the developing world, where fluorometric detection is more problematic.

  20. Highly sensitive fluorescent probe for clenbuterol hydrochloride detection based on its catalytic oxidation of eosine Y by NaIO4.

    PubMed

    Liu, Jiaming; Liu, Zhen-bo; Huang, Qitong; Lin, Chang-Qing; Lin, Xiaofeng

    2014-09-01

    A highly sensitive fluorescent probe for clenbuterol hydrochloride (CLB) detection has been first designed based on its catalytic effect on NaIO4 oxidating eosine Y (R). And this environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect CLB in the practical samples with the results consisting with those obtained by GC/MS. The structures of R and CLB were characterized by infrared spectra. The mechanism of the proposed assay for the detection of CLB was also discussed.

  1. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. PMID:27295571

  2. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells.

    PubMed

    Li, Hongchang; Cheng, Yuqing; Liu, Yong; Chen, Bo

    2016-09-01

    Based on the fluorescence quenching of folic acid-sensitive bovine serum albumin-directed gold nanoclusters (BSA-AuNCs) via folic acid-induced the change of environment around BSA-AuNCs, we have constructed a turn on fluorescence imaging of folate receptor overexpressed tumor cells. In this paper, the primary fluorescence intensity of BSA-AuNCs was quenched via self-assembly of folic acid onto BSA-AuNCs to produce negligible fluorescence background, the linear range of the method was 0.1-100μg/mL with the limit of detection (LOD) of 30ng/mL (S/N=3); In the presence of overexpression of folate receptor on the surface of tumor cells, the primary fluorescence intensity of BSA-AuNCs turned on by folic acid desorbing from BSA-AuNCs, the linear range of method was 0.12-2μg/mL with the LOD of 20ng/mL (S/N=3). Additionally, due to specific and high affinity of folic acid and folate receptor, the probe had high selectivity for folate receptor, other interferences hardly changed the fluorescence intensity of the probe. Moreover, the text for cytotoxicity implied that the probe had no toxicity for tumor cells. Consequently, using the fluorescence probe, satisfactory results for the turn on imaging of folate receptor overexpressed tumor cells were obtained. A novel turn-on and red fluorescent probe for folate receptor overexpressed tumor cells was developed based on the recovery of fluorescence intensity of folic acid-sensitive BSA-AuNCs.

  3. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu2 + detection

    NASA Astrophysics Data System (ADS)

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu2 + in DMSO/H2O (7/3, v/v, Tris-HCl 10 mM, pH = 7.4) solution based on Cu2 + catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205 min- 1. Moreover, application of BTNP to Cu2 + detection in living cells and real water samples was also explored.

  4. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection.

    PubMed

    Hodáková, Júlia; Preisler, Jan; Foret, František; Kubáň, Petr

    2015-04-24

    A new sensitive capillary electrophoretic method with laser-induced fluorescence (LIF) was developed for quantitation of glutathione (GSH) in biological samples. Eosin-5-maleimide was used to label the GSH molecule and the formed conjugate was separated in a 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid electrolyte at pH 7.0 in less than 3 min. The conjugate was detected with an in-house built LIF system, utilizing an inexpensive 515 nm diode laser module. Studies were performed to optimize the derivatization (the ratio of reagent to analyte, the reaction time, pH, etc.) and separation conditions. Sensitive detection of GSH at concentrations as low as 0.18 nM was obtained. The method was applied in the analysis of biological fluids (exhaled breath condensate, saliva) and was found to be suitable for determination of GSH in these samples at trace levels below 1 nM. To the best of our knowledge, this is the first report on determination of GSH in exhaled breath condensate by capillary electrophoresis (CE).

  5. Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green.

    PubMed

    Cao, Yujuan; Wei, Jiongling; Wu, Wei; Wang, Song; Hu, Xiaogang; Yu, Ying

    2015-09-01

    In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10(-7)-1.0 × 10(-5) mol/L and the limit of detect was 1.7 × 10(-8) mol/L. The recoveries for three environmental water samples were 92.0-108.2 % with relative standard deviation (RSD) of 0.24-1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples. Graphical Abstract The analytical mechanism of OMe-β-CD/QDs and its linear response to MG.

  6. Fluorescence confocal mosaicing microscopy of basal cell carcinomas ex vivo: demonstration of rapid surgical pathology with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-02-01

    Mohs surgery, for the precise removal of basal cell carcinomas (BCCs), consists of a series of excisions guided by the surgeon's examination of the frozen histology of the previous excision. The histology reveals atypical nuclear morphology, identifying cancer. The preparation of frozen histology is accurate but labor-intensive and slow. Nuclear pathology can be achieved by staining with acridine orange (1 mM, 20 s) BCCs in Mohs surgical skin excisions within 5-9 minutes, compared to 20-45 for frozen histology. For clinical utility, images must have high contrast and high resolution. We report tumor contrast of 10-100 fold over the background dermis and submicron (diffraction limited) resolution over a cm field of view. BCCs were detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0% and negative predictive value of 94.7%. The technique was therefore accurate for normal tissue as well as tumor. We conclude that fluorescence confocal mosaicing serves as a sensitive and rapid pathological tool. Beyond Mohs surgery, this technology may be extended to suit other pathological needs with the development of new contrast agents. The technique reported here accurately detects all subtypes of BCC in skin excisions, including the large nodular, small micronodular, and tiny sclerodermaform tumors. However, this technique may be applicable to imaging tissue that is larger, more irregular and of various mechanical compliances with further engineering of the tissue mounting and staging mechanisms.

  7. Fluorescent Carbon Quantum Dots Incorporated into Dye-Sensitized TiO2 Photoanodes with Dual Contributions.

    PubMed

    Shi, Yan; Na, Yong; Su, Ting; Li, Liang; Yu, Jia; Fan, Ruiqing; Yang, Yulin

    2016-06-22

    Fluorescent carbon quantum dots (CQDs) were prepared through bottom-up synthesis, which possess excitation wavelength-dependent photoluminescence properties upon excitation by near visible light. For the first time, CQDs were incorporated into N719-sensitized TiO2 photoelectrodes as the electron-transport medium, presenting dual contributions to the photo-to-electrical energy conversion: 1) spectral response compensation for the dye-sensitized TiO2 film at around 400 nm was successfully observed in the incident photon-to-current conversion measurements; and 2) intensity modulated photocurrent/photovoltage spectroscopy showed that the electron transport time, charge collection efficiency, and electron diffusion length in the TiO2 electrode were all improved after CQDs incorporation. An example of using the CQDs- containing photoanode in a solar cell device resulted in enhancements of 32 % and 21 % for the short-circuit current density and photo-to-electrical conversion efficiency, respectively. PMID:27218888

  8. A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission

    PubMed Central

    Elder, A.D.; Domin, A.; Kaminski Schierle, G.S.; Lindon, C.; Pines, J.; Esposito, A.; Kaminski, C.F.

    2008-01-01

    Fluorescence detection of acceptor molecules sensitized by Förster resonance energy transfer (FRET) is a powerful method to study protein interactions in living cells. The method requires correction for donor spectral bleed-through and acceptor cross-excitation as well as the correct normalization of signals to account for varying fluorophore concentrations and imaging parameters. In this paper, we review different methods for FRET signal normalization and then present a rigorous model for sensitized emission measurements, which is both intuitive to understand and practical to apply. The method is validated by comparison with the acceptor photobleaching and donor lifetime-imaging techniques in live cell samples containing EYFP and ECFP tandem constructs exhibiting known amounts of FRET. By varying the stoichiometry of interaction in a controlled fashion, we show that information on the fractions of interacting donors and acceptors can be recovered. Furthermore, the method is tested by performing measurements on different microscopy platforms in both widefield and confocal imaging modes to show that signals recovered under different imaging conditions are in quantitative agreement. Finally, the method is applied in the study of dynamic interactions in the cyclin–cdk family of proteins in live cells. By normalizing the obtained signals for both acceptor and donor concentrations and using a FRET exhibiting control construct for calibration, stoichiometric changes in these interactions could be visualized in real time. The paper is written to be of practical use to researchers interested in performing sensitized emission measurements. The correct interpretation of the retrieved signals in a biological context is emphasized, and guidelines are given for the practical application of the developed algorithms.

  9. A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme

    NASA Astrophysics Data System (ADS)

    Zhang, HongYan; Ruan, YaJuan; Lin, Ling; Lin, Minggui; Zeng, Xiaoxue; Xi, Zhiming; Fu, FengFu

    2015-07-01

    A novel fluorescent biosensor for detecting uranyl ion (UO22+) in aqueous environment has been developed based on the specific recognition of DNAzyme and the fluorescence quenching ability of molybdenum disulfide (MoS2) nanosheets. The DNAzyme contains a DNA enzyme strand and a 6-carboxylfluorescein (FAM)-labeled DNA substrate strand. We demonstrated that MoS2 nanosheets have low affinity to the substrate-enzyme complex DNAzyme. Whereas, in the presence of UO22+, UO22+ can specifically cleave DNAzyme to release FAM-labeled single-strand DNA and the released FAM-labeled single-strand DNA can be firmly adsorbed on the surface of MoS2 nanosheets, which resulted in an obvious decrease of fluorescence intensity. This provided a sensing platform for the rapid, simple and sensitive fluorescent detection of UO22+. By using the sensing platform, a sensitive and selective fluorescent method for the rapid detection of UO22+ has been developed. In comparison with previous biosensor, the proposed method has obvious analytical advantage such as relatively high sensitivity and good stability, short analytical time and low cost. It can be used to detect as low as 2.14 nM of UO22+ in aqueous environment with a recovery of 96-102% and a RSD < 5% (n = 6). The success of this study provides a promising alternative for the rapid and on-site detection of UO22+ in environmental monitoring.

  10. A new fluorescent probe for gasotransmitter H₂S: high sensitivity, excellent selectivity, and a significant fluorescence off-on response.

    PubMed

    Zhang, Jingyu; Guo, Wei

    2014-04-25

    A fluorescent off-on probe for H2S was exploited by coupling the azide-based strategy with the excited-state intramolecular proton transfer (ESIPT) sensing mechanism, which exhibits a considerably high fluorescence enhancement (1150-fold), an extremely low detection limit (0.78 nM), and a relatively fast response time (3-10 min) as well as excellent selectivity.

  11. Monitoring penetratin interactions with lipid membranes and cell internalization using a new hydration-sensitive fluorescent probe.

    PubMed

    Zamotaiev, Oleksandr M; Postupalenko, Viktoriia Y; Shvadchak, Volodymyr V; Pivovarenko, Vasyl G; Klymchenko, Andrey S; Mély, Yves

    2014-09-28

    A new fluorescent label N-[4′-(dimethylamino)-3-hydroxyflavone-7-yl]-N-methyl-β-alanine (7AF) was synthesized. Due to two electron donor groups at the opposite ends of the chromophore, an excited state intramolecular proton transfer (ESIPT) resulting in a dual emission was observed even in highly polar media and its fluorescence quantum yield was found to be remarkably high in a broad range of solvents including water. As a consequence, this label exhibits a remarkable sensitivity to the hydration of its environment, which is observed as a color switch between the emission of the ESIPT product (T* form) and that of the normal N* form. The 7AF label was coupled to the N-terminus of penetratin, a cell penetrating peptide, in order to study its interactions with lipid membranes and internalization inside the cells. As expected, the binding of penetratin to lipid membranes resulted in a dramatic switch in the relative intensity of its two emission bands as compared to its emission in buffer. Our studies with different lipid compositions confirmed the preference of penetratin to lipid membranes of the liquid disordered phase. After incubation of low concentrations of labeled penetratin with living cells, ratiometric imaging revealed, in addition to membrane-bound species, a significant fraction of free peptide in cytosol showing the characteristic emission from aqueous medium. At higher concentrations of penetratin, mainly peptides bound to cell membrane structures were observed. These observations confirmed the ability of penetratin to enter the cytosol by direct translocation through the cell plasma membrane, in addition to the classical entry by endocytosis. The present probe constitutes thus a powerful tool to study the interaction of peptides with living cells and their internalization mechanisms. PMID:25072870

  12. Fluorescent Chemosensors for Selective and Sensitive Detection of Phosmet/Chlorpyrifos with Octahedral Ni(2+) Complexes.

    PubMed

    Raj, Pushap; Singh, Amanpreet; Kaur, Kamalpreet; Aree, Thammarat; Singh, Ajnesh; Singh, Narinder

    2016-05-16

    The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.

  13. Cold-induced sudden reversible lowering of in vivo chlorophyll fluorescence after saturating light pulses : a sensitive marker for chilling susceptibility.

    PubMed

    Larcher, W; Neuner, G

    1989-03-01

    In chilling-sensitive plants (Glycine max, Saintpaulia ionantha, Saccharum officinarum) a sudden reversible drop in chlorophyll fluorescence occurs during photosynthetic induction immediately following saturating light pulses at low temperatures in the range 4 to 8 degrees C. A comparison of two soybean cultivars of different chilling sensitivities revealed that this phenomenon, termed lowwave, indicates specific thresholds of low temperature stress. Its occurrence under controlled chilling can be regarded as a quantitative marker for screening chilling susceptibility in angiosperms. PMID:16666615

  14. Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues.

    PubMed

    Wang, Rui; Chen, Lingxin; Liu, Ping; Zhang, Qin; Wang, Yunqing

    2012-09-01

    Cy-NiSe and Cy-TfSe were designed and synthesized as sensitive near-infrared (NIR) fluorescent probes for detecting thiols on the basis of Se-N bond cleavage both in cells and in tissues. Since a donor-excited photoinduced electron transfer (d-PET) process occurs between the modulator and the fluorophore, Cy-NiSe and Cy-TfSe have weak fluorescence. On titration with glutathione, the free dye exhibits significant fluorescence enhancement. The two probes are sensitive and selective for thiols over other relevant biological species. They can function rapidly at pH 7.4, and their emission lies in the NIR region. Confocal imaging confirms that Cy-NiSe and Cy-TfSe can be used for detecting thiols in living cells and tissues. PMID:22829328

  15. H(2) O(2) - and pH-sensitive CdTe quantum dots as fluorescence probes for the detection of glucose.

    PubMed

    Li, Yinping; Li, Baoxin; Zhang, Junli

    2013-01-01

    A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)-capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA-capped CdTe QDs was highly sensitive to H2 O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2 O2 . H2 O2 and H(+) (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01-5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system.

  16. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid lateral flow fluorescent microspheres immunochromatography test strip (FMs-ICTS) has been developed for the detection of aflatoxin M1 (AFM1) residues in milk. For this purpose, an ultra-sensitive anti-AFM1 monoclonal antibody (MAb) 1D3 was prepared and identified. The IC50 value of the MA...

  17. Development of a pH sensor based on a nanostructured filter adding pH-sensitive fluorescent dye for detecting acetic acid in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Itayama, Tomohiro; Nagasaki, Hideaki; Iwami, Kentaro; Yamamoto, Chizuko; Hara, Yukiko; Masuda, Atsushi; Umeda, Norihiro

    2015-08-01

    Acetic acid formed via the hydrolysis of ethylene vinyl acetate (EVA) as an encapsulant in photovoltaic (PV) modules causes a decrease in the conversion efficiency of such modules by grid corrosion. Here, a nondestructive and simple optical method for evaluating the condition of PV modules is proposed. This method uses a dual-wavelength pH-sensitive fluorescent dye to detect acetic acid in PV modules using a change in pH. The change in pH induced by the formation of acetic acid is detected by the change in the ratio of the fluorescent intensities of two peaks of the dye. A pH-sensitive fluorescent dye showed sensitivity for small amounts of acetic acid such as that produced from EVA. Furthermore, a membrane filter dyed with a pH-sensitive fluorescent dye was confirmed to detect acetic acid in aged EVA after a damp-heat test (85 °C, 85%) for 5000 h in PV modules.

  18. Simple and sensitive fluorescence detection of the RNA endonuclease activity of mammalian argonaute2 protein based on an RNA molecular beacon.

    PubMed

    Li, Feng; Li, Peng; Yang, Limin; Tang, Bo

    2012-12-28

    A new strategy for determining the RNA endonuclease activity of mammalian argonaute2 (Ago2) protein has been developed, which combines the unique cleavage function of Ago2 protein with an RNA molecular beacon (RMB). Through the fluorescence restoration of the RMB, simple and sensitive detection of Ago2 is achieved.

  19. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  20. Measurements on cracktips in stainless steel AISI 321 by using a new positron microprobe

    NASA Astrophysics Data System (ADS)

    Haaks, M.; Bennewitz, K.; Bihr, H.; Männig, U.; Zamponi, C.; Maier, K.

    1999-08-01

    High resolution positron microscopy provides a new method for non-destructive investigations of plastic deformation with spatial resolution in the micron range. As positron annihilation is highly sensitive to lattice defects, low concentrations of dislocations are detectable, so that the plastic zone in front of a cracktip appears larger than in comparable metallographic methods. To demonstrate this, a plastic zone in the common stainless steel AISI 321 is imaged with the Bonn Positron Microprobe (BPM) with a spatial resolution of 20 μm.

  1. Color-Multiplexing-Based Fluorescent Test Paper: Dosage-Sensitive Visualization of Arsenic(III) with Discernable Scale as Low as 5 ppb.

    PubMed

    Zhou, Yujie; Huang, Xiaoyan; Liu, Cui; Zhang, Ruilong; Gu, Xiaoling; Guan, Guijian; Jiang, Changlong; Zhang, Liying; Du, Shuhu; Liu, Bianhua; Han, Ming-Yong; Zhang, Zhongping

    2016-06-21

    Fluorescent colorimetry test papers are promising for the assays of environments, medicines, and foods by the observation of the naked eye on the variations of fluorescence brightness and color. Unlike dye-absorption-based pH test paper, however, the fluorescent test papers with wide color-emissive variations with target dosages for accurate quantification remain unsuccessful even if the multicolorful fluorescent probes are used. Here, we report the dosage-sensitive fluorescent colorimetry test paper with a very wide/consecutive "from red to cyan" response to the presence and amount of arsenic ions, As(III). Red quantum dots (QDs) were modified with glutathione and dithiothreitol to obtain the supersensitivity to As(III) by the quenching of red fluorescence through the formation of dispersive QDs aggregates. A small amount of cyan carbon dots (CDs) with spectral blue-green components as the photostable internal standard were mixed into the QDs solution to produce a composited red fluorescence. Upon the addition of As(III) into the sensory solution, the fluorescence color could gradually be reversed from red to cyan with a detection limit of 1.7 ppb As(III). When the sensory solution was printed onto a piece of filter paper, surprisingly a serial of color evolution from peach to pink to orange to khaki to yellowish to yellow-green to final cyan with the addition of As(III) was displayed and clearly discerned the dosage scale as low as 5 ppb. The methodology reported here opens a novel pathway toward the real applications of fluorescent test papers. PMID:27230307

  2. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  3. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Ding, Xuelian; Li, Yongfang; Wang, Linsong; Fan, Jing

    2016-05-01

    Development of new strategies for the sensitive and selective detection of ultra-low concentrations of specific cancer markers is of great importance for assessing cancer therapeutics due to its crucial role in early clinical diagnoses and biomedical applications. In this work, we have developed two types of fluorescence polarization (FP) amplification assay strategies for the detection of biomolecules by using TiS2 as a FP enhancer and Zn2+-dependent self-hydrolyzing deoxyribozymes as catalysts to realize enzyme-catalyzed target-recycling signal amplification. One approach is based on the terminal protection of small-molecule-linked DNA, in which biomolecular binding to small molecules in DNA-small-molecule chimeras can protect the conjugated DNA from degradation by exonuclease I (Exo I); the other approach is based on the terminal protection of biomolecular bound aptamer DNA, in which biomolecules directly bound to the single strand aptamer DNA can protect the ssDNA from degradation by Exo I. We select folate receptor (FR) and thrombin (Tb) as model analytes to verify the current concept. It is shown that under optimized conditions, our strategies exhibit high sensitivity and selectivity for the quantification of FR and Tb with low detection limits (0.003 ng mL-1 and 0.01 pM, respectively). Additionally, this strategy is a simple ``mix and detect'' approach, and does not require any separation steps. This biosensor is also utilized in the analysis of real biological samples, the results agree well with those obtained by the enzyme-linked immunosorbent assay (ELISA).Development of new strategies for the sensitive and selective detection of ultra-low concentrations of specific cancer markers is of great importance for assessing cancer therapeutics due to its crucial role in early clinical diagnoses and biomedical applications. In this work, we have developed two types of fluorescence polarization (FP) amplification assay strategies for the detection of biomolecules

  4. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules.

    PubMed

    Li, Xiang; Ding, Xuelian; Li, Yongfang; Wang, Linsong; Fan, Jing

    2016-05-01

    Development of new strategies for the sensitive and selective detection of ultra-low concentrations of specific cancer markers is of great importance for assessing cancer therapeutics due to its crucial role in early clinical diagnoses and biomedical applications. In this work, we have developed two types of fluorescence polarization (FP) amplification assay strategies for the detection of biomolecules by using TiS2 as a FP enhancer and Zn(2+)-dependent self-hydrolyzing deoxyribozymes as catalysts to realize enzyme-catalyzed target-recycling signal amplification. One approach is based on the terminal protection of small-molecule-linked DNA, in which biomolecular binding to small molecules in DNA-small-molecule chimeras can protect the conjugated DNA from degradation by exonuclease I (Exo I); the other approach is based on the terminal protection of biomolecular bound aptamer DNA, in which biomolecules directly bound to the single strand aptamer DNA can protect the ssDNA from degradation by Exo I. We select folate receptor (FR) and thrombin (Tb) as model analytes to verify the current concept. It is shown that under optimized conditions, our strategies exhibit high sensitivity and selectivity for the quantification of FR and Tb with low detection limits (0.003 ng mL(-1) and 0.01 pM, respectively). Additionally, this strategy is a simple "mix and detect" approach, and does not require any separation steps. This biosensor is also utilized in the analysis of real biological samples, the results agree well with those obtained by the enzyme-linked immunosorbent assay (ELISA). PMID:27120690

  5. A Rapid and Sensitive HPLC-Fluorescence Method for Determination of Mirtazapine and Its two Major Metabolites in Human Plasma

    PubMed Central

    Lavasani, Hoda; Giorgi, Mario; Sheikholeslami, Behjat; Hedayati, Mohammadhasan; Rouini, Mohammad Reza

    2014-01-01

    A rapid and sensitive HPLC method has been developed for the quantification of mirtazapine (MRZ), a noradrenergic and specific serotonergic inhibitor antidepressant (NaSSA) and its two major metabolites N-desmethyl mirtazapine (NDM) and 8-hydroxymirtazapine (8-OHM) in human plasma. The separation was achieved using Chromolith C18 column and a mobile phase of acetonitrile: phosphate buffer (pH = 3, 20:80, v/v) in isocratic mode at a flow rate of 2 mL/min. A fluorescence detector was set at 290 and 350 nm for excitation and emission, respectively. Zolpidem was used as the internal standard. Liquid-liquid extraction was applied for sample clean up. All analytes were eluted in less than 5 minutes with LOQ of 1 ng/mL for MRZ and 2 ng/mL for both NDM and 8-OHM. The developed method was successfully applied to quantify MRZ and its metabolites in plasma of a healthy volunteer. PMID:25276185

  6. A Rapid and Sensitive HPLC-Fluorescence Method for Determination of Mirtazapine and Its two Major Metabolites in Human Plasma.

    PubMed

    Lavasani, Hoda; Giorgi, Mario; Sheikholeslami, Behjat; Hedayati, Mohammadhasan; Rouini, Mohammad Reza

    2014-01-01

    A rapid and sensitive HPLC method has been developed for the quantification of mirtazapine (MRZ), a noradrenergic and specific serotonergic inhibitor antidepressant (NaSSA) and its two major metabolites N-desmethyl mirtazapine (NDM) and 8-hydroxymirtazapine (8-OHM) in human plasma. The separation was achieved using Chromolith C18 column and a mobile phase of acetonitrile: phosphate buffer (pH = 3, 20:80, v/v) in isocratic mode at a flow rate of 2 mL/min. A fluorescence detector was set at 290 and 350 nm for excitation and emission, respectively. Zolpidem was used as the internal standard. Liquid-liquid extraction was applied for sample clean up. All analytes were eluted in less than 5 minutes with LOQ of 1 ng/mL for MRZ and 2 ng/mL for both NDM and 8-OHM. The developed method was successfully applied to quantify MRZ and its metabolites in plasma of a healthy volunteer. PMID:25276185

  7. Peroxyoxalate chemiluminescence detection for the highly sensitive determination of fluorescence-labeled chlorpheniramine with Suzuki coupling reaction.

    PubMed

    Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka

    2010-09-01

    A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.

  8. Reaction-Driven Self-Assembled Micellar Nanoprobes for Ratiometric Fluorescence Detection of CS2 with High Selectivity and Sensitivity.

    PubMed

    Lu, Wei; Xiao, Peng; Liu, Zhenzhong; Gu, Jincui; Zhang, Jiawei; Huang, Youju; Huang, Qing; Chen, Tao

    2016-08-10

    The detection of highly toxic CS2, which is known as a notorious occupational hazard in various industrial processes, is important from both environmental and public safety perspectives. We describe here a robust type of chemical-reaction-based supramolecular fluorescent nanoprobes for ratiometric determination of CS2 with high selectivity and sensitivity in water medium. The micellar nanoprobes self-assemble from amphiphilic pyrene-modified hyperbranched polyethylenimine (Py-HPEI) polymers with intense pyrene excimer emission. Selective sensing is based on a CS2-specific reaction with hydrophilic amino groups to produce hydrophobic dithiocarbamate moieties, which can strongly quench the pyrene excimer emission via a known photoinduced electron transfer (PET) mechanism. Therefore, the developed micellar nanoprobes are free of the H2S interference problem often encountered in the widely used colorimetric assays and proved to show high selectivity over many potentially competing chemical species. Importantly, the developed approach is capable of CS2 sensing even in complex tap and river water samples. In addition, in view of the modular design principle of these powerful micellar nanoprobes, the sensing strategy used here is expected to be applicable to the development of various sensory systems for other environmentally important guest species. PMID:27419849

  9. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    PubMed

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  10. Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics.

    PubMed

    Bai, Min; Huang, Shuina; Xu, Suying; Hu, Gaofei; Wang, Leyu

    2015-02-17

    We developed an efficient one-pot strategy for the preparation of hydrophilic amine-functionalized nanocomposites by using hydrophobic fluorescence quantum dots ZnS:Mn(2+)@allyl mercaptan (QDs@AM) as building blocks through novel light-induced in situ polymerization. The average size of as-prepared hydrophilic nanocomposites was ∼50 nm, which could be further tuned by varying the concentrations of the monomers. Importantly, these nanocomposites were further utilized for the facile, highly sensitive, and selective detection of nitroaromatics. The linear ranges for 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) lie in 0.01-0.5 μg/mL and 0.05-8.0 μg/mL, respectively, barely interfered with by other nitroaromatics such as 2,4-dinitrotoluene (DNT) and nitrobenzene (NB). Moreover, the novel surface modification method developed here offered a general strategy for fabricating hydrophobic nanocomposites with hydrophilic properties and indicated various potential applications including sensing and imaging. PMID:25605399

  11. Investigating Acid Production by Streptococcus mutans with a Surface-Displayed pH-Sensitive Green Fluorescent Protein

    PubMed Central

    Guo, Lihong; Hu, Wei; He, Xuesong; Lux, Renate; McLean, Jeff; Shi, Wenyuan

    2013-01-01

    Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins) to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87) was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans. PMID:23468929

  12. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis.

    PubMed

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Liu, Yang; Yao, Shouzhuo

    2015-08-18

    Highly photoluminescent nitrogen-doped carbon nanoparticles (N-CNPs) were prepared by a simple and green route employing sodium alginate as a carbon source and tryptophan as both a nitrogen source and a functional monomer. The as-synthesized N-CNPs exhibited excellent water solubility and biocompatibility with a fluorescence quantum yield of 47.9%. The fluorescence of the N-CNPs was intensively suppressed by the addition of ascorbic acid (AA). The mechanism of the fluorescence suppression of the N-CNPs was investigated, and the synergistic action of the inner filter effect (IFE) and the static quenching effect (SQE) contributed to the intensive fluorescence suppression, which was different from those reported for the traditional redox-based fluorescent probes. Owing to the spatial effect and hydrogen bond between the AA and the groups on the N-CNP surface, excellent sensitivity and selectivity for AA detecting was obtained in a wide linear relationship from 0.2 μM to 150 μM. The detection limit was as low as 50 nM (signal-to-noise ratio of 3). The proposed sensing systems also represented excellent sensitivity and selectivity for AA analysis in human biological fluids, providing a valuable platform for AA sensing in clinic diagnostic and drug screening. PMID:26202861

  13. An external beam setup for the Lund proton microprobe

    NASA Astrophysics Data System (ADS)

    Lövestam, N. E. Göran; Swietlicki, Erik

    1989-08-01

    An external beam setup for the proton microprobe in Lund is described. This setup has been added as an option to the current scanning proton microprobe setup for the analysis of fragile samples, such as art objects, and for X-ray imaging of larger areas of a sample. The feasibility of the setup is demonstrated by the analysis of a papyrus document. Missing Greek characters in the text of the document have been detected by processing the data obtained by particle induced X-ray emission analysis using partial least-squares regression: a multivariate statistical data procedure.

  14. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching.

    PubMed

    Treossi, Emanuele; Melucci, Manuela; Liscio, Andrea; Gazzano, Massimo; Samorì, Paolo; Palermo, Vincenzo

    2009-11-01

    We present a novel approach for detecting and visualizing graphene oxide (GO) with high contrast on different substrates, including glass, quartz, and silicon. Visualization of GO sheets is accomplished through quenching the fluorescence of a thiophene dye, giving high optical contrast without the need to use interference methods. A comparison of fluorescence, AFM, and XRD measurements confirmed that even a single GO sheet can completely quench the fluorescence and thus be quickly visualized.

  15. A microprobe-XRF Beamline on Indus-2 Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Kane, S. R.; Sinha, A. K.; Garg, C. K.; Singh, A. K.; Gupta, P.; Garg, S. R.; Lodha, G. S.; Deb, S. K.

    2013-03-01

    A microfocus x-ray fluorescence (XRF) beamline has been setup on Indus-2 synchrotron light source. The beamline works in the x-ray energy range of 4-20 keV. The optics of the beamline comprises of a Si(111) double crystal monochromator for energy tunability and a Kirkpatrick-Baez (KB) based grazing incidence focusing optics. Microprobe XRF scanning over a region of the sample is possible using a 5-axis sample scanning stage. The beamline provides an energy resolution ~ 10-3 -10-4 with a photon flux density of the order of ~ 108 ph/sec./mm2/100mA for the collimated unfocused beam. Measured performance, various attractive features and some initial commissioning results are presented.

  16. Epicocconone, a sensitive and specific fluorescent dye for in situ quantification of extracellular proteins within bacterial biofilms.

    PubMed

    Randrianjatovo, I; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2015-06-01

    Biofilms are ecosystems of closely associated bacteria encapsulated in an extracellular matrix mainly composed of polysaccharides and proteins. A novel approach was developed for in situ quantification of extracellular proteins (ePNs) in various bacterial biofilms using epicocconone, a natural, fluorescent compound that binds amine residues of proteins. Six commercial proteins were tested for their reaction with epicocconone, and bovine serum albumin (BSA) was selected for assay optimization. The optimized protocol, performed as a microassay, allowed protein amounts as low as 0.7 μg to as high as 50 μg per well to be detected. Addition of monosaccharides or polysaccharides (glucose, dextran or alginate) to the standard BSA solutions (0 to 250 μg ml(-1)) showed little or no sugar interference up to 2000 μg ml(-1), thus providing an assessment of the specificity of epicocconone for proteins. The optimized protocol was then applied to three different biofilms, and in situ quantification of ePN showed contrasted protein amounts of 22.1 ± 3.1, 38.3 ± 7.1 and 0.3 ± 0.1 μg equivalent BSA of proteins for 48-h biofilms of Pseudomonas aeruginosa, Bacillus licheniformis and Weissella confusa, respectively. Possible interference due to global matrix compounds on the in situ quantification of proteins was also investigated by applying the standard addition method (SAM). Low error percentages were obtained, indicating a correct quantification of both the ePN and the added proteins. For the first time, a specific and sensitive assay has been developed for in situ determination of ePN produced by bacterial cells. This advance should lead to an accurate, rapid tool for further protein labelling and microscopic observation of the extracellular matrix of biofilms.

  17. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  18. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.

    PubMed

    Zhao, Chao; Qu, Konggang; Song, Yujun; Xu, Can; Ren, Jinsong; Qu, Xiaogang

    2010-07-19

    Here we report a reusable DNA single-walled carbon nanotube (SWNT)-based fluorescent sensor for highly sensitive and selective detection of Ag(+) and cysteine (Cys) in aqueous solution. SWNTs can effectively quench the fluorescence of dye-labeled single-stranded DNA due to their strong pi-pi stacking interactions. However, upon incubation with Ag(+), Ag(+) can induce stable duplex formation mediated by C-Ag(+)-C (C=cytosine) coordination chemistry, which has been further confirmed by DNA melting studies. This weakens the interactions between DNA and SWNTs, and thus activates the sensor fluorescence. On the other hand, because Cys is a strong Ag(+) binder, it can remove Ag(+) from C-Ag(+)-C base pairs and deactivates the sensor fluorescence by rewrapping the dye-labeled oligonucleotides around the SWNT. In this way, the fluorescence signal-on and signal-off of a DNA/SWNT sensor can be used to detect aqueous Ag(+) and Cys, respectively. This sensing platform exhibits high sensitivity and selectivity toward Ag(+) and Cys versus other metal ions and the other 19 natural amino acids, with a limit of detection of 1 nM for Ag(+) and 9.5 nM for Cys. Based on these results, we have constructed a reusable fluorescent sensor by using the covalent-linked SWNT-DNA conjugates according to the same sensing mechanism. There is no report on the use of SWNT-DNA assays for the detection of Ag(+) and Cys. This assay is simple, effective, and reusable, and can in principle be used to detect other metal ions by substituting C-C base pairs with other native or artificial bases that selectively bind to other metal ions. PMID:20512822

  19. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wu, Xuening; Wang, Shuo

    2015-11-01

    A novel fluorescence immunoassay to detect fluoroquinolones in animal-derived foods was developed for the first time by use of upconversion nanoparticles as signal-probe labels. The bioassay system was established by the use of coating-antigen-modified polystyrene particles as immune-sensing probes for separation and anti-norfloxacin monoclonal antibody conjugated with carboxyl-functionalized NaYF4:Yb,Er upconversion nanoparticles which were prepared via a pyrolysis method and a subsequent ligand exchange process as fluorescent-signal probes (emission intensity recorded at 542 nm with excitation at 980 nm). Under optimized conditions, detection of fluoroquinolones was performed easily. The detection limit of this fluorescence immunoassay for norfloxacin, for example, was 10 pg mL(-1), within a wide linear range of 10 pg mL(-1) to 10 ng mL(-1) (R (2)  = 0.9959). For specificity analysis, the data obtained indicate this method could be applied in broad-spectrum detection of fluoroquinolones. The recoveries of norfloxacin-spiked animal-derived foods ranged from 82.37 to 132.22 %, with coefficients of variation of 0.24-25.06 %. The extraction procedure was rapid and simple, especially for milk samples, which could be analyzed directly without any pretreatment. In addition, the results obtained with the method were in good agreement with those obtained with commercial ELISA kits. The fluorescence immunoassay was more sensitive, especially with regard to the detection limit in milk samples (0.01 ng mL(-1) for norfloxacin): it was 50-fold more sensitive than commercial ELISA kits (0.5 ng mL(-1) for norfloxacin). The results show the proposed fluorescence immunoassay was facile, sensitive, and interference free, and is an alternative method for the quantitative detection of fluoroquinolone residues in animal-derived foods.

  20. A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme.

    PubMed

    Zhang, HongYan; Ruan, YaJuan; Lin, Ling; Lin, Minggui; Zeng, Xiaoxue; Xi, Zhiming; Fu, FengFu

    2015-07-01

    A novel fluorescent biosensor for detecting uranyl ion (UO2(2+)) in aqueous environment has been developed based on the specific recognition of DNAzyme and the fluorescence quenching ability of molybdenum disulfide (MoS2) nanosheets. The DNAzyme contains a DNA enzyme strand and a 6-carboxylfluorescein (FAM)-labeled DNA substrate strand. We demonstrated that MoS2 nanosheets have low affinity to the substrate-enzyme complex DNAzyme. Whereas, in the presence of UO2(2+), UO2(2+) can specifically cleave DNAzyme to release FAM-labeled single-strand DNA and the released FAM-labeled single-strand DNA can be firmly adsorbed on the surface of MoS2 nanosheets, which resulted in an obvious decrease of fluorescence intensity. This provided a sensing platform for the rapid, simple and sensitive fluorescent detection of UO2(2+). By using the sensing platform, a sensitive and selective fluorescent method for the rapid detection of UO2(2+) has been developed. In comparison with previous biosensor, the proposed method has obvious analytical advantage such as relatively high sensitivity and good stability, short analytical time and low cost. It can be used to detect as low as 2.14 nM of UO2(2+) in aqueous environment with a recovery of 96-102% and a RSD<5% (n=6). The success of this study provides a promising alternative for the rapid and on-site detection of UO2(2+) in environmental monitoring. PMID:25797343

  1. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies.

    PubMed

    Bruno, John G; Richarte, Alicia M; Phillips, Taylor; Savage, Alissa A; Sivils, Jeffrey C; Greis, Alex; Mayo, Michael W

    2014-01-01

    A fluorescent peroxidase-linked DNA aptamer-magnetic bead sandwich assay is described which detects as little as 100 ng of soluble protein extracted from Leishmania major promastigotes with a high molarity chaotropic salt. Lessons learned during development of the assay are described and elucidate the pros and cons of using fluorescent dyes or nanoparticles and quantum dots versus a more consistent peroxidase-linked Amplex Ultra Red (AUR; similar to resazurin) fluorescence version of the assay. While all versions of the assays were highly sensitive, the AUR-based version exhibited lower variability between tests. We hypothesize that the AUR version of this assay is more consistent, especially at low analyte levels, because the fluorescent product of AUR is liberated into bulk solution and readily detectable while fluorophores attached to the reporter aptamer might occasionally be hidden behind magnetic beads near the detection limit. Conversely, fluorophores could be quenched by nearby beads or other proximal fluorophores on the high end of analyte concentration, if packed into a small area after magnetic collection when an enzyme-linked system is not used. A highly portable and rechargeable battery-operated fluorometer with on board computer and color touchscreen is also described which can be used for rapid (<1 h) and sensitive detection of Leishmania promastigote protein extracts (∼ 100 ng per sample) in buffer or sandfly homogenates for mapping of L. major parasite geographic distributions in wild sandfly populations.

  2. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release.

    PubMed

    Gui, Rijun; Wang, Yanfeng; Sun, Jie

    2014-04-01

    Thermo/pH-sensitive/fluorescent/biocompatible nanospheres consisting of quantum dots-embedded mesoporous silica nanoparticles (Q-MS) as a core and poly(N-isopropylacrylamide (NIPAM))-graft-chitosan (CS) nanogels as a shell (PNIPAM-g-CS) were prepared via temperature-regulated one-pot copolymerization of NIPAM monomer and CS in the presence of Q-MS. The prepared nanospheres exhibited remarkable fluorescence/thermo/pH-sensitivity. HepG2 cells treated with nanospheres displayed bright fluorescence imaging. Loading efficiency and capacity of Doxorubicin (Dox) into nanospheres were regularly increased with the increment of Dox concentration. At a high temperature and a low pH, cumulative in vitro release of Dox from Dox-loaded nanospheres was much great and fast. Released Dox still retained high anticancer activity, and blank nanosphere carriers produced neglectful toxicity to HepG2 cells. The multifunctional nanospheres could be further developed toward temperature/pH-regulated drug carriers for in vivo tumor therapy with a rapid drug release and fluorescence imaging in targeted tissues.

  3. CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution.

    PubMed

    Wu, Chuan-Liu; Zhao, Yi-Bing

    2007-06-01

    Water-soluble cadmium sulfide (CdS) quantum dots (QDs) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation, and characterized by transmission electron microscopy, spectrofluorometry, and UV-Vis spectrophotometry. The prepared luminescent water-soluble CdS QDs were evaluated as fluorescence probes for the detection of highly reactive hydrogen selenide ions (HSe(-) ions). The quenching of the fluorescence emission of CdS QDs with the addition of HSe(-) ions is due to the elimination of the S(2-) vacancies which are luminescence centers. Quantitative analysis based on chemical interaction between HSe(-) ions and the surface of CdS QDs is very simple, easy to develop, and has demonstrated very high sensitivity and selectivity features. The effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QDs was examined to evaluate the selectivity. Only Cu(2+) and S(2-) ions exhibit significant effects on the fluorescence of CdS QDs. With the developed method, we are able to determine the concentration of HSe(-) ions in the range from 0.10 to 4.80 micromol L(-1), and the limit of detection is 0.087 micromol L(-1). The proposed method was successfully applied to monitor the obtained HSe(-) ions from the reaction of glutathione with selenite. To the best of our knowledge, this is the first report on fluorescence analysis of HSe(-) ions in aqueous solution.

  4. A novel europium-sensitive fluorescent nano-chemosensor based on new functionalized magnetic core-shell Fe3O4@SiO2 nanoparticles.

    PubMed

    Ganjali, Mohammad Reza; Hosseini, Morteza; Khobi, Mehdi; Farahani, Shima; Shaban, Masoom; Faridbod, Farnoush; Shafiee, Abbas; Norouzi, Parviz

    2013-10-15

    A novel Eu(3+)-sensitive fluorescent chemosensor is introduced. It is based on magnetic core-shell silica nanoparticle which is functionalized by Cinchonidine (CD-Fe3O4@SiO2). The nano-chemosensor was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption and fluorescence emission. The fluorescent nano-chemosensor shows a selective interaction with Eu(3+) ion. Fluorescence studies revealed that the emission intensity of the functionalized magnetic core-shell silica nanoparticles (CD-Fe3O4@SiO2 NPs) increases significantly by addition of various concentrations of Eu(3+) ion. While in case of mono, di, and other trivalent cations, weak changes or either no changes in intensity were observed. The enhancement in fluorescence intensity of nano-chemosensor is because of the strong covalent binding of Eu(3+) ion to CD-Fe3O4@SiO2 NPs with a large binding constant value of 1.7 × 10(5) mol L(-1).

  5. Graphene Quantum Dot-MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence "Turn Off-On" Nanosensor for Glutathione Detection and Intracellular Imaging.

    PubMed

    Yan, Xu; Song, Yang; Zhu, Chengzhou; Song, Junhua; Du, Dan; Su, Xingguang; Lin, Yuehe

    2016-08-31

    Glutathione (GSH) monitoring has attracted extensive attention because it serves a vital role in human pathologies. Herein, a convenient fluorescence "turn off-on" nanosensor based on graphene quantum dots (GQDs)-manganese dioxide (MnO2) nanosheet has been designed for selective detection of GSH in living cells. The fluorescence intensity of GQDs can be quenched by MnO2 nanosheets via a fluorescence resonance energy transfer. However, GSH can reduce MnO2 nanosheets to Mn(2+) cations and release GQDs, causing sufficient recovery of fluorescent signal. The MnO2 nanosheets serve as both fluorescence nanoquencher and GSH recognizer in the sensing platform. The sensing platform displayed a sensitive response to GSH in the range of 0.5-10 μmol L(-1), with a detection limit of 150 nmol L(-1). Furthermore, the chemical response of the GQDs-MnO2 nanoprobe exhibits high selectivity toward GSH over other electrolytes and biomolecules. Most importantly, the promising platform was successfully applied in monitoring the intracellular GSH in living cells, indicating its great potential to be used in disease diagnosis. Meanwhile, this GQDs-MnO2 platform is also generalizable and can be easily expanded to the detection and imaging of other reactive species in living cells. PMID:27494553

  6. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence.

    PubMed

    Wang, Kaiyu; Liao, Jian; Yang, Xiangyue; Zhao, Meng; Chen, Min; Yao, Weirong; Tan, Weihong; Lan, Xiaopeng

    2015-01-15

    A label-free fluorescence aptasensor for highly selective and sensitive detection of ATP and thrombin was developed by using PicoGreen (PG) as signal molecule and surface-bound metal-enhanced fluorescence (MEF) substrates (silver island films, SIFs) as signal enhancers. On binding with ATP or thrombin, aptamers undergo structure switching, leading to a reduction of fluorescence intensity of PG. Chang of fluorescence intensity can be magnified by SIFs. The limit of detection for ATP and thrombin is 1.3 nM and 0.073 nM, respectively. The fluorescence quenching efficiency is linear in the logarithmic scale with ATP concentration range from 10 nM to 100 μM (R(2)=0.995) and thrombin concentration range from 0.1 nM to 100 nM (R(2)=0.997). The coefficients of variation of the intra-assay reproducibility and inter-assay reproducibility for ATP (10 μM) assay are 3.8% and 5.2%, respectively. In addition, the aptasensor is stable and can be reliably used for ATP measurement in biological samples. Overall, the aptasensor can be a useful and cost effective tool for the specific detection of ATP, thrombin and potentially other biomolecules in biological samples. PMID:25086329

  7. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells.

    PubMed

    Xu, Jian; Yu, Hui; Hu, Yue; Chen, Mingzhong; Shao, Shijun

    2016-01-15

    A novel gold nanoparticle (AuNP)-based sensor for detecting thiols in aqueous solution has been developed. Due to the weak N···Au interactions, meso-(4-pyridinyl)-substituted BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were coordinated to AuNP surfaces, which effectively quenched the fluorescence of organic/inorganic hybrid systems. The fluorescent quenching mechanism was mainly ascribed to the highly efficient fluorescent resonance energy transfer (FRET) and the inner filter effect. In the presence of thiols, meso-(4-pyridinyl)-substituted BODIPY chromophore were displaced and released from the AuNP surfaces and thus restored the fluorescence of BODIPY chromophore. The modulation of the fluorescence quenching efficiency of BODIPY–AuNPs in the presence of thiols can achieve a large turn-on fluorescence enhancement (40-fold) in aqueous solution. The new AuNP-based fluorescence sensor displayed desired properties such as high specificity, relatively low detection limit (30 nM for Cys), appreciable water solubility and rapid response time (within 2 min for Cys/Hcy). Moreover, the sensor has been successfully applied for monitoring and imaging of intracellular thiols within living HeLa cells. PMID:26278044

  8. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters.

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Guo, Su-Miao; Yu, Hai-Jun; Ye, Bang-Ce

    2013-12-15

    Most of the copper (II) fluorescent probes are based on the measurement of fluorescence at a single wavelength, which may be influenced by variations in the sample environment. To the end, the ratiometric fluorescent measurement, which involves the simultaneous measurement of two fluorescence signals at different wavelengths followed by calculation of their intensity ratio, can effectively eliminate the adverse effects on fluorescence signals and give greater precision to the data analysis relative to single-channel detection. In this work, we prepared novel luminescent gold nanoclusters (AuNCs) utilizing vitamin B2 (riboflavin) as stabilizer by a simple, rapid and one-pot green (low-toxicity materials use) procedure. The as-prepared riboflavin-AuNCs (Ri-AuNCs) solution can be luminescent exhibiting two fluorescence emission peaks at 530 nm and around 840 nm with excitation at 375 nm, however, in the presence of Cu(2+), the fluorescence of the Ri-AuNCs was found to be quenched at around 840 nm and enhanced at 530 nm by Cu(2+). The resultant ratiometric fluorescent response can provide a novel sensory probe for the determination of Cu(2+). The present probe had excellent selectivity in the presence of several cations. The probe revealed a detection limit of 0.9 μM of Cu(2+). Moreover, our proposed probe can reversibly switch between the "on" and "off" states through the addition of Cu(2+) and EDTA, which is reusable in practical application. Results and method reported here provide a unique strategy for performance of ratiometric assays demonstrated with a AuNCs-based fluorescent probe, which expands the application of AuNCs. PMID:24209359

  9. "Turn-On" Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge.

    PubMed

    Ding, Jun; Li, Huiyang; Wang, Can; Yang, Jie; Xie, Yujun; Peng, Qian; Li, Qianqian; Li, Zhen

    2015-06-01

    By intelligent design, a new "turn-on" fluorescent probe (1-CN) was obtained based on the deprotection reaction of the dithioacetal promoted by Hg2+ ions, which could sense mercury ions sensitively and selectively, with the detection limit of 8×10(-7) M. Thanks to the apparent turn-on signal, 1-CN has been successfully applied to rapidly detect trace amounts of mercury ions as test strips and cell image.

  10. Fluorescent transgenic zebrafish Tg(nkx2.2a:mEGFP) provides a highly sensitive monitoring tool for neurotoxins.

    PubMed

    Zhang, Xiaoyan; Gong, Zhiyuan

    2013-01-01

    Previously a standard toxicological test termed as DarT (Danio rerio Teratogenic assay) using wild type zebrafish embryos has been established and it is widely applied in toxicological and chemical screenings. As an increasing number of fluorescent transgenic zebrafish lines with specific fluorescent protein expression specifically expressed in different organs and tissues, we envision that the fluorescent markers may provide more sensitive endpoints for monitoring chemical induced phenotypical changes. Here we employed Tg(nkx2.2a:mEGFP) transgenic zebrafish which have GFP expression in the central nervous system to investigate its potential for screening neurotoxic chemicals. Five potential neurotoxins (acetaminophen, atenolol, atrazine, ethanol and lindane) and one neuroprotectant (mefenamic acid) were tested. We found that the GFP-labeled ventral axons from trunk motoneurons, which were easily observed in live fry and measured for quantification, were a highly sensitive to all of the five neurotoxins and the length of axons was significantly reduced in fry which looked normal based on DarT endpoints at low concentrations of neurotoxins. Compared to the most sensitive endpoints of DarT, ventral axon marker could improve the detection limit of these neurotoxins by about 10 fold. In contrast, there was no improvement for detection of the mefenamic acid compared to all DarT endpoints. Thus, ventral axon lengths provide a convenient and measureable marker specifically for neurotoxins. Our study may open a new avenue to use other fluorescent transgenic zebrafish embryos/fry to develop sensitive and specific toxicological tests for different categories of chemicals.

  11. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  12. Simple and sensitive synchronous- fluorescence method for the determination of trace bisphenol S based on its inhibitory effect on the fluorescence quenching reaction of rhodamine B.

    PubMed

    Cao, Gui-ping; Chen, Ting; Zhuang, Ya-feng

    2013-07-01

    An inhibitory kinetic fluorimetric method is reported for the determination of trace bisphenol S (BPS). The proposed method is based on the inhibitory effect of BPS on the fluorescence quenching of rhodamine B (RhB) caused by potassium bromate in a dilute phosphoric acid medium. Under the optimal conditions of the experiment, the detection limit for BPS was 0.021 mg/L, and the linear range of determination was from 0.035 mg/L to 0.750 mg/L. The relative standard deviations of 11 measurements for 0.20 mg/L and 0.40 mg/L BPS solutions were 2.74 % and 1.87 %, respectively. The method was successfully applied to the determination of bisphenol S derived from commercially available plastic film samples in hot water. A possible reaction mechanism of the inhibitory effect of BPS on the fluorescence quenching of RhB was proposed.

  13. Pyrene excimer fluorescence of yeast alcohol dehydrogenase: a sensitive probe to investigate ligand binding and unfolding pathway of the enzyme.

    PubMed

    Santra, Manas Kumar; Dasgupta, Debjani; Panda, Dulal

    2006-01-01

    The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guanidinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH.

  14. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  15. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  16. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia.

    PubMed

    Li, Linbo; Wang, Chao; Liu, Kangyu; Wang, Yuhan; Liu, Kun; Lin, Yuqing

    2015-03-17

    In this study, we report a novel and efficient fluorescence probe synthesized by Tris(hydroxymethyl)aminomethane-derived carbon dots (CDs)-modified hexagonal cobalt oxyhydroxide(CoOOH) nanoflakes (Tris-derived CDs-CoOOH) for monitoring of cerebral ascorbic acid (AA) in brain microdialysate. The as-prepared Tris-derived CDs with the fluorescence quantum yield of 7.3% are prepared by a one-step pyrolysis strategy of the sole precursor and used as the signal output. After being hybridized with CoOOH nanoflakes to form Tris-derived CDs-CoOOH, the luminescence of the Tris-derived CDs can be efficiently quenched by CoOOH via fluorescence resonance energy transfer (FRET). Due to the specific redox reaction between the enediol group of AA and hexagonal CoOOH nanoflakes, AA can reduce the hexagonal CoOOH nanoflakes in the Tris-derived CDs-CoOOH and lead to collapse of the hybrized structure, then the release of Tris-derived CDs, and thus finally the fluorescence recovery. Moreover, cobalt ions (II), generated by CoOOH nanoflakes oxidizing AA, almost have no obvious interference on the fluorescence probe, i.e., Tris-derived CDs, which could be ascribed to the surface of Tris-derived CDs containing a few strong chelation groups such as amino/carboxyl/thiol groups, instead of plenty of -OH groups with weak chelation with Co(2+). On the basis of this feature, the Tris-derived CDs-CoOOH fluorescent probe demonstrates a linear range from 100 nM to 20 μM with the detection limit of ∼50 nM, i.e., with an improved sensitivity toward AA detection. Compared with other turn-on fluorescent methods using convenient fluorophore-nitroxide fluorescent probes for detection of AA, the method demonstrated here possesses a facial synthesis route, lower limit of detection, and wider linear range, which validates sensing of AA in the cerebral systems during the calm/ischemia process. This study provides a fluorescence assay for the simple yet facial detection of AA in the cerebral systems and

  17. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification.

    PubMed

    Wang, Xiuzhong; Jiang, Aiwen; Hou, Ting; Li, Haiyin; Li, Feng

    2015-08-15

    Proteins are of great importance in medical and biological fields. In this paper, a novel fluorescent aptasensing strategy for protein assay has been developed based on target-triggered hybridization chain reaction (HCR) and graphene oxide (GO)-based selective fluorescence quenching. Three DNA probes, a helper DNA probe (HP), hairpin probe 1 (H1) and hairpin probe 2 (H2) are ingeniously designed. In the presence of the target, the aptamer sequences in HP recognize the target to form a target-aptamer complex, which causes the HP conformation change, and then triggers the chain-like assembly of H1 and H2 through the hybridization chain reaction, generating a long chain of HP leading complex of H1 and H2. At last the fluorescence indicator SYBR Green I (SG) binds with the long double strands of the HCR product through both intercalation and minor groove binding. When GO was added into the solutions after HCR, the free H1, H2 and SG would be closely adsorbed onto GO surface via π-π stacking. However, the HCR product cannot be adsorbed on GO surface, thereby the SG bound to HCR product gives a strong fluorescence signal dependent on the concentration of the target. With the use of platelet-derived growth factor BB (PDGF-BB) as the model analyte, this newly designed protocol provides a highly sensitive fluorescence detection of PDGF-BB with a limit of detection down to 1.25 pM, and also exhibit good selectivity and applicability in complex matrixes. Therefore, the proposed aptasensing strategy based on target-triggered hybridization chain reaction amplification should have wide applications in the diagnosis of genetic diseases due to its simplicity, low cost, and high sensitivity at extremely low target concentrations.

  18. Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine.

    PubMed

    Chantada-Vázquez, María Pilar; Sánchez-González, Juan; Peña-Vázquez, Elena; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-03-01

    A new molecularly imprinted polymer (MIP)-based fluorescent artificial receptor has been prepared by anchoring a selective MIP for cocaine (COC) on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). The prepared material combines the high selectivity attributed to MIPs and the sensitive fluorescent property of the Mn-doped ZnS QDs. Simple and low cost methods have therefore been optimized for assessing cocaine abuse in urine by monitoring the fluorescence quenching when the template (COC) and also metabolites from COC [benzoylecgonine (BZE) and ecgonine methyl ester (EME)] are present. Fluorescence quenching was not observed when performing experiments with other drugs of abuse (and their metabolites) or when using nonimprinted polymer (NIP)-coated QDs. Under optimized operating conditions (1.5 mL of 200 mg L(-1) MIP-coated QDs solution, pH 5.5, and 15 min before fluorescence scanning) two analytical methods were developed/validated. One of the procedures (direct method) consisted of urine sample 1:20 dilution before fluorescence measurements. The method has been found to be fast, precise, and accurate, but the standard addition technique for performing the analysis was required because of the existence of matrix effect. The second procedure performed a solid phase extraction (SPE) first, avoiding matrix effect and allowing external calibration. The limits of detection of the methods were 0.076 mg L(-1) (direct method) and 0.0042 mg L(-1) (SPE based method), which are lower than the cutoff values for confirmative conclusions regarding cocaine abuse. PMID:26857857

  19. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.

    PubMed

    Chang, Jiafu; Li, Haiyin; Hou, Ting; Li, Feng

    2016-12-15

    Various strategies have been proposed for the sensing of acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs). However, the practical application of most methods is restricted by their intrinsic drawbacks such as complexity, long analysis time, and high cost. Thus, it is highly desirable to develop simple, fast and sensitive approaches for AChE activity and OPs detection. Herein, we reported a simple paper-based fluorescent sensor (PFS) based on the aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition reaction capability of maleimide, which has been used as a powerful tool for rapid naked-eye detection of AChE activity and OPs. The introduction of TPE provides the probe with unique fluorescence property in solid state and is of great importance for improving the sensitivity of PFS. The hydrolysis product of acetylthiocholine catalyzed by AChE induced the maleimide ring destruction and activated the fluorescence performance of TPE. Given that AChE activity can be specifically inhibited by OPs, the as-proposed PFS can also be utilized for sensitive detection of OPs. Meanwhile, the variation of fluorescence signal can be readily detected by naked eyes, and low detection limits of 2.5mUmL(-1) and 0.5ngmL(-1) for AChE activity and OPs are obtained, respectively. Moreover, it has been successfully applied for AChE activity and OPs detection in diluted human serum samples, showing its great potential to be applied in real samples. Thus, this strategy possesses considerable advantages of simplicity, rapid detection, portability, cost efficiency and visualization. PMID:27498323

  20. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.

    PubMed

    Chang, Jiafu; Li, Haiyin; Hou, Ting; Li, Feng

    2016-12-15

    Various strategies have been proposed for the sensing of acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs). However, the practical application of most methods is restricted by their intrinsic drawbacks such as complexity, long analysis time, and high cost. Thus, it is highly desirable to develop simple, fast and sensitive approaches for AChE activity and OPs detection. Herein, we reported a simple paper-based fluorescent sensor (PFS) based on the aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition reaction capability of maleimide, which has been used as a powerful tool for rapid naked-eye detection of AChE activity and OPs. The introduction of TPE provides the probe with unique fluorescence property in solid state and is of great importance for improving the sensitivity of PFS. The hydrolysis product of acetylthiocholine catalyzed by AChE induced the maleimide ring destruction and activated the fluorescence performance of TPE. Given that AChE activity can be specifically inhibited by OPs, the as-proposed PFS can also be utilized for sensitive detection of OPs. Meanwhile, the variation of fluorescence signal can be readily detected by naked eyes, and low detection limits of 2.5mUmL(-1) and 0.5ngmL(-1) for AChE activity and OPs are obtained, respectively. Moreover, it has been successfully applied for AChE activity and OPs detection in diluted human serum samples, showing its great potential to be applied in real samples. Thus, this strategy possesses considerable advantages of simplicity, rapid detection, portability, cost efficiency and visualization.

  1. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe

    USGS Publications Warehouse

    Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.

    2000-01-01

    Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.

  2. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  3. 230Th-U dating of surficial deposits using the ion microprobe (SHRIMP-RG): A microstratigraphic perspective

    USGS Publications Warehouse

    Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.

    2007-01-01

    We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for

  4. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. PMID:27037966

  5. Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe.

    PubMed

    Li, Feng; Du, Zongfeng; Yang, Limin; Tang, Bo

    2013-03-15

    A bifunctional fluorescent oligonucleotide probe for small molecules and protein detection has been developed based on turn on fluorescence response via the target induced structure-switching of molecular beacon. The two loops of this molecular beacon are designed in such a manner that they consist of thrombin (Tmb) aptamer sequence and adenosine triphosphate (ATP) aptamer sequence, respectively, which are utilized to sense thrombin and ATP. The oligonucleotide forms double stem-loops in the absence of targets, yielding no fluorescence emission because of the FRET from the excited fluorophore to the proximal quencher. Upon addition of the target, the ATP or Tmb, its specific interaction with loop sequence of the hairpin structure induce the separation of reporter fluorophore and the fluorescence quencher of the molecular beacon, resulting in an increase of fluorescence response. Hence, the separate analysis of ATP and Tmb could be realized through only one designed molecular beacon. The detection limits were estimated to be 25 nM for ATP and 12 nM for Tmb, respectively. The results of this study should substantially broaden the perspective for future development of oligonucleotide probe for analysis of other analytes.

  6. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  7. Application of nuclear microprobes to material of archaeological interest

    NASA Astrophysics Data System (ADS)

    Demortier, G.

    1988-03-01

    Strongly focused nuclear microprobes have not been widely used until recently for characterization of material of archaeological interest. The main reasons are (1) the large size of many artefacts are not suitable for measurements in vacuum together with the requirement of avoiding sampling from (often) unique material; (2) the frequent surface corrosion of objects to depths thicker than the range of the incident particles; (3) the high cost of analyses when compared with the budgets of Museum's curators for scientific investigations. About ten laboratories throughout the world are concerned with nuclear milliprobe for investigation of bones, glasses, papers and parchments, potsherds, coins, iron and bronze artefacts, silver and gold jewelry. The nuclear microprobe facilities in this field of research have mostly been developed at Bartol-Delaware and Los Alamos (USA), Lower Hutt (New Zealand), Saclay (France) and LARN — Namur (Belgium).

  8. Microprobe analysis of brine shrimp grown on meteorite extracts

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Mautner, M. N.; Barry, B.; Markwitz, A.

    2007-07-01

    Nuclear microprobe methods have been used to investigate the uptake and distribution of various elements by brine shrimps and their unhatched eggs when grown in extracts of the Murchison and Allende carbonaceous meteorites, which were selected as model space resources. Measurements were carried out using a focussed 2 MeV proton beam raster scanned over the samples in order to obtain the average elemental concentrations. Line scans across the egg and shrimp samples show uptake of elements such as Mg, Ni, S and P which are present in the meteorites. The results confirmed that carbonaceous chondrite materials can provide nutrients, including high levels of the essential nutrient phosphate. The concentrations of these elements varied significantly between shrimp and eggs grown in extracts of the two meteorite types, which can help in identifying optimal growth media. Our results illustrate that nuclear microprobe techniques can determine elemental concentrations in organisms exposed to meteorite derived media and thus help in identifying useful future resources.

  9. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.

    PubMed

    Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong

    2014-07-15

    A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems.

  10. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value.

    PubMed

    Zhang, Chunfang; Cui, Yanyan; Song, Li; Liu, Xiangfeng; Hu, Zhongbo

    2016-04-01

    Recently, carbon nanomaterials have received considerable attention as fluorescent probes owing to their low toxicity, water solubility and stable photochemical properties. However, the development of graphene quantum dots (GQDs) is still on its early stage. In this work, GQDs were successfully synthesized by one-step microwave assisted pyrolysis of aspartic acid (Asp) and NH4HCO3 mixture. The as-prepared GQDs exhibited strongly blue fluorescence with high quantum yield up to 14%. Strong fluorescence quenching effect of Fe(3+) on GQDs can be used for its high selectivity detection among of general metal ions. The probe exhibited a wide linear response concentration range (0-50 μM) to Fe(3+) and the limit of detection (LOD) was calculated to be 0.26 μM. In addition, GQDs are also sensitive to the pH value in the range from 2 to 12 indicating a great potential as optical pH sensors. More importantly, the GQDs possess lower cellular toxicity and high photostability and can be directly used as fluorescent probes for cell imaging.

  11. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid.

    PubMed

    Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li

    2016-06-01

    A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. PMID:27130124

  12. Conformation-sensitive nucleoside analogues as topology-specific fluorescence turn-on probes for DNA and RNA G-quadruplexes.

    PubMed

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2015-12-15

    Development of probes that can discriminate G-quadruplex (GQ) structures and indentify efficient GQ binders on the basis of topology and nucleic acid type is highly desired to advance GQ-directed therapeutic strategies. In this context, we describe the development of minimally perturbing and environment-sensitive pyrimidine nucleoside analogues, based on a 5-(benzofuran-2-yl)uracil core, as topology-specific fluorescence turn-on probes for human telomeric DNA and RNA GQs. The pyrimidine residues of one of the loop regions (TTA) of telomeric DNA and RNA GQ oligonucleotide (ON) sequences were replaced with 5-benzofuran-modified 2'-deoxyuridine and uridine analogues. Depending on the position of modification the fluorescent nucleoside analogues distinguish antiparallel, mixed parallel-antiparallel and parallel stranded DNA and RNA GQ topologies from corresponding duplexes with significant enhancement in fluorescence intensity and quantum yield. Further, these GQ sensors enabled the development of a simple fluorescence binding assay to quantify topology- and nucleic acid-specific binding of small molecule ligands to GQ structures. Together, our results demonstrate that these nucleoside analogues are useful GQ probes, which are anticipated to provide new opportunities to study and discover efficient G-quadruplex binders of therapeutic potential.

  13. Submicron elemental mapping with the oxford scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Grime, G. W.; Watt, F.; Chapman, J. R.

    1987-03-01

    Following recent modifications to the Oxford scanning proton microprobe (SPM) a beam spot diameter of 0.5 μm has been achieved at a beam current of 20-30 pA of 4 MeV protons. This has been confirmed by scanning both a copper test grid and microcrystals of barium sulphate. The potential of using high spatial resolutions in microbiology has been explored by scanning a single mouse cell.

  14. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor based on Quantum Dots and a Lateral Flow Test Strip

    SciTech Connect

    Li, Zhaohui; Wang, Ying; Wang, Jun; Tang, Zhiwen; Pounds, Joel G.; Lin, Yuehe

    2010-08-15

    A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescence intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.

  15. Sensitive determination of enoxacin in pharmaceutical formulations by its quench effect on the fluorescence of glutathione-capped CdTe quantum dots.

    PubMed

    Yang, Qiong; Tan, Xuanping; Yang, Jidong

    2016-02-01

    A sensitive and simple method for the determination of enoxacin (ENX) was developed based on the fluorescence quenching effect of ENX for glutathione (GSH)-capped CdTe quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 4.333 × 10(-9)  mol⋅L(-1) to 1.4 × 10(-5)  mol⋅L(-1) with a correlation coefficient (R) of 0.9987, and the detection limit (3σ/K) was 1.313 × 10(-9)  mol⋅L(-1). The corresponding mechanism has been proposed on the basis of electron transfer supported by ultraviolet-visible (UV) light absorption, fluorescence spectroscopy, and the measurement of fluorescence lifetime. The method has been applied to the determination of ENX in pharmaceutical formulations (enoxacin gluconate injections and commercial tablets) with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation.

  16. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media.

    PubMed

    Ju, Jian; Chen, Wei

    2014-08-15

    Heteroatom doping can drastically alter the electronic characteristics of graphene quantum dots (GQDs), thus resulting in unusual properties and related applications. Herein, we develop a simple and low-cost synthetic strategy to prepare nitrogen-doped GQDs (N-GQDs) through hydrothermal treatment of GQDs with hydrazine. The obtained N-GQDs with oxygen-rich functional groups exhibit a strong blue emission with 23.3% quantum yield (QY). Compared to GQDs, the N-GQDs exhibit enhanced fluorescence with blue-shifted energy. Due to the selective coordination to Fe(3+), the N-GQDs can be used as a green and facile sensing platform for label-free sensitive and selective detection of Fe (III) ions in aqueous solution and real water samples. The N-GQDs fluorescence probe shows a sensitive response to Fe(3+) in a wide concentration range of 1-1945μM with a detection limit of 90nM (s/N=3). Interestingly, it is also found that both dynamic and static quenching processes occur for the detection of Fe(3+) by N-GQDs, while the quenching effect of Fe(3+) on the fluorescence of GQDs is achieved by affecting the surface states of GQDs.

  17. In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe.

    PubMed

    Yoon, Yeoreum; Jang, Won Hyuk; Xiao, Peng; Kim, Bumju; Wang, Taejun; Li, Qingyun; Lee, Ji Youl; Chung, Euiheon; Kim, Ki Hean

    2015-02-01

    We report multimodal imaging of human oral cavity in vivo based on simultaneous wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography (PS-OCT) with a forward-viewing imaging probe. Wide-field reflectance/fluorescence imaging and PS-OCT were to provide both morphological and fluorescence information on the surface, and structural and birefringent information below the surface respectively. The forward-viewing probe was designed to access the oral cavity through the mouth with dimensions of approximately 10 mm in diameter and 180 mm in length. The probe had field of view (FOV) of approximately 5.5 mm in diameter, and adjustable depth of field (DOF) from 2 mm to 10 mm by controlling numerical aperture (NA) in the detection path. This adjustable DOF was to accommodate both requirements for image-based guiding with high DOF and high-resolution, high-sensitivity imaging with low DOF. This multimodal imaging system was characterized by using a tissue phantom and a mouse model in vivo, and was applied to human oral cavity. Information of surface morphology and vasculature, and under-surface layered structure and birefringence of the oral cavity tissues was obtained. These results showed feasibility of this multimodal imaging system as a tool for studying oral cavity lesions in clinical applications. PMID:25780742

  18. Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release

    NASA Astrophysics Data System (ADS)

    Du, Pengcheng; Zhao, Xubo; Zeng, Jin; Guo, Jinshan; Liu, Peng

    2015-08-01

    Fluorescent core/shell composite has been fabricated by the layer-by-layer (LbL) assembly of the fluorescein isothiocyanate modified chitosan (CS-FITC) and sodium alginate (AL) onto the carboxyl modified mesoporous silica nanoparticles (MSN-COOH), followed by PEGylation. It exhibits stability in high salt-concentration media and the pH responsive fluorescent feature can be used for cell imaging. Furthermore, the modified MSN cores can enhance the DOX loading capacity and the multifunctional polyelectrolyte shell can adjust the drug release upon the media pH, showing a low leakage quantity at the neutral environment but significantly enhanced release at lower pH media mimicking the tumor environments. Therefore, the biocompatible fluorescent polyelectrolyte coated mesoporous silica nanoparticles (MSN-LBL-PEG) offer promise for tumor therapy.

  19. Production of a positron microprobe using a transmission remoderator.

    PubMed

    Fujinami, Masanori; Jinno, Satoshi; Fukuzumi, Masafumi; Kawaguchi, Takumi; Oguma, Koichi; Akahane, Takashi

    2008-01-01

    A production method for a positron microprobe using a beta+-decay radioisotope (22Na) source has been investigated. When a magnetically guided positron beam was extracted from the magnetic field, the combination of an extraction coil and a magnetic lens enabled us to focus the positron beam by a factor of 10 and to achieve a high transport efficiency (71%). A 150-nm-thick Ni(100) thin film was mounted at the focal point of the magnetic lens and was used as a remoderator for brightness enhancement in a transmission geometry. The remoderated positrons were accelerated by an electrostatic lens and focused on the target by an objective magnetic lens. As a result, a 4-mm-diameter positron beam could be transformed into a microprobe of 60 microm or less with 4.2% total efficiency. The S parameter profile obtained by a single-line scan of a test specimen coincided well with the defect distribution. This technique for a positron microprobe is available to an accelerator-based high-intensity positron source and allows 3-dimensional vacancy-type defect analysis and a positron source for a transmission positron microscope.

  20. Spherical chamber effective solution for multipurpose nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Pelicon, P.; Simčič, J.; Jakšić, M.; Medunić, Z.; Naab, F.; McDaniel, F. D.

    2005-04-01

    Vacuum chambers for multipurpose nuclear microprobes must provide for the installation and servicing of several detection systems operating simultaneously, as well as sample visual control and mechanical manipulation. Detectors for X-rays, scattered ions, nuclear reaction products, secondary electrons, secondary luminescence and optical microscopes are mounted at the angles preferably larger than 120° with respect to the beam direction. Their positioning should not increase the space in the region between the ion lens and the focal point of the microprobe. Spherical chambers presented here effectively solve this problem and offer, at the same time, ports for gamma-ray detector, annular microscope, easy manual access in the sample region, ports for vertical and horizontal sample positioning and manipulation, as well as STIM and ERDA detectors at forward scattering angles and the Faraday cup. The basic construction, resulting in the three different but similar chamber designs at three nuclear microprobes worldwide, are presented. Current installation details, comments on the performance and suggested improvements are given.

  1. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health

    PubMed Central

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-01-01

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933

  2. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health.

    PubMed

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-01-01

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933

  3. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets.

    PubMed

    Rong, Mingcong; Lin, Liping; Song, Xinhong; Zhao, Tingting; Zhong, Yunxin; Yan, Jiawei; Wang, Yiru; Chen, Xi

    2015-01-20

    An effective and facile fluorescence sensing approach for the determination of 2,4,6-trinitrophenol (TNP) using the chemically oxidized and liquid exfoliated graphitic carbon nitride (g-C3N4) nanosheets was developed. The strong inner filter effect and molecular interactions (electrostatic, π-π, and hydrogen bonding interactions) between TNP and the g-C3N4 nanosheets led to the fluorescence quenching of the g-C3N4 nanosheets with efficient selectivity and sensitivity. Under optimal conditions, the limit of detection for TNP was found to be 8.2 nM. The proposed approach has potential application for visual detection of TNP in natural water samples for public safety and security. PMID:25514848

  4. Dielectric barrier discharge-assisted one-pot synthesis of carbon quantum dots as fluorescent probes for selective and sensitive detection of hydrogen peroxide and glucose.

    PubMed

    He, Duhong; Zheng, Chengbin; Wang, Qiang; He, Chunlin; Lee, Yong-Ill; Wu, Li; Hou, Xiandeng

    2015-09-01

    In this work, we proposed a dielectric barrier discharge (DBD)-assisted one-pot strategy to fabricate carbon quantum dots (CQDs) using only one reagent N, N-dimethylformamide (DMF) at atmospheric pressure and room temperature. The experimental conditions were carefully investigated, and the prepared CQDs were characterized by using UV-vis spectrophotometer, fluorescence spectrophotometer, Fourier transform infrared (FTIR) spectrometer, transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The CQDs have an average size of 3.6 nm in diameter with narrow size distribution, and can be used as highly selective and sensitive fluorescence probes for hydrogen peroxide and glucose, with limits of detection of 3.8 μM and 3.5 μM, respectively.

  5. Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice.

    PubMed

    Wu, Haixia; Krishnakumar, Saarangan; Yu, Jie; Liang, Dong; Qi, Hongyi; Lee, Zheng-Wei; Deng, Lih-Wen; Huang, Dejian

    2014-12-01

    Herein, we report the development of two fluorescent probes for the highly selective and sensitive detection of H2S. The probes take advantage of a Cu(II)-cyclen complex, which acts as a reaction center for H2S and as a quencher of BODIPY (boron-dipyrromethene)-based fluorophores with emissions at 765 and 680 nm, respectively. These non-fluorescent probes could only be turned on by the addition of H2 S, and not by other potentially interfering biomolecules, including reactive oxygen species, cysteine, and glutathione. In a chemical system, both probes detected H2S with a detection limit of 80 nM. The probes were successfully used for the endogenous detection of H2S in HEK 293 cells, for measuring the H2S-release activity of dietary organosulfides in MCF-7 cells, and for the in vivo imaging of H2S in mice. PMID:25263845

  6. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics.

    PubMed

    Al-Sady, Bassem; Greenstein, Rachel A; El-Samad, Hana J; Braun, Sigurd; Madhani, Hiten D

    2016-01-01

    Schizosaccharomyces pombe is an outstanding model organism for cell biological investigations, yet the range of useful and well-characterized fluorescent proteins (XFPs) is limited. We generated and characterized three recoded fluorescent proteins for 3-color analysis in S.pombe, Super-folder GFP, monomeric Kusabira Orange 2 and E2Crimson. Upon optimization and expression in S. pombe, the three proteins enabled sensitive simultaneous 3-color detection capability. Furthermore, we describe a strategy that combines a pulse-chase approach and mathematical modeling to quantify the maturation kinetics of these proteins in vivo. We observed maturation kinetics in S. pombe that are expected from those described for these proteins in vitro and/or in other cell types, but also unpredicted behaviors. Our studies provide a kinetically-characterized, integrated three-color XFP toolbox for S. pombe. PMID:27479698

  7. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics

    PubMed Central

    Al-Sady, Bassem; Greenstein, Rachel A.; El-Samad, Hana J.; Braun, Sigurd; Madhani, Hiten D.

    2016-01-01

    Schizosaccharomyces pombe is an outstanding model organism for cell biological investigations, yet the range of useful and well-characterized fluorescent proteins (XFPs) is limited. We generated and characterized three recoded fluorescent proteins for 3-color analysis in S.pombe, Super-folder GFP, monomeric Kusabira Orange 2 and E2Crimson. Upon optimization and expression in S. pombe, the three proteins enabled sensitive simultaneous 3-color detection capability. Furthermore, we describe a strategy that combines a pulse-chase approach and mathematical modeling to quantify the maturation kinetics of these proteins in vivo. We observed maturation kinetics in S. pombe that are expected from those described for these proteins in vitro and/or in other cell types, but also unpredicted behaviors. Our studies provide a kinetically-characterized, integrated three-color XFP toolbox for S. pombe. PMID:27479698

  8. A highly sensitive and selective fluorescent chemosensor for detection of Zn2+ based on a Schiff base.

    PubMed

    Roy, Nayan; Pramanik, Harun A R; Paul, Pradip C; Singh, T Sanjoy

    2015-04-01

    A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.

  9. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening.

    PubMed

    Xu, Yongqian; Li, Benhao; Xiao, Liangliang; Ouyang, Jia; Sun, Shiguo; Pang, Yi

    2014-08-14

    A dual-channel including a colorimetric and fluorescent probe based on the aggregation-caused quenching (ACQ) and enzymolysis approach has been presented to screen acid phosphatase (ACP) and its inhibitor. Moreover, the ACP activity was determined by real time assay. PMID:24957006

  10. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.

    PubMed

    Gilmore, Marcella A; Williams, Dudley; Okawa, Yumiko; Holguin, Bret; James, Nicholas G; Ross, Justin A; Roger Aoki, K; Jameson, David M; Steward, Lance E

    2011-06-01

    The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)-fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134-206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (V(max) and k(cat)) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications.

  11. Hybridization-sensitive on-off DNA probe: application of the exciton coupling effect to effective fluorescence quenching.

    PubMed

    Ikeda, Shuji; Okamoto, Akimitsu

    2008-06-01

    The design of dyes that emit fluorescence only when they recognize the target molecule, that is, chemistry for the effective quenching of free dyes, must play a significant role in the development of the next generation of functional fluorescent dyes. On the basis of this concept, we designed a doubly fluorescence-labeled nucleoside. Two thiazole orange dyes were covalently linked to a single nucleotide in a DNA probe. An absorption band at approximately 480 nm appeared strongly when the probe was in a single-stranded state, whereas an absorption band at approximately 510 nm became predominant when the probe was hybridized with the complementary strand. The shift in the absorption bands shows the existence of an excitonic interaction caused by the formation of an H aggregate between dyes, and as a result, emission from the probe before hybridization was suppressed. Dissociation of aggregates by hybridization with the complementary strand resulted in the disruption of the excitonic interaction and strong emission from the hybrid. This clear change in fluorescence intensity that is dependent on hybridization is useful for visible gene analysis.

  12. A highly sensitive and selective fluorescent chemosensor for detection of Zn2+ based on a Schiff base

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Pramanik, Harun A. R.; Paul, Pradip C.; Singh, T. Sanjoy

    2015-04-01

    A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.

  13. Correlated petrographic, electron microprobe, and ion microprobe studies of selected primitive and processed phase assemblages in meteorites

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1993-01-01

    During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.

  14. Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome c to Breast Tumor in Mice.

    PubMed

    Li, Shuai; Zhang, Jian; Deng, Chao; Meng, Fenghua; Yu, Lin; Zhong, Zhiyuan

    2016-08-24

    In spite of their high specificity and potency, few protein therapeutics are applied in clinical cancer therapy owing to a lack of safe and efficacious delivery systems. Here, we report that redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels (HA-NGs) show highly efficient loading and breast tumor-targeted delivery of cytochrome c (CC). HA-NGs were obtained from hyaluronic acid-graft-oligo(ethylene glycol)-tetrazole (HA-OEG-Tet) via inverse nanoprecipitation and catalyst-free photoclick cross-linking with l-cystine dimethacrylamide (MA-Cys-MA). HA-NGs exhibited a superb CC loading content of up to 40.6 wt %, intrinsic fluorescence (λem = 510 nm), and a small size of ca. 170 nm. Notably, CC-loaded nanogels (CC-NGs) showed a fast glutathione-responsive protein release behavior. Importantly, released CC maintained its bioactivity. MTT assays revealed that CC-NGs were highly potent with a low IC50 of 3.07 μM to CD44+ MCF-7 human breast tumor cells. Confocal microscopy observed efficient and selective internalization of fluorescent HA-NGs into MCF-7 cells. Interestingly, HA-NGs exhibited also effective breast tumor penetration. The therapeutic results demonstrated that CC-NGs effectively inhibited the growth of MCF-7 breast tumor xenografts at a particularly low dose of 80 or 160 nmol CC equiv./kg. Moreover, CC-NGs did not cause any change in mice body weight, corroborating their low systemic side effects. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels have appeared as a "smart" protein delivery nanoplatform enabling safe, efficacious, traceable, and targeted cancer protein therapy in vivo. PMID:27509045

  15. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips.

    PubMed

    Ahmad, Farhan; Seyrig, Gregoire; Tourlousse, Dieter M; Stedtfeld, Robert D; Tiedje, James M; Hashsham, Syed A

    2011-10-01

    Rapid, sensitive, and low-cost pathogen diagnostic systems are needed for early disease diagnosis and treatment, especially in resource-limited settings. This study reports a low-cost charge-coupled device (CCD)-based fluorescence imaging system for rapid detection of waterborne pathogens by isothermal gene amplification in disposable microchips. Fluorescence imaging capability of this monochromatic CCD camera is evaluated by optimizing the gain, offset, and exposure time. This imaging system is validated for 12 virulence genes of major waterborne pathogens on cyclic olefin polymer (COP) microchips, using SYTO-82 dye and real time fluorescence loop-mediated isothermal amplification referred here as microRT(f)-LAMP. Signal-to-noise ratio (SNR) and threshold time (Tt) of microRT(f)-LAMP assays are compared with those from a commercial real-time polymerase chain reaction (PCR) instrument. Applying a CCD exposure of 5 s to 10(5) starting DNA copies of microRT(f)-LAMP assays increases the SNR by 8-fold and reduces the Tt by 9.8 min in comparison to a commercial real-time PCR instrument. Additionally, single copy level sensitivity for Campylobacter jejuni 0414 gene is obtained for microRT(f)-LAMP with a Tt of 19 min, which is half the time of the commercial real-time PCR instrument. Due to the control over the exposure time and the wide field imaging capability of CCD, this low-cost fluorescence imaging system has the potential for rapid and parallel detection of pathogenic microorganisms in high throughput microfluidic chips.

  16. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2

  17. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles.

    PubMed

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang

    2016-08-17

    In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. PMID:27286773

  18. Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging.

    PubMed

    Huang, Yanqin; Song, Caixia; Li, Huichang; Zhang, Rui; Jiang, Rongcui; Liu, Xingfen; Zhang, Guangwei; Fan, Quli; Wang, Lianhui; Huang, Wei

    2015-09-30

    Hyaluronidase (HAase) is becoming a new type of tumor marker since it has been demonstrated to be overexpressed in various kinds of cancer cells. In this study, we described a novel fluorescence method for sensitive, rapid, and convenient HAase detection and tumor-targeting drug delivery and imaging, using a probe prepared by electrostatic assembly of a cationic conjugated polymer (CCP) and anionic hyaluronan (HA) conjugated with the anticancer drug doxorubicin (Dox). The CCP we used was poly{[9,9-bis(6'-(N,N,N-diethylmethylammonium)hexyl)-2,7-fluorenylene ethynylene]-alt-co-[2,5-bis(3'-(N,N,N-diethylmethylammonium)-1'-oxapropyl)-1,4-phenylene]} tetraiodide (PFEP). HA is a natural mucopolysaccharide that can be hydrolyzed by HAase into fragments with low molecular weights. In the PFEP/HA-Dox complex, the fluorescence of PFEP was efficiently quenched due to electron transfer from PFEP to Dox. After the PFEP/HA-Dox complex was exposed to HAase or was taken up by cancer cells through the specific binding between HA and CD44 receptor, HA was degraded by HAase to release the Dox, leading to the recovery of PFEP fluorescence to the "turn-on" state. Moreover, the degree of fluorescence recovery was quantitatively correlated with the concentrations of HAase. Compared with many previously reported methods, our work did not require laborious multiple modifications of HA that may affect the activity of HAase. This point, combined with the excellent optoelectronic property of conjugated polymer, endowed this method with high sensitivity (detection limit: 0.075 U/mL), high specificity, and rapid response, making it applicable for reliable and routine detection of HAase. This fluorescent probe was successfully utilized to detect HAase levels in human urine samples; furthermore, it can also be employed as a multifunctional system by realizing tumor-targeting drug delivery and cell imaging simultaneously. The development of this fluorescence method showed promising potential for

  19. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    SciTech Connect

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L; Nallathamby, Prakash D; Mortensen, Ninell P; Doktycz, Mitchel John; Gu, Baohua; Retterer, Scott T; Gu, Baohua

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  20. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles.

    PubMed

    Wang, Wei; Nallathamby, Prakash D; Foster, Carmen M; Morrell-Falvey, Jennifer L; Mortensen, Ninell P; Doktycz, Mitchel J; Gu, Baohua; Retterer, Scott T

    2013-11-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or "free" surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  1. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange.

    PubMed

    Rye, H S; Quesada, M A; Peck, K; Mathies, R A; Glazer, A N

    1991-01-25

    Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes.

  2. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products.

    PubMed

    Deng, Kailin; Wong, Tin-Yan; Wang, Yinan; Leung, Elvis M K; Chan, Wan

    2015-04-01

    Carcinogenic nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are ubiquitous in the ambient environment. They are emitted predominantly from internal combustion engines and by reacting polycyclic aromatic hydrocarbons with nitrogen oxide. The emerging evidence that nitro-PAHs are taken up by plants and bioaccumulatd in the food chain has aroused worldwide concerns for the potential of chronic poisoning through dietary intake. Therefore, analytical methods of high sensitivity are extremely important for assessing the risk of human exposure to nitro-PAHs. This paper describes the development of a simple and robust ultraperformance liquid chromatography coupled fluorescence detector (UPLC-FLD) method for the sensitive determination of nitro-PAHs in meat products. The method entails precolumn reduction of the otherwise nonfluorescent nitro-PAHs to amino-PAHs which strongly fluoresce for their determination by UPLC-FLD analysis. The developed method was validated for extraction efficiency, accuracy, precision, and detection limit and has been successfully applied in quantifying 1-nitronaphthalene (1-NN), 2-nitrofluorene (2-NF), and 1-nitropyrene (1-NP) in fresh and cured meat products. The results showed that the combination of Fe/H(+)-induced nitro-reduction and UPLC-FLD analysis allows sensitive quantification of 1-NN, 2-NF, and 1-NP at detection limits of 0.59, 0.51, and 0.31 μg/kg, respectively, which is at least 10 times lower than those of the existing analytical methods.

  3. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products.

    PubMed

    Deng, Kailin; Wong, Tin-Yan; Wang, Yinan; Leung, Elvis M K; Chan, Wan

    2015-04-01

    Carcinogenic nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are ubiquitous in the ambient environment. They are emitted predominantly from internal combustion engines and by reacting polycyclic aromatic hydrocarbons with nitrogen oxide. The emerging evidence that nitro-PAHs are taken up by plants and bioaccumulatd in the food chain has aroused worldwide concerns for the potential of chronic poisoning through dietary intake. Therefore, analytical methods of high sensitivity are extremely important for assessing the risk of human exposure to nitro-PAHs. This paper describes the development of a simple and robust ultraperformance liquid chromatography coupled fluorescence detector (UPLC-FLD) method for the sensitive determination of nitro-PAHs in meat products. The method entails precolumn reduction of the otherwise nonfluorescent nitro-PAHs to amino-PAHs which strongly fluoresce for their determination by UPLC-FLD analysis. The developed method was validated for extraction efficiency, accuracy, precision, and detection limit and has been successfully applied in quantifying 1-nitronaphthalene (1-NN), 2-nitrofluorene (2-NF), and 1-nitropyrene (1-NP) in fresh and cured meat products. The results showed that the combination of Fe/H(+)-induced nitro-reduction and UPLC-FLD analysis allows sensitive quantification of 1-NN, 2-NF, and 1-NP at detection limits of 0.59, 0.51, and 0.31 μg/kg, respectively, which is at least 10 times lower than those of the existing analytical methods. PMID:25763600

  4. Sensitive detection of T4 polynucleotide kinase activity based on coupled exonuclease reaction and nicking enzyme-assisted fluorescence signal amplification.

    PubMed

    Hou, Ting; Wang, Xiuzhong; Lu, Tingting; Liu, Xiaojuan; Li, Feng

    2014-05-01

    As a prominent member of the 5'-kinase family, T4 polynucleotide kinase (PNK) plays an important role in gene function regulations, and the study of PNK activity and its potential inhibitors is significant for research related to the DNA phosphorylation process. Here, we proposed a novel strategy for the detection of PNK activity and its inhibition, which combines exonuclease enzyme reaction and nicking enzyme-assisted fluorescence signal amplification. Through recycling cleavage of DNA fluorescence probe for signal amplification, a highly sensitive PNK sensing platform is developed, and a very low detection limit of 0.05 mU/mL is achieved, which is better than or comparable to that of the previously reported PNK assays. The present approach adopts a simple separation-free procedure in which the enzyme assay is conducted in homogeneous solutions. Additionally, the inhibitory effects of several known kinase inhibitors on PNK have been successfully detected. Since the proposed assay exhibits the advantages of high sensitivity and simplicity, it holds great potential in providing a promising platform for convenient and highly sensitive detection of PNK activity and its inhibitors.

  5. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy

    NASA Astrophysics Data System (ADS)

    Hou, Wenxiu; Zhao, Xin; Qian, Xiaoqing; Pan, Fei; Zhang, Chunlei; Yang, Yuming; de La Fuente, Jesús Martínez; Cui, Daxiang

    2015-12-01

    The development of visual tumor theranostic nanoparticles has become a great challenge. In this study, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was conjugated to acid-sensitive cis-aconitic anhydride-modified doxorubicin (CAD) to obtain pH-sensitive anti-tumor prodrug nanoparticles (TCAD NPs) via self-assembling. Subsequently, the photosensitizer chlorin e6 (Ce6) was loaded into the resulting prodrug nanoparticles to prepare a novel tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy system (TCAD@Ce6 NPs). An accelerated release of doxorubicin (DOX) and chlorin e6 (Ce6) from the TCAD@Ce6 NPs could be achieved due to the hydrolysis of the acid-sensitive amide linker under mild acidic conditions (pH = 5.5). An in vitro experiment showed that A549 lung cancer cells exhibited a significantly higher uptake of DOX and Ce6 by using our delivery system than the free form of DOX and Ce6. An in vivo experiment showed that TCAD@Ce6 NPs displayed better tumor targeting gathering through the enhanced permeability and retention (EPR) effect than free Ce6, thus improving fluorescence imaging. Moreover, the chemo-photodynamic combination therapy of TCAD@Ce6 NPs combined with near-infrared laser irradiation was confirmed to be capable of inducing high apoptosis and necrosis of tumor cells (A549) in vitro and to display a significantly higher tumor growth suppression in the A549 lung cancer-bearing mice model. Furthermore, compared with exclusive chemotreatment (DOX) or photodynamic treatment (Ce6), our system showed enhanced therapeutic effects both in vitro and in vivo. In conclusion, the high performance TCAD@Ce6 NPs can be used as a promising NIR fluorescence imaging and highly effective chemo-photodynamic system for theranostics of lung cancer, etc. in the near future.The development of visual tumor theranostic nanoparticles has become a great challenge. In this study, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was

  6. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.

    PubMed

    Zhou, Qian; Lin, Youxiu; Xu, Mingdi; Gao, Zhuangqiang; Yang, Huanghao; Tang, Dianping

    2016-09-01

    Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV < 8.5% for the intra-assay and interassay), high specificity, and long-term stability (90.1% of the initial signal after a storage period of 48 days) were also received by using our system toward target PPase activity. In addition, good results with the inhibition efficiency of sodium fluoride were obtained in the inhibitor screening research of pyrophosphatase. Importantly, this system based on highly enhanced fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target

  7. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.

    PubMed

    Zhou, Qian; Lin, Youxiu; Xu, Mingdi; Gao, Zhuangqiang; Yang, Huanghao; Tang, Dianping

    2016-09-01

    Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV < 8.5% for the intra-assay and interassay), high specificity, and long-term stability (90.1% of the initial signal after a storage period of 48 days) were also received by using our system toward target PPase activity. In addition, good results with the inhibition efficiency of sodium fluoride were obtained in the inhibitor screening research of pyrophosphatase. Importantly, this system based on highly enhanced fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target

  8. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Various Metals

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2011-01-01

    In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants are acceptable for NASA Standard Level liquid penetrant inspections. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection (POD) of sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. POD demonstration tests were performed on 6061-Al, Haynes 188 and Ti-6Al-4V crack panel sets. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections.

  9. X-ray Mapping of Terrestrial and Extraterrestrial Materials Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    the sample at microscopic and macroscopic scales with relatively high sensitivity, (2) Determine the modal abundance of minerals, and (3) Identify and relocate discrete features of interest in terms of size and chemistry. The coupled substitution of cations in minerals can result in significant variation in mineral chemistry, but at similar average Z, leading to poor backscattered-electron (BSE) contrast discrimination of mineralogy. It is necessary to discriminate phase chemistry at both the trace element level and the major element level. To date, the WDS of microprobe systems is preferred for mapping due to high throughput and the ability to obtain the necessary intensity to discriminate phases at both trace and major element concentrations. It is desirable to produce fully quantitative compositional maps of geological materials, which requires the acquisition of k-ratio maps that are background and dead-time corrected, and which have been corrected by phi(delta z> or an equivalent algorithm at each pixel. To date, turnkey systems do not allow the acquisition of k-ratio maps and the rigorous correction in this manner. X-ray maps of a chondrule from the Ourique meteorite, and a comb-layered xenolith from the San Francisco volcanic field, have been analyzed and processed to extract phase information. The Ourique meteorite presents a challenge due to relatively low BSE contrast, and has been studied using spectrum imaging. X-ray maps for Si, Mg, and FeK(alpha) were used to produce RGB images. The xenolith sample contains sector-zoned augite, olivine, plagioclase, and basaltic glass. X-ray maps were processed using Lispix and ImageJ software to produce mineral phase maps. The x-ray maps for Mg, Ca, and Ti were used with traceback to generate binary images that were converted to RGB images. These approaches are successful in discriminating phases, but it is desirable to achieve the methods that were used on lunar samples 30 years ago on current microprobe systems. Curnt

  10. A highly sensitive and selective fluorescent sensor for detection of Al(3+) using a europium(III) quinolinecarboxylate.

    PubMed

    Xu, Wentao; Zhou, Youfu; Huang, Decai; Su, Mingyi; Wang, Kun; Hong, Maochun

    2014-07-01

    Eu2PQC6 has been developed to detect Al(3+) by monitoring the quenching of the europium-based emission, with the lowest detection limit of ∼32 pM and the quantitative detection range to 150 μM. Eu2PQC6 is the first ever example that the europium(III) complex serves as an Al(3+) fluorescent sensor based on "competition-displacement" mode.

  11. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    NASA Astrophysics Data System (ADS)

    Zamotaiev, O. M.; Shvadchak, V.; Sych, T. P.; Melnychuk, N. A.; Yushchenko, D.; Mely, Y.; Pivovarenko, V. G.

    2016-09-01

    A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.

  12. Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H2O2-Sensitive Conjugated Polymers.

    PubMed

    Wang, Yunxia; Li, Shengliang; Feng, Liheng; Nie, Chenyao; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-11-01

    A new water-soluble conjugated poly(fluorene-co-phenylene) derivative (PFP-FB) modified with boronate-protected fluorescein (peroxyfluor-1) via PEG linker has been designed and synthesized. In the presence of H2O2, the peroxyfluor-1 group can transform into green fluorescent fluorescein by deprotecting the boronate protecting groups. In this case, upon selective excitation of PFP-FB backbone at 380 nm, efficient fluorescence resonance energy transfer (FRET) from PFP-FB backbone to fluorescein occurs, and accordingly, the fluorescence color of PFP-FB changes from blue to green. Furthermore, the emission color of PFP-FB and the FRET ratio change in a concentration-dependent manner. By taking advantage of PFP-FB, ratiometric detection of choline and acetylcholine (ACh) through cascade enzymatic reactions and further dynamic monitoring of the choline consumption process of cancer cells have been successfully realized. Thus, this new polymer probe promotes the development of enzymatic biosensors and provides a simpler and more effective way for detecting the chemical transmitter of living cells.

  13. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Ting; Zhu, Xuefeng; Zhou, Shenghai; Yang, Guang; Gan, Wei; Yuan, Qunhui

    2015-08-01

    Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0-0.5 μM and 0.5-6 μM for Hg(II) and one linear range of 0-10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  14. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum.

    PubMed

    Xu, Sai; Xu, Shihan; Zhu, Yongsheng; Xu, Wen; Zhou, Pingwei; Zhou, Chunyang; Dong, Biao; Song, Hongwei

    2014-11-01

    There has been great progress in the development of fluorescence biosensors based on quantum dots (QDs) for the detection of lead ions. However, most methods are detecting lead ions in aqueous solution rather than in human serum due to the influence of protein autofluorescence in serum excited by visible light. Thus, we developed a novel fluorescence resonance energy transfer (FRET) biosensor by choosing the upconversion NaYF4:Yb(3+)/Tm(3+) nanoparticles as the energy donor and the CdTe QDs as the energy acceptor for lead ion detection. It is the first near infrared (NIR)-excited fluorescent probe for determination of lead ions in serum that is capable of overcoming self-luminescence from serum excitation with visible light. The sensor also shows high selectivity, a low detection limit (80 nm) and good linear Stern-Volmer characteristics (R = 0.996), both in the buffer and serum. This biosensor has great potential for versatile applications in lead ion detection in biological and analytical fields. PMID:25184968

  15. Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe.

    PubMed

    Gao, Yuan; Li, Yan; Zou, Xin; Huang, Hui; Su, Xingguang

    2012-06-20

    A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based "molecular beacon"-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg(2+) ions. The labeled ssDNA containing T-T mismatches would self-hybridize to duplex in the presence of Hg(2+), which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg(2+) ions with T-T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I(0)/I and the concentration of GSH in the range of 2.0×10(-9)-5.0×10(-7) mol L(-1) with a detection limit of 1.0×10(-9) mol L(-1). The linear range for Cys is from 5.0×10(-9) to 4.5×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.

  16. The sensitive capillary electrophoretic-LIF method for simultaneous determination of curcuminoids in turmeric by enhancing fluorescence intensities of molecules upon inclusion into (2-hydroxypropyl)-β-cyclodextrin.

    PubMed

    Kalaycıoğlu, Zeynep; Hashemi, Parya; Günaydın, Keriman; Erim, F Bedia

    2015-10-01

    Curcuminoids have received great attention in the past decades due to their health benefit properties. The aim of this study is to develop a very simple, rapid, and sensitive capillary zone electrophoresis technique coupled with a laser induced fluorescence detector (LIF) for the simultaneous determination of three major curcuminoids of turmeric, namely, curcumin, demethoxy curcumin (DMC), and bisdemethoxy curcumin (BDMC). Background electrolyte was selected as borate at pH 9.6 and (2-hydroxypropyl)-β-cyclodextrin (2-HP-β-CD) was added to prevent rapid alkali degradation of curcuminoids in buffer and to increase fluorescence intensities of molecules. With the addition of 2-HP-β-CD to the separation electrolyte, the fluorescence signal intensities of curcuminoids were enhanced considerably by 30, 40, and 54 fold for curcumin, DMC, and BDMC, respectively. The three curcuminoids of turmeric were fully separated and quantified in less than 4.5 min. The repeatability of the peak areas of curcuminoids for intra-day and inter-day experiments was in the satisfactory range of 2.26 and 2.55%, respectively. The LOD and LOQ values for the developed method were equal to or less than 0.081 and 0.270 μg/mL, respectively, for all curcuminoids. The developed method was successfully applied to find curcuminoids amount in turmeric samples and herbal supplements.

  17. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    PubMed

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples.

  18. Improving the sensitivity of confocal laser induced fluorescence detection to the sub-picomolar scale for round capillaries by laterally shifting the laser focus point.

    PubMed

    Zhu, Ying; Chen, Niannian; Li, Qi; Fang, Qun

    2013-08-21

    This paper describes a simple and efficient approach to reduce the background level of confocal laser induced fluorescence (LIF) detection for round capillaries by laterally shifting the laser focus point. A phenomenon of spontaneous separation of the fluorescence and reflected laser beams at the pinhole of a confocal LIF system when the laser focus point deviates from the center of a capillary channel to the sides was observed for the first time. On the basis of this phenomenon, the reflected laser light from the capillary-air interfaces could be mostly eliminated with a spatial filtering pinhole. A comprehensive study on the phenomenon and optimization of the shift distance was carried out using both experimental and simulation methods. A best shift distance of ±20 μm was obtained, with which background intensity could be significantly reduced by 98.9%, while fluorescence intensity was only reduced by 25.7%, resulting in an improvement of signal-to-noise ratio of 8.3 times, compared with that at a shift distance of 0 μm usually used in most of the confocal LIF systems for round capillaries. A limit of detection of 66 fM was obtained for sodium fluorescein. To demonstrate its potential as an on-column sensitive detector for microscale separation systems, the present system was coupled with a capillary electrophoresis system for separation of four fluorescein isothiocyanate labeled amino acids with concentrations of 100 pM.

  19. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    PubMed

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  20. A novel graphene-based label-free fluorescence `turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells

    NASA Astrophysics Data System (ADS)

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-01

    A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions

  1. Sensitive and rapid detection of endogenous hydrogen sulfide distributing in different mouse viscera via a two-photon fluorescent probe.

    PubMed

    Chen, Qian; Yang, Jinfeng; Li, Yinhui; Zheng, Jing; Yang, Ronghua

    2015-10-01

    Development of efficient methods for detection of endogenous H2S in living cells and tissues is of considerable significance for better understanding the biological and pathological functions of H2S. Two-photon (TP) fluorescent probes are favorable as powerful molecular tools for studying physiological process due to its non-invasiveness, high spatiotemporal resolution and deep-tissues imaging. Up to date, several TP probes for intracellular H2S imaging have been designed, but real-time imaging of endogenous H2S-related biological processes in tissues is hampered due to low sensitivity, long response time and interference from other biothiols. To address this issue, we herein report a novel two-photon fluorescent probe (TPP-H2S) for highly sensitive and fast monitoring and imaging H2S levels in living cells and tissues. In the presence of H2S, it exhibits obviously improved sensitivity (LOD: 0.12 μM) and fast response time (about 2 min) compared with the reported two-photon H2S probes. With two-photon excitation, TPP-H2S displays high signal-to-noise ratio and sensitivity even no interference in cell growth media. As further application, TPP-H2S is applied for fast imaging of H2S in living cells and different fresh tissues by two-photon confocal microscope. Most importantly we first measured the endogenous H2S level in different viscera by vivisection and found that the distribution of endogenous H2S mostly in brain, liver and lung. The excellent sensing properties of TPP-H2S make it a practically useful tool for further studying biological roles of H2S.

  2. A superconducting solenoid as probe forming lens for microprobe applications

    NASA Astrophysics Data System (ADS)

    Stephan, A.; Meijer, J.; Höfert, M.; Bukow, H. H.; Rolfs, C.

    1994-05-01

    An improved nuclear microprobe system for applications in material science has been designed at the Dynamitron Tandem Laboratory of the University of Bochum. A superconducting solenoid as probe forming lens allows a wide range of projectile masses and energies. We describe the expected performance of the new system calculated by ray tracing and first experiments with the new lens system. The effects of chromatic, spherical and mechanical aberrations, including misalignment and beam scanning, were determined. The calculations show that a very high degree of axial symmetry of the focusing coil is of main importance to avoid parasitic aberrations. This demands extreme accuracy in the fabrication approaching the technical limits.

  3. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  4. Rapid correction of electron microprobe data for multicomponent metallic systems

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Sivakumar, R.

    1973-01-01

    This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.

  5. Elemental mapping of biological samples using a scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.

    1988-03-01

    Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.

  6. Field Emission Electron Microprobe Analysis of Halogens in Apatite

    NASA Astrophysics Data System (ADS)

    Tacker, R. C.

    2011-12-01

    Field emission electron microprobe is capable of higher resolution and lower voltage than other microprobes, making it an ideal instrument for analysis of small accessory minerals in thin section such as apatite. In this study, the field emission electron microprobe was evaluated for analysis of fluorine and chlorine in apatite. Analysis was conducted on (001), (100) and an intermediate section of natural apatite crystals, using the JEOL JXA-8530F Hyperprobe, located at Fayetteville State University in Fayetteville, North Carolina. Conditions were beam current of 10 nanoamps, accelerating voltages from 5-20 kV, and spot sizes from 1-10 micrometers. Very short counting times were used, some as little as 2 seconds. Analytical strategies exploited the fact that excitation energies for fluorine Kα are much lower than for chlorine. Earlier studies (e.g. Stormer et al. 1993; Fialin and Chopin, 2006) documented the complex behavior of beam-driven migration, subsurface accumulation and desorption during fluorine analysis. The cumulative effect is increase and then fall of count rates with time and repeated analysis. The details of earlier studies were reproduced: (1) Apatite analysis by electron microprobe has two additional unknown variables, which are the crystallographic orientation of the unknown and of the standard. (2) The most reliable measure of fluorine cps is derived from a regression to zero time, accounting for crystal orientation; (3) Changing the analytical conditions (accelerating voltage, spot size, duration of analysis) changes only the time scale over which migration and desorption take place. New results from the JEOL Hyperprobe show that, for all crystal orientations, initial fluorine cps increase from 5 and 7 kV to 10 kV, but decrease systematically with further increases in kV, interpreted as loss of fluorine without concomitant excitation of X-rays. To date, fluorine analysis is routinely conducted at 15 and 20 kV. In contrast, chlorine initial

  7. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.

    PubMed

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi

    2015-09-01

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples.

  8. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide.

    PubMed

    Wang, Xiuzhong; Hou, Ting; Dong, Shanshan; Liu, Xiaojuan; Li, Feng

    2016-03-15

    Pesticides are of great importance in agricultural and biological fields, but pesticide residues may harm the environment and human health. A highly sensitive fluorescent biosensor for the detection of carbamate pesticide has been developed based on acetylcholinesterase (AChE)-catalyzed hydrolysis product triggered Hg(2+) release coupled with subsequent nicking enzyme-induced cleavage of a duplex DNA for cycling amplification. In this protocol, two DNA probes, an unmodified single-stranded helper DNA probe 1 (HP1) and a quencher-fluorophore probe (QFP) are ingeniously designed. HP1 can be folded into hairpin configuration through T-Hg(2+)-T base pair formation. QFP, labeled with FAM and BHQ1 at its two terminals, contains the recognition sequence and the cleavage site of the nicking enzyme. In the presence of carbamate pesticide, the activity of AChE is inhibited, and the amount of the product containing the thiol group generated by the hydrolysis reaction of acetylthiocholine chloride (ACh) decreases, resulting in the release of a low concentration of Hg(2+). The number of HP1 that can be selectively unfolded would be reduced and the subsequent nicking enzyme-assisted cleavage processes would be affected, resulting in decreased fluorescence signals. The fluorescence intensity further decreases with the increase of the pesticide concentration. Therefore, the pesticide content can be easily obtained by monitoring the fluorescence signal change, which is inversely proportional to the logarithm of the pesticide concentration. The detection limit of aldicarb, the model analyte, is 3.3 μgL(-1), which is much lower than the Chinese National Standards or those previously reported. The as-proposed method has also been applied to detect carbamate pesticide residues in fresh ginger and artificial lake water samples with satisfactory results, which demonstrates that the method has great potential for practical application in biological or food safety field.

  9. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe.

    PubMed

    Shamsipur, Mojtaba; Memari, Zahra; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-01-25

    A simple and sensitive method for the detection of DNA hybridization in a homogeneous format was developed, using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride (Ce(QS)2Cl) as a novel fluorescent probe. The method is based on fluorescence quenching by gold nanoparticles used as both nanoscafolds for the immobilization of the probe DNA sequence, which is related to Alicyclobacillus acidophilus strain TA-67 16S ribosomal RNA, and nanoquenchers of the Ce(QS)2Cl probe. The probe DNA-functionalized GNPs were synthesized by derivatizing the colloidal gold nanoparticles solution with 3-thiolated 16-base oligonucleotides. Addition of sequence-specific target DNAs (16 bases) into the mixture containing probe DNA-functionalized GNPs and fluorescent probe lead to the quenching of Ce(QS)2Cl fluorescence at 360 nm (λex=270 nm), due to DNA hybridization, the resulting quenched intensity being proportional to the concentration of target DNA. Under optimal conditions of pH 7.4 and Ce(QS)2Cl concentration of 1.0 × 10(-7) M, the linear dynamic range found to be 1.0 × 10(-10)-3.0 × 10(-8) M DNA, with a limit of detection of 7.0 × 10(-11) M. The interaction mechanism for the binding of Ce(QS)2Cl to DNA was studied in detail, and results proved that the interaction mode between Ce(QS)2Cl and DNA is groove binding, with a binding constant of 1.0 × 10(5) M(-1).

  10. A novel graphene-based label-free fluorescence 'turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells.

    PubMed

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-28

    A novel label-free fluorescence 'turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti(4+)-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti(4+)) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti(4+). The as-prepared rGO@PDA-Ti(4+)-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti(4+). The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti(4+)), leading to an excellent fluorescence 'turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.

  11. A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-07-15

    A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors.

  12. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  13. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  14. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.