Science.gov

Sample records for fluorescence spectroscopic studies

  1. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  2. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  3. [Studies on laticifers and milk of greater celandine (Chelidonium majus L.) with fluorescence imaging and fluorescence spectroscopic methods].

    PubMed

    Póczi, Dorottya; Böddi, Béla

    2010-01-01

    Using fluorescence imaging and fluorescence spectroscopic methods, the localisation of the laticifers and the native spectral properties of the milk were studied in various organs of greater celandine (Chelidonium majus L.). Direct measurements on tissue pieces (without the extraction and the separation of the components) provided information about the complexity of the milk and the various ratios of the alkaloid contents in the tissues. Whole plant were studied in a gel documentation system using ultraviolet light source, while the localisation of the laticifers was observed along the leaf veins in fluorescence microscope, using blue excitation light. Measuring different tissue pieces, fluorescence spectroscopic studies showed that the greater celandine alkaloids have emission bands at 469, 530-531, 553, 572-575 and 592 nm and excitation bands at 365, 370, 386 is 400 nm. These results give a possibility for conclusions about the alkaloid contents and composition or ratios of the alkaloid components in various tissue pieces directly, via comparisons with alkaloid standards.

  4. Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase

    NASA Astrophysics Data System (ADS)

    Pinto, María del Carmen; Duque, Antonio Luis; Macías, Pedro

    2010-09-01

    The interaction of lipoxygenase with (E)-resveratrol was investigated by fluorescence spectroscopy. The data obtained revealed that the quenching of intrinsic fluorescence of lipoxygenase is produced by the formation of a complex lipoxygenase-(E)-resveratrol. From the value obtained for the binding constant, according to the Stern-Volmer modified equation, was deduced the existence of static quenching mechanism and, as consequence, the existence of a strong interaction between (E)-resveratrol and lipoxygenase. The values obtained for the thermodynamic parameter Δ H (-3.58 kJ mol -1) and Δ S (87.97 J mol -1K -1) suggested the participation of hydrophobic interactions and hydrogen bonds in the stabilization of the complex ligand-protein. From the static quenching we determined that only exist one independent binding site. Based on the Förster energy transfer theory, the distance between the acceptor ((E)-resveratrol) and the donor (Trp residues of lipoxygenase) was calculated to be 3.42 nm. Finally, based on the information obtained from the evaluation of synchronous and three-dimensional fluorescence spectroscopy, we deduced that the interaction of (E)-resveratrol with lipoxygenase produces micro-environmental and conformational alterations of protein in the binding region.

  5. New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes

    SciTech Connect

    Del Castillo, P.; Llorente, A.R.; Gomez, A.; Gosalvez, J.; Goyanes, V.J.; Stockert, J.C. )

    1990-02-01

    Metal-dye complexes are widely applied in light microscopic techniques for chromatin staining (e.g., hematoxylin and carmine), but fluorescent complexes between phosphate-binding cations and suitable ligands have been little used. Preformed and postformed Al complexes with different anionic dyes induced strong and selective fluorescence reactions in nuclei from chicken blood smears, frozen sections, paraffin-embedded sections and Epon-embedded sections of mouse and rat tissues, mitotic chromosomes, meiotic chromosomes and kinetoplasts of Trypanosoma cruzi epimastigotes. The DNA-dependent fluorescence of these structures showed a very low fading rate. The emission colors were related to the ligand. The most suitable compounds for forming fluorescent Al chelates were 8-hydroxyquinoline, morin, nuclear fast red and purpurin. Staining with diluted carmine solutions and InCl3 mordanting, followed by 8-hydroxyquinoline, also induced chromatin fluorescence. After treating isolated mouse chromosomes with the preformed complex Al-nuclear fast red, x-ray microanalysis indicated a P:Al:dye binding ratio of about 40:15:1. The selectivity, stability and easy formation of these fluorescent Al complexes are obvious advantages for their use as new cytochemical probes in cytologic studies.

  6. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  7. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies.

    PubMed

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-05

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λem(max)) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-01

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λemmax) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems.

  9. Fluorescence spectroscopic studies of tyrosine environment and ligand binding of plant calmodulin

    NASA Astrophysics Data System (ADS)

    Sanyal, Gautam; Thompson, Faith; Puett, David

    1990-05-01

    Recent studies in our laboratories have focused on using tyrosine (Tyr) fluorescence of calmodulin (CaM) and tryptophan (Trp) fluorescence of CaM-bound peptdies as intrinsic probes of structure and interactions of this Ca2+ regulatory protein. Plant CaM contains a single Tyr (Tyr.-l38) and vertebrate CaM contains two (Tyr-99 and Tyr-.l38). Neither protein contains Trp. The fluorescence properties of Tyr-138 of wheat-germ CaM is sensitive to conformational changes induced by perturbations such as Ca2+ ligation or depletion, and pH changes. Effects of these perturbations on quantum yield, lifetime and dynamic quenching of Tyr-l38 fluorescence are reported. We have also studied binding of amphiphilic peptides to wheat-germ CaM. A comparison of wheat CaM induced changes in the fluorescence properties of a single Trp of these peptides with those induced by bovine testes CaM indicate general similarities of the peptide binding surfaces of plant and mammalian CaMs. Frequency domain measurements of decay of intensity and anisotropy have suggested some orientational freedom and local motion of the Trp residue of CaM-bound peptide, independent of the overall protein motion, even when the Trp is expected to be buried in the doubly apolar protein-peptide interface. Calmodulin (CaM) is a ubiquitous calcium binding protein which is believed to regulate several different enzymes in diverse cells (Klee et al., 1982). Much of the structural work to date has been carried out on mammalian CaM. However, CaM has also been isolated from plant and invertebrate sources, and a high degree of sequence homology with vertebrate CaM has been found. The amino acid sequence of wheat germ CaM shows eleven substitutions, two insertions and one deletion compared with the 148.-residue bovine brain CaM (Toda et al., 1985). Specific differences with mammalian CaM at two sites make plant CaM attractive for fluorescence spectroscopic studies. These are: (1) The presence of a single tyrosine residue (Tyr

  10. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    PubMed

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10(6)M(-1). Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen.

  11. Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins.

    PubMed Central

    Ren, J; Goss, D J

    1996-01-01

    In the initiation of protein synthesis, the mRNA 5'-terminal 7-methylguanosine cap structure and several recognition proteins play a pivotal role. For the study of this cap binding reaction, one approach is to use fluorescence spectroscopy. A ribose diol-modified fluorescent cap analog, anthraniloyl-m7GTP (Ant-m7GTP), was designed and synthesized for this purpose. This fluorescent cap analog was found to have a high quantum yield, resistance to photobleaching and avoided overlap of excitation and emission wavelengths with those of proteins. The binding of Ant-m7GTP with wheatgerm initiation factors elF-4F and elF-(iso)4F was determined. The fluorescent cap analog and m7GTP had similar interactions with both cap binding proteins. Fluorescence quenching experiments showed that the microenvironment of Ant-m7GTP when bound to protein was hydrophobic. PMID:8836193

  12. A fluorescence spectroscopic study of a coagulating protein extracted from Moringa oleifera seeds.

    PubMed

    Kwaambwa, H M; Maikokera, R

    2007-11-15

    The fluorescence studies of coagulating protein extracted from Moringa oleifera seeds have been studied using steady-state intrinsic fluorescence. The fluorescence spectra are dominated by tryptophan emission and the emission peak maximum (lambda(max)=343+ or -2nm) indicated that the tryptophan residue is not located in the hydrophobic core of the protein. Changes in solution pH affected the protein conformation as indicated by changes in the tryptophan fluorescence above pH 9 whereas the ionic strength had minimal effect. The exposure and environments of the tryptophan residue were determined using collisional quenchers.

  13. A Fluorescence Spectroscopic Study of Cytochromes P450 1A2 and 3A4.

    NASA Astrophysics Data System (ADS)

    Marsch, Glenn; Guengerich, F. P.; Inks, Joshua

    2006-03-01

    Fluorescence spectroscopy was used to study cytochromes P450 1A2 and 3A4. Spectra of P450s were acquired in the presence and absence of acrylamide quencher. In both P450s, quenching revealed three distinguishable species of amino acid fluorescence, with maxima at 297, 323, and 345 nm. The 345 nm tryptophan fluorescence was quenched by low levels of acrylamide; the 297 nm tyrosine fluorescence was resistant to quenching. The 323 nm fluorescence was observed at intermediate concentrations of quencher. Stern-Volmer plots of P450 quenching were non-linear, but were well-fitted to a superposition of linear plots for each fluorophore species. The effect of P450 1A2 binding on pyrene fluorescence was also examined. Upon binding to P450 1A2, the intensity of the 383 nm pyrene vibronic band was decreased relative to the intensities of the 372 and 393 nm bands. Fluorescence quenching of pyrene and other ligands upon binding to P450s will be used to evaluate distances between ligands and the P450 heme moiety by fluorescence resonance energy transfer. Fluorescence quantum yields of ligands, overlap integrals, and Förster distances of many ligand-heme donor-acceptor pairs were calculated. Steady-state spectra and time-resolved data of bound ligand will be used to calculate substrate-heme distances in the P450 enzymes.

  14. A combined fluorescence spectroscopic and electrochemical approach for the study of thioredoxins.

    PubMed

    Voicescu, Mariana; Rother, Dagmar; Bardischewsky, Frank; Friedrich, Cornelius G; Hellwig, Petra

    2011-01-11

    A new way to study the electrochemical properties of proteins by coupling front-face fluorescence spectroscopy with an optically transparent thin-layer electrochemical cell is presented. First, the approach was examined on the basis of the redox-dependent conformational changes in tryptophans in cytochrome c, and its redox potential was successfully determined. Second, an electrochemically induced fluorescence analysis of periplasmic thiol-disulfide oxidoreductases SoxS and SoxW was performed. SoxS is essential for maintaining chemotrophic sulfur oxidation of Paracoccus pantotrophus active in vivo, while SoxW is not essential. According to the potentiometric redox titration of tryptophan fluorescence, the midpoint potential of SoxS was -342 ± 8 mV versus the standard hydrogen electrode (SHE') and that of SoxW was -256 ± 10 mV versus the SHE'. The fluorescence properties of the thioredoxins are presented and discussed together with the intrinsic fluorescence contribution of the tyrosines.

  15. [Studies on the oxidation of tyrosine induced by hydroxyl radical with fluorescence spectroscopic method].

    PubMed

    Sun, Yan-hui; Wang, Wei-long; Wu, Lin-sheng; Jia, Xiao-li

    2011-07-01

    Dityrosine is a marker of tyrosine oxidation. To study effecting factors of hydroxyl radical on tyrosine oxidation, synchronous fluorescence spectra with two dimensional correlation was used. The results showed that the peak position and intensity of dityrosine changed while pH value varied. In the system of tyrosine oxidation, with the increment of tyrosine concentration, the concentration of dityrosine decreased. With the increment of hydrogen peroxide concentration, the concentration of dityrosine increased. The oxidation reaction was prone to taking place in acid conditions while difficult to develop in basic conditions. With the development of oxidation reaction, the fluorescence intensity of dityrosine increased and then decreased. Two dimentional correlation synchronous fluorescence spectra showed that the variation in the intensity at 292 nm preceded that of 281, 300 and 374 nm. Thus, fluorescence spectroscopy was simple and easy for studying tyrosine oxidation induced by hydroxyl radical.

  16. Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition.

    PubMed

    Ryder, Alan G

    2004-05-01

    The fluorescence of crude petroleum oils is sensitive to changes in chemical composition and many different fluorescence methods have been used to characterize crude oils. The use of fluorescence lifetimes to quantitatively characterize oil composition has practical advantages over steady-state measurements, but there have been comparatively few studies in which the lifetime behavior is correlated with gross chemical compositional data. In this study, the fluorescence lifetimes for a series of 23 crude petroleum oils with American Petroleum Institute (API) gravities of between 10 and 50 were measured at several emission wavelengths (450-785 nm) using a 380 nm light emitting diode (LED) excitation source. It was found that the intensity average fluorescence lifetime (tau) at any emission wave-length does not correlate well with either API gravity or aromatic concentration. However, it was found that tau is strongly negatively correlated with both the polar and sulfur concentrations and positively correlated with the corrected alkane concentration. This indicates that the fluorescence behavior of crude petroleum oils is governed primarily by the concentration of quenching species. All the strong lifetime-concentration correlations are nonlinear and show a high degree of scatter, especially for medium to light oils with API gravities of between 25 and 40. The degree of scatter is greatest for oils where the concentrations (wt %) of the polar fraction is approximately 10 +/- 4%, the asphaltene component is approximately 1 +/- 0.5%, and sulfur is 0.5 +/- 0.4%. This large degree of scatter precludes the use of average fluorescence lifetime data obtained with 380 nm excitation for the accurate prediction of the common chemical compositional parameters of crude petroleum oils.

  17. Fluorescence spectroscopic studies of (acetamide + sodium/potassium thiocyanates) molten mixtures: composition and temperature dependence.

    PubMed

    Guchhait, Biswajit; Gazi, Harun Al Rasid; Kashyap, Hemant K; Biswas, Ranjit

    2010-04-22

    Steady state and time-resolved fluorescence spectroscopic techniques have been used to explore the Stokes' shift dynamics and rotational relaxation of a dipolar solute probe in molten mixtures of acetamide (CH(3)CONH(2)) with sodium and potassium thiocyanates (Na /KSCN) at T approximately 318 K and several other higher temperatures. The dipolar solute probe employed for this study is coumarin 153 (C153). Six different fractions (f) of KSCN of the following ternary mixture composition, 0.75 CH(3)CONH(2) + 0.25[(1 - f)NaSCN + fKSCN], have been considered. The estimated experimental dynamic Stokes' shift for these systems ranges between 1800 and 2200 cm(-1) (+/-250 cm(-1)), which is similar to what has been observed with the same solute probe in several imidazolium cation based room temperature ionic liquids (RTIL) and in pure amide solvents. Interestingly, this range of estimated Stokes' shift, even though not corresponding to the megavalue of static dielectric constant reported in the literature for a binary mixture of molten CH(3)CONH(2) and NaSCN, exhibits a nonmonotonic KSCN concentration dependence. The magnitudes of the dynamic Stokes' shift detected in the present experiments are significantly less than the estimated ones, as nearly 40-60% of the total shift is missed due to the limited time resolution employed (full-width at half-maximum of the instrument response function approximately 70 ps). The solvation response function, constructed from the detected shifts in these systems, exhibits triexponential decay with the fastest time constant (tau(1)) in the 10-20 ps range, which might be much shorter if measured with a better time resolution. The second time constant (tau(2)) lies in the 70-100 ps range, and the third one (tau(3)) ranges between 300 and 800 ps. Both these time constants (tau(2) and tau(3)) show alkali metal ion concentration dependence and exhibit viscosity decoupling at higher viscosity in the NaSCN-enriched region. Time dependent rotational

  18. Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe Ç

    PubMed Central

    Cekan, Pavol; Jonsson, Elvar Örn; Sigurdsson, Snorri Th.

    2009-01-01

    The cocaine aptamer is a DNA molecule that binds cocaine at the junction of three helices. The bifunctional spectroscopic probe Ç was incorporated independently into three different positions of the aptamer and changes in structure and dynamics upon addition of the cocaine ligand were studied. Nucleoside Ç contains a rigid nitroxide spin label and can be studied directly by electron paramagnetic resonance (EPR) spectroscopy and fluorescence spectroscopy after reduction of the nitroxide to yield the fluoroside Çf. Both the EPR and the fluorescence data for aptamer 2 indicate that helix III is formed before cocaine binding. Upon addition of cocaine, increased fluorescence of a fully base-paired Çf, placed at the three-way junction in helix III, was observed and is consistent with a helical tilt from a coaxial stack of helices II and III. EPR and fluorescence data clearly show that helix I is formed upon addition of cocaine, concomitant with the formation of the Y-shaped three-way helical junction. The EPR data indicate that nucleotides in helix I are more mobile than nucleotides in regular duplex regions and may reflect increased dynamics due to the short length of helix I. PMID:19406921

  19. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  20. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2010-06-01

    Serotonin is a physiologically important biogenic amine, deficiency of which leads to mental disorders such as Alzheimer's disease, schizophrenia, infantile autism, and depression. Both β-cyclodextrin (β-CD) and its chemically substituted synthetic varieties (often possessing enhanced aqueous solubility and improved drug complexing abilities) are finding wide applications as drug delivery vehicles. Here we have studied the encapsulation of serotonin in β-CD and succinyl-2-hydroxypropyl β-cyclodextrin (SHP-β-CD) by exploiting the intrinsic serotonin fluorescence. Enhanced fluorescence emission intensity (which increases by ˜18% and 34% in β-CD and SHPβ-CD respectively) and anisotropy ( r) ( r = 0.075 and 0.1 in β-CD and SHPβ-CD respectively) are observed in presence of the cyclodextrins. From the fluorescence data host-guest interaction with 1:1 stoichiometry is evident, the association constants ( K) being 126.06 M -1 and 461.62 M -1 for β-CD and SHPβ-CD respectively. Additionally, molecular docking and semiempirical calculations have been carried out which provide, for the first time, detailed insights regarding the encapsulation process. In particular, it is evident that the indole ring is inserted within the β-CD cavity with the aliphatic amine side chain protruding towards the primary rim of the β-CD cavity. Docking calculations reveal that hydrogen bonding interactions are involved in the formation of the inclusion complex. Semiempirical calculations indicate that formation of the 1:1 inclusion complex is energetically favorable which is consistent with the fluorescence data.

  1. Fluorophore conjugated silver nanoparticles: a time-resolved fluorescence correlation spectroscopic study

    NASA Astrophysics Data System (ADS)

    Ray, Krishanu; Zhang, Jian; Lakowicz, Joseph R.

    2009-02-01

    Fluorescence detection is a central component in biological research. In recent years there has been a growing interest in the interactions of fluorophores with metallic surfaces or particles. A single-stranded oligonucleotide was chemically bound to a single 50 nm diameter silver particle and a Cy5-labeled complementary single-stranded oligonucleotide was hybridized with the particle-bound oligonucleotide. The bound Cy5 molecules on the silver particles were spatially separated from the silver surface by the hybridized DNA duplex chains, which were about 8 nm in length, to reduce the competitive quenching. We use fluorescence lifetime correlation spectroscopy (FLCS) with picosecond time-resolved detection to separate the fluorescence correlation spectroscopy (FCS) contributions from fluorophores and metal-conjugated fluorophores. The single Cy5-labeled 50 nm silver particles displayed a factor of 15-fold increase in emission signal and 5-fold decrease in emission lifetimes in solution relative to the Cy5-DNA in the absence of metal. Lifetime measurements support the near-field interaction mechanism between the fluorophore and silver nanoparticle. In this study, FLCS is being applied to a system where the brightness and the fluorescent lifetime of the emitting species are significantly different. Our measurements suggest that FLCS is a powerful method for investigating the metal-fluorophore interaction at the single molecule level and to separate two different species from a mixture solution emitting at the same wavelength. Additionally, the highly bright Cy5-DNA-Ag molecules offer to be excellent probes in high background biological samples.

  2. Synthesis and spectroscopic study of highly fluorescent β-enaminone based boron complexes

    NASA Astrophysics Data System (ADS)

    Kumbhar, Haribhau S.; Gadilohar, Balu L.; Shankarling, Ganapati S.

    2015-07-01

    The newly synthesized 1, 1, 2-trimethyl-1H benzo[e]indoline based β-enaminone boron complexes exhibited the intense fluorescence (Fmax = 522-547 nm) in solution as well as in solid state (Fmax = 570-586 nm). These complexes exhibited large stoke shift, excellent thermal and photo stability when compared to the boron dipyrromethene (BODIPY) colorants. Optimized geometry and orbital distribution in ground states were computed by employing density functional theory (DFT). The cyclic voltammetry study revealed the better electron transport ability of these molecules than current electroluminescent materials like tris(8-hydroxyquinoli-nato)-aluminium (Alq3) and BODIPY, which can find application in electroluminescent devices.

  3. A spectroscopic study of the fluorescence quenching interactions between biomedically important salts and the fluorescent probe merocyanine 540.

    PubMed

    Adenier, A; Aaron, J J

    2002-02-01

    The effects of several biologically important inorganic salts, including NaCl, NaI, NaBr, KCl, MgCl2, MgSO4 and CaCl2 on the electronic absorption and fluorescence spectra of Merocyanine 540 (MC-540) have been investigated in aqueous media at 25 degrees C. Depending on both the MC-540 concentration and the nature of salt, a new absorption band appears at about 515 nm, above the critical salt concentration (CSC), corresponding to salt-induced MC-540 aggregation. Several types of MC-540 fluorescence quenching by the salts are observed, according to their cationic charge and the nature of anion: in the case of monovalent ions (Na+, K+), a non-linear Stern-Volmer behaviour is observed, indicating variable contributions of dynamic and static quenching mechanisms, whereas for divalent alkaline-earth (Mg2+, Ca2+) ions, linear Stern-Volmer relationships are obtained. Using these results, an analytical quenchofluorimetric approach is proposed for the determination of magnesium ions.

  4. Fluorescence Spectroscopic Studies on the Complexation of Antidiabetic Drugs with Glycosylated Serum Albumin

    NASA Astrophysics Data System (ADS)

    Seedher, N.; Kanojia, M.

    2013-11-01

    Glycosylation decreases the association constant values and hence the binding affinity of human serum albumin (HSA) for the antidiabetic drugs under study. The percentage of HAS-bound drug at physiological temperature was only about 21-38 % as compared to 46-74 % for non-glycosylated HSA. Thus the percentage of free drug available for an antihyperglycemic effect was about double (62-79 %) compared to the values for non-glycosylated HSA. Much higher free drug concentrations available for pharmacological effect can lead to the risk of hypoglycemia. Hydrophobic interactions were predominantly involved in the binding. In the binding of gliclazide, hydrogen bonding and electrostatic interactions were involved. Site specificity for glycosylated HSA was the same as that for non-glycosylated HSA; gliclazide and repaglinide bind only at site II whereas glimepiride and glipizide bind at both sites I and II. Glycosylation, however, caused conformational changes in albumin, and the binding region within site II was different for glycosylated and non-glycosylated albumin. Stern-Volmer analysis also indicated the conformational changes in albumin as a result of glycosylation and showed that the dynamic quenching mechanism was valid for fluorescence of both glycosylated and non-glycosylated HSA.

  5. Biodistribution, pharmacokinetic, and in-vivo fluorescence spectroscopic studies of photosensitizers

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Peng, Qian; Iani, Vladimir; Ma, Li Wei; Horobin, Richard W.; Berg, Kristian; Kongshaug, Magne; Nesland, Jahn M.

    1996-01-01

    Some key data concerning the pharmacokinetics of PCT photosensitizers are reviewed. The following topics are discussed: The binding of photosensitizers to serum proteins, and the significance of LDL binding for tumor localization, the distribution of sensitizers among different tissue compartments and the significance of extracellular proteins and other stromal elements, such as macrophages, low tumor pH, leaky vasculature and poor lymphatic drainage for tumor selectivity of drugs, the retention and excretion of sensitizers, and intracellular pharmacokinetics. Furthermore, the usefulness of fluorescence measurements in the study of sensitizer pharmacokinetics is briefly discussed. A key observation is that 1O2 has a short radius of action. Since practically all PCT sensitizers act via the 1O2 pathway, only targets with significant sensitizer concentrations can be damaged. A given number of 1O2 entities generated in different organelles (mitochondria, lysosomes, plasma membrane, etc.) may lead to widely different effects with respect to cell inactivation. Similarly, sensitizers localizing in different compartments of tissues may have different photosensitizing efficiencies even under conditions of a similar 1O2 yield.

  6. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Felmy, Andrew R.; Clark, Sue B.

    2008-11-03

    In this work we have applied liquid-helium temperature (LHeT) time-resolved laser-induced fluorescence spectroscopy (TRLIF) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, bequerelite, clarkeite, curite, schoepite and compregnacite, and compared their spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra depend on the stoichiometry of the mineral. For the phosphate minerals the fluorescence spectra closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared with those of the uranium carbonates and phosphates and their vibronic bands are broadened and less resolved. The much enhanced spectra resolution at LHeT allows more accurate calculation of the O=U=O symmetrical stretch frequency, ν1, corresponding to the average spacing of the vibronic peaks of the fluorescence spectra and the spectral origin as reflected by the position of the first vibronic band. It was found that both the average ν1 and λ1 values correlate well with the average basicity of the inorganic anion.

  7. Fluorescence spectroscopic and viscosity studies of hydrogen bonding in Chinese Fenjiu.

    PubMed

    Qiao, Hua; Zhang, Shengwan; Wang, Wei

    2013-04-01

    The associative behavior of ethanol with water and total hydrogen bonding property in Chinese Fenjiu were examined on the basis of fluorescence and viscosity measurements, respectively. Ethyl esters and acetic acid initially strengthened and then weakened ethanol-water hydrogen-bonding structure, while sodium chloride exhibited its enhanced effect. The fluorescence intensities and viscosities were measured for 12 Fenjiu samples of a distillery, aged for 0-20 years in two different types of containers. The ethanol-water fluorescence intensities and viscosities of Fenjiu samples are proportional to their contents of sodium ion and opposite to their contents of total esters. It can be concluded that the strength of the ethanol-water hydrogen bonding as well as the total hydrogen bonding in aged Fenjiu are directly predominated by total esters lost and sodium ion gained in ceramic containers and not dependent on just the aging time.

  8. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  9. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    PubMed

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH4/air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  10. Fluorescence spectroscopic study of the interaction of adenine and nucleotide with trichosanthin.

    PubMed

    Hao, Q; Zhang, Y; Yang, H; Liu, G; Huang, Z; Liu, B; Yao, Q; Li, Q

    1995-07-01

    Trichosanthin (TCS) is an N-glycosidase that can attack the 28s rRNA of the ribosome at a highly conserved adenine residue. The interactions of adenine and its derivative nucleotides with TCS are reported. The fluorescence of Trp 192 of TCS is sensitive to the proximity of adenine, and produces a marked red shift indicative of trytophan in a more hydrophilic environment. By contrast AMP and ATP quench the maximal emission at 328nm. The binding of the adenine and ATP with TCS result in lower tryptophan accessibility to the quencher acrylamide, but higher tryptophan accessibility to the quencher iodide, while AMP caused higher tryptophan accessibility to acrylamide, and lower tryptophan accessibility to iodide. Also, the binding of nucleotides induces tryptophan heterogeneity in the protein. These findings lead us to propose that binding of nucleotides and adenine base cause different microenvironmental changes of the tryptophan residue, and Trp 192 may be involved in the active site of TCS.

  11. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    2011-10-01

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  12. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes.

    PubMed

    Refat, Moamen S; el-Metwaly, Nashwa M

    2011-10-15

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  13. Spectroscopic studies of the internal modes of aminoaromatics by fluorescence excitation and dispersed emission in supersonic jet

    SciTech Connect

    Yan, S.

    1992-01-01

    A systematic study for the NH[sub 2] inversional mode in aniline and para substituted anilines has been performed using the techniques of fluorescence excitation and dispersed emission in supersonic jet. The transitions of the nitrogen inversion mode in aniline and para substituted anilines have been assigned in both the fluorescence excitation and dispersed emission spectra, which are strongly supported by the evidence of a large deuterium shift, the presence of a strong hot band, and the intense second overtone transition of the amino inversion in the excitation spectra of all the aniline molecules. The potential surface of each aniline has been fit using the observed inversional levels in both the ground and excited states. The molecular structure of each aniline has been investigated based on the experimental results. The NH[sub 2] torsional transition is assigned in the excitation spectrum of each aniline molecule for the first time. The absence of a torsional hot band and no observable tunneling splitting in the NH[sub 2] torsional mode indicates that the NH[sub 2] torsion mode in the anilines must have a very high first quanta in the ground state. The mechanism of I[sup 2][sub 0] and T[sup 2][sub 0] splittings in the excitation spectrum of p-toluidine has been explained by using molecular symmetry. The splittings are caused by the torsion-torsion coupling between the NH[sub 2] and CH[sub 3] groups. The structure of p-amino-p[prime]-methyl-trans-stilbene (PPTS) has been studied by spectroscopic methods and X-ray diffraction. The nearly planar geometry of the proton donor in the PPTS crystal dimer provides important evidence that the structure of gas phase PPTS is planar in the ground state. The absence of the hot band and I[sup 2][sub 0] in the excitation spectrum of PPTS indicates that the potential surface of PPTS must be a single well in both states, which is consistent with the X-ray result.

  14. Spectroscopic Ellipsometry and Fluorescence Study of Thermochromism in an Ultrathin Poly(diacetylene) Film: Reversibility and Transition Kinetics

    SciTech Connect

    CARPICK,R.W.; MAYER,THOMAS M.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-01-18

    We have investigated the thermochromic transition of an ultrathin poly(diacetylene) film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [CH{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in-situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate ''purple'' form that exists only at elevated temperature (between 303-333 K), followed by an irreversible transition to the red form after annealing above 320 K. We propose that the purple form is thermally distorted blue poly-PCDA, and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form, and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements we deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup -1} between the blue and red forms.

  15. Spectroscopic ellipsometry and fluorescence study of thermochromism in an ultrathin poly(diacetylene) film: Reversibility and transition kinetics

    SciTech Connect

    Carpick, R.W.; Mayer, T.M.; Sasaki, D.Y.; Burns, A.R.

    2000-05-16

    The authors have investigated the thermochromic transition of an ultrathin poly(diacetylene)film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [Ch{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate purple form that exists only at elevated temperature (between 303 and 333 K), followed by an irreversible transition to the red form after annealing above 320 K. The authors propose that the purple form is thermally distorted blue poly-PCDA and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements, the authors deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup {minus}1} between the blue and red forms.

  16. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  17. Tuning the Spectroscopic Properties of Ratiometric Fluorescent Metal Indicators: Experimental and Computational Studies on Mag-fura-2 and Analogues.

    PubMed

    Zhang, Guangqian; Jacquemin, Denis; Buccella, Daniela

    2017-02-02

    In this joint theoretical and experimental work, we investigate the properties of Mag-fura-2 and seven structurally related fluorescent sensors designed for the ratiometric detection of Mg(2+) cations. The synthesis of three new compounds is described, and the absorption and emission spectra of all of the sensors in both their free and metal-bound forms are reported. A time-dependent density functional theory approach accounting for hydration effects using a hybrid implicit/explicit model is employed to calculate the absorption and fluorescence emission wavelengths, study the origins of the hypsochromic shift caused by metal binding for all of the sensors in this family, and investigate the auxochromic effects of various modifications of the "fura" core. The metal-free forms of the sensors are shown to undergo a strong intramolecular charge transfer upon light absorption, which is largely suppressed by metal complexation, resulting in predominantly locally excited states upon excitation of the metal complexes. Our computational protocol might aid in the design of new generations of fluorescent sensors with low-energy excitation and enhanced properties for ratiometric imaging of metal cations in biological samples.

  18. Time-resolved spectroscopic study of photofragment fluorescence in methane/air mixtures and its diagnostic implications

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Borggren, Jesper; Aldén, Marcus; Bood, Joakim

    2015-09-01

    In this work 80-picosecond laser pulses of 266-nm wavelength with intensities up to (2.0 ± 0.5) × 1011 W/cm2 were used for fragmentation of methane/air gas mixtures at ambient pressure and temperature. Emission spectra are, for the first time, studied with ultrahigh temporal resolution using a streak camera. Fluorescence spectra from CH(A2Δ-X2Π, B2Σ--X2Π, C2Σ+-X2Π), CN(B2Σ+-X2Σ+, Δ v = 0 and Δ v = ±1), NH(A3Π--X3Σ-), OH(A2Σ+-X2Π) and N2 +(B2Σu + X2Σg + were recorded and analyzed. By fitting simulated spectra to high-resolution experimental spectra, rotational and vibrational temperatures are estimated, showing that CH(C), CN(B), NH(A), and OH(A) are formed in highly excited vibrational and rotational states. The fluorescence signal dependencies on laser intensity and CH4/air equivalence ratio were investigated as well as the fluorescence lifetimes. All fragments observed are formed within 200 ps after the arrival of the laser pulse and their fluorescence lifetimes are shorter than 1 ns, except for CN(B-X) Δ v = 0 whose lifetime is 2.0 ns. The CN(B-X) Δ v = 0 fluorescence was studied temporally under high spectral resolution, and it was found that the vibrational levels are not populated simultaneously, but with a rate that decreases with increasing vibrational quantum number. This observation indicates that the rate of the chemical reaction that forms the CN(B) fragments is decreasing with increasing vibrational state of the product. The results provide vital information for the application of laser diagnostic techniques based on strong UV excitation, as they show that such methods might not be entirely non-intrusive and suffering from spectral interferences, unless the laser intensity is kept sufficiently low. Finally, equivalence ratios were determined from "unknown" spectra using multivariate analysis, showing a good agreement with theoretical compositions with an error of 4 %. The method is expected to be a useful diagnostic tool for

  19. The spectroscopic basis of Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2012-01-01

    We have developed Fluorescence Triple Correlation Spectroscopy (F3CS) as an extension of the widely-used fluorescence microscopy technique Fluorescence Correlation Spectroscopy. F3CS correlates three signals at once and provides additional capabilities for the study of systems with complex stoichiometry, kinetic processes and irreversible reactions. A general theory of F3CS was developed to describe the interplay of molecular dynamics and microscope optics, leading to an analytical function to predict experimental triple correlations of molecules that freely diffuse through the tight focus of the microscope. Experimental correlations were calculated from raw fluorescence data using triple correlation integrals that extend multiple-tau correlation theory to delay times in two dimensions. The quality of experimental data was improved by tuning specific spectroscopic parameters and employing multiple independent detectors to minimize optoelectronic artifacts. Experiments with the reversible system of freely-diffusing 16S rRNA revealed that triple correlation functions contain symmetries predicted from time-reversal arguments. Irreversible systems are shown to break these symmetries and correlation strategies were developed to detect time-reversal asymmetries in a comprehensive way with respect to two delay times, each spanning many orders of magnitude in time. The correlation strategies, experimental approaches and theory developed here enable studies of the composition and dynamics of complex systems using F3CS. PMID:22229664

  20. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin.

    PubMed

    Abdelhameed, Ali S; Alanazi, Amer M; Bakheit, Ahmed H; Darwish, Hany W; Ghabbour, Hazem A; Darwish, Ibrahim A

    2017-01-15

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 10(4)Lmol(-1). BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  1. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.

    2017-01-01

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  2. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: fluorescence and circular dichroism spectroscopic studies.

    PubMed

    Sultan, Nabil Ali Mohammed; Rao, Rameshwaram Nagender; Nadimpalli, Siva Kumar; Swamy, Musti J

    2006-07-01

    Fluorescence and circular dichroism spectroscopic studies were carried out on the galactose-specific lectin from Dolichos lablab seeds (DLL-II). The microenvironment of the tryptophan residues in the lectin under native and denaturing conditions were investigated by quenching of the intrinsic fluorescence of the protein by a neutral quencher (acrylamide), an anionic quencher (iodide ion) and a cationic quencher (cesium ion). The results obtained indicate that the tryptophan residues of DLL-II are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains residing close to at least some of the tryptophan residues under the experimental conditions. Analysis of the far UV CD spectrum of DLL-II revealed that the secondary structure of the lectin consists of 57% alpha-helix, 21% beta-sheet, 7% beta-turns and 15% unordered structures. Carbohydrate binding did not significantly alter the secondary and tertiary structures of the lectin. Thermal unfolding of DLL-II, investigated by monitoring CD signals, showed a sharp transition around 75 degrees C both in the far UV region (205 nm) and the near UV region (289 nm), which shifted to ca. 77-78 degrees C in the presence of 0.1 M methyl-beta-D-galactopyranoside, indicating that ligand binding leads to a moderate stabilization of the lectin structure.

  3. Spectroscopic Studies of Melanin.

    DTIC Science & Technology

    1986-01-01

    il), and leading to the production of oxygen radicals (12). Gallas (13) and Kozikowski et al. (14) have studied melanin fluorescence. As part of a...Raman scattering unobservable in aqueous solution by continuous wave techniques. As was also observed by Kozikowski et al. (14), the intrinsic...168B. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence spectroscopy of eumelanins. IEEE J Quant Electron 1984;OE20:1379-1382. 15. Slawinski J

  4. Proton nuclear magnetic resonance and fluorescence spectroscopic studies of segmental mobility in aequorin and a green fluorescent protein from Aequorea forskalea

    SciTech Connect

    Nageswara Rao, B.D.; Kemple, M.D.; Prendergast, F.G.

    1980-10-01

    Aequorin is a protein of low molecular weight (20,000) isolated from the jellyfish Aequorea forskalea which emits blue light upon the binding of Ca/sup 2 +/ ions. This bioluminescence requires neither exogenous oxygen nor any other cofactors. The light emission occurs from an excited state of a chromophore (an imidazolopyrazinone) which is tightly and noncovalently bound to the protein. Apparently the binding of Ca/sup 2 +/ by the protein induces changes in the protein conformation which allow oxygen, already bound or otherwise held by the protein, to react with and therein oxidize the chromophore. The resulting discharged protein remains intact, with the Ca/sup 2 +/ and the chromophore still bound, but is incapable of further luminescence. The fluorescence spectrum of this discharged protein and the bioluminescence spectrum of the original charged aequorin are identical. A green fluorescent protein (GFP) of approx. 30,000 mol wt isolated from the same organism, functions in vivo as an acceptor of energy from aequorin and subsequently emits green light. We are applying proton nuclear magnetic resonance (NMR) spectroscopy and fluorescence spectroscopy to examine structural details of, and fluctuations associated with the luminescent reaction of aequorin and the in vivo energy transfer from aequorin to the GFP.

  5. Study of fluorescence interaction and conformational changes of bovine serum albumin with histamine H₁ -receptor--drug epinastine hydrochloride by spectroscopic and time-resolved fluorescence methods.

    PubMed

    Ariga, Girish G; Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2015-11-01

    The fluorescence, ultraviolet (UV) absorption, time resolved techniques, circular dichroism (CD), and infrared spectral methods were explored as tools to investigate the interaction between histamine H1 drug, epinastine hydrochloride (EPN), and bovine serum albumin (BSA) under simulated physiological conditions. The experimental results showed that the quenching of the BSA by EPN was static quenching mechanism and also confirmed by lifetime measurements. The value of n close to unity indicated that one molecule of EPN was bound to protein molecule. The binding constants (K) at three different temperatures were calculated (7.1 × 10(4), 5.5 × 10(4), and 3.9 × 10(4) M(-1)). Based on the thermodynamic parameters (ΔH(0), ΔG(0), and ΔS(0)), the nature of binding forces operating between drug and protein was proposed. The site of binding of EPN in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz, warfarin, ibuprofen, and digitoxin. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (EPN) was evaluated and found to be 4.48 nm. The UV-visible, synchronous fluorescence, CD, and three-dimensional fluorescence spectral results revealed the changes in secondary structure of the protein upon its interaction with EPN.

  6. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies.

    PubMed

    Patil, Sangamesh A; Unki, Shrishila N; Kulkarni, Ajaykumar D; Naik, Vinod H; Badami, Prema S

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial (Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities (Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  7. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  8. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

  9. Experimental and theoretical DFT studies of structure, spectroscopic and fluorescence properties of a new imine oxime derivative

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Yilmaz, Veysel T.; Arslan, Taner; Buyukgungor, Orhan

    2012-09-01

    A new imine oxime, (1E,2E)-phenyl-[(1-phenylethyl)imino]-ethanal oxime (I), is synthesized and characterized. The title compound crystallizes in the monoclinic space group P21/c with a = 12.3416(7), b = 9.5990(6), c = 11.9750(7), β = 92.417(4) and Z = 4. Crystallographic, vibrational (IR), and NMR (1H and 13C chemical shifts) data are compared with the results of density functional theory (DFT) method at the B3LYP/6-311++G(d,p) level. The structure of I is stabilized by intermolecular Osbnd H⋯N hydrogen bonds. The theoretical calculations show that the compound exhibits a number of isomers, and the molecular geometry of the most stable optimized isomer (s-trans-E,E) can well reproduce the X-ray structure. The calculated vibrational bands and NMR chemical shifts are consistent with the experimental results. The NBO/NPA atomic charges are performed to explore the possible coordination modes of the compound. The electronic (UV-vis) and photoluminescence spectra calculated using the TD-DFT method are correlated to the experimental spectra. The DMSO solutions of I are fluorescent at room temperature. The assignment and analysis of the frontier HOMO and LUMO orbitals indicates that both absorption and emission bands are originated mainly from the π-π* transitions.

  10. Spectroscopic characterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins.

    PubMed

    Battisti, Antonella; Morici, Paola; Ghetti, Francesco; Sgarbossa, Antonella

    2017-10-01

    Conventional antimicrobial strategies have become increasingly ineffective due to the rapid emergence of antibiotic resistance among pathogenic bacteria. In order to overcome this problem, antimicrobial PhotoDynamic Therapy (PDT) is considered a promising alternative therapy. PDT has a broad spectrum of action and low mutagenic potential. It is particularly effective when microorganisms present endogenous photosensitizing pigments. Helicobacter pylori (Hp), a pathogen notoriously responsible of severe gastric infections (chronic gastritis, peptic ulcer, MALT lymphoma and gastric adenocarcinoma), produces and accumulates the photosensitizers protoporphyrin IX and coproporphyrin, thus it might be a suitable target of antimicrobial PDT. With the aim to design and develop an ingestible LED-based robotic pill for intragastric phototherapy, so that irradiation can be performed in situ without the use of invasive endoscopic light, photophysical studies on the Hp endogenous photosensitizers were carried out. These studies represent an important prerequisite in order to select the most effective irradiation conditions for Hp eradication. The photophysical characterization of Hp porphyrins, including their spectroscopic features in terms of absorption, steady-state and time-resolved fluorescence, was performed on bacterial extracts as well as within planktonic and biofilm growing Hp cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Steady-state and time-resolved fluorescence spectroscopic studies on the interaction between bovine serum albumin and Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, Manping; Shi, Yarong; Chen, Huacai

    2016-10-01

    The interaction between bovine serum albumin(BSA) and Ag-nanoparticles was studied under a pH 7.4 buffer system by time-resolved fluorescence technique combined with the steady-state absorption and fluorescence spectrum. With Ag-nanoparticles, the BSA showed blue shift of fluorescence from 335nm to 332.5nm, accompanied by the fluorescence intensity decreasing. When adding the Ag-nanoparticles to the three fluorescent amino acids tryptophan(Trp), tyrosine(Tyr)and phenylalanine(Phe), only Trp displayed peak shift which from 346.5nm to 341nm. Strong interaction between BSA and the Ag-nanoparticles may come from Trp residue. Time-resolved fluorescence gave that BSA had only one fluorescence lifetime around 6ns from 308 to 313K. When adding Ag-nanoparticles, two fluorescence lifetimes appeared. One is a little above than 6ns and the other is around 3ns. The two Trp residues in 134th and 212th position may give contribution to the changes of the fluorescence lifetime. The 134th Trp residue is probably protected by BSA molecule structure and basically don't contact with Ag-nanoparticles, which shows little change of fluorescence lifetime. The 212th Trp residue is likely the target of the Ag-nanoparticles. The Ag-nanoparticles changed the microenvironment of BSA around the 212th Trp residue and therefore increases the exposure of the 212th Trp and the 134th Trp .

  12. Fluorescence spectroscopic detection of early injury-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Lucas, Alexandra; Perk, Masis; Wen, Yue; Smith, Carol

    1992-08-01

    Laser-induced fluorescence spectroscopy has been used for the detection of advanced atherosclerotic lesions. Angioplasty balloon-mediated injury was examined spectroscopically in order to assess the sensitivity of fluorescence spectroscopy for detection of early atherosclerosis. Abdominal aortic balloon angioplasty was performed via femoral artery cutdown in nine White Leghorn roosters (five normal, four atherogenic diet). Roosters were sacrificed at 1, 2, 4, 8, and 12 week intervals. Fluorescence emission spectra (n equals 114) were recorded from each aortic section (XeCl excimer laser, 308 nm, 1.5 - 2.0 mJ/pulse, 5 Hz). Changes in normalized fluorescence emission intensity were correlated with selected sections of histology. All balloon-injured segments showed intimal fibrous proliferation. For intimal thickness measuring > 70 (mu) , fluorescence emission intensity was decreased at 440 - 460 nm (p < 0.0005). Lesions complicated by thrombus also had lower fluorescence emission at 425 - 450 nm when compared to histologically normal aorta (p < 0.009). In injured segments high cholesterol diet resulted in lower recorded fluorescence emission at 440 - 460 nm (p < 0.001) associated with the increase in intimal thickness. Spectra from uninjured elastic aorta (aortic arch and thoracic aorta) had greater fluorescence intensity at 380 - 445 nm than muscular (abdominal) aorta (p < 0.01), therefore, only spectra from injured and uninjured segments of corresponding areas of the aorta were compared. The conclusion is: (1) Early intimal proliferative changes after angioplasty can be detected by fluorescence spectroscopy. (2) Spectra from elastic thoracic aorta differ significantly from the spectra of muscular abdominal aorta.

  13. Preparation of cesium targets for gamma-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  14. Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study.

    PubMed

    Krawczyk, Przemysław; Jędrzejewska, Beata; Pietrzak, Marek; Janek, Tomasz

    2016-11-01

    In this study, the 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde (PB1) was investigated as a fluorescent dye. For this reason, the spectroscopic properties in different solvents were thoroughly studied. The experimental data were supported by quantum-chemical calculations using density functional theory. Measurements and theoretical calculations showed that PB1 dye is characterized by the non-monotonic solvatochromism, strongly polar charge transfer excited state, large Stokes' shift, high fluorescence quantum yield and high fluorescence lifetime. Simulations using AutoDock presented in this study, showed that after conjugation with Concanavalin A in the active site with LYS116, the PB1 possesses the highest probability of binding affinity. The interaction between the PB1 dye and the Concanavalin A lectin has been investigated by circular dichroism spectroscopy. Conventional fluorescence microscopy imaging of Candida albicans and Yarrowia lipolytica cells, incubated with the PB1-Concanavalin A, was demonstrated. Results show that the PB1 dye is a photostable low molecular weight fluorescent probe, which emits a blue fluorescence. The results of this study have implications for designing PB1-protein conjugate as a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Calculated LogP value together with LogBCF show that PB1-protein conjugate is a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  16. Fluorescence spectroscopic evidence for hydrogen bonding and deprotonation equilibrium between fluoride and a thiourea derivative.

    PubMed

    Ashokkumar, Pichandi; Ramakrishnan, Vayalakkavoor T; Ramamurthy, Perumal

    2010-11-22

    Interaction of anions with thiourea-linked acridinedione fluorophore was studied by absorption, (1)H NMR, steady-state and time-resolved fluorescence techniques. Addition of AcO(-) and H(2)PO(4)(-) shows a genuine H-bonded complex with thiourea receptor; whereas, F(-) shows stepwise H-bonding and deprotonation of thiourea NH as confirmed by (1)H NMR titration. Free receptor 1 shows emission maximum at 418 nm; whereas, H-bonded complex of 1·F(-) shows a new redshifted emission maximum at 473 nm and the deprotonated 1 exhibits an emission peak at 502 nm. Presence of these three different emitting species was probed by 3D emission spectroscopic studies. Equilibrium between the free receptor 1, 1·F(-) H-bonded complex and deprotonated 1 was confirmed by time-resolved fluorescence studies. Time-resolved area normalised emission spectra (TRANES) of 1 in the presence of F(-) shows two isoemissive points at 456 and 479 nm between time delays of 0-0.5 ns and 1-20 ns, respectively, due to the existence of three emitting species in equilibrium. Observation of such an equilibrium based on fluorescence spectroscopic studies further proves the earlier reported absorption and (1)H NMR spectroscopic studies of H-bonding and deprotonation processes and also illustrates the dynamics of anion-receptor interactions.

  17. Space-resolved fluorescence spectroscopic measurements with an optical fiber probe

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Qiu, Hialin

    2008-12-01

    By monitoring of the emitted signal from a sample while varying the excitation wavelength, emission wavelength or both of them, fluorescence spectroscopy has become a powerful diagnostic technology. Fluorescence spectrometers can be used to measure and record the fluorescence spectra of a given sample, and have been successfully applied in different areas including biology, biochemistry, chemistry, medicine, environmental science, material science, food industry, and pharmaceutical industry. In order to increase the flexibility and applicability of conventional fluorescence spectrometers, we design an optic fiber probe for conducting the UV/Vis excitation light to a sample under study, and for collecting the fluorescence produced by the sample. Different excitation/emission fiber bundle arrangements have been fabricated and their performances have been evaluated and compared. Fiber adaptors which can be used for different commercial fluorescence spectrometers are also developed. In order to achieve space-resolved fluorescence spectroscopic measurements, we connect the fiber probe to a microscope which is mounted on a 3D traverse stage. Experiments and measurement results using the space-resolved fiber optic fluorescence spectrometer are presented in this paper.

  18. Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin.

    PubMed

    Lian, Shuqin; Wang, Guirong; Zhou, Liping; Yang, Dongzhi

    2013-01-01

    The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three-dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non-radiation energy transfer. The quenching constants KSV , binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non-radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX-pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study.

  19. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  20. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  1. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  2. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  3. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies.

    PubMed

    Singh, Kiran; Kumar, Yogender; Puri, Parvesh; Kumar, Mahender; Sharma, Chetan

    2012-06-01

    Two new Schiff bases of 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde and 4-amino-5-mercapto-3-methyl/H-1,2,4-triazole [HL(1-2)] and their Cobalt, Nickel, Copper and Zinc complexes have been synthesized and characterized by elemental analyses, spectral (UV-vis, IR, (1)H NMR, Fluorescence) studies, thermal techniques and magnetic measurements. A square planar geometry for Cu(II) and octahedral geometry for Co(II), Ni(II) and Zn(II) complexes have been proposed. In order to evaluate the biological activity of Schiff bases and to assess the role of metal ion on biological activity, the pyrazole Schiff bases and their metal complexes have been studied in vitro antibacterial against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and antifungal against Aspergillus niger, and Aspergillus flavus. In most of the cases higher activity was exhibited upon coordination with metal ions.

  4. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies

    PubMed Central

    Deiana, Marco; Matczyszyn, Katarzyna; Massin, Julien; Olesiak-Banska, Joanna; Andraud, Chantal; Samoc, Marek

    2015-01-01

    Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications. PMID:26069963

  5. Dipodal quinoline-tethered fluorescent probe synthesis and investigation of spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Obalı, Aslıhan Yılmaz; Yilmaz, Menzeher Serkan; Uçan, Halil İsmet

    2017-10-01

    Novel quinoline-tethered fluorescent probe was designed and synthesized as multidentate ligand. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of perchlorate salts of Co2+, Li+, Fe2+, K+, Pb2+, Cu2+, Zn2+, Ni2+, Hg2+, Ag+ cations in acetonitrile (1 × 10-5 M for absorption studies, 1 × 10-7 M for fluorescence studies). It was found that the dipodal compounds can selectively bind to Cu2+ and Ag+ metal ions with a significant quenching in their emissions. The capture of Cu2+ and Ag+ by the probe resulted in deprotonation of the secondary amine conjugated to the quinoline-tethered probe, so that the electron-donation ability of the 'N' atom would be greatly enhanced and the probe (2) showed blue-shift in emission and exhibited an on-off fluorescent response. The binding study was explored by using fluorescence spectroscopy with Job plot method.

  6. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  7. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  8. G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates.

    PubMed

    Liu, Jia-quan; Chen, Chang-yue; Xue, Yong; Hao, Yu-hua; Tan, Zheng

    2010-08-04

    Sequences with the potential to form G-quadruplex structures are spread throughout genomic DNA. G-quadruplexes in promoter regions can play regulatory roles in gene expression. Expression of protein-encoding genes involves processing of DNA and RNA molecules at the level of transcription and translation, respectively. In order to examine how the G-quadruplex affects processing of nucleic acids, we established a real-time fluorescent assay and studied the unwinding of intramolecular G-quadruplex formed by the human telomere, ILPR and PSMA4 sequences by the BLM helicase. Through comparison with their corresponding duplex substrates, we found that the unwinding of intramolecular G-quadruplex structures was much less efficient than that of the duplexes. This result is in contrast to previous reports that multistranded intermolecular G-quadruplexes are far better substrates for the BLM and other RecQ family helicases. In addition, the unwinding efficiency varied significantly among the G-quadruplex structures, which correlated with the stability of the structures. These facts suggest that G-quadruplex has the capability to modulate the processing of DNA and RNA molecules in a stability-dependent manner and, as a consequence, may provide a mechanism to play regulatory roles in events such as gene expression.

  9. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  10. A fluorescence spectroscopic study on the speciation of Cm(III) and Eu(III) in the presence of organic chelates in highly basic solutions

    SciTech Connect

    Wang, Zheming; Felmy, Andrew R.; Xia, Yuanxian; Mason, Marvin J.

    2003-07-15

    The speciation of Eu(III) and Cm(III) was investigated by time resolved laser fluorescence spectroscopy (TRLFS) over a range of base concentrations ranging from 0.01m NaOH to 7.5M NaOH and in the presence of several organic chelates including EDTA, HEDTA, NTA, and oxalate. The results of this work suggest that both Eu(III) and Cm(III) form strong mixed ligand complexes with organic chelates and the hydroxyl groups(s) in dilute NaOH solutions. However, in concentrated NaOH solutions, Eu(III)-/Cm(III)-containing colloidal nanoparticles are the primary cause for the measured Eu(III)/Cm(III) in the aqueous solutions. Therefore, the interpretation of these data solely in terms of the formation of amphoteric hydroxyl species (e.g. Eu(OH)4-) would appear to be inappropriate. The organic chelating ligands form strong complexes with surface Cm(III)/Eu(III) sites of the colloidal nanoparticles. For Cm(III), such surface complexes show largely red-shifted fluorescence spectra as compared with the aqueous complexes and unusually short fluorescence lifetimes. The decreased fluorescence lifetimes are likely due to the presence of transition metal ions, such as Fe3+, in the nanoparticle as well as reduced inter-nuclear distance between neighboring Cm(III) centers.

  11. Influence of Cd2+, Hg2+ and Pb2+ on (+)-catechin binding to bovine serum albumin studied by fluorescence spectroscopic methods.

    PubMed

    Peng, Mijun; Shi, Shuyun; Zhang, Yuping

    2012-01-01

    The effect of heavy metal ions, Cd(2+), Hg(2+) and Pb(2+) on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd(2+), while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg(2+) and Pb(2+). The presence of Cd(2+) decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg(2+) and Pb(2+) decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd(2+), Hg(2+) and Pb(2+) were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Influence of Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin studied by fluorescence spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Peng, Mijun; Shi, Shuyun; Zhang, Yuping

    2012-01-01

    The effect of heavy metal ions, Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd 2+, while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg 2+ and Pb 2+. The presence of Cd 2+ decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg 2+ and Pb 2+ decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd 2+, Hg 2+ and Pb 2+ were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.

  13. Fluorescent-Spectroscopic Research of in Vivo Tissues Pathological Conditions

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    The steady-state spectra of autofluorescence and the reflection coefficient on the excitation wavelength of some stomach tissues in vivo with various pathological conditions (surface gastritis, displasia, cancer) are measured under excitation by the nitrogen laser irradiation (λex=337.1 nm). The contour expansion of obtained fluorescence spectra into contributions of components is conducted by the Gaussian-Lorentzian curves method. It is shown that at least 7 groups of fluorophores forming a total luminescence spectrum can be distinguished during the development of displasia and tumor processes. The correlation of intensities of flavins and NAD(P)·H fluorescence is determined and the degree of respiratory activity of cells for the functional condition considered is estimated. The evaluations of the fluorescence quantum yield of the tissue's researched are given.

  14. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  15. Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa

    NASA Astrophysics Data System (ADS)

    Cotlet, Mircea; Habuchi, Satoshi; Whitier, Jennifer E.; Werner, James H.; De Schryver, Frans C.; Hofkens, Johan; Goodwin, Peter M.

    2006-02-01

    We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all

  16. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  17. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  18. In-vivo optical detection of brain tumor and tumor margin: a combined auto-fluorescence and diffuse reflectance spectroscopic study

    NASA Astrophysics Data System (ADS)

    Majumder, Shovan K.; Gebhart, Steven; Thompson, Reid; Weaver, Kyle D.; Johnson, Mahlon D.; Lin, Wei-Chiang; Mahadevan-Jansen, Anita

    2007-02-01

    Recently, optical spectroscopy has shown considerable promise to be used as a potential clinical tool for human brain tumor detection and therapeutic guidance. Our group showed for the first time the possibility of using combined autofluorescence and diffuse reflectance spectroscopy and established its applicability for human brain tumor demarcation in previous in vitro and in vivo studies. We report in this paper the results of a clinical study designed to further evaluate the efficacy of the approach for demarcation of brain tumors and tumor margins from normal brain tissues in intra-operative clinical setting. Using a portable system, optical spectra were collected from the brain of 110 patients undergoing craniotomy at the Vanderbilt University Medical Center. Spectral measurements were taken from multiple sites of tumor core, tumor margin and normal areas of brain tissues and the resulting spectra were correlated with the corresponding histopathologic diagnosis. Using histology as the gold standard, a probabilistic multi-class diagnostic algorithm was developed to simultaneously distinguish tumor core and tumor margin from normal brain tissue sites using independent training and validation sets of data. An unbiased estimate of the accuracy of the model indicates that combined autofluorescence and diffuse reflectance spectroscopy was able to distinguish tumor core and tumor margin from normal brain tissues with an average predictive accuracy of ~88%.

  19. Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes.

    DTIC Science & Technology

    1987-08-15

    k Dft3 462 FLUORESCENCE LIFETIME STUDY OF CYCLODEXTRIN COMPLEXE 1/1 I ADRIO OF SUSTITUTED NAPHTNALENES(U) EMORY UNIV ATLANTA GA I DEPT OF CHEMISTRY G...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. NR 051-841 11. TITLE (Include Security ClaSSafication) Fluorescence Lifetime Study of Cyclodextrin ...measurements cyclodextrins spectroscopic techniques 19. TRACT (Continue on revere if necsary and identify by block number

  20. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    PubMed

    Saha, Dipika; Negi, Devendra P S

    2017-08-18

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10(5)M(-1). Infrared spectroscopic measurements indicated the participation of the NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  2. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  3. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  5. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.

    PubMed

    Persichetti, G; Grimaldi, I A; Testa, G; Bernini, R

    2017-07-25

    A multifunctional lab-on-a-chip platform for spectroscopic analysis of liquid samples based on an optofluidic jet waveguide is reported. The optofluidic detection scheme is achieved through the total internal reflection arising in a liquid jet of only 150 μm diameter, leading to highly efficient signal excitation and collection. This results in an optofluidic chip with an alignment-free spectroscopic detection scheme, which avoids any background from the sample container. This platform has been designed for multiwavelength fluorescence and Raman spectroscopy. The chip integrates a recirculation system that reduces the required sample volume. The evaluation of the device performance has been accomplished by means of fluorescence measurements performed on eosin Y in water solutions, achieving a limit of detection of 33 pM. The sensor has been applied in Raman spectroscopy of water-ethanol solutions, leading to a limit of detection of 0.18%. As additional application, analysis of riboflavin using fluorescence detection demonstrates the possibility of detecting this vitamin at the 560 pM level (0.21 ng l(-1)). Although measurements have been performed by means of a compact and low-cost spectrometer, in both cases the micro-jet optofluidic chip achieved similar performances if not better than high-end benchtop based laboratory equipment. This approach paves the way towards portable lab-on-a-chip devices for high sensitivity environmental and biochemical sensing, using optical spectroscopy.

  6. Spectroscopic studies on the interaction of Ga3+-hypocrellin A with myoglobin.

    PubMed

    Xie, Wenli; Wei, Shaohua; Liu, Jihua; Ge, Xuefeng; Zhou, Lin; Zhou, Jiahong; Shen, Jian

    2014-01-01

    In this article, the interaction mechanism of Ga(3+)-hypocrellin A (Ga(3+)-HA) with myoglobin (Mb) is studied in detail through various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the fluorescence quenching mechanism of Mb by Ga(3+)-HA is a static quenching procedure, and the electronic transfer forces play a major role in binding Ga(3+)-HA to Mb. Furthermore, synchronous fluorescence studies and circular dichroism (CD) spectra reveal that the conformation of Mb is changed after its conjugation with Ga(3+)-HA.

  7. Spectroscopic studies on the interaction of Ga3+-hypocrellin A with myoglobin

    NASA Astrophysics Data System (ADS)

    Xie, Wenli; Wei, Shaohua; Liu, Jihua; Ge, Xuefeng; Zhou, Lin; Zhou, Jiahong; Shen, Jian

    2014-03-01

    In this article, the interaction mechanism of Ga3+-hypocrellin A (Ga3+-HA) with myoglobin (Mb) is studied in detail through various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the fluorescence quenching mechanism of Mb by Ga3+-HA is a static quenching procedure, and the electronic transfer forces play a major role in binding Ga3+-HA to Mb. Furthermore, synchronous fluorescence studies and circular dichroism (CD) spectra reveal that the conformation of Mb is changed after its conjugation with Ga3+-HA.

  8. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  9. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  10. Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-11-01

    Natural, purely biological deoxyribonucleic acid (DNA)-green tea extract (GTE) complexes at different concentrations were prepared and characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties. The complexes can be processed into good optical quality thin films by solution casting. They fluoresce when excited in UV absorption band, with a significantly larger quantum yield for the DNA-GTE complex than for a pure GTE solution. The thin film refractive indices were determined by Fabry-Perot (FP) interference patterns. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1064.2 nm fundamental wavelength. The phase of THG susceptibility was determined from the concentration variation of THG susceptibility. It reveals presence of a two-photon resonance with a band lying in the optical gap.

  11. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  12. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  13. A combined Raman-fluorescence spectroscopic probe for tissue diagnostics applications

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2013-06-01

    We designed and developed two different optical fibre probes for combined Raman and fluorescence spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multimodal approach. Two laser diodes, respectively emitting in the UV (378 nm) and in the visible (445 nm), were used for fluorescence spectroscopy. An additional laser diode emitting in the NIR (785 nm) was used for Raman spectroscopy. Laser light was delivered to the tissue under examination through a multimode optical fibre located in the centre of the fibre bundle probe. The surrounding 24 optical fibres were used for collection of the signal of interest and for delivering light to a common detection unit. Both fluorescence and Raman spectra were acquired on a cooled CCD camera, connected to a spectrograph. The device was successfully used for diagnosing melanocytic lesions in a good agreement with common routine histology. Additional measurements were performed on other human tissue samples, such as colon tissue and brain tissue in order to test the capability of the device for diagnosing a broader range of tissue lesions and malignancies. The system has the potential to improve diagnostic capabilities on a broad range of tissues and to be used for endoscopic inspections in the near future.

  14. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  15. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  16. Spectroscopic Studies of Fluorescence Effects in Bioactive 4-(5-Heptyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol and 4-(5-Methyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol Molecules Induced by pH Changes in Aqueous Solutions.

    PubMed

    Matwijczuk, Arkadiusz; Kluczyk, Dariusz; Górecki, Andrzej; Niewiadomy, Andrzej; Gagoś, Mariusz

    2017-03-01

    This paper presents the results of stationary fluorescence spectroscopy and time-resolved spectroscopy analyses of two 1,3,4-thiadiazole analogues, i.e. 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C7) in an aqueous medium containing different concentrations of hydrogen ions. An interesting dual florescence effect was observed when both compounds were dissolved in aqueous solutions at pH below 7 for C1 and 7.5 for C7. In turn, for C1 and C7 dissolved in water at pH higher than the physiological value (mentioned above), single fluorescence was only noted. Based on previous results of investigations of the selected 1,3,4-thiadiazole compounds, it was noted that the presented effects were associated with both conformational changes in the analysed molecules and charge transfer (CT) effects, which were influenced by the aggregation factor. However, in the case of C1 and C7, the dual fluorescence effects were visible in a higher energetic region (different than that observed in the 1,3,4-thiadiazoles studied previously). Measurements of the fluorescence lifetimes in a medium characterised by different concentrations of hydrogen ions revealed clear lengthening of the excited-state lifetime in a pH range at which dual fluorescence effects can be observed. An important finding of the investigations presented in this article is the fact that the spectroscopic effects observed not only are interesting from the cognitive point of view but also can help in development of an appropriate theoretical model of molecular interactions responsible for the dual fluorescence effects in the analysed 1,3,4-thiadiazoles. Furthermore, the study will clarify a broad range of biological and pharmaceutical applications of these compounds, which are more frequently used in clinical therapies. Graphical Abstract Upper left corner - C7 molecule at high pH, right upper corner - fluorescence emission spectrum for C7 dissolved in H2

  17. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  18. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  19. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  20. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  1. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.

    PubMed

    Bujalowski, Wlodzimierz; Jezewska, Maria J

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined.

  2. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    PubMed Central

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  3. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  4. Spectroscopic characterization of 2-amino-N-hexadecyl-benzamide (AHBA), a new fluorescence probe for membranes.

    PubMed

    Marquezin, Cássia Alessandra; Hirata, Izaura Yoshico; Juliano, Luiz; Ito, Amando Siuiti

    2006-11-20

    We report the results of investigation on the spectroscopic properties of a new fluorescent lipophylic probe. The fluorophore o-aminobenzoic acid was covalently bound to the acyl chain hexadecylamine, producing the compound 2-amino-N-hexadecyl-benzamide. The behavior of the probe was dependent on the polarity of the medium: absorption and emission spectral position, quantum yield and lifetime decay indicate distinct behavior in water compared to ethanol and cyclohexane. The probe dissolves in the organic solvents, as indicated by the very low value of steady state fluorescence anisotropy and the short rotational correlation times obtained from fluorescence anisotropy decay measurements. On the other hand, the probe has low solubility in water, leading to the formation of aggregates in aqueous medium. The complex absorption spectrum in water was interpreted as originating from different forms of aggregation, as deduced from the wavelength dependence of anisotropy parameters. The probe interacts with surfactants in pre-micellar and micellar forms, as observed in experiments in the presence of sodium n-dodecylsulphate (SDS), n-cetyltrimethylammonium bromide (CTAB); 3-(dodecyl-dimethylammonium) propane-1-sulphonate (DPS) and 3-(hexadecyl-dimethylammonium) propane-1-sulphonate (HPS), and with vesicles of the phospholipid dimiristoyl-phosphatidylcholine (DMPC). The results demonstrate that AHBA is able to monitor properties like surface electric potential and phase transition of micelles and vesicles.

  5. Identification of cholesterol gallstones using in vitro low-fluence laser-induced fluorescence spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Wrobel, R.; Niay, P.; Bernage, P.; Blondeau, J. M.; Ledee, J. J.; Brunetaud, J. M.

    1990-12-01

    Identifying the chemical composition of gallstones may be important in certain cases of calculus biliary disease when planning a dissolution therapy or a fragmentation of the calculi using pulsed lasers. The present study was conducted in vitro to evaluate the feasibility of distinguishing cholesterol gallstones from pigment stones. We propose an identification method in which the stone fluorescence spectrum, induced by a low fluence laser, is recorded using an optical multichannel analyser. Fluorescence spectra of twenty-two stones were recorded together with the fluorescence spectra of various pure compounds likely to compose the gallstones, using successively four different pump lasers (λp=308 nm, 337 nm, 423 nm, 469 nm). The fluorescence spectra of cholesterol gallstones are quite different from the pigment ones. Ratios of fluorescence intensities taken at three different wavelengths enable one to distinguish easily between cholesterol and pigment stones.

  6. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  7. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  8. Spectroscopic Study on the Interaction of 4-dimethylaminochalcones with Phospholipids

    NASA Astrophysics Data System (ADS)

    Tomečková, V.; Revická, M.; Sassen, A.; Veliká, B.; Stupák, M.; Perjési, P.

    2014-11-01

    The ultraviolet-visible and fluorescence spectroscopic properties of 4'-dimethylaminochalcone ( 1a) and its cyclic analogs 2a-4a have been studied in the presence of phospholipid vesicles (i.e., egg yolk lecithin and dipalmitoylpho sphatidylcholine), bovine serum albumin (BSA), and lipoprotein particles (i.e., bovine serum albumin plus egg yolk lecithin). The spectral results showed that compounds 1a-4a formed hydrophobic interactions with the phospholipids, lipoproteins, and BSA at the polar/nonpolar interface. Compounds 3a and 4a exhibited the strongest hydrophobic interactions of all of the compounds tested towards the phospholipids. Compound 2a gave the best fluorescent fluorophore indicating interactions with the lipids, lipoproteins, and proteins. Fluorescent microscopic imaging of breast cancer cells treated with compounds 1a-4a revealed that they could be used to stain all of the cellular components and destroy the nuclear structure. Compounds 1a-4a were found to be concentrated predominantly on the surfaces of the liposomes and lipoproteins.

  9. Green-synthesis, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods.

    PubMed

    Marwani, Hadi M; Asiri, Abdullah M; Khan, Salman A

    2012-01-01

    Preparation, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods were achieved. The Schiff base dyes were prepared by the reaction of salicylaldehyde/2-Hydroxy-1-naphthaldehyde with aminophenazone under microwave irradiation. The spectroscopic (FT-IR, 1H NMR, 13C-NMR, Mass) studies and elemental analyses were in good agreement with chemical structure of synthesized compounds. In addition, UV-Vis and fluorescence spectroscopic experiments showed that these dyes are good absorbent and fluorescent. Based on the photostability study of these dyes, minimal to no loss in fluorescence intensities of 4-[(2-Hydroxy-benzylidene)-amino] 1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D1) (6.14%) and 4-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D2) (2.95%) was observed with an increase in the exposure time using time-based fluorescence steady-state experiments. These studies also inferred that these Schiffbase dyes have a high photostability against photobleaching. In addition, Dye 2 is found to be more sensitive than Dye 1 to the polarity of the microenvironment provided by different solvents based on the results of fluorescence polarity studies.

  10. Dual-wavelength excitation to reduce background fluorescence for fluorescence spectroscopic quantitation of erythrocyte zinc protoporphyrin-IX and protoporphyrin-IX from whole blood and oral mucosa

    NASA Astrophysics Data System (ADS)

    Hennig, Georg; Vogeser, Michael; Holdt, Lesca M.; Homann, Christian; Großmann, Michael; Stepp, Herbert; Gruber, Christian; Erdogan, Ilknur; Hasmüller, Stephan; Hasbargen, Uwe; Brittenham, Gary M.

    2014-02-01

    Erythrocyte zinc protoporphyrin-IX (ZnPP) and protoporphyrin-IX (PPIX) accumulate in a variety of disorders that restrict or disrupt the biosynthesis of heme, including iron deficiency and various porphyrias. We describe a reagent-free spectroscopic method based on dual-wavelength excitation that can measure simultaneously both ZnPP and PPIX fluorescence from unwashed whole blood while virtually eliminating background fluorescence. We further aim to quantify ZnPP and PPIX non-invasively from the intact oral mucosa using dual-wavelength excitation to reduce the strong tissue background fluorescence while retaining the faint porphyrin fluorescence signal originating from erythrocytes. Fluorescence spectroscopic measurements were made on 35 diluted EDTA blood samples using a custom front-face fluorometer. The difference spectrum between fluorescence at 425 nm and 407 nm excitation effectively eliminated background autofluorescence while retaining the characteristic porphyrin peaks. These peaks were evaluated quantitatively and the results compared to a reference HPLC-kit method. A modified instrument using a single 1000 μm fiber for light delivery and detection was used to record fluorescence spectra from oral mucosa. For blood measurements, the ZnPP and PPIX fluorescence intensities from the difference spectra correlated well with the reference method (ZnPP: Spearman's rho rs = 0.943, p < 0.0001; PPIX: rs = 0.959, p < 0.0001). In difference spectra from oral mucosa, background fluorescence was reduced significantly, while porphyrin signals remained observable. The dual-wavelength excitation method evaluates quantitatively the ZnPP/heme and PPIX/heme ratios from unwashed whole blood, simplifying clinical laboratory measurements. The difference technique reduces the background fluorescence from measurements on oral mucosa, allowing for future non-invasive quantitation of erythrocyte ZnPP and PPIX.

  11. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  12. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  13. The Spectroscopic study of 33Ar

    NASA Astrophysics Data System (ADS)

    Adimi, N.; Dominguez-Reyes, R.; Alcorta, M.; Bey, A.; Blank, B.; Borge, M. J. G.; de Oliveira Santos, F.; Dossat, C.; Fynbo, H. O. U.; Giovinazzo, J.; Knudsen, H. H.; Madurga, M.; Matea, I.; Perea, A.; Sümmerer, K.; Tengblad, O.; Thomas, J. C.

    2011-10-01

    The proton-rich nucleus 33Ar has been produced at the low-energy facility SPIRAL at GANIL. Spectroscopic studies of gamma and p emission of this nucleus were performed with the "Silicon Cube" detection system. The analysis of proton and gamma singles and coincidence spectra allowed us to establish a complete decay scheme of this nucleus. The comparison of the Gamow-Teller strength distribution deduced from our experiment and the theoretical one obtained with the Shell Model permitted the determination of a quenching factor for the Gamow-Teller strength.

  14. The Spectroscopic study of {sup 33}Ar

    SciTech Connect

    Adimi, N.; Dominguez-Reyes, R.; Alcorta, M.; Borge, M. J. G.; Perea, A.; Tengblad, O.; Bey, A.; Blank, B.; Dossat, C.; Giovinazzo, J.; Matea, I.; Fynbo, H. O. U.; Knudsen, H. H.; Suemmerer, K.

    2011-10-28

    The proton-rich nucleus {sup 33}Ar has been produced at the low-energy facility SPIRAL at GANIL. Spectroscopic studies of gamma and p emission of this nucleus were performed with the 'Silicon Cube' detection system. The analysis of proton and gamma singles and coincidence spectra allowed us to establish a complete decay scheme of this nucleus. The comparison of the Gamow-Teller strength distribution deduced from our experiment and the theoretical one obtained with the Shell Model permitted the determination of a quenching factor for the Gamow-Teller strength.

  15. Synthesis, spectroscopic properties, and biological applications of eight novel chlorinated fluorescent proteins-labeling probes.

    PubMed

    Wu, Xianglong; Tian, Min; Fan, Wutu; Pan, Yalei; Zhai, Yuankun; Niu, Yinbo; Li, Chenrui; Lu, Tingli; Mei, Qibing

    2014-05-01

    Eight novel chlorinated fluorescent proteins-labeling probes with a linker and reactive group were prepared in 7 steps by the reaction of chlorinated resorcinols with 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. Structures of target compounds and intermediates were determined via IR, MS, (1)H NMR and element analysis. The spectral properties of the chlorinated fluoresceins were studied. These fluorescent probes showed absorbance peaks at 508-536 nm and fluorescence peaks at 524-550 nm. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. The probes were used for fluorescence imaging of cells in order to investigate whether they can conjugate to cells. The fluorescence imaging of living cells showed that they were localized in cell nucleus. However, they were localized in cytosol of chemically fixed cells. These probes will be useful reagents for the preparation of stable fluorescent conjugates.

  16. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid

    NASA Astrophysics Data System (ADS)

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO 4) and room temperature. The fluorescence lifetimes were determined to be 23.2 ± 2.2 ns for Am 3+(aq) and 27.2 ± 1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D 1- 7F 1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be log β110 = 5.42 ± 0.16.

  17. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid.

    PubMed

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO4) and room temperature. The fluorescence lifetimes were determined to be 23.2±2.2 ns for Am3+(aq) and 27.2±1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D1-(7)F1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be logβ110=5.42±0.16.

  18. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  19. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  20. Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+.

    PubMed

    Guo, Shaofen; Zhou, Qing; Lu, Tianhong; Ding, Xiaolan; Huang, Xiaohua

    2008-09-01

    The spectroscopic properties of interactions involving horseradish peroxidase (HRP) and Tb3+ in the simulated physiological solution was investigated with some electrochemical and spectroscopic methods, such as cyclic voltammetry (CV), circular dichroism (CD), X-ray photoelectron spectroscopy (XPS) and synchronous fluorescence (SF). It was found that Tb3+ can coordinate with oxygen atoms in carbonyl groups in the peptide chain of HRP, form the complex of Tb3+ and HRP (Tb-HRP), and then lead to the conformation change of HRP. The increase in the random coil content of HRP can disturb the microstructure of the heme active center of HRP, in which the planarity of the porphyrin cycle in the heme group is increased and then the exposure extent of the electrochemical active center is decreased. Thus Tb3+ can inhibit the electrochemical reaction of HRP and its electrocatalytic activity for the reduction of H2O2 at the Au/Cys/GC electrode. The changes in the microstructure of HRP obstructed the electron transfer of Fe(III) in the porphyrin cycle of the heme group, thus HRP catalytic activity is inhibited. The inhibition effect of Tb3+ on HRP catalytic activity is increased with the increasing of Tb3+ concentration. This study would provide some references for better understanding the rare earth elements and heavy metals on peroxidase toxicity in living organisms.

  1. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  2. Qualitative spectroscopic study of magnetic nozzle flow

    NASA Technical Reports Server (NTRS)

    Umeki, T.; Turchi, P. J.

    1992-01-01

    The physics of the magnetic nozzle flow for a 100-kW-level quasi-steady MPD thruster was studied by photographic spectroscopy focusing on the plasma model in the flow and the acceleration mechanism. Spectroscopic visualization for the flow-species analysis indicates that the plasma-exhaust flow dominated by NII species were confined by the magnetic nozzle effect to collimate the flow for the better thruster performance. Inside the nozzle, the plasma flow was found to be in nonhomogeneous collisional-radiative condition. There appears to be a substantial flow acceleration from the magnetic nozzle inlet to the outlet with slight expansion. This suggests that the flow resembles that of constant area supersonic duct flow with cooling.

  3. Acetylene-substituted two-photon absorbing molecules with rigid elongated pi-conjugation: synthesis, spectroscopic properties and two-photon fluorescence cell imaging applications.

    PubMed

    Liu, Bo; Zhang, Hai-Li; Liu, Jun; Huang, Zhen-Li; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-09-01

    Two asymmetrical molecules with substituted acetylene as central rigid elongated conjugation are reported as potential chromophores for two-photon microscopic imaging. These molecules consist of a typical D-pi-A structure, have different donors (D), the same pi-conjugated center (pi) and the same acceptor (A). Structural characterization and spectroscopic properties, including single-photon (linear) absorption, quantum yields, single-photon fluorescence, and two-photon absorption spectra, were studied in solvents with different polarity. These acetylene-substituted molecules were found to have high two-photon absorption cross-sections (for example, 690 GM for molecule 1 in toluene), which were determined by a two-photon induced fluorescence method using a femtosecond Ti: sapphire laser as excitation source. Single- and two-photon cellular imaging experiments demonstrate that the substituted acetylene derivatives could be one kind of promising two-photon fluorescence probes for cellular imaging.

  4. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    PubMed

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Native fluorescence spectroscopic evaluation of chemotherapeutic effects on malignant cells using nonnegative matrix factorization analysis.

    PubMed

    Pu, Y; Tang, G C; Wang, W B; Savage, H E; Schantz, S P; Alfano, R R

    2011-04-01

    The native fluorescence spectra of retinoic acid (RA)-treated and untreated human breast cancerous cells excited with the selective wavelengths of 300 nm and 340 nm were measured and analyzed using a blind source separation method namely Nonnegative Matrix Factorization (NMF). The results show that the fluorophores of human malignant breast cells change their compositions when they are treated with RA. The reduced contribution from tryptophan, NADH and flavin to the fluorescence of the treated breast cancerous cells was observed in comparison with that of the untreated cells. The results indicate that the decrease of adenosine triphosphate (ATP) in the RA-treated cells. The possible clinical applications of this native fluorescence study are discussed.

  6. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  7. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. J.; Shental, Victor V.; Komov, D. V.; Vacoulovskaia, E. G.; Tabolinovskaia, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikchine, V. H.; Loschenov, Victor B.; Meerovich, Gennadii A.; Stratonnikov, Alexander A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, Eugeny A.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  8. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  9. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  10. Synthesis and fluorescence properties of Tb(III) complex with a novel β-diketone ligand as well as spectroscopic studies on the interaction between Tb(III) complex and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfeng; Tang, Ruiren

    2012-02-01

    A novel aromatic β-diketone ligand, 4-isopropyl-2,6-bisbenzoylactyl pyridine (L), and its corresponding Tb(III) complex Tb2(L)3·5H2O were synthesised in this paper. The ligand was characterized by FT-IR and 1H NMR. The complex was characterized with elemental analysis and FT-IR. The investigation of fluorescence property of the complex showed that the Tb(III) ion could be sensitized efficiently by the ligand. Furthermore, the interaction of Tb2(L)3·5H2O with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra, UV-vis absorbance and synchronous fluorescence spectra. The fluorescence quenching mechanism of BSA by Tb2(L)3·5H2O was analyzed. The binding constants, binding site number and the corresponding thermodynamic parameters at different temperatures were calculated. The results indicated that the Van der Waals and hydrogen bond interactions were the predominant intermolecular forces in stabilizing the complex. Moreover, the effect of Tb2(L)3·5H2O on the conformation of BSA was analyzed according to synchronous fluorescence.

  11. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  12. Spectroscopic studies of nanoscale metal clusters

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, P.

    2013-06-01

    The present article is intended to elucidate a range of novel spectroscopic studies of nanoscale metal clusters. Various bottom-up and top-down techniques have been utilized to synthesize the metal nanoclusters. Materials like metal nanoclusters of cobalt, silver or gold in various dielectric matrices facilitate to explore interesting phenomena through optical, photoluminescence and vibrational spectroscopy. Interaction of uv-visible light with free electrons of metal nanoclusters, for example, leads to fascinating colors of dielectric matrices through an optical effect known as surface-plasmon resonance. This effect of quantum-confinement of the electrons leads to large enhancements of local electric field in metal nanoclusters. Enhancements of Raman scattering from metal nanoclusters are attributed to the increase of local fields. Optical absorption and Raman scattering spectroscopy particularly have been highlighted here as powerful non-destructive experimental methods to study evolution of metal nanoclusters in different dielectric matrices. In relatively large metal nanoclusters, besides dipolar, quadrupolar surface-plasmon resonances have been observed.

  13. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  14. Spectroscopic studies of detonating heterogeneous explosives. [HNS

    SciTech Connect

    Renlund, A.M.; Trott, W.M.

    1985-01-01

    The experimental objectives of this work are to use real-time spectroscopic techniques, emission spectroscopy and Raman spectra to monitor chemical and physical changes in shock-loaded or detonating high explosive (HE) samples. The investigators hope to identify chemical species including any transient intermediates. Also, they wish to determine the physical state of the material when the reactions are taking place; measure the temperature and the pressure; and study the effect of different initiation parameters and bulk properties of the explosive material. This work is just part of the effort undertaken to gain information on the detailed chemistry involved in initiation and detonation. In summary, the investigators have obtained vibrational temperatures of some small radical products of detonation, which may correlate with the detonation temperature. They have also observed that NO/sub 2/ is an early product from detonating HNS and RDX, and that other electronically excited radical species such as CN(B) are formed in HNS detonations. In the Raman work, the single-pulse spectra could be obtained even in the severe environment of a detonation, and that the rate of removal of the parent molecule could be monitored. 2 refs., 6 figs.

  15. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  16. Steady state and time-resolved fluorescence spectroscopic characterization of normal and cancerous urine

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Aruna, Prakasa Rao; Balu David, Munusamy; Koteeswaran, Dornadula; Muthuvelu, Kulandaivel; Rai, R.; Ganesan, Singaravelu

    2013-03-01

    Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.

  17. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  18. Spectroscopic study of 2-[2-(4-cyclaminophenyl)ethen-1-yl] benzothiazoles and their N-allylbenzothiazolium bromides. Solvent and substituent effects on their ultraviolet-visible and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Gáplovský, Anton; Donovalová, Jana; Magdolen, Peter; Toma, Štefan; Zahradník, Pavol

    2002-01-01

    UV-vis and fluorescence spectra of 2-[2-(4-cyclaminophenyl)ethen-1-yl] benzothiazoles 1 and their N-allylbenzothiazolium bromides 2 have been measured and interpreted. The substitution and solvent effects on electronic structure and spectra have been investigated. The benzothiazolium salts substituted with saturated cyclamines show strong push-pull character and can be used as potential NLO materials. Formation of aggregated structures was observed at higher concentrations of the benzothiazolium bromides.

  19. Spectroscopic and dynamical studies of highly energized small polyatomic molecules. Technical progress report, July 1, 1993--October 31, 1994

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1995-02-01

    This is a progress report on a project to spectroscopically study small polyatomic molecules which are highly excited. The authors describe work on acetylene (HCCH) and HCO. Their work involves dispersed fluorescence spectroscopy, and the development and application of superpolyad models for studying intramolecular vibrational redistribution.

  20. Identification of hematic cells by spectroscopic analysis of the intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Bernabei, Pietro A.; Caporale, Roberto; Ferrini, Pierluigi R.; Croce, Anna C.; Bottiroli, Giovanni F.; Cioncolini, Stefano; Innocenti, Alberto; Pratesi, Riccardo

    1994-12-01

    The determination of blood cell composition has been a valuable tool in diagnoses. In particular, both total and differential counts are considered the basic parameters that characterize the leukocyte population. Since 100 years ago, manual techniques were introduced that allow a morphological examination of blood smears. At present, the automated analysis has been proved to be particularly difficult to standardize. In fact, the identification and count of the five leukocyte populations are not completely solved problems in routine methods for hematological analysis. Optoelectronics could have a decisive role in the development of new techniques that can ensure characteristics of automation, reliability, accuracy and rapidity of execution. Fluorescence spectroscopy techniques could represent a valid approach. Recently, the evaluation of tissue and cell autofluorescence has been applied to the diagnosis of solid tissue neoplasies. In this work, we have considered the possibility to develop a reliable method of leukocyte analysis based on their intrinsic fluorescence emission properties. The study has been performed by applying both spectrofluorometric techniques to enriched suspensions of cells and microspectrofluorometric techniques to single leukocytes. The results obtained have shown the possibility to recognize some cell populations on the grounds of the intrinsic fluorescence characteristics.

  1. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  2. Rapid Flow Analysis Studies with Spectroscopic Detectors.

    NASA Astrophysics Data System (ADS)

    Thalib, Amlius

    A rapid flow analysis study based on segmented flow and flow injection principles is described in this thesis. The main objective of this study was to establish the response characteristics in continuous flow analysis systems in order to improve sampling rates with several types of spectroscopic detectors. It was found from flame photometric studies that non-segmented flowing streams are applicable to rapid flow analysis with automatic sample aspiration. Calcium was used as a typical example and determined at sampling rates up to 360 h('-1) with a detection limit of 0.05 mg L(' -1). A rapid flow system is reported using direct aspiration for AAS analysis with both manual injection and automatic aspiration techniques, and found to give sampling rates of up to 600-720 samples h('-1). Speed of analysis was reduced by about 50% when using an external peristaltic pump in the flow system design, due to increased sample dispersion. A novel aspect of a rapid flow injection approach reported with ICPAES detection includes the method of injecting samples via a peristaltic pump with simultaneous computer data processing. Determination of serum cations (Na, K, Ca, Mg and Fe) was demonstrated as an example of an application of the technique at sampling rates of 240 h('-1). Precision and detection limits for 13 elements in a single standard solution are reported. The use of automated aspiration sampling is also reported in this method for comparison. Further studies on flow characteristics were carried out by a combination of the rapid flow system with very short sampling times as low as 2 seconds using UV-visible spectrophotometric detection. Analysis of human blood serum samples was used as an example where total protein and inorganic phosphate were determined at sampling rates of 240 h('-1) and 360 h('-1) respectively. The novel aspects of the results from these studies include the very rapid sample throughput developed with simple and inexpensive experimental approaches in

  3. Fast and single solid phase fluorescence spectroscopic batch procedure for (acetyl) salicylic acid determination in drug formulations.

    PubMed

    Ortega Algar, S; Ramos Martos, N; Molina Díaz, A

    2003-03-10

    A solid phase fluorescence spectroscopic batch procedure for (acetyl) salicylic acid in drug formulations have been developed. The procedure is based on the sorption of salicylic acid (SA) on Sephadex DEAE A-25 anion exchanger gel (100 mg) by equilibration from an aqueous solution (10 or 25 ml) for 5 min; the equilibrated gel is transferred into an 1 mm quartz cell and the native fluorescence of SA sorbed on it is directly measured (lambda(ex)=297 nm; lambda(em)=405 nm). Good linearity was found in the 10-200 and 5-100 microg l(-1) ranges (for 10 and 25 ml sample volume, respectively) with R.S.D. (%) of 2.8 and 1.1. The procedure was successfully applied to the determination of acetyl salicylic acid (ASA) in drug formulations after alkaline hydrolysis to yield SA.

  4. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    NASA Astrophysics Data System (ADS)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  5. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0(sup 0)(sub 0) band performed.

  6. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins.

    PubMed

    Bi, Shuyun; Song, Daqian; Tian, Yuan; Zhou, Xin; Liu, Zhongying; Zhang, Hanqi

    2005-02-01

    A molecular spectroscopic investigation of the interaction between tetracyclines antibiotics and human serum albumin or bovine serum albumin was reported. The influences of some metal ions on the interaction were also studied. When tetracyclines drugs were added into the solution containing serum albumins, the fluorescence intensity of serum albumins decreased with the increasing of the drugs concentrations, which is due to the formation of new non-fluorescence complexes of drug-serum albumin. The tetracyclines acted as quenchers and quenched the fluorescence of the serum albumins. The binding constants and the number of the binding sites of the reaction of tetracyclines and serum albumins were obtained. The main sorts of acting force between the drugs and serum albumins were found and the action distances and the energy transfer efficiencies between donor-acceptor were calculated based on the Foster energy transference.

  7. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Tian, Yuan; Zhou, Xin; Liu, Zhongying; Zhang, Hanqi

    2005-02-01

    A molecular spectroscopic investigation of the interaction between tetracyclines antibiotics and human serum albumin or bovine serum albumin was reported. The influences of some metal ions on the interaction were also studied. When tetracyclines drugs were added into the solution containing serum albumins, the fluorescence intensity of serum albumins decreased with the increasing of the drugs concentrations, which is due to the formation of new non-fluorescence complexes of drug-serum albumin. The tetracyclines acted as quenchers and quenched the fluorescence of the serum albumins. The binding constants and the number of the binding sites of the reaction of tetracyclines and serum albumins were obtained. The main sorts of acting force between the drugs and serum albumins were found and the action distances and the energy transfer efficiencies between donor-acceptor were calculated based on the Föster energy transference.

  8. Dynamics of solvent and rotational relaxation of coumarin 153 in room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate confined in Brij-35 micelles: a picosecond time-resolved fluorescence spectroscopic study.

    PubMed

    Chakraborty, Anjan; Seth, Debabrata; Chakrabarty, Debdeep; Setua, Palash; Sarkar, Nilmoni

    2005-12-15

    The dynamics of solvent and rotational relaxation of Coumarin 153 (C-153) in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and in the ionic liquid confined in Brij-35 micellar aggregates have been investigated using steady-state and time-resolved fluorescence spectroscopy. We observed slower dynamics in the presence of micellar aggregates as compared to the pure IL. However, the slowing down in the solvation time on going from neat IL to IL-confined micelles is much smaller compared to that on going from water to water-confined micellar aggregates. The increase in solvation and rotational time in micelles is attributed to the increase in viscosity of the medium. The slow component is assumed to be dependent on the viscosity of the solution and involves large-scale rearrangement of the anions and cations while fast component is assumed to originate from the initial response of the anions during excitation. The slow component increases due to the increase in the viscosity of the medium and increase in fast component is probably due to the hydrogen bonding between the anions and polar headgroup of the surfactant. The dynamics of solvent relaxation was affected to a small extent due to the micelle formation.

  9. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabudean, A. M.; Biro, D.; Astilean, S.

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p‧-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications.

  10. Noninvasive fluorescence and Raman spectroscopic analysis of laser welded aorta and skin tissue

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Gayen, Tapan K.; Minko, Glenn; Alimova, Alexandra; Savage, Howard E.; McCormick, Steven A.; Alfano, Robert R.

    2002-05-01

    Laser tissue welding involves the denaturing and partial renaturing of collagen and elastin. Tissues welded with NIR lasers tuned to the 1455 nm water absorption band have demonstrated high tensile strength with minimal collateral damage. To better understand the welding process, welded tissue samples were investigated using fluorescence imaging and Raman spectroscopy. As part of this study, human aorta, and porcine aorta and skin, specimens were investigated. Emission and excitation/emission wavelengths corresponding to tryptophan and collagen emission and slightly weaker emission for wavelengths corresponding to elastin emission. The inner surface an cross-section images of the aortic specimens exhibited a very high degree of uniformity with no indication of the presence of a weld. The Raman spectra from the aortic specimens at the weld site and a few mm away form the weld were very similar. This work indicates the emission and Raman properties of the collagen helix after welding are very similar to native collagen tissue.

  11. Vibrational spectroscopic and DFT study of trimethoprim

    NASA Astrophysics Data System (ADS)

    Ungurean, Alia; Leopold, Nicolae; David, Leontin; Chiş, Vasile

    2013-02-01

    Structural investigations by different vibrational spectroscopic methods: FTIR, FT-Raman and surface-enhanced Raman scattering (SERS) spectroscopy, as well as density functional theory (DFT) calculations were performed on trimethoprim (5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine). A reliable assignment of vibrational IR, Raman and SERS bands was possible by a proper choice of model used in quantum chemical calculations. Based on SERS spectrum analysis it is shown that the molecule is adsorbed on the silver surface through the pyrimidine ring, in a perpendicular orientation. Two theoretical models were used in order to simulate the silver surface and the interaction with trimethoprim molecule, the accuracy of the models being evaluated by comparing the predicted bands position of the two complexes with the SERS result.

  12. Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application.

    PubMed

    Doddi, Siva; Narayanaswamy, K; Ramakrishna, Bheerappagari; Singh, Surya Prakash; Bangal, Prakriti Ranjan

    2016-11-01

    We report the synthesis and characterization of a new fluorescent dyad SP-DPP-SP(9) via efficient palladium-catalyzed Sonogashira coupling of prop-2-yn-1-yl 3-(3',3'dimethyl-6-nitrospiro[chromene-2,2'-indolin]-1'-yl)propanoatespiropyran, SP(8), a well known photochromic accepter, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis((R)-2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, DPP(4), a highly fluorescent donor. Under visible light exposure the SP unit is in a closed hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named Merocyanine (MC), which is responsible for functioning of photo-switch application. The photochemistry pertaining to fluorescence switch, 'on/off' behaviour, of model dyad SP-DPP-SP(9) is experimentally analyzed in solution as well as in solid state in polymer matrices by photoluminescence(PL) and absorption spectroscopy. After absorption of UV light the spiropyran unit of the dyad under goes the rupture of the spiro C-O bond leading to the formation of MC. The absorption band of MC fairly overlaps to the fluorescence of DPP unit resulting quenching of fluorescence via fluorescence resonance energy transfer from exited DPP unit to ground state MC. In contrary, the fluorescence of DPP is fully regained upon transformation of MC to SP by exposure to visible light or thermal stimuli. Hence, the fluorescence intensity of dyad 9 is regulated by reversible conversion among the two states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the MC form of SP and the DPP unit. Conversely, these scrutiny of the experiment express that the design of dyad 9 is viable as efficient fluorescent switch molecule in many probable commercial applications, such as, logic gates and photonic and optical communications.

  13. Xanthines Studied via Femtosecond Fluorescence Spectroscopy.

    PubMed

    Changenet-Barret, Pascale; Kovács, Lajos; Markovitsi, Dimitra; Gustavsson, Thomas

    2016-12-03

    Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10(-4)) and average decay time (0.9 ps) are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  14. Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment.

    PubMed

    Xue, Shuang; Zhao, Qingliang; Wei, Liangliang; Song, Youtao; Tie, Mei

    2013-06-01

    This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0-12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation-emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75-150 cm). Total Φ T, n values, which were calculated as [Formula: see text], suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.

  15. Thermodynamics and Mechanisms of the Interactions between Ultrasmall Fluorescent Gold Nanoclusters and Human Serum Albumin, γ-Globulins, and Transferrin: A Spectroscopic Approach.

    PubMed

    Yin, Miao-Miao; Dong, Ping; Chen, Wen-Qi; Xu, Shi-Ping; Yang, Li-Yun; Jiang, Feng-Lei; Liu, Yi

    2017-05-30

    Noble metal nanoclusters (NCs) show great promise as nanoprobes for bioanalysis and cellular imaging in biological applications due to ultrasmall size, good photophysical properties, and excellent biocompatibility. In order to achieve a comprehensive understanding of possible biological implications, a series of spectroscopic measurements were conducted under different temperatures to investigate the interactions of Au NCs (∼1.7 nm) with three model plasmatic proteins (human serum albumin (HSA), γ-globulins, and transferrin). It was found that the fluorescence quenching of HSA and γ-globulins triggered by Au NCs was due to dynamic quenching mechanism, while the fluorescence quenching of transferrin by Au NCs was a result of the formation of a Au NC-transferrin complex. The apparent association constants of the Au NCs bound to HSA, γ-globulins, and transferrin demonstrated no obvious difference. Thermodynamic studies demonstrated that the interaction between Au NCs and HSA (or γ-globulins) was driven by hydrophobic forces, while the electrostatic interactions played predominant roles in the adsorption process for transferrin. Furthermore, it was proven that Au NCs had no obvious interference in the secondary structures of these three kinds of proteins. In turn, these three proteins had a minor effect on the fluorescence intensity of Au NCs, which made fluorescent Au NCs promising in biological applications owing to their chemical and photophysical stability. In addition, by comparing the interactions of small molecules, Au NCs, and large nanomaterials with serum albumin, it was found that the binding constants were gradually increased with the increase of particle size. This work has elucidated the interaction mechanisms between nanoclusters and proteins, and shed light on a new interaction mode different from the protein corona on the surface of nanoparticles, which will highly contribute to the better design and applications of fluorescent nanoclusters.

  16. Spectroscopic Studies of Double Beta Decays and MOON

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2007-10-01

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0νββ experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0νββ studies with the ν-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin ββ source film.

  17. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Guowen; Wang, Lin; Fu, Peng; Hu, Mingming

    2011-11-01

    The mechanism and conformational changes of farrerol binding to bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence quenching technique, UV-vis absorption, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that farrerol could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The thermodynamic parameters enthalpy change and entropy change for the binding were calculated to be -29.92 kJ mol -1 and 5.06 J mol -1 K -1 according to the van't Hoff equation, which suggested that the both hydrophobic interactions and hydrogen bonds play major role in the binding of farrerol to BSA. The binding distance r deduced from the efficiency of energy transfer was 3.11 nm for farrerol-BSA system. The displacement experiments of site markers and the results of fluorescence anisotropy showed that warfarin and farrerol shared a common binding site I corresponding to the subdomain IIA of BSA. Furthermore, the studies of synchronous fluorescence, CD and FT-IR spectroscopy showed that the binding of farrerol to BSA induced conformational changes in BSA.

  18. Study on the interaction characteristics of cefamandole with bovine serum albumin by spectroscopic technique.

    PubMed

    Wang, Qian; Liu, Xuyang; Su, Ming; Shi, Zhihong; Sun, Hanwen

    2015-02-05

    The interaction of cefamandole with bovine serum albumin (BSA) was studied by fluorescence quenching in combination with UV-Vis spectroscopic method under near physiological conditions. The fluorescence quenching rate constants and binding constants for BSA-cefamandole system were determined at different temperatures. The fluorescence quenching of BSA by cefamandole is due to static quenching and energy transfer. The results of thermodynamic parameters, ΔH (-268.0 kJ mol(-1)), ΔS (-810.0 J mol(-1) K(-1)) and ΔG (-26.62 to -8.52 kJ mol(-1)), indicated that van der Waals interaction and hydrogen bonding played a major role for cefamandole-BSA association. The competitive experiments demonstrated that the primary binding site of cefamandole on BSA was located at site III in sub-domain IIIA of BSA. The distance between cefamandole and a tryptophane unit was estimated to be 1.18 nm based on the Förster resonance energy transfer theory. The binding constant (KA) of BSA-cefamandole at 298 K was 2.239×10(4) L mol(-1). Circular dichroism spectra, synchronous fluorescence and three-dimensional fluorescence studies showed that the presence of cefamandole could change the conformation of BSA during the binding process.

  19. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  20. NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT.

    SciTech Connect

    ABLETT, J.M.; WOICIK, J.C.; KAO, C.C.

    2004-08-02

    X-ray fluorescence spectroscopy is a widely used method for determining the electronic configuration and local structure of dilute species with high sensitivity. In the dilute limit, and for thin films, the X-ray fluorescence signal is directly proportional to the atomic sub-shell absorption coefficient. However, for concentrated samples, the well-documented self-absorption effect often leads to the severe suppression of XANES (X-ray Absorption Near-Edge Structure) and EXAFS (Extended X-ray Absorption Fine-Structure) amplitudes. Thus to recover the real value of the sub-shell absorption coefficient, it is important to apply correction procedures to the measured fluorescence spectra. In this paper, we describe a new straightforward method to correct for self-absorption effects (the difference in the measured fluorescence signal compared to that of the true sub-shell photoabsorption coefficient) in XANES and EXAFS fluorescence measurements. Using a variety of sample and detector configurations, this method is used to extract the sub-shell absorption coefficient on elemental nickel and thick single-crystals of Gd{sub 3}Ga{sub 5}O{sub 12} and LaAlO{sub 3}.

  1. New Correction Procedure For X-ray Spectroscopic Fluorescence Data: Simulations and Experiment

    SciTech Connect

    Ablett,J.; Woicik, J.; Kao, C.

    2005-01-01

    X-ray fluorescence spectroscopy is a widely used method for determining the electronic configuration and local structure of dilute species with high sensitivity. In the dilute limit, and for thin films, the X-ray fluorescence signal is directly proportional to the atomic sub-shell absorption coefficient. However, for concentrated samples, the well-documented self-absorption effect often leads to the severe suppression of XANES (X-ray Absorption Near-Edge Structure) and EXAFS (Extended X-ray Absorption Fine-Structure) amplitudes. Thus to recover the real value of the sub-shell absorption coefficient, it is important to apply correction procedures to the measured fluorescence spectra. In this paper, we describe a new straightforward method to correct for self-absorption effects (the difference in the measured fluorescence signal compared to that of the true sub-shell photoabsorption coefficient) in XANES and EXAFS fluorescence measurements. Using a variety of sample and detector configurations, this method is used to extract the sub-shell absorption coefficient on elemental nickel and thick single-crystals of Gd{sub 3}Ga{sub 5}O{sub 12} and LaAlO{sub 3}.

  2. Quantitative carbon-13 nuclear magnetic resonance spectroscopic study of mobile residues in bacteriorhodopsin

    SciTech Connect

    Bowers, J.L.; Oldfield, E.

    1988-07-12

    The authors have used quantitative carbon-13 nuclear magnetic resonance (NMR) spectroscopy to study the dynamic structure of the backbone of bacteriorhodopsin in the purple membrane of Halobacterium halobium R/sub 1/ and JW-3. NMR experiments were performed using an internal sucrose quantitation standard on purple membranes in which one of the following /sup 13/C'-labeled amino acids had been biosynthetically incorporated: glycine, isoleucine, lysine, phenylalanine, and valine. The results suggest that the C-terminus of the polypeptide chain backbone, and possibly one of the connecting loops, undergoes rapid, large angle fluctuations. The results are compared with previous NMR and fluorescence spectroscopic data obtained on bacteriorhodopsin.

  3. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  4. DBD dyes as fluorescence lifetime probes to study conformational changes in proteins.

    PubMed

    Wawrzinek, Robert; Ziomkowska, Joanna; Heuveling, Johanna; Mertens, Monique; Herrmann, Andreas; Schneider, Erwin; Wessig, Pablo

    2013-12-16

    Previously, [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD)-based fluorophores used as highly sensitive fluorescence lifetime probes reporting on their microenvironmental polarity have been described. Now, a new generation of DBD dyes has been developed. Although they are still sensitive to polarity, in contrast to the former DBD dyes, they have extraordinary spectroscopic properties even in aqueous surroundings. They are characterized by long fluorescence lifetimes (10-20 ns), large Stokes shifts (≈100 nm), high photostabilities, and high quantum yields (>0.56). Here, the spectroscopic properties and synthesis of functionalized derivatives for labeling biological targets are described. Furthermore, thio-reactive maleimido derivatives of both DBD generations show strong intramolecular fluorescence quenching. This mechanism has been investigated and is found to undergo a photoelectron transfer (PET) process. After reaction with a thiol group, this fluorescence quenching is prevented, indicating successful bonding. Being sensitive to their environmental polarity, these compounds have been used as powerful fluorescence lifetime probes for the investigation of conformational changes in the maltose ATP-binding cassette transporter through fluorescence lifetime spectroscopy. The differing tendencies of the fluorescence lifetime change for both DBD dye generations promote their combination as a powerful toolkit for studying microenvironments in proteins.

  5. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-05-01

    Cadmium Sulphide nanoparticles approximately 5-10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV-Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.

  6. Synthesis, spectroscopic, fluorescence properties and biological evaluation of novel Pd(II) and Cd(II) complexes of NOON tetradentate Schiff bases.

    PubMed

    Ali, Omyma A M

    2014-01-01

    The solid complexes of Pd(II) and Cd(II) with N,N/bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L(1)), and N,N/bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L(2)) have been synthesized and characterized by several techniques using elemental analysis (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. Elemental analysis data proved 1:1 stoichiometry for the reported complexes while spectroscopic data indicated square planar and octahedral geometries for Pd(II) and Cd(II) complexes, respectively. The prepared ligands, Pd(II) and Cd(II) complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Thermal behavior of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. Both the ligands and their complexes have been screened for antimicrobial activities.

  7. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  8. On-line separator for {gamma}-spectroscopic studies

    SciTech Connect

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Kabachenko, A. P.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.; Dorvaux, O.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.

    2008-05-12

    We report about R and D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA.

  9. On-line separator for γ-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Dorvaux, O.; Hauschild, K.; Kabachenko, A. P.; Korichi, A.; Lopez-Martens, A.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.

    2008-05-01

    We report about R&D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA [1, 2].

  10. Raman and fluorescence spectroscopic evaluation of NIR laser-welded human and porcine aorta tissues

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Alimova, Alexandra; Minko, Glenn; Liu, C. H.; Gayen, Tapan K.; Savage, Howard E.; Halder, Rabindra K.; McCormick, Steven A.; Alfano, Robert R.

    2003-06-01

    Laser tissue welding involves the partial denaturing and renaturing of the collagen triple helical structure. Although the mechanisms of laser tissue welding are not well understood, water in tissues plays an important role in the process. High quality welding of human and porcine aorta tissue have been achieved using NIR lasers tuned to the water absorption band around 1450 nm. Fluorescence and Raman spectra from welded and non-welded regions are compared for ex vivo human and porcine aorta tissues. The fluorescence from the outer surface of welded aorta was substantially weaker than the fluorescence from the non-welded region. The Raman spectra from the welded and non-welded tissue regions appeared similar in the energies of the observed vibrational levels but the intensity of the fluorescence wing was considerably greater from the outer surface of the welded region as compared to the non-welded region. For the outer surface of the aorta, the emission intensity from the welded region was larger than for the non-welded region.

  11. Raman spectroscopic study of a genetically altered kidney cell

    NASA Astrophysics Data System (ADS)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  12. Halo Nucleus 11Be: A Spectroscopic Study via Neutron Transfer

    SciTech Connect

    Schmitt, Kyle; Jones, K. L.; Bey, A.; Ahn, S.H.; Bardayan, Daniel W; Blackmon, Jeffery C; Brown, S.; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Matos, M.; Moazen, Brian H; Nesaraja, Caroline D; Nunes, F. M.; O'Malley, Patrick; Pain, Steven D; Peters, W. A.; Pittman, S. T.; Wilson, G.

    2012-01-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be d;p reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an n j 2s1=2 state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1=2 state.

  13. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  14. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-01

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ∗ or the ππ∗ absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G∗∗ level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states - one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state.

  15. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  16. Interaction of Sulfadiazine with Model Water Soluble Proteins: A Combined Fluorescence Spectroscopic and Molecular Modeling Approach.

    PubMed

    Islam, Mullah Muhaiminul; Moyon, N Shaemningwar; Gashnga, Pynsakhiat Miki; Mitra, Sivaprasad

    2014-03-01

    The binding behavior of antibacterial drug sulfadiazine (SDZ) with water soluble globular proteins like bovine as well as human serum albumin (BSA and HSA, respectively) and lysozyme (LYS) was monitored by fluorescence titration and molecular docking calculations. The experimental data reveal that the quenching of the intrinsic protein fluorescence in presence of SDZ is due to the strong interaction in the drug binding site of the respective proteins. The Stern-Volmer plot shows positive deviation at higher quencher concentration for all the proteins and was explained in terms of a sphere of action model. The calculated fluorophore-quencher distances vary within 4 ~ 11 Å in different cases. Fluorescence experiments at different temperature indicate thermodynamically favorable binding of SDZ with the proteins with apparently strong association constant (~10(4)-10(5) M(-1)) and negative free energy of interaction within the range of -26.0 ~ -36.8 kJ mol(-1). The experimental findings are in good agreement with the respective parameters obtained from best energy ranked molecular docking calculation results of SDZ with all the three proteins.

  17. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  18. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V. K.; Singh, Bachcha; Singh, Ranjan K.

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  19. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  1. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Fluorescence Spectroscopic Analysis of the Binding of Pyrene to Cytochromes P450 1A2 and 3A4.

    NASA Astrophysics Data System (ADS)

    Henry, Judah; Guengerich, F. Peter; Marsch, Glenn

    2007-03-01

    Fluorescence spectroscopy was used to study cytochromes P450 1A2 and 3A4. Spectra of P450s were acquired in the presence and absence of acrylamide quencher. In both P450s, quenching revealed three distinguishable species of amino acid fluorescence, with maxima at 297, 323, and 345 nm. The 345 nm tryptophan fluorescence was quenched by low levels of acrylamide; the 297 nm tyrosine fluorescence was resistant to quenching. The 323 nm fluorescence was observed at intermediate concentrations of quencher. Stern-Volmer plots of P450 quenching were non-linear, but were well-fitted to a superposition of linear plots for each fluorophore species. The effect of the P450's binding on pyrene fluorescence was also examined. Upon binding to P450 1A2, the intensity of the 383 nm pyrene vibronic band was decreased relative to the intensities of the 372 and 393 nm bands. Both P450's showed binding of the pyrene, but 1A2 demonstrated significantly more excimer emission than did the 3A4, which suggests that more than one pyrene molecule binds to 1A2's active site. The results of these analyses will be used in further characterization of these enzymes.

  3. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method.

    PubMed

    Bi, Shuyun; Zhang, Hanqi; Qiao, Chunyu; Sun, Ying; Liu, Chunming

    2008-01-01

    Emodin interacting with deoxyribonucleic acid (DNA) has been studied by different spectroscopic techniques, such as fluorescence, ultraviolet and visible (UV-vis), and fourier transform infared (FT-IR) spectroscopies, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA-EB system on addition of emodin shows that the fluorescence quenching of DNA-EB complex by emodin occurs. The binding constants of emodin with DNA in the presence of EB are 6.02x10(4), 9.20x10(4) and 1.17x10(5)Lmol(-1) at 20, 35 and 50 degrees C, respectively. FT-IR spectrum further suggests that both the phosphate groups and the bases of DNA react with emodin. The reaction of DNA with emodin in the presence of EB is affected by ionic strength and temperature. The values of melting temperature (T(m)) of DNA-EB complex and emodin-DNA-EB complexes were determined, respectively. From the experiment evidences, the major binding mode of emodin with DNA should be the groove binding.

  4. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-05

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Electrochemical and spectroscopic study of octadecyltrimethylammonium bromide/DNA surfoplexes.

    PubMed

    Rodríguez-Pulido, Alberto; Aicart, Emilio; Junquera, Elena

    2009-04-21

    The use of cationic micelles consisting of octadecyltrimethylammonium bromide (C18TAB) to compact calf thymus DNA has been investigated in aqueous buffered solution at 310.15 K by means of conductometry, electrophoretic mobility, and several fluorescence spectroscopy methods. The results indicate that C18TAB micelles, consisting of 44 monomers on average, may compact DNA molecule by an electrostatic interaction that takes place at the cationic spherical micelle surface. The surfoplexes thus formed show a surface density charge that goes from negative to positive values at a Lmic/D mass ratio of around 1.0 (where Lmic and D are the masses of micellized cationic surfactant and DNA), called the isoneutrality ratio (Lmic/D)phi. Values of this characteristic parameter, determined in this work not only from the electrochemical experimental data but also from spectroscopic measurements, are in very good agreement with those ones calculated from molecular parameters and some other properties also obtained in this work. The electrostatic character of the DNA-micelle interaction has been confirmed by analyzing the decrease in fluorescence emission of the fluorophore ethidium bromide, EtBr, initially intercalated between DNA base pairs, as long as the surfoplexes are formed. Fluorescence anisotropy experiments have revealed that micelle packing becomes more rigid in the presence of DNA, but once the surfoplex is formed, the fluidity increases with the Lmic/D mass ratio, attaining its maximum when the isoneutrality ratio is exceeded. This fact, together with the net positive charge of the surfoplexes with the Lmic/D mass ratio over the isoneutrality ratio, makes this regimen of lipid and DNA content the optimum for efficiency in the transfection process.

  6. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    PubMed

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation.

  7. A Spectroscopic Analysis of a High Fluorescent Mutant of Chlamydomonas Reinhardi

    PubMed Central

    Epel, B. L.; Butler, W. L.

    1972-01-01

    Chloroplast fragments of a high fluorescent mutant of Chlamydomonas reinhardi, hfd 91, were compared against those of Acl+, a low chlorophyll variant of the wild type. The chloroplast fragments of the mutant which have a high invariant fluorescence yield lacked photochemical activities associated with photosystem II (PSII) but retained normal photosystem I (PSI) activities. The mutant fragments also lacked the low temperature (-196°C) light-induced absorbance changes due to the photoreduction of C-550 and the photooxidation of cytochrome (cyt) b-559 which are PSII-mediated reactions. A fourth-derivative analysis of the absolute spectra of the chloroplast fragments at different stages of reduction (obtained with ferricyanide, ascorbate, and dithionite) showed both the oxidized and reduced forms of C-550 and the reduced forms of cyt c-553, b-559, and b-564 in wild-type fragments. The mutant fragments lacked C-550 and an ascorbate-reducible cyt b-559 but contained cyt c-553, a dithionite-reducible cyt b-559, and cyt b-564. PMID:5037344

  8. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  9. Study on fluorescence characteristics of duloxetine hydrochloride

    NASA Astrophysics Data System (ADS)

    Liu, Xiangping; Du, Yingxiang; Wu, Xiulan

    2008-12-01

    The fluorescence characteristics of duloxetine hydrochloride are studied in this paper. The fluorescence emission spectra of duloxetine demonstrate that intramolecular charge-transfer takes place between thiophene ring and napthalenyloxy group upon irradiation. The effects of excitation light, solvent system, variation of solution pH value, metal ions and vitamin C on the fluorescence spectra of duloxetine hydrochloride are elucidated, respectively. A spectrofluorometric method of quantitative determination of duloxetine in dosage form is reported for the first time, the linear range is 7.14 × 10 -8 mol/L to 1.43 × 10 -5 mol/L, the linear correlation coefficient r is equal to 0.9997, and the detection limit is 3.5 × 10 -8 mol/L. The accuracy and the precision are satisfactory.

  10. Spectroscopic study of honey from Apis mellifera from different regions in Mexico

    NASA Astrophysics Data System (ADS)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.

    2017-05-01

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  11. Spectroscopic study of honey from Apis mellifera from different regions in Mexico.

    PubMed

    Frausto-Reyes, C; Casillas-Peñuelas, R; Quintanar-Stephano, J L; Macías-López, E; Bujdud-Pérez, J M; Medina-Ramírez, I

    2017-05-05

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  13. Fundamental spectroscopic studies of some atmospheric pollutants

    SciTech Connect

    Findley, G.L.; McGlynn, S.P.

    1980-01-01

    Molecular electronic transitions that lie in the vuv (vacuum ultraviolet) spectral region initiate many harmful photochemical modifications in the upper atmosphere. Consequently, investigations have focused on molecules that are primary atmospheric pollutants, but which are simple enough structurally to yield detailed photophysical information. Terminal electronic states for vuv transitions can be either valence or Rydberg and, at low enough energies, the distinction between the two becomes fuzzy. A major thrust of this program has been the classification and characterization of Rydberg transitions in an attempt to gain insight into Rydberg/valence state mixing Rydberg studies. It is concluded that in order to understand the nature of photochemical reactions of molecules in the upper atmosphere, it is necessary to understand the structure and function of high-energy molecular electronic states. It is also necessary to understand the ways in which these states interact and, thereby, facilitate energy transfer. The study of molecular Rydberg states provides information crucial to such an understanding.

  14. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  15. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  16. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  17. Spectroscopic Study of Microwave Induced Plasma

    SciTech Connect

    Jovicevic, S.

    2004-12-01

    The results of the spatial distribution studies of electron densities, excitation and rotational temperatures and atomic line intensities of various elements in an atmospheric pressure mini-MIP torch with tangential argon flow. The electron number density, ne, is determined from the width of the hydrogen H{beta} 486.13 nm line while excitation temperature, Texc, is evaluated from the Boltzmann plot of relative line intensities either of carrier gas-argon or neutral iron that is introduced in the form of aerosols in MIP, The rotational temperatures, Trot, are determined from the relative intensities of OH (R2 and Q1 branch) electronic band A2{sigma} - X2{pi} (0,0) and to N{sub 2}{sup +} first negative system B{sup 2} {sigma}{sub u}{sup +} - X{sup 2} {sigma}{sub g}{sup +} (P branch). For the selected input power of 100 W, the influence of hydrogen in the wet and desolvated aerosols and support gas and the corresponding changes of the electron density, excitation and rotational temperature distributions are studied. The influence of potassium, low ionization potential element, to the spatial distribution of ne, Texc and Trot is studied also. Spatial intensity distributions and maximum intensities for investigate atomic line are determinate for the same conditions.

  18. Spectroscopic Studies of Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Wamsley, R.; Leather, K.; Horn, A. B.; Percival, C.

    2008-12-01

    Particles are ubiquitous in the troposphere and are involved in chemical and physical processes affecting the composition of the atmosphere, climate, cloud albedo and human health (Finlayson-Pitts and Pitts, 2000). Organic species, such as alcohols, carboxylic acids, ketones, aldehydes, aromatics, alkenes and alkanes, originate both from anthropogenic and natural sources and comprise a large component of atmospheric particles. Gas-phase species, such as ozone, can oxidize these organics, changing the particle's oxygen-to carbon ratio and potentially altering its hygroscopicity, viscosity, morphology and reactivity. One reaction in particular, that between ozone and oleic acid, has been the focus of several recent studies and extensively researched by Ziemann (2005). Oleic acid reacts readily with ozone and has a low vapor pressure making this reaction convenient to study in the laboratory and has become the benchmark for studying heterogeneous reactions representing the oxidative processing of atmospheric organic aerosols. A critical source of uncertainty in reactivity estimates is a lack of understanding of the mechanism through which some VOCs are oxidized. This knowledge gap is especially critical for aromatic compounds. Because the intermediate reaction steps and products of aromatics oxidation are unknown, chemical mechanisms incorporate parameters estimated from environmental chamber experiments to represent their overall contribution to ozone formation, e.g. Volkamer et al. ( 2006). Previous studies of uncertainties in incremental reactivity estimates for VOCs found that the representation of aromatics chemistry contributed significantly to the estimated 40 - 50% uncertainties in the incremental reactivities of common aromatic compounds Carter et al. (2002). This study shows development of an effective IR method that can monitor the reaction and hence obtain the kinetics of the ozonolysis of an aromatic compound in the aerosol phase. The development of such

  19. Study of Gallstones by Spectroscopic Methods

    NASA Astrophysics Data System (ADS)

    Pichugina, A. A.; Tsyro, L. V.; Afanasyev, D. A.; Kiselev, S. A.; Unger, F. G.

    2017-03-01

    We have conducted studies of cholesterol gallstones by electron paramagnetic resonance (EPR), x-ray diffraction (XRD), and nuclear magnetic resonance (1H NMR). The results obtained indicate that the cholesterol gallstone spectra are identical. We have used EPR to establish the presence in the gallstones of species containing open shell spin orbitals, which act as centers for colloidal particles. The 1H NMR spectra and the XRD data indicate the presence in the gallstones of cholesterol and structures representing a desmosterol transition, which form shells around the spin centers.

  20. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  1. Nonlinear spectroscopic studies of interfacial molecular ordering

    SciTech Connect

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  2. Nonlinear spectroscopic studies of interfacial molecular ordering

    NASA Astrophysics Data System (ADS)

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface.

  3. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  4. Spectroscopic studies of silver boro tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  5. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    NASA Astrophysics Data System (ADS)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  6. Spectroscopic studies near the proton drip line

    SciTech Connect

    Toth, K.S. ); Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A. ); Robertson, J.D. )

    1990-01-01

    We have investigated nuclei close to the proton drip line by using heavy-ion fusion reactions to produce extremely neutron-deficient nuclides. Their nuclear decay properties were studied by using on-line isotope separators at Oak Ridge (UNISOR) and Berkeley (OASIS), the Oak Ridge National Laboratory velocity filter, and a fast helium-gas-jet transport system at Lawrence Berkeley Laboratory 88-Inch Cyclotron. Many isotopes, isomers, and {beta}-delayed-proton and {alpha}-particle emitters were discovered. This contribution summarizes three topics that are part of our overall program: decay rates of even-even {alpha}-particle emitters, mass excesses of {sup 181}Pb, {sup 182}Pb, and {sup 183}Pb, and {beta}-delayed proton emitters near N = 82. 14 refs., 6 figs.

  7. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  8. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  9. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martínez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    2009-02-01

    At the Universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25 pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results of the kinematics of the DUNES sample.

  10. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    At the universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results on the kinematics of the DUNES sample.

  11. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  12. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  13. Photoelectron spectroscopic studies of 5-halouracil anions

    NASA Astrophysics Data System (ADS)

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Sevilla, Michael D.; Rak, Janusz; Bowen, Kit H.

    2011-01-01

    The parent negative ions of 5-chlorouracil, UCl- and 5-fluorouracil, UF- have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl- and UF- and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr-, we did not observe it, the mass spectrum exhibiting only Br- fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  14. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  15. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  16. Metamictization of zircon: Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Salje, Ekhard K. H.; Farnan, Ian; Graeme-Barber, Ann; Daniel, Philippe; Ewing, Rodney C.; Clark, Andrew M.; Leroux, Hugues

    2000-02-01

    Raman spectroscopy of radiation-damaged natural zircon samples shows increased line broadening and shifts of phonon frequencies with increasing radiation dose. Stretching and bending frequencies of SiO4 tetrahedra soften dramatically with increasing radiation damage. The frequency shifts can be used to determine the degree of radiation damage. Broad spectral bands related to Si-O stretching vibrations between 900 and 1000 cm-1 were observed in metamict/amorphous zircon. The radiation-dose-independent spectral profiles and the coexistence of this broad background and relative sharp Raman modes in partially damaged samples indicate that these bands are correlated with amorphous domains in zircon. The spectral profiles of metamict zircon suggest that in comparison with silica, the SiO4 tetrahedra are less polymerized in metamict zircon. This study also shows that ZrO2 and SiO2 are not the principal products of metamictization in zircon. No indication of bulk chemical unmixing of zircon into ZrO2 and SiO2 was found in 26 samples with a large variation of radiation damage (maximum dose: 23.5 × 1018 icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> -events g-1 ). Only one sample showed clearly, in all measured sample areas, extra sharp lines at 146, 260, 312, 460 and 642 cm-1 characteristic of tetragonal ZrO2 . The geological (and possibly artificial heating) history of this sample is not known. It is concluded that radiation damage without subsequent high temperature annealing does not cause unmixing of zircon into constituent oxides.

  17. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  18. Spectroscopic studies of protein folding: Linear and nonlinear methods

    PubMed Central

    Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng

    2012-01-01

    Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics. PMID:22109973

  19. Steady-state and time-resolved fluorescence studies of stripped Borage oil.

    PubMed

    Smyk, Bogdan; Amarowicz, Ryszard; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-07-30

    In this study we explored the spectroscopic properties of Borage oil, particularly the use of fluorescence techniques to investigate the presence of conjugated fatty acids (CFAs). This research has important health and dietary applications. The absorption and fluorescence spectra of different CFAs and Borage oil in ethanol were measured. Time-domain fluorescence was employed to establish the life times of the samples. We found that Borage oil contains 1.2x10(-3) mol L(-1) of alpha-eleostearic acid or its isomer (i.e., a conjugated triene), 1.6x10(-4) mol L(-1) of cis-parinaric acid (i.e., a conjugated tetraene) and 1.1x10(-5) mol L(-1) of c-COPA (i.e., a conjugated pentaene). Because of the three-exponential fluorescence intensity decay for Borage oil, other fatty acids with a four conjugated double bond system could not be excluded.

  20. Hydrosomes: femtoliter containers for fluorescence spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Jofre, Ana M.; Tang, Jianyong; Greene, Mark E.; Lowman, Geoffrey M.; Hodas, Nathan; Kishore, Rani; Helmerson, Kristian; Goldner, Lori S.

    2007-09-01

    We report on improvements and innovations in the use of hydrosomes to encapsulate and study single molecules. Hydrosomes are optically-trappable aqueous nanodroplets. The droplets are suspended in a fluorocarbon medium that is immiscible with water and has an index of refraction lower than water, so hydrosomes are stable and optically trapped by a focused laser beam (optical tweezers). Using optical tweezers, we hold the hydrosomes within a confocal observation volume and interrogate the encapsulated molecule by fluorescence excitation. This method allows for long observation times of a molecule without the need for surface immobilization or liposome encapsulation. We have developed a new way for creating hydrosomes on demand by inertially launching them into the fluorocarbon matrix using a piezo-activated micropipette. Time-resolved fluorescence anisotropy studies are carried out to characterize the effects of the hydrosome interface boundary on biological molecules and to determine whether molecules encapsulated within hydrosomes diffuse freely throughout the available volume. We measured the fluorescence anisotropy decay of 20mer DNA duplexes, and enhanced green fluorescent protein (GFP). We conclude that the molecules rotate freely inside the nanodroplets and do not stick or aggregate at the boundary.

  1. A Chromone-Derived Schiff-Base Ligand as Al(3+) "Turn on" Fluorescent Sensor: Synthesis and Spectroscopic Properties.

    PubMed

    Li, Chao-rui; Qin, Jing-can; Wang, Bao-dui; Fan, Long; Yan, Jun; Yang, Zheng-yin

    2016-01-01

    In this study, a novel chromone-derived Schiff-base ligand called 6-Hydroxy-3-formylchromone (2'-furan formyl) hydrazone (HCFH) has been designed and synthesized as a "turn on" fluorescent sensor for Al(3+). This sensor HCFH showed high selectivity and sensitivity towards Al(3+) over other metal ions investigated, and most metal ions had nearly no influences on the fluorescence response of HCFH to Al(3+). Additionally, the significant enhancement by about 171-fold in fluorescence emission intensity at 502 nm was observed in the presence of Al(3+) in ethanol, and it was due to the chelation-enhanced fluorescence (CHEF) effect upon complexation of HCFH with Al(3+) which inhibited the photoinduced electron transfer (PET) phenomenon from the Schiff-base nitrogen atom to chromone group. Moreover, this sensor formed a 1 : 1 complex with Al(3+) and the fluorescence response of HCFH to Al(3+) was nearly completed within 1 min. Thus, this sensor HCFH could be used to detect and recognize Al(3+) for real-time detection.

  2. Fluorescence spectroscopic and calorimetry based approaches to characterize the mode of interaction of small molecules with DNA.

    PubMed

    Banerjee, Amrita; Singh, Jasdeep; Dasgupta, Dipak

    2013-07-01

    Ethidium bromide displacement assay by fluorescence is frequently used as a diagnostic tool to identify the intercalation ability of DNA binding small molecules. Here we have demonstrated that the method has pitfalls. We have employed fluorescence, absorbance and label free technique such as isothermal titration calorimetry to probe the limitations. Ethidium bromide, a non-specific intercalator, netropsin, a (A-T) specific minor groove binder, and sanguinarine, a (G-C) specific intercalator, have been used in our experiments to study the association of a ligand with DNA in presence of a competing ligand. Here we have shown that netropsin quenches the fluorescence intensity of an equilibrium mixture of ethidium bromide - calf thymus DNA via displacement of ethidium bromide. Isothermal titration calorimetry results question the accepted interpretation of the observed decrease in fluorescence of bound ethidium bromide in terms of competitive binding of two ligands to DNA. Furthermore, isothermal titration calorimetry experiments and absorbance measurements indicate that the fluorescence change might be due to formation of ternary complex and not displacement of one ligand by another.

  3. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  4. Ultraviolet emission and excitation fluorescence spectroscopic characterization of DMBA-treated Swiss Albino mice skin carcinogenesis for measuring tissue transformation

    NASA Astrophysics Data System (ADS)

    Aruna, Prakasa R.; Hemamalini, Srinivasan; Ebenezar, Jeyasingh; Ganesan, Singaravelu

    2002-05-01

    The ultraviolet fluorescence emission spectra of skin tissues under different pathological conditions were measured at 280nm excitation. At this excitation wavelength, the normal skin showed a primary peak emission at 352nm and this primary peak emission from neoplastic skin shows a blue shift with respect to normal tissue. This blue shift increases as the stage of abnormality increases and it is maximum (19nm) for well-differentiated squamous cell carcinoma. This alteration is further confirmed from fluorescence excitation spectra of the tissues for 340nm emission. The study concludes that the change in the emission of tryptophan around 340nm may be due to partial unfolding of protein.

  5. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence

    PubMed Central

    Schuler, Benjamin; Lipman, Everett A.; Steinbach, Peter J.; Kumke, Michael; Eaton, William A.

    2005-01-01

    To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. PMID:15699337

  6. Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers

    SciTech Connect

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2006-01-01

    A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs), and non-MIPs bound with analytes to understand MIP’s binding behavior. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range of 0.11–0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime _=0.64 ns and a rotational correlation time _F =1.2–1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (_=2.03 ns and _F =2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in-situ.

  7. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  8. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  9. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  10. [Spectroscopic studies of guanidine hydrochloride-induced unfolding of hemoglobin].

    PubMed

    Li, Jin-Jing; Tang, Qian; Cao, Hong-Yu; Zhang, Yu-Jiao; Zhang, Tao; Zheng, Xue-Fang

    2012-09-01

    In the present paper, based on the ultraviolet-visible (UV-Vis) absorption spectroscopy, fluorescence spectroscopy, and stopped flow-fluorescence spectroscopy, the authors studied the protein unfolding process of hemoglobin induced by GdmHcl. The experiments result shows that there were two different procedures about GdmHcl inducing hemoglobin unfolding from the evidences of UV-Vis absorption spectrum and fluorescence phase diagrams. Namely, the hemoglobin subunit exhibits depolymerization, forming the intermediates when incubated with GdmHcl at the concentration of 1. 0 mol x L(-1). With the increase in the concentration, various subunit structure became loose gradually, and the protoheme collapsed eventually. UV-Vis absorption spectroscopy indicates that the addition of reductant can cooperate with the depolymerization of hemoglobin subunit and the disaggregation of protoheme. The reductant results in the unfolding procedure that hemoglobin from "three-state model" turns into "two-state model".

  11. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  12. Fluorescence spectroscopic properties of nitro-substituted diphenylpolyenes: effects of intramolecular planarization and intermolecular interactions in crystals.

    PubMed

    Sonoda, Yoriko; Tsuzuki, Seiji; Goto, Midori; Tohnai, Norimitsu; Yoshida, Masaru

    2010-01-14

    The steady-state absorption and fluorescence properties of (E,E,E)-1,6-diaryl-1,3,5-hexatrienes (2, aryl = 2-nitrophenyl; 3, aryl = 3-nitrophenyl; 4, aryl = 4-nitrophenyl) have been investigated in solution and in the crystalline state. The solid-state absorption spectra of 2-4 shifted to longer wavelengths than those in solution. A combination of theoretical calculations and single-crystal X-ray structure analyses shows considerable planarization of molecules in the solid state, which is mainly responsible for the spectral red shifts. The effects of intermolecular interactions on the absorption spectra appeared to be relatively small in these crystals. This is consistent with the monomeric origin of the solid-state emission. Molecule 2 was nonfluorescent in all solvents studied, probably due to the efficient nonradiative deactivation from ionic species produced by excited-state intramolecular proton transfer (ESIPT) along the C-H...O-type hydrogen bonds. The fluorescence of 3, observed only in medium polar solvents, originated from an intramolecular charge transfer (ICT*) state, while that of 4 derived from locally excited (LE*) and/or ICT* states depending on the solvent polarity. All three molecules exhibited LE* fluorescence in the solid state. No observation of ICT* emission in crystals strongly suggests the twisted geometries for ICT* (TICT) of 3 and 4 in solution. The measurable fluorescence from crystal 2 can be attributed to the restricted torsional motions in the solid excited state.

  13. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-05

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  15. Spectroscopic study of antileishmanial drug incubated in the promastigotes of Leishmania mexicana

    NASA Astrophysics Data System (ADS)

    Hung, J.; Castillo, J.; Jiménez, G.; Hasegawa, M.; Rodriguez, M.

    2003-11-01

    In this work we present spectroscopic study of Boldine (aporphine alkaloid) that possesses important biological activities, in particular, in interaction with the promastigotes of Leishmania mexicana. The results show the applicability of autofluorescence of this drug to determinate the possible mechanism of its biological action. The blue shift and hyperchromic effect in the emission spectrum of the drug in interaction with the parasite cells indicate an energy transference process between them. The morphological change of cell shape of the promastigotes treated with the drug is observed using confocal microscopy. This morphological cell-shape transformation evidences an important interaction between the drug studied and some protein of the parasite cell. Here we describe for the first time the fluorescence properties of the Boldine in the promastigotes of L. mexicana.

  16. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    PubMed

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  17. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  18. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  19. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    NASA Astrophysics Data System (ADS)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  20. Fluorescence microscopy studies on ALA-sensitized tissues

    NASA Astrophysics Data System (ADS)

    Huettmann, Gereon; Achtelik, Wolfgang; Loening, Martin; Sommer, Konrad; Diddens, Heyke C.

    1996-12-01

    Fluorescence microscopy has the potential to study the spatial distribution of photosensitizers in tissue samples with cellular or subcellular resolution. A fluorescence microscope was developed to study the distribution of photosensitizer in tissue samples by acquiring fluorescence images in various spectral ranges and spatially resolved fluorescence spectra both from identical samples. Both methods provide complementary information, since the fluorescence images show the distribution of the sensitizers with a high spatial resolution whereas spatially resolved fluorescence spectra can identify the sensitizers and separate their fluorescence from background light emission by the spectral shape of the fluorescence. Protoporphyrin IX (PPIX) distribution induced by 5-aminolevulinic acid (ALA) was studied by fluorescence microscopy in basal cell carcinoma (BCC) and in cervical intraepithelial neoplasia (CIN). In an attempt to understand the varying success in treating BCC with topically applied ALA the PPIX distribution was studied in BCC samples of 10 patients. A strong fluorescence was observed in tumor cells as well as in epidermis, sebaceous glands, and hair follicles. The depth of PPIX sensitization of the BCCs ranged from 0.4 to 3 mm and the ratio of tumor versus epidermal fluorescence of uninvolved skin was near one. In the BCCs an uneven sensitization with a lower fluorescence in the center of the tumor was often observed. Samples of the cervical mucosa also showed PPIX fluorescence in the endothelial layer, the malignant tissues and the glands. No increased fluorescence of the dysplastic lesions compared to the epithelium was observed.

  1. Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study.

    PubMed

    Taskent-Sezgin, Humeyra; Chung, Juah; Patsalo, Vadim; Miyake-Stoner, Shigeki J; Miller, Andrew M; Brewer, Scott H; Mehl, Ryan A; Green, David F; Raleigh, Daniel P; Carrico, Isaac

    2009-09-29

    The use of noncoded amino acids as spectroscopic probes of protein folding and function is growing rapidly, in large part because of advances in the methodology for their incorporation. Recently p-cyanophenylalanine has been employed as a fluorescence and IR probe, as well as a FRET probe to study protein folding, protein-membrane interactions, protein-protein interactions and amyloid formation. The probe has been shown to be exquisitely sensitive to hydrogen bonding interactions involving the cyano group, and its fluorescence quantum yield increases dramatically when it is hydrogen bonded. However, a detailed understanding of the factors which influence its fluorescence is required to be able to use this popular probe accurately. Here we demonstrate the recombinant incorporation of p-cyanophenylalanine in the N-terminal domain of the ribosomal protein L9. Native state fluorescence is very low, which suggests that the group is sequestered from solvent; however, IR measurements and molecular dynamics simulations show that the cyano group is exposed to solvent and forms hydrogen bonds to water. Analysis of mutant proteins and model peptides demonstrates that the reduced native state fluorescence is caused by the effective quenching of p-cyanophenylalanine fluorescence via FRET to tyrosine side-chains. The implications for the interpretation of p-cyanophenylalanine fluorescence measurements and FRET studies are discussed.

  2. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Yang, Ran; Liang, Huili; Qu, Ling-Bo

    2015-01-01

    In the work described on this paper, the inhibitory effect of 10 flavonoids on pepsin and the interactions between them were investigated by a combination of spectroscopic and molecular docking methods. The results indicated that all flavonoids could bind with pepsin to form flavonoid-pepsin complexes. The binding parameters obtained from the data at different temperatures revealed that flavonoids could spontaneously interact with pepsin mainly through electrostatic forces and hydrophobic interactions with one binding site. According to synchronous and three-dimensional fluorescence spectra and molecular docking results, all flavonoids bound directly into the enzyme cavity site and the binding influenced the microenvironment and conformation of the pepsin activity site which resulted in the reduced enzyme activity. The present study provides direct evidence at a molecular level to understand the mechanism of digestion caused by flavonoids.

  3. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    PubMed

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO(-)) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site.

  4. Combinatorial Approach to Studying Metal Enhanced Fluorescence from Quantum Dots

    NASA Astrophysics Data System (ADS)

    Le, Nguyet; Corrigan, Timothy; Norton, Michael; Neff, David

    2013-03-01

    Fluorescence is extensively used in biochemistry for determining the concentration or purity of molecules in a biological environment. In metal-enhanced fluorescence (MEF), the fluorescence molecules separated from a metal surface by several nanometers can be enhanced. The fluorescent enhancement is dependent on the size and spacing of the nanoparticles, as has been shown previously for a number of fluorophore molecules. Fluorescence from quantum dots is of particular interest because the quantum dots do not lose fluorescence ability when exposed to light and they have higher intensity of fluorescence. The purpose of this study is to determine the effect of size and spacing on fluorescence intensity when coupling gold nano-particles with quantum dots. We employ a combinatorial approach, depositing gold particles ranging in diameter from 30 nm to 130 nm with varied spacings onto the substrate, followed by a protein spacer-layer and quantum dots. The fluorescence signal from the metal enhanced quantum dots were determined by confocal microscopy.

  5. Covalent dyads of porphyrin-fullerene and perylene-fullerene for organic photovoltaics: Spectroscopic and photocurrent studies

    NASA Astrophysics Data System (ADS)

    Wróbel, Danuta; Lewandowska, Kornelia

    2011-07-01

    Supermolecular complexes of zinc porphyrin or perylenediimide as covalent dyads with fullerene (C 60) in chloroform and as Langmuir-Blodgett layers on an Au substrate were studied. In our studies we have used following spectroscopic methods: electronic absorption, fluorescence and electron spin resonance in solution. Also infrared absorption spectra in a KBr pellet and reflectance-absorption in Langmuir-Blodgett layers were monitored. Photocurrent generation in a photoelectrochemical cell was also studied. The redistribution of charge both upon porphyrin linkage to C 60 and when the systems are deposited on the Au substrate was shown. Photocurrent examinations show a great influence of the fullerene presence on photoresponse of the systems.

  6. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  7. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from L-leucine and glyoxal.

    PubMed

    Shakir, Mohammad; Shahid, Nida; Sami, Naushaba; Azam, Mohammad; Khan, Asad U

    2011-11-01

    The mononuclear Schiff base complexes of the type, [ML(CH(3)OH)(2)] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of L-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, (1)H NMR and (13)C NMR spectra. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.

    PubMed

    Kübler, Daniel; Ingenbosch, Kim N; Bergmann, Anna; Weidmann, Monika; Hoffmann-Jacobsen, Kerstin

    2015-12-01

    Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.

  9. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  10. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  11. Studies of tropical fruit ripening using three different spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Huang, Jing; Li, Tianqi; Wu, Xiuxiang; Svanberg, Sune; Svanberg, Katarina

    2014-06-01

    We present a noninvasive method to study fruit ripening. The method is based on the combination of reflectance and fluorescence spectroscopies, as well as gas in scattering media absorption spectroscopy (GASMAS). Chlorophyll and oxygen are two of the most important constituents in the fruit ripening process. Reflectance and fluorescence spectroscopies were used to quantify the changes of chlorophyll and other chromophores. GASMAS, based on tunable diode laser absorption spectroscopy, was used to measure free molecular oxygen in the fruit tissue at 760 nm, based on the fact that the free gases have much narrower spectral imprints than those of solid materials. The fruit maturation and ripening processes can be followed by studying the changes of chlorophyll and oxygen contents with these three techniques.

  12. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  13. Comparison between the fluorescence spectroscopy and the 125I albumin-labeling technique for the study of skin edema dynamics

    NASA Astrophysics Data System (ADS)

    da Silva Melo, Milene; Zangaro, Renato A.; Villaverde, Antonio G. J. B.; Antunes, Edson; Camargo, Enilton A.; Martins, Rodrigo A. B. L.; Ferreira, Denise M.; Pacheco, Marcos T. T.; Munin, Egberto

    2004-07-01

    Skin injury caused by chemicals substances as the carrageenan produces a local inflammatory reaction involving the liberation of mediators that leads to an increase in vascular permeability and, consequently, edema formation. The vascular permeability can be evaluated by measuring the amount of some extravasating specific dyes. The Evans blue dye is recommended due to its systemic effect and non-toxicity to the organism. That dye binds to the plasma albumin and emits radiation when excited, allowing for spectroscopic monitoring of the edema. In this study, the amount of extravasating plasma albumin in the site of the carrageenan-induced edema in Wistar rats is evaluated by fluorescence spectroscopy. The intensity of the Evans blue dye fluorescence signal for different edema evolution times is compared to the 125I labeled albumin data obtained with a g-counter. A dye laser (458 nm) was used as the fluorescence excitation source. The fluorescence intensity was taken at the 680 nm peak of the dye spectral emission. The spectroscopic data shows the dye emission intensity growing with the settling up of the edema and decreasing as the tissue recovers from the inflammatory stimulus. A good correlation between the spectroscopic and the g-counter data was obtained, which suggests that the Evans blue dye fluorescence is a promising technique for the qualitative and quantitative analysis of edema dynamics.

  14. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.

    PubMed

    Liu, Yingying; Zhang, Guowen; Liao, Yijing; Wang, Yaping

    2015-01-01

    Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes.

  15. Spectroscopic studies of carbon impurities in PISCES-A

    SciTech Connect

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W. . Inst. of Plasma and Fusion Research); Pospieszczyk, A. . Inst. fuer Plasmaphysik)

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and CO{sub 2} were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab.

  16. Specific binding and inhibition of 6-benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study.

    PubMed

    Xu, Qin; Lu, Yanni; Jing, Longyun; Cai, Lijuan; Zhu, Xinfeng; Xie, Ju; Hu, Xiaoya

    2014-04-05

    6-Benzylaminopurine (6-BA) is a kind of cytokinin which could regulate the activities of the antioxidant defense system of plants. In this work, its interaction with and inhibition of beef liver catalase have been systematically investigated using spectroscopic, isothermal titration calorimetric and molecular docking methods under physiological conditions. The fluorescence quenching of beef liver catalase (BLC) by 6-BA is due to the formation of 6-BA-BLC complex. Hydrogen bonds and van der Waals interactions play major roles in stabilizing the complex. The Stern-Volmer quenching constant, binding constant, the corresponding thermodynamic parameters and binding numbers were measured. The results of UV-vis absorption, three-dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopic results demonstrate that the binding of 6-BA results in the micro-environment change around tyrosine (Tyr) and tryptophan (Trp) residues of BLC. The BLC-mediated conversion of H2O2 to H2O and O2, in the presence and absence of 6-BA, was also studied. Lineweaver-Burk plot indicates a noncompetitive type of inhibition. Molecular docking study was used to find the binding sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  18. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  19. Spectroscopic study of demineralization and restoration processes in dental enamel

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana N.; Surmenko, Elena L.; Tuchin, Valery V.; Kishen, A.; Chebotarevsky, Yu. V.

    2007-07-01

    The spectroscopic study of dental enamel by LIBS (laser induced breakdown spectroscopy), FTIR (Fourier transform infrared) and XRD (X-ray diffraction) are represented. The changes of enamel structure and composition in process of natural (caries) and artificial demineralization and restoration were studied. In comparison of sound and carious enamel LIBS showed a decrease of the content of Ca, P and change of the content of some other macro-and trace elements (Mn, Na, Fe, Zn etc). The character of the elemental composition variation was stipulated by the concrete disease. Analysis of FTIR and XRD spectra of dental samples, subjected to artificial demineralization and restoration, showed that restoration action reveals slower, than demineralization. And in some cases the damage of crystals after restoration is more significant than after demineralization.

  20. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  1. Crystallographic and spectroscopic study on a known orally active progestin.

    PubMed

    Ferraboschi, Patrizia; Ciuffreda, Pierangela; Ciceri, Samuele; Grisenti, Paride; Castellano, Carlo; Meneghetti, Fiorella

    2015-12-01

    6,17α-Dimethyl-4,6-pregnadiene-3,20-dione (medrogestone, 2) is for a long time known steroid endowed with progestational activity. In order to study its crystallographic and NMR spectroscopic properties with the aim to fill the literature gap, we prepared medrogestone following a traditional procedure. A careful NMR study allowed the complete assignment of the (1)H and (13)C NMR signals not only of medrogestone but also of its synthetic intermediates. The structural and stereochemical characterizations of medrogestone together with its precursor 17α-methyl-3-ethoxy-pregna-3,5-dien-20-one were described by means of X-ray analysis, allowing a deepened conformational investigation.

  2. Spectroscopic Study of ThCl+ by Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael; Peterson, Kirk

    2016-06-01

    Despite the irreplaceable role experimental data plays for evaluating the performance of computational predictions, diatomic actinide species have not received much spectroscopic attention. As an early actinide element, thorium-containing species are ideal candidates for these types of studies. The electronic structure is expected to be relatively simple compared to later actinides, and therefore allows straightforward assessment of calculations. Here, we have studied ThCl+ for the first time via resonant two-photon ionization of jet-cooled ThCl produced by laser ablation of the metal reacted with dilute Cl2. Laser-induced Fluorescence (LIF) spectra have been recorded for the neutral molecule from 16000 - 23500 cm-1 in search of a suitable intermediate state for subsequent two-photon ionization experiments. Monochromator dispersion of the fluorescence has recovered the ground state vibration and anharmonic constants of ThCl. Resonant Two-Photon Ionization (R2PI) within a time-of-flight mass spectrometer was used to confirm ThCl production, and Pulsed Field Ionization Zero Kinetic Energy photoelectron spectroscopy (PFI-ZEKE) has been performed to identify the ionization energy as well as several of the low-lying states of the ThCl+ molecule. These constants have been predicted at the CASPT2 and CCSD(T) levels of theory, and a discussion of the calculations' performance will be presented alongside the recorded spectra.

  3. Spectroscopic study on binding of gentisic acid to bovine serum albumin.

    PubMed

    Garzón, Andrés; Bravo, Iván; Carrión-Jiménez, M Rosario; Rubio-Moraga, Ángela; Albaladejo, José

    2015-01-01

    The interaction of (gentisic acid) GA with (bovine serum albumin) BSA has been studied by different spectroscopic techniques. GA is a monoanionic specie at the working pH of 7.4, it was determined by combining UV-Vis absorption spectroscopy and theoretical calculations. A set of fluorescence quenching experiments at different temperatures was carried out employing the native fluorescence of BSA. A Stern-Volmer constant (KSV) of (2.07±0.12)×10(4) mol(-1) L and a binding constant (Ka) of (8.47±4.39)×10(3) were determined at 310 K. The static quenching caused by the BSA-GA complex formation seems to play a significant role in the overall quenching process. A single binding site on BSA for GA was observed. ΔH=-55.6±0.2 kJ mol(-1) and ΔS=-104.3±0.6 J mol(-1) K(-1) were determined in a set of experiments on the dependence of Ka with the temperature. The binding process is, therefore, spontaneous and enthalpy-driven. Van der Waals forces and hydrogen bonds could also play the major role in the binding mode. The secondary structure changes of BSA in the absence and presence of GA were studied by FTIR and UV-Vis absorption spectroscopy.

  4. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    NASA Astrophysics Data System (ADS)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  5. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  6. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  7. A theoretical and spectroscopic study of conformational structures of piroxicam

    NASA Astrophysics Data System (ADS)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  8. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGES

    Cao, R. X.; Sun, L.; Miao, B. F.; ...

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  9. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  10. Raman spectroscopic study of cyclohexane at pressures below 1000 MPa

    NASA Astrophysics Data System (ADS)

    Qiao, Erwei; Zheng, Haifei

    2017-10-01

    At present, the room temperature freezing pressure of cyclohexane is still uncertain, and the phase transition pressure of solid I - solid III is not reliable at ambient temperature. In this work, we have performed a Raman spectroscopic study of cyclohexane in a Moissanite anvil cell at pressures below 1000 MPa at 25 °C, and analyzed the characteristic of Raman brands νs(CH2), νas(CH2) and νb(Ring). Two phase transition pressures 80 MPa and 550 MPa were determined by a quartz pressure gauge, and they are the room temperature freezing pressure of cyclohexane and the phase transition pressure of solid I to solid III, respectively. Furthermore, from the phase diagram of cyclohexane, it is inferred that pressure plays an important role on the stability of cyclohexane as the main constituent of oil, and it can be beneficial to understanding the formation, migration and preservation of petroleum in subterranean rock strata.

  11. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  12. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  13. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  14. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  15. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    NASA Astrophysics Data System (ADS)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  16. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  17. Spectroscopic Study of Low Mass Members of NGC 2244

    NASA Astrophysics Data System (ADS)

    Alty, Michelle; Ybarra, Jason E.; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2017-01-01

    The results of a near-infrared spectroscopic study of low-mass stars in open cluster NGC 2244 are presented. JH spectra of the stars were obtained using the FLAMINGOS instrument at KPNO. To determine cluster membership, we used Spitzer Space Telescope mid-infrared photometry along with X-ray detections from the Chandra X-ray Observatory. The stars were spectral typed using absorption line ratios and spectral shapes. The stars were then plotted on an H-R diagram along with theoretical isochrones. We discuss these results in context of cluster evolution in the Rosette Molecular Complex. Work supported, in part, by the Dr. John W. Martin Summer Science Research Institute at Bridgewater College.

  18. Spectroscopic Studies of Quantum Well Structures in Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perry, Clive H.

    1998-03-01

    Magneto-photoluminescence spectroscopy (MPS) at low temperatures is a powerful technique for investigating the ground and excited states of high quality quantum well-type semiconductor heterostructures. The spectra are strongly influenced by electron-electron interactions and the method offers a complimentary tool to electrical transport studies. We have established a MPS facility at NHMFL-LANL and have undertaken a comprehensive investigation of magneto-excitonic and Landau transitions in a large variety of undoped and doped (two-dimensional electron gas, 2DEG) GaAs/AlGaAs and InGaAs/GaAs quantum-well structures. Excitation energies are provided by UV, visible, and NIR lasers. Fiber optic probes are used to switch between steady state (to 18 tesla) and short-pulsed (to 65 tesla) magnetic fields applied perpendicular (Faraday geometry) and parallel (Voigt geometry) to the growth axis of the 2D layers. The experimental techniques, optical layout, and data acquisition are reviewed i n some detail. Short-pulse magnets require that the spectroscopic data acquisition to be obtained in a 2 ms time-frame in the 'flat-top' region at the peak of the field. A broad range of samples have been investigated as a function of temperature, sample geometry, and high pressure. Examples of MPL spectra of single and coupled double quantum wells, modulation-doped quantum wells, single interface structures, and other related semiconductor heterojunction structures are given. The recently commissioned long-pulse magnet at NHMFL-LANL offers several new exciting possibilities: (i) The long exponential decay associated with the crow-bar mode has the potential for spectroscopic studies from 60 -10 T in 0.5 T intervals from a single pulse. (ii) Field steps programmed to last from 100-500 ms or longer offer the opportunity for time-resolved MPL spectroscopy in the 60 - 10 T range.

  19. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  20. Laser Excited Fluorescence Studies Of Black Liquor

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.

    1986-10-01

    Laser excited fluorescence of black liquor was investigated as a possible monitoring technique for pulping processes. A nitrogen pumped dye laser was used to examine the fluorescence spectrum of black liquor solutions. Various excitation wavelengths were used between 290 and 403 nm. Black liquor fluorescence spectra were found to vary with both excitation wavelength and black liquor concentration. Laser excited fluorescence was found to be a sensitive technique for measurement of black liquor with good detection limits and linear response over a large dynamic range.

  1. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  2. Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength.

    PubMed

    Schaberle, Fábio A; Kuz'min, Vladimir A; Borissevitch, Iouri E

    2003-05-02

    Spectroscopic characteristics of a cyanine dye with two chromophores (biscyanine dye, BCD) in aqueous solutions and effects of NaCl and DNA upon these characteristics have been studied by optical absorption, circular dichroism (CD) and fluorescence spectroscopies. In homogeneous solutions, BCD is characterized by intense optical absorption (epsilon =1.33 x 10(5) M(-1) x cm(-1)) and weak fluorescence (phi(fl)=0.018) in the wavelength region greater than 600 nm. The dye forms H-aggregates at low concentrations (10(-6) M). NaCl stimulates the formation of both H- and J-aggregates of the dye at much lower dye concentrations, while DNA in low concentrations (<10(-6) M) stimulated the formation of just J-aggregates on the surface of the DNA molecule. Higher DNA concentrations induce the dye to disaggregate, and there exists an equilibrium between three dye forms: free monomers, J-aggregates and bound monomers, the maximum content of J-aggregates was observed at [DNA]/[BCD]=0.6+/-0.2 and total disaggregation at [DNA]/[BCD]=190+/-20. J-aggregates are characterized by phi(fl)=0.05 and bound monomers by phi(fl)=0.44. In the presence of NaCl, total disaggregation was observed at [DNA]/[BCD]=570+/-10 due to competition between Na(+) and the dye molecules for DNA electronegative binding sites.

  3. Interaction of alkali, alkaline earth and transition metal ions with a ketocyanine dye: a comparative electronic spectroscopic study.

    PubMed

    Sardar, Sanjib Kr; Srikanth, Kambalapalli; Mandal, Prasun K; Bagchi, Sanjib

    2012-12-01

    Interaction of a dye which is structurally similar to a ketocyanine dye with metal ions (alkali, alkaline earth and transition metal) has been studied by monitoring the electronic absorption, steady state and time resolved fluorescence parameters of the dye. The dye (S(0) state) forms a 1:1 complex with cations as indicated by the appearance of a new band at a longer wavelength. Equilibrium constant and other thermodynamic parameters for complexation have been determined. The interaction between the dye and the cation is mostly electrostatic in nature. Spectroscopic results have been supplemented by DFT calculation. For very low concentration of cations, where complexation is insignificant, the absorption band of the dye undergoes a slight blue shift. Enhancement of fluorescence intensity has been observed in the same concentration range. Both phenomena have been explained in terms of formation of a weak association complex where one/more cation replace equivalent solvent molecules in the cybotatic region around the dye. The binding constant of the weak association complex involving cation and the dye (S(1) state) has been determined and has been found to depend on the charge-to-size ratio of the cations. Measurement of fluorescence lifetime of the dye indicates that the association complex is slowly decaying relative to solvated dye. At higher concentration of metal ions, however, fluorescence of the dye is quenched by the metal ions. A red shift of fluorescence maximum has also been observed in this concentration range.

  4. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    We have postulated that, in the case of tetragonal chicken egg white lysozyme, crystal growth occurs by the addition of pre-critical nuclei sized n-mers that form in the bulk solution, and that the n-mer growth units were multiples of the tetrameric 4(sub 3) helical structure. These have the strongest intermolecular bonds in the crystal and are therefore likely to be the first species formed. High resolution AFM studies provide strong supporting evidence for this model, but the data also suggest that the actual species in solution may not be identical in structure to that found in the crystal. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process, using covalent fluorescent derivatives which crystallize in the characteristic P4(sub 3)2(sub 1)2(sub 1) space group. FRET studies are being carried out between the cascade blue (CB-lys, donor, Ex(sub max) 366 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex(sub max) 430 nm, Em 528 nm) asp101 derivatives. The estimated R(sub 0) for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approx. 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 4(sub 3) helix. The short donor lifetime of 2.80 ns (chi(sup 2) = 0.644), coupled with the large average distances between the molecules (greater than or equal to 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Lifetime data show that CB-lys has a single lifetime when it is the only species in solution. Similarly, LY-lys also exhibits a single lifetime of 4.63 ns (chi(sup 2) = 0.42) when alone in solution. Addition of LY-lys to CB-lys results in the appearance of a third lifetime component of 0.348ns for the CB-lys. The fractional intensities of the different species present can be used to estimate the distribution of monomer and n-mers in solution. The self

  5. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    We have postulated that, in the case of tetragonal chicken egg white lysozyme, crystal growth occurs by the addition of pre-critical nuclei sized n-mers that form in the bulk solution, and that the n-mer growth units were multiples of the tetrameric 4(sub 3) helical structure. These have the strongest intermolecular bonds in the crystal and are therefore likely to be the first species formed. High resolution AFM studies provide strong supporting evidence for this model, but the data also suggest that the actual species in solution may not be identical in structure to that found in the crystal. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process, using covalent fluorescent derivatives which crystallize in the characteristic P4(sub 3)2(sub 1)2(sub 1) space group. FRET studies are being carried out between the cascade blue (CB-lys, donor, Ex(sub max) 366 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex(sub max) 430 nm, Em 528 nm) asp101 derivatives. The estimated R(sub 0) for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approx. 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 4(sub 3) helix. The short donor lifetime of 2.80 ns (chi(sup 2) = 0.644), coupled with the large average distances between the molecules (greater than or equal to 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Lifetime data show that CB-lys has a single lifetime when it is the only species in solution. Similarly, LY-lys also exhibits a single lifetime of 4.63 ns (chi(sup 2) = 0.42) when alone in solution. Addition of LY-lys to CB-lys results in the appearance of a third lifetime component of 0.348ns for the CB-lys. The fractional intensities of the different species present can be used to estimate the distribution of monomer and n-mers in solution. The self

  6. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies.

    PubMed

    Pahari, Biswa Pathik; Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K

    2015-02-12

    We performed spectroscopic and molecular modeling studies to explore the interaction of the bioactive plant flavonol robinetin (3,7,3',4',5'-OH flavone), with the carrier protein human serum albumin (HSA). Multiparametric fluorescence sensing, exploiting the intrinsic "two color" fluorescence of robinetin (comprising excited state intramolecular proton transfer (ESIPT) and charge transfer (CT) emissions) reveals that binding to HSA significantly affects the emission and excitation profiles, with strongly blue-shifted (∼29 nm) normal fluorescence and remarkable increase in the ESIPT fluorescence anisotropy (r) and lifetime (τ). Flavonol-induced HSA (tryptophan) fluorescence quenching data yield the dynamic quenching constant (KD) as 5.42 × 10(3) M(-1) and the association constant (Ks) as 5.59 × 10(4) M(-1). Time-resolved fluorescence anisotropy decay studies show dramatic (∼170 times) increase in the rotational correlation time (τ(rot)), reflecting greatly enhanced restrictions in motion of robinetin in the protein matrix. Furthermore, prominent induced circular dichroism (ICD) bands appear, indicating that the chiral environment of HSA strongly perturbs the electronic transitions of the intrinsically achiral robinetin molecule. Molecular docking calculations suggest that robinetin binds in subdomain IIA of HSA, where specific interactions with basic residues promote ground state proton abstraction and stabilize an anionic species, which is consistent with spectroscopic observations.

  7. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  8. Spectroscopic and structural study of proton and halide ion cooperative binding to gfp.

    PubMed

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-07-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E(2)GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E(2)GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5-10, of a single fully protonated E(2)GFP.halogen complex. To resolve the structural determinants of E(2)GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I(-), Br(-), and Cl(-) bound E(2)GFP. Remarkably the first high-resolution (1.4 A) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 A) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E(2)GFP.halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed.

  9. Spectroscopic and Structural Study of Proton and Halide Ion Cooperative Binding to GFP

    PubMed Central

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-01-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E2GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E2GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5–10, of a single fully protonated E2GFP·halogen complex. To resolve the structural determinants of E2GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I−, Br−, and Cl− bound E2GFP. Remarkably the first high-resolution (1.4 Å) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 Å) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E2GFP·halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed. PMID:17434942

  10. Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.

    2011-03-01

    The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative

  11. Laser irradiated gas jet: A spectroscopic experimental and theoretical study

    SciTech Connect

    Lee, R.W.; Matthews, D.L.; Koppel, L.; Busch, G.E.; Charatis, G.; Dunning, M.J.; Mayer, F.J.

    1983-09-01

    We present x-ray spectroscopic measurements of the longitudinal electron density profile and the longitudinal and transverse electron temperature profiles for a laser irradiated gas jet. We attempt to verify our spectroscopic method by laser interferometry and by comparison of inferred quantities to those determined from laser plasma interaction simulations. Because temperature profiles were time dependent, we used a theoretical time dependent radiation transport code to analyze the data.

  12. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA.

    PubMed

    Paul, Puja; Suresh Kumar, Gopinatha

    2013-04-15

    In this study a detailed characterization of the binding aspects of three phenothiazinium dyes, toluidine blue O (TBO), azure A and azure B with herring testes DNA is presented employing spectroscopic techniques. The absorbance and fluorescence properties of these dyes have been remarkably modified upon binding with DNA and the interaction is manifested through noncooperative binding as revealed form non-linear Scatchard plots with negative slopes at all binding ratios. The binding clearly revealed the high preference of TBO to DNA followed by the other two dyes azure A and azure B. The affinity of TBO was higher by about two times than that of the azures. From the series of studies using absorption, steady-state emission, the effect of ferrocyanide ion-induced steady-state fluorescence quenching, fluorescence polarization anisotropy, circular dichroism, the mode of binding of these dyes to the DNA double helix has been substantiated to be principally intercalative in nature. The stoichiometry of the association of these dyes to DNA was determined by the continuous variation analysis of Job from fluorescence data. The conformational aspects of the interaction was delineated from circular dichroism studies wherein higher perturbation was observed with TBO. Hydrodynamic study using viscosity measurements of linear rod like DNA confirmed that the binding was intercalative and strongest for TBO and weaker for azure A and azure B. The utility of the present work lies in exploring the potential binding applicability of these dyes to DNA for their development as effective therapeutic agents.

  13. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides.

    PubMed

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-05

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 10(6)M(-1) to poly(A).poly(U), and 10(5)M(-1) to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U)>poly(C).poly(G)>poly(I).poly(C) for both dyes.

  14. Optical studies of dynamical processes in fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Liebig, Carl; Dennis, William; Kirkpatrick, Sean; Naik, Rajesh; Stone, Morley

    2002-03-01

    Green fluorescent protein (GFP) extracted from the bioluminescent jellyfish Aequorea Victoria[1] and its mutants are novel nanoscale systems, which have been shown to exhibit desirable linear and nonlinear optical properties[2]. In this paper, a combination of both linear and nonlinear optical spectroscopic techniques was used to investigate dynamical processes in fluorescent proteins in both aqueous solution and an organic polymer matrix. Experimental results were analyzed in terms of a Brownian oscillator model[3] and by comparison to computer simulations. [1] M. Chalfie, G. Euskirchen, W. W. Ward and D. C. Prasher, Science 263 (1994) 802. [2] Sean M. Kirkpatrick, Rajesh R. Naik, Morley O. Stone, J. Phys. Chem. B 105 (2001) 2867. [3] S. Mukamel, "Nonlinear Optical Spectroscopy", (Oxford University Press, New York, 1995) pp. 227.

  15. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation.

    PubMed

    Suess, Daniel L M; Britt, R David

    2015-09-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H(+) and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN(-) ligands of the H-cluster, tracing (57)Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN(-) ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

  16. BH2 revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-01

    The spectroscopy of gas phase BH2 has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A ˜ 2 B 1 ( Π u ) - X ˜ 2A1 band system of 11BH2, 10BH2, 11BD2, and 10BD2 have been observed for the first time. The free radicals were "synthesized" by an electric discharge through a precursor mixture of 0.5% diborane (B2H6 or B2D6) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH2 were calculated for energies up to 22 000 cm-1 above the X ˜ (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm-1) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  17. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  18. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  19. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    SciTech Connect

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  20. The spectroscopic study of simple polyatomic molecules by synchrotron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaminski, Lech

    This thesis describes the spectroscopic study of simple poly-atomic molecules, for example NO and Cl2O by UV radiation derived from synchrotron and laser sources. Synchrotron studies were carried out at the Daresbury Laboratory Synchrotron Radiation Source, and the laser studies performed at University College London. The thesis is composed of six chapters. The first chapter discusses molecular structure; UV absorption of photons by simple molecules and describes the modern techniques of Resonance Enhanced Multi Photon Ionisation (REMPI) and Laser Induced Fluorescence (LIF) processes. Chapter two describes the apparatus and the experimental techniques developed during this project at the Daresbury Laboratory Synchrotron Radiation Source. Details are given on the different photoabsorption cells that were built and used, as well as details of synthesis plants used to create short lived molecules of particular importance to atmospheric chemistry, for example N2O5. Chapter three gives a full description of the laser system constructed to study REMPI and LIF processes. The data collection and experimental methodology of the final experimental configuration to study REMPI phenomena is also detailed. Chapter four describes the results obtained by photoabsorption studies for the atmospheric nitrogen and chlorine oxides (Cl2O, N2O5 and ClONO2) Chapter five gives an overview of the results obtained by photoabsorption studies of Polycyclic Aromatic Hydrocarbons. Chapter six presents conclusions of the current work and discusses future experiments that may be undertaken in the apparatus developed during this PhD program.

  1. Spectroscopic and DFT study of 3-quinolyl-α-aminophosphonates

    NASA Astrophysics Data System (ADS)

    Juribašić, Marina; Tušek-Božić, Ljerka

    2009-04-01

    Spectroscopic and DFT study of two types of 3-quinolyl-α-aminophosphonate derivatives obtained by one-pot microwave-assisted synthesis of quinoline-3-carboxaldehyde and aniline as well as 3-aminoquinoline and benzaldehyde, respectively, with diethyl phosphite, have been described. Besides the diethyl [α-anilino- N-(3-quinolylmethyl)]phosphonate ( 1) and diethyl [α-(3-quinolylamino)- N-benzyl]phosphonate ( 4) as the main reaction products, in both cases some unexpected monoester phosphonate derivatives were obtained as the by-products. In the first case along with diester 1, its corresponding monoethyl ester ( 2) and one monoethyl dihydrophosphonate-phosphate derivative ( 3) were formed, while in the second case diester 4 and a hydrogen phosphonamidate ( 5) were isolated. All quinoline-based α-aminophosphonates ( 1- 5) have been characterized by IR spectroscopy, and the results obtained are compared and discussed with those obtained by the NMR studies. Combining experimental IR, 1H and 13C NMR spectra with DFT calculations, most intensive IR spectral bands of diesters 1 and 4, along with 1H and 13C NMR resonances of 1, 2 and 4 derivatives, were assigned.

  2. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  3. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  4. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation.

  5. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  6. Spectroscopic study of HNO3 dissociation on ice.

    PubMed

    Marchand, Patrick; Marcotte, Guillaume; Ayotte, Patrick

    2012-12-13

    A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K.

  7. Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Vega, Alberto; Ligero, Pablo; Farrera-Rebollo, Reynold R; Mendoza-Pérez, Jorge A; Calderón-Domínguez, Georgina; Vera, Norma Güemes

    2016-10-01

    The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

  8. Spectroscopic studies of cryogenic fluids: Benzene in propane

    NASA Astrophysics Data System (ADS)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  9. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  10. Spectroscopic and molecular docking studies on chlorambucil interaction with DNA.

    PubMed

    Charak, Sonika; Shandilya, Manish; Tyagi, Gunjan; Mehrotra, Ranjana

    2012-11-01

    Chlorambucil (CMB) is an anticancer drug used for the treatment of variety of cancers. Structural and conformational changes associated with DNA after binding with CMB were explored using spectroscopic techniques to get insight into the mechanism of action of CMB at molecular level. Different molar ratios of CMB-DNA complex were prepared with constant DNA concentration under physiological conditions. FTIR spectroscopy, UV-visible spectroscopy, CD spectroscopy and molecular docking studies were employed to determine the binding site and binding constant of CMB with DNA. The results show CMB binds DNA through nitrogenous bases (thymine, guanine and cytosine). The binding constant was calculated to be 1.3 × 10³ M⁻¹, which suggests weak binding of CMB with DNA double helix. FTIR and CD results show that CMB do not disturb native B-conformation of DNA and it continues to remain in its B conformation even at higher concentrations of CMB. The molecular docking results are in corroboration with our experimental results and provides structural insight into the interaction site. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel

    SciTech Connect

    Sepehri, Saghar; Feaver, Aaron M.; Shaw, Wendy J.; Howard, Christopher J.; Zhang, Qifeng; Autrey, Thomas; Cao, Guozhong

    2007-12-27

    The reaction pathways leading to the thermal decomposition of solid state ammonia borane (AB) incorporated in carbon cryogels (CC) have been studied by spectroscopic methods. The time dependent thermal decomposition was followed by in situ 11B NMR and showed a significant increase in hydrogen release kinetics. Both 11B NMR and Fourier Transform Infrared Spectroscopy (FTIR) show new reaction products formed in the thermal decomposition of AB-CC that are assigned to reactions with surface oxygen groups. The results indicate that incorporation of AB in CC enhance kinetics due to reactions with residual surface-bound oxygen functional groups. The formation of new products with surface-O-B bonds is consistent with the greater reaction exothermicity observed when hydrogen is released from AB-CC materials. Scanning electron microscopy (SEM) shows different morphology of AB in ammonia borane – carbon cryogel (AB-CC) nanocomposite as compared to neat AB. Support for this work is provided by NSF (DMR-0605159), WTC, and EnerG2 LLC as well as the DoE Center of Excellence in Chemical Hydrogen Storage funded by the DOE H2 Program. FTIR experiments were performed in Professor Zhang’s lab in MSE department at UW. Part of this research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, located at the Pacific Northwest National Laboratory, which is operated by the Battelle for the U.S. Department of Energy.

  12. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-05

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  14. Using fluorescence for studies of biological membranes: a review

    NASA Astrophysics Data System (ADS)

    Kyrychenko, Alexander

    2015-12-01

    Fluorescence techniques have become powerful and widely used tools for studies of biochemical and biophysical processes occurring in biological membranes. Various fluorescence methods have played and continue to play key roles in modern membrane science, so that there have been several focused reviews on this topic. Here, I present the progress and recent achievements in various fluorescence approaches commonly utilized in studies of biological membranes. Applications of numerous fluorescence methods have been reviewed, including single molecule detection, confocal scanning fluorescence microscopy and fluorescence lifetime imaging. I focus on the benefits and limitations of various fluorescence techniques and their combinations, as well as the available methods of in vivo studying. A separate section is dedicated to discussing and comparing different classes of fluorescent membrane probes and their applications to the study of biological membranes. The review should provide researchers from chemistry, biochemistry, and biophysics with the necessary background to identify a range of suitable fluorescence methods in order to successfully design and conduct experimental studies on model lipid bilayers and biological membranes.

  15. [Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area].

    PubMed

    Yang, Ce; Zhong, Ning-Ning; Shui, Yu-Lei; Wang, Fei-Yu; Chen, Dang-Yi

    2008-01-01

    Three-dimensional excitation emission matrix was applied to characterize the fluorescence properties of dissolved organic matter in various waters of Shilong coal-mining area. Fluorescence peak I (fulvic-like) and peak II (humic-like) were strong, while peak IV and peak V (protein-like) were weak or even undetected in some samples. Fluorescence peaks in various waters and different zones showed great difference in intensities and the fluorescence peaks in underground water tended to be much lower than those of surface waters. Furthermore, the fluorescence peaks of rivers and lakes were higher than those of mine drainage, and also the fluorescence peaks in coking zone and coal mining zone were higher than those in sewage-irrigated zone, or even much higher than those in farming zone. The reason may be that coal mining activities and coal industry can bring plenty of organic matter from coal to surroundings. Meanwhile, surface water would accept mine drainage, waste water of coal-washing and sewage from daily life easier than underground water, so surface water can be polluted seriously. Fluorescence peaks in waters from coal mining area are little influenced by pH of the water but can be influenced by the content of Ca2+ to water in some extent.

  16. Interaction of fluorescence dyes with 5-fluorouracil: A photoinduced electron transfer study in bulk and biologically relevant water

    NASA Astrophysics Data System (ADS)

    Kuchlyan, Jagannath; Banik, Debasis; Kundu, Niloy; Roy, Arpita; Sarkar, Nilmoni

    2014-10-01

    The interactions of widely used chemotherapeutic drug, 5-fluorouracil (5FU) with coumarin dyes have been investigated for the first time using steady-state and time-resolved fluorescence spectroscopic measurements. The fluorescence quenching along with the decrease in lifetimes of excited state of coumarin derivatives with gradual addition of 5FU is explained by photoinduced electron transfer (PET) mechanism. Our studies were performed in bulk water and confined water of AOT (aerosol OT) reverse micelle to investigate the effect of confinement on PET dynamics. The feasibility of PET reaction for coumarin-5FU systems is investigated calculating the standard free energy changes using the Rehm-Weller equation.

  17. Luminescence techniques and characterization of the morphology of polymer latices 2. Fluorescence lifetime, phosphorescence and fluorescence anisotropy studies.

    PubMed

    Soutar, I; Swanson, L; Annable, T; Padget, J C; Satgurunathan, R

    2006-11-01

    Five poly(n-butyl methacrylate), PBMA, latex dispersions have been prepared, each incorporating a different fluorescent label, via a two-stage seeded emulsion polymerization. The resultant latices contain ca. 35% by weight total solids and are of 80 (+/-10) nm diameter as determined by photon correlation spectrometry. Luminescence spectroscopic techniques, namely fluorescence (and phosphorescence) excited state lifetime measurements in addition to time-resolved anisotropy experiments have provided useful information regarding the morphology, microviscosity and water permeability of the resultant particles. A picture of the PBMA colloid emerges of an interior which is highly viscous and water impermeable in nature. Indeed, the environment is protective enough to sustain room temperature stabilized phosphorescence from both an acenaphthylene and 9-phenanthrylmethyl methacrylate labeled dispersion through simple nitrogen purging of the solutions. However, the current spectroscopic measurements should be viewed with the knowledge that each luminescent label may fashion its own distinctive microenvironment within the latex during polymerization.

  18. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  19. Spectroscopic and theoretical studies of charge-transfer interaction of 1-(2-pyridylazo)-2-napthol with nitroaromatics

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Singh, Bula

    2017-05-01

    1-(2-Pyridylazo)-2-napthol (hereafter 1Q) is widely used as a chelating ligand applied in chelatometric, spectrophotometric analysis of metal ions. It appeared from the literature survey that no inclusion complex of 1Q was reported with nitroaromatics. The formation of charge-transfer complex gives an opportunity to improve the physico-chemical properties of different donors. So the complex of 1Q with 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), picric acid (PA), and 3,5-dinitrosalicylic acid (3,5-DNSA) was described in this work in methanol medium. The ground and excited state binding constants and other spectroscopic data have been determined using UV-vis and fluorescence spectroscopic studies. All the complexes have been synthesized and characterized using FT-IR, 1H NMR, and elemental analysis. Spectroscopic data reveal that 1Q joins by a N+sbnd Hsbnd O- type hydrogen bond with nitroaromatics. Job's plot of the continuous variation of absorbance indicates that stoichiometry of CT-complex was 1:1. Thermal stability of the synthesized complex has determined by TGA-DTA analysis. Energy-minimization DFT calculation further supported the formation of the H-bonded charge-transfer adduct.

  20. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  1. Contribution to the spectroscopic study of cytostatics molecules

    NASA Astrophysics Data System (ADS)

    Staicu, Angela; Pascu, Mihail-Lucian; Mogos, Ioan; Enescu, Mironel; Truica, Sorina; Voicu, Letitia; Gazdaru, Doina M.; Radu, Alina; Gazdaru, S.

    2001-06-01

    The effect of UV irradiation of methotrexate was investigated by steady state absorption and fluorescence spectroscopy. Major modifications on absorption bands were detected upon irradiation fluence greater than 59J/cm2. In addition the irradiated solutions become strongly fluorescent. The detected changes are not linear with the exposure time suggesting that the photo-induced chemical processes are complex.

  2. Characterization of two quinone radicals in the NADH:ubiquinone oxidoreductase from Escherichia coli by a combined fluorescence spectroscopic and electrochemical approach.

    PubMed

    Hielscher, Ruth; Yegres, Michelle; Voicescu, Mariana; Gnandt, Emmanuel; Friedrich, Thorsten; Hellwig, Petra

    2013-12-17

    The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. It was proposed that the electron transfer involves quinoid groups localized at the end of the electron transfer chain. To identify these groups, fluorescence excitation and emission spectra of Escherichia coli complex I and its fragments, namely, the NADH dehydrogenase fragment containing the flavin mononucleotide and six iron-sulfur (Fe-S) clusters, and the quinone reductase fragment containing three Fe-S clusters were measured. Signals sensitive to reduction by either NADH or dithionite were detected within the complex and the quinone reductase fragment and attributed to the redox transition of protonated ubiquinone radicals. A fluorescence spectroscopic electrochemical redox titration revealed midpoint potentials of -37 and- 235 mV (vs the standard hydrogen electrode) for the redox transitions of the quinone radicals in complex I at pH 6 with an absorption around 325 nm and a fluorescence emission at 460/475 nm. The role of these cofactor(s) for electron transfer is discussed.

  3. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  4. Fibreoptic fluorescent microscopy in studying biological objects

    SciTech Connect

    Morozov, A N; Turchin, Il'ya V; Kamenskii, V A; Fiks, I I; Lazutkin, A A; Bezryadkov, D V; Ivanova, A A; Toptunov, D M; Anokhin, K V

    2010-11-13

    The method of fluorescent microscopy is developed based on employment of a single-mode fibreoptic channel to provide high spatial resolution 3D images of large cleared biological specimens using the 488-nm excitation laser line. The transverse and axial resolution of the setup is 5 and 13 {mu}m, respectively. The transversal sample size under investigation is up to 10 mm. The in-depth scanning range depends on the sample transparency and reaches 4 mm in the experiment. The 3D images of whole mouse organs (heart, lungs, brain) and mouse embryos obtained using autofluorescence or fluorescence of exogenous markers demonstrate a high contrast and cellular-level resolution.

  5. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card. © The Author(s) 2015.

  6. Lead sorption on ruthenium oxide: a macroscopic and spectroscopic study.

    PubMed

    Scheckel, Kirk G; Impellitteri, Christopher A; Ryan, James A

    2004-05-15

    The sorption and desorption of Pb on RuO2.xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity and interaction of nearest atomic neighbors, bond distances (R), and coordination numbers (N). The kinetics of the Pb-Ru-oxide sorption reaction are rapid with the equilibrium loading of Pb on the surface achieving approximately 1:1 wt/wt (129 micromol m(-2)). XAS data indicate that Pb adsorbed as bidentate innersphere complexes with first shell Pb-O parameters of RPb-O = 2.27 A and NPb-O = 2.1-2.5. Pb-Ru interatomic associations suggest two distinct bidentate surface coordinations of Pb to edges (RPb-RuI approximately 3.38 A, NPb-RuI approximately 1.0) and shared corners (RPb-RuII approximately 4.19 A, NPb-RuII approximately 0.8) on RuO2 octahedra (cassiterite-like structure), and an additional second neighbor backscattering of Pb indicates the formation of Pb-Pb dimers (RPb-Pb degrees 3.89 A, NPb-Pb approximately 0.9). Desorption studies as a function of aging time (1 h to 1 year) using a continuous stirred-flow reactor with a background electrolyte (0.01 M NaNO3, pH 6) demonstrated that Pb was tightly bound (99.7-99.9% retained). The Pb sorption capacity and retention on RuO2.xH2O is greater than that of other metal oxides examined in the literature. The results of this study imply that RuO2.xH2O may serve as a high capacity remediation treatment media.

  7. Spectroscopic study of graphene oxide membranes exposed to ultraviolet light

    SciTech Connect

    Schwenzer, Birgit; Kaspar, Tiffany C.; Shin, Yongsoon; Gotthold, David W.

    2016-05-16

    Research on graphene oxide (GO) as anything but a precursor material for synthesizing graphene started to pick up in 20061,2 and was soon followed by a first report of freestanding GO membranes (also referred to as GO paper) from R. S. Ruoff’s group at Northwestern University.3 The first GO membranes were prepared by vacuum filtration. More recently, larger scale GO membranes have been prepared by tape casting4 and other methods.5 In step with the development of new fabrication techniques, GO membranes are now tested for a wide array of applications6 ranging from energy-related4,7 or biomedical8 applications to more conventional uses for filtration9 and dehumidification.10 For all these proposed and implemented applications it remains to be seen how sensitive each of them is with respect to chemical and physical changes of the GO membranes over time. In this study, we report the effects of UV exposure on 2D-hierarchically stacked (Fig. S1 in ESI†) GO membranes. Macroscopically observable changes, such as darkening and mechanical deformation, have been correlated to chemical changes at the molecular level through spectroscopic measurements. Not only do the results of this work offer insights into the stability of GO membranes under UV light, but the findings will enable researchers, who are studying the use of these materials for different applications, to better understand the shelf life and packaging requirements for GO membranes. Furthermore, our results demonstrate the feasibility of deep ultraviolet (DUV) photolithography for graphene oxide-based devices. This approach is readily scalable as opposed to previous reports on photolithographic patterned reduction of GO to graphene by AFM,11 electron-beam12 or with an extreme ultraviolet (λ = 46.9 nm) laser.13

  8. A spectroscopic study of anomalous stellar populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney Elizabeth

    A population of stars exists in the old, open cluster M67, whose photometry, color magnitude diagram locations and associated evolutionary states cannot be explained by current, standard single star evolution theory. These stars are often referred to as "yellow straggler" stars. Yellow stragglers have been identified in multiple star clusters suggesting that these stars constitute a real population. Additionally, according to independent studies, at least some of the yellow straggler stars in M67 are likely cluster members. Therefore, cluster non-membership is not a sufficient explanation for the observed anomalous photometry of these stars. It is possible that the yellow stragglers occupy their precarious color magnitude diagram positions as a result of the evolution of mass transfer blue straggler stars. These are stars which have been formed by Roche Lobe overflow mass transfer in close binary systems. If this the case for the yellow stragglers, it is hypothesized that they could potentially exhibit two spectroscopic characteristics that can be indicative of this type of mass transfer system. Specifically, variable radial velocities can be used to indicate that the yellow stragglers exist in binary systems and enhancements of s-process elements in yellow stragglers can indicate Roche Lobe overflow mass transfer from a once asymptotic giant branch star which has since evolved into a white dwarf. This dissertation details the radial velocity survey and the chemical abundance analysis that have been conducted to investigate the yellow stragglers with regard to this hypothesis. The radial velocity survey revealed that eight of the ten yellow stragglers studied exhibit variable radial velocities indicating that the yellow straggler population of M67 possess a high binary frequency. However, the chemical abundance analysis revealed that none of the yellow stragglers exhibited enhancements of the s-process elements Y and Ba. Therefore, a history which involves Roche

  9. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  10. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  11. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  12. Study on the interaction between Besifloxacin and bovine serum albumin by spectroscopic techniques.

    PubMed

    Yu, Xianyong; Jiang, Bingfei; Liao, Zhixi; Jiao, Yue; Yi, Pinggui

    2015-01-01

    The interaction between Besifloxacin (BFLX) and bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, UV-Vis absorption and circular dichroism) techniques under imitated physiological conditions. The experiments were conducted at different temperatures (298, 304 and 310 K) and the results showed that the BFLX caused the fluorescence quenching of BSA through a static quenching procedure. The binding constant (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process was spontaneous and the acting force between BFLX and BSA were mainly electrostatic forces. According to Förster non-radiation energy transfer theory, the binding distance between BFLX and BSA was calculated to be 4.96 nm. What is more, both synchronous fluorescence and circular dichroism spectra confirmed conformational changes of BSA.

  13. Spectroscopic study on the interaction of pristine C60 and serum albumins in solution

    NASA Astrophysics Data System (ADS)

    Liu, Shufang; Sui, Yu; Guo, Kai; Yin, Zhijuan; Gao, Xibao

    2012-08-01

    The interaction of nanomaterials with biological macromolecules is an important foundation of the design and the biological safety assessments of nanomaterials. This work aims to investigate the interaction between pristine C60 and serum albumins (human serum albumin and bovine serum albumin) in solution. Stable aqueous dispersion of C60 was prepared by simple direct ultrasonic method and characterized by UV-vis spectrophotometry, transmission electronic microscopy and dynamic light scattering techniques, and spectroscopic methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy) were utilized for the investigation. It was found that the fluorescence of serum albumins could be quenched by C60 nanoparticles in a substantially similar way. Slight changes of the surrounding microenvironment of amino residues were observed, while little effects on the protein secondary structure occurred. The different effects of dispersion methods on the interaction of C60 nanoparticles with serum protein were also compared and discussed.

  14. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  15. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Śliwińska-Hill, Urszula

    2017-02-01

    Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph + CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105 M- 1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2 + and Ca2 + strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.

  16. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: Spectroscopic and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Manivannan, C.; Vijay Solomon, R.; Venuvanalingam, P.; Renganathan, R.

    2013-02-01

    9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, 1H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.

  17. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  18. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies.

    PubMed

    Śliwińska-Hill, Urszula

    2017-02-15

    Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph+CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 10(5)M(-1). The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn(2+) and Ca(2+) strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.

  19. Spectroscopic Analysis of Red Fluorescent Proteins and Development of a Microfluidic Cell Sorter for the Generation of Improved Variants

    NASA Astrophysics Data System (ADS)

    Lubbeck, Jennifer L.

    The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.

  20. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  1. Study on the interaction between curcumin and CopC by spectroscopic and docking methods.

    PubMed

    Song, Zhen; Yuan, Wen; Zhu, Ruitao; Wang, Song; Zhang, Caifeng; Yang, Binsheng

    2017-03-01

    Curcumin is a widely studied polyphenolic compound which has a variety of biological activity as anti-inflammatory and antitumor drugs. Recent research reported that copper chaperone binding with small molecular may relate to the treatment of cancer. In this work, the interaction between curcumin and CopC has been investigated in detail by means of UV-vis absorption, FTIR, CD, fluorescence spectroscopic and molecular docking methods The results showed that the CopC conformation was altered by curcumin with reduction of β-sheet and increase of random coil. Furthermore, curcumin can form a host-guest inclusion supramolecular complex with curcumin, and the forming constant had been calculated to be (2.85±0.21)×10(5)M(-1). In addition, the binding ability between Cu(2+) and curcumin was less than that between Cu(2+) and CopC. Moreover, the binding of curcumin with Cu(2+) has an effect on the binding ability between curcumin and CopC. The thermodynamic parameters ΔH and ΔS at different temperatures were obtained. The formation of CopC-curcumin complex depended on the hydrophobic force, and the binding average distance between CopC and curcumin was determined. What's more, the binding site of curcumin to CopC was shown vividly by an automated public domain software package ArgusLab 4.0.1.

  2. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    SciTech Connect

    Niedzwiedzki, Dariusz; Collins, Aaron M.; LaFountain, Amy M.; Enriquez, Miriam M.; Frank, Harry A.; Blankenship, R. E.

    2010-06-14

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S1(21Ag-) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  3. Raman spectroscopic study of Ni/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Aminzadeh, A.; Sarikhani-fard, H.

    1999-07-01

    In this article a preliminary Raman spectroscopic study of Ni/Al 2O 3 catalyst of the type used for the steam reformation of methane is reported. With several prepared samples of this catalyst and using FT-Raman and conventional dispersive Raman technique, it is shown how Raman spectroscopy can be used to monitor the exact conditions during the preparation of the catalyst. Raman data shows that despite a strong fluorescence background, some useful information can be obtained. According to these data, when the calcination temperature is raised above 1000°C, the gamma alumina ( γ-Al 2O 3) is converted to alpha alumina ( α-Al 2O 3) as it is expected. It further shows that Ni is not present as NiO: it is probably embedded in the crystal structure of γ-Al 2O 3 as NiAl 2O 4 (the spinel structure) or constituted as a solid solution with Al 2O 3.

  4. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  5. Spectroscopic studies of carotenoid-to-bacteriochlorophyll energy transfer in LHRC photosynthetic complex from Roseiflexus castenholzii.

    PubMed

    Niedzwiedzki, Dariusz M; Collins, Aaron M; LaFountain, Amy M; Enriquez, Miriam M; Frank, Harry A; Blankenship, Robert E

    2010-07-08

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, gamma-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S(1)(2(1)A(g)(-)) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  6. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  7. The NaLi A1Σ + electronic state: First high resolution spectroscopic study

    NASA Astrophysics Data System (ADS)

    Fellows, C. E.

    1989-08-01

    A rotational analysis of the NaLi A1Σ + electronic state is reported in this article. Laser-induced fluorescence combined with Fourier transform spectrometry was used to record the spectra. The analysis has been done by model fitting of the A1Σ + state term values excited by fixed Kr + laser lines and dye laser lines oscillating in the region between 750 nm and 600 nm. Additional information about the lowest A1Σ + state vibrational levels was obtained from the infrared spectra of the B1Π- A1Σ + transition induced by fixed Ar + laser lines in the blue-green region. Vibrational levels up to v' = 25 have been observed, allowing the evaluation of accurate spectroscopic constants of the A1Σ + state. Comparisons with previous experimental and theoretical studies are reported. Main molecular constants are given below in cm -1: T e=14205.28(3) ω e=188.0328(9) ω eX e=0.926(1) B e=0.2759(9) α e=0.002323(8) D e=7791(5)

  8. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  9. X-ray spectroscopic studies of secondary battery materials

    NASA Astrophysics Data System (ADS)

    Kostov, Svilen Dimitar

    1998-09-01

    X-ray spectroscopic methods, both NEXAFS and EXAFS were used in the study of the structural and electronic properties of different types of new battery materials. NEXAFS analysis of the spectra of Lisb{1-x}CoO2 secondary battery cathodes revealed that the addition of Li proceeds is strongly correlated to the increase in electronic charge on the Co ion. A structural phase transition is confirmed for x=0.5. The presence of Mnsp{+2} is detected in the conventionally made LiMnOsb2 cathodes but not in ones prepared according to the new ADL process. Lisb{x}Vsb6Osb{13} cathode material, where 0≤ x≤6, was measured using x-ray absorption, EPR and NMR techniques. The intercalation mechanism involves a conversion of Vsp{+5} to Vsp{+4} in Vsb6Osb{13} until the composition Lisb2Vsb6Osb{13} is reached. Further addition of lithium is accompanied by the conversion of Vsp{+4} to Vsp{+3} until Lisb8Vsb6Osb{13} is reached. The process is complicated and involves structural phase changes and increasing structural disorder within the multi-phase system as Li concentration is increased. Studies of LiNi/CoOsb2 intercalation cathodes prepared by a novel sol-gel technique suggests that although the partial substitution of Co for Ni stabilizes the system by removing Nisp{+2}, a Jahn-Teller type structural distortion in the predominantly Nisp{=3} system persists. In-situ EXAFS measurements of the pyrite cathode in a new Li/CPE/FeSsb2 showed two distinct environments of the Fe ion, which were interpreted as those of metallic Fe and residual FeSsb2 at high lithium concentration, and Lisb2FeSsb2 and residual FeSsb2 at low lithium concentration. The formation of FeS was not detected. A new type of hydrogen ion battery incorporating a MnSOsb4sp&*slash;Hsb2O based cathode and polymer electrolyte was also studied. Heavily cycled and discharged cathodes showed an almost identical Mn local structure to that of single cycled ones. The Mn environment becomes very different in the charged cathodes

  10. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  11. Structural, spectroscopic and theoretical study of novel ephedrinum salt

    NASA Astrophysics Data System (ADS)

    Ivanova, B.; Kolev, T.; Lamshöft, M.; Mayer-Figge, H.; Seidel, R.; Sheldrick, W. S.; Spiteller, M.

    2010-05-01

    Ephedrinum violurate dihydrate was synthesized, spectroscopically and structural elucidated. The data are compared with those of the free-base ephedrine hemihydrate. Discussion on the stable conformer of the ephedrinum cation is carried out. Quantum chemical calculations were performed for the theoretical elucidation of the conformational preference of the ephedrinum cation and its vibrational properties. The model systems neutral ephedrine hemihydrate ( 1) and violurate salt dihydrate ( 2) are elucidated.

  12. The electronic structure of pyracene: a spectroscopic and computational study.

    PubMed

    Auerswald, Johannes; Engels, Bernd; Fischer, Ingo; Gerbich, Thiemo; Herterich, Jörg; Krueger, Anke; Lang, Melanie; Schmitt, Hans-Christian; Schon, Christof; Walter, Christof

    2013-06-07

    We report a synthetic, spectroscopic and computational study of the polycyclic aromatic molecule pyracene, which contains aliphatic five-membered rings annealed to a naphthalene chromophore. An improved route to synthesize the compound is described. Gas-phase IR and solid-state Raman spectra agree with a ground-state D2h structure. The electronically excited S1 A(1)B3u state has been studied by resonance-enhanced multiphoton ionisation. An adiabatic excitation energy T0 = 30,798 cm(-1) (3.818 eV) was determined. SCS-ADC(2) calculations found a D2h minimum energy structure of the S1 state and yielded an excitation energy of +3.98 eV, including correction for zero point vibrational energy. The spectrum shows a rich low-frequency vibrational structure that can be assigned to the overtones of out-of-plane deformation modes of the five-membered rings by comparison with computations. The appearance of these modes as well as the frequency reduction in the excited state indicate that the potential in the S1 state is very flat. At higher excess energies most bands can be assigned to fundamentals, overtones and combination bands of either totally symmetric ag modes or of b2g modes that appear due to vibronic coupling. Lifetimes between 43 ns and 76 ns were measured for a number of vibronic bands. For the S2 state an equilibrium geometry with a non-planar carbon framework was computed. In addition a signal from the pyracene dimer was present. The spectrum shows several broad and structureless transitions. The origin band has a maximum at around 329 nm (30,400 cm(-1)). Again lifetimes between 60 ns and 70 ns were found. The dimer ion signal rises within less than 10 ps. Computations show that a crossed geometry with the long axis of one unit aligned with the short axis of the second constitutes the most stable structure. The broadening of the bands is most likely caused by excimer formation.

  13. Applications of dynamic light scattering, fluorescence microscopy and fluorescence spectroscopy in DB-67 liposomal formulation studies

    NASA Astrophysics Data System (ADS)

    Kruszewski, Stefan; Ziomkowska, Blanka; Cyrankiewicz, Michał; Latus, Lori; Bom, David

    2005-08-01

    Campthothecin (CPT) and its analogues as prominent anticancer agents are currently the subject of the intensive studies. One of the most promising camptothecin analogues is 7-tert-butyldimethylsil- 1 0-hydroxycampthothecin called DB-67. It is characterized by high affinity to SUV (small unilamellar lipids vesicles) and relatively high stability in human blood. The studies of liposomal formulation as a delivery systems for DB-67 are the subject of this paper. The methods of dynamic light scattering (DLS), fluorescence microscopy (FM) and fluorescence spectroscopy (FS) are used to determine the physical properties of DB-67 liposomal formulation.

  14. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating.

    PubMed

    Grossutti, Michael; Seenath, Ryan; Lipkowski, Jacek

    2015-10-27

    The scaffolded vesicle has been employed as an alternative means of developing natural model membranes and envisioned as a potential nutraceutical transporter. Furthering the research of the scaffolded vesicle system, a nucleophilic substitution reaction was implemented to form an ester linkage between palmitate and terminal hydroxyl groups of dextran in order to hydrophobically modify the hydrogel scaffold. An average tilt angle of 38° of the hydrophobic palmitate modifying layer on the surface of the hydrogel was determined from dichroic ratios obtained from infrared spectra collected in the attenuated total reflection (ATR) configuration. ATR-IR studies of the DMPC-coated acylated hydrogel demonstrated that the hydrocarbon chains of the DMPC coating was similar to those of the DMPC bilayers and that the underlying palmitate layer had a negligible effect on the average tilt angle (26°) of the DMPC coating. The permeability of this acylated hydrogel was investigated with fluorescence spectroscopy and the terbium/dipicolinic acid assay. The hydrophobic modification on the surface of the hydrogel bead allowed for an efficient deposition of a DMPC layer that served as an impermeable barrier to terbium efflux. About 72% of DMPC-coated acylated hydrogel beads showed ideal barrier properties. The remaining 28% were leaking, but the half-life of terbium efflux of the DMPC-coated acylated hydrogel was increasing, and the total amount of leaked terbium was decreasing with the incubation time. The half-life time and the retention were considered a marked improvement relative to past scaffolded vesicle preparations. The process of acylating hydrogel beads for efficient DMPC deposition has been identified as another viable method for controlling the permeability of the scaffolded vesicle.

  15. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    PubMed Central

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  16. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.

    PubMed

    Walde, P; Han, D; Luisi, P L

    1993-04-20

    The conformation and activity of three different lipases have been studied in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. In the case of human pancreatic lipase, the conformation of the polypeptide chain--as judged from far-UV circular dichroism measurements--is only slightly altered after the enzyme is transferred from a bulk aqueous solution into the microenvironment of reverse micelles. Significant spectral changes in the near-UV circular dichroism and fluorescence spectrum indicate, however, that the solvation of aromatic amino acid side chains is considerably different in reverse micelles. Conversely, the circular dichroism spectra of the lipases from Candida rugosa and Pseudomonas sp. are considerably different in reverse micelles, compared with the spectra in aqueous solution, indicating that both enzymes loose the native structure at the water/AOT/oil interface. Bound substrate and/or product can prevent this denaturation. While Pseudomonas sp. and human pancreatic lipase are inhibited by tetrahydrolipstatin (THL), the lipase from Candida rugosa is not. These data, together with additional activity and inhibition data, indicate that the micellar microenvironment accentuates the difference between the different enzymes in terms of the relation structure/activity.

  17. The effect of temperature of fluorescence: an animal study

    NASA Astrophysics Data System (ADS)

    Walsh, Alex; Masters, Bart; Jansen, Duco; Welch, A. J.; Mahadevan-Jansen, Anita

    2010-02-01

    The effect of temperature on the fluorescence of enucleated porcine eyes and rat skin was studied. The fluorescence peak intensity was found to decrease as the tissue temperature increased. A dual-excitation, fiber-based system was used to collect fluorescence and diffuse-reflectance spectra from the samples. A thermal camera was used to determine the temperature of the tissue at the time of fluorescence measurement. The samples were mounted in a saline bath and measurements were made as the tissue temperature was increased from -20°C to 70°C. Results indicate that temperature affects several fluorescence spectra characteristics. The peak height decreased as temperature increased. At temperatures above 60°C, the peak position shifted to lower wavelengths. Heating and cooling experiments of the rat skin demonstrate the recovery of the loss in fluorescence. The diffuse reflectance spectra indicated a change in optical properties past 60°C, but prior to the denaturation temperature for collagen at 57°C, no change in optical properties was observed. Results suggest that the decrease in fluorescence is both a property of fluorescence and a result of altering optical properties.

  18. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  19. BH{sub 2} revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    SciTech Connect

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-07

    The spectroscopy of gas phase BH{sub 2} has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A{sup ~} {sup 2}B{sub 1}(Π{sub u})−X{sup ~2}A{sub 1} band system of {sup 11}BH{sub 2}, {sup 10}BH{sub 2}, {sup 11}BD{sub 2}, and {sup 10}BD{sub 2} have been observed for the first time. The free radicals were “synthesized” by an electric discharge through a precursor mixture of 0.5% diborane (B{sub 2}H{sub 6} or B{sub 2}D{sub 6}) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH{sub 2} were calculated for energies up to 22 000 cm{sup −1} above the X{sup ~} (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm{sup −1}) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  20. Insights into the binding of 2-aminobenzothiazole with human serum albumin (HSA): spectroscopic investigation and molecular modeling studies.

    PubMed

    Sun, Yajing; Su, Baoling; Xu, Qifei; Liu, Rutao

    2012-07-01

    As one of the important thiazole derivatives, 2-aminobenzothiazole (2-ABT) has been widely used as a structural unit in the synthesis of anti-oxidants, anti-inflammatories, herbicides, antibiotics, and thermoplastic polymers. In this study, the interaction of 2-ABT with human serum albumin (HSA) was investigated in vitro under simulated physiological conditions, using multi-spectroscopic techniques and a molecular modeling study. The binding constant and binding sites were determined through fluorescence quenching spectra. The site-competitive replacement experiments revealed that the precise binding site of 2-ABT on HSA was site II (subdomain IIIA). Moreover, molecular docking results illustrated the electrostatic interaction between Glu 450 and 2-ABT, in accordance with the conclusions from the calculated thermodynamic parameters and the effect of ionic strength. The effect of 2-ABT on the conformational changes of HSA were evaluated by ultraviolet-visible (UV-Vis) absorption, three-dimensional (3D) fluorescence, synchronous fluorescence, and circular dichroism (CD) spectroscopy. This work facilitates comprehensive understanding of the binding of 2-ABT with HSA, contributing to evaluate the molecular transportation mechanism and biotoxicity of 2-aminobenzothiazole derivatives in vivo.

  1. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  2. Spectroscopic and structural studies of environmentally relevant neptunyl carbonate complexes

    SciTech Connect

    Palmer, P.D.; Clark, D.L.; Neu, M.P.

    1995-12-01

    Carbonate and bicarbonate are common anions in many natural waters, consequently carbonate complexes of the actinides may play an important role in actinide migration from a nuclear waste repository. Due to its relatively high solubility, neptunium is the most important actinide for consideration. Carbonate complexation was examined for NpO{sub 2}{sup +} and NpO{sub 2}{sup 2+} ions using a variety of techniques including UV-Vis-NIR and NMR spectroscopics. NpO{sub 2}{sup +} carbonates have been difficult to observe by UV-Vis-NIR spectroscopy due to the formation of insoluble NaNp{sub 2}O{sub 2}(CO{sub 3}) or Na{sub 3}NpO{sub 2}(CO{sub 3}){sub 2} salts. However, by employing tetrabutylammonium as the counter cation, millimolar concentrations have been obtained and utilized for temperature dependent carbonate complexation studies by conventional UV-Vis-NIR methods. The NpO{sub 2}{sup 2+} carbonate complexes were examined as a function of pH using {sup 13}C and {sup 17}O NMR spectroscopy. The NMR data are consistent with the formation of NpO{sub 2}(CO{sub 3}){sub 3}{sup 4-} and (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6-}. The pH dependence of the {sup 13}C NMR spectra was used to determine the equilibrium constant for the reaction: 3NpO{sub 2}CO{sub 3}{sub 3}{sup 4-} +3H{sup +}{r_reversible}(NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6-}+3HCO{sub 3}{sup -}, log K=19.7({plus_minus}0.8) (I=2.5m). This work was supported by the Yucca Mountain Site Characterization Project Office as part of the Civilian Radioactive Waste Management Program, managed by the U.S. D.O.E., YMP project office.

  3. A Raman Spectroscopic Study of Kernite to 25 GPa

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.

    2015-12-01

    A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4­ groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be

  4. An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Santos, Javier; Carbajal, María Laura; Amor, María Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-12-01

    Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.

  5. One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor-Acceptor Chromophores with Their Biological Application.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafya, Saad H

    2015-09-01

    Blue emitting cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in good agreement with their chemical structures. UV-vis and fluorescence spectroscopy measurements proved that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Graphical Abstract ᅟ.

  6. Spectroscopic approach of the interaction study of amphiphilic drugs with the serum albumins.

    PubMed

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-ud Din

    2011-10-15

    The interaction of the amphiphilic drugs, i.e., amitriptyline hydrochloride (AMT) and promethazine hydrochloride (PMT), with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), has been examined by the various spectroscopic techniques, like fluorescence, UV-vis, and circular dichroism (CD). Fluorescence results indicate that in case of HSA-drug complexes the quenching of fluorescence intensity at 280 nm is less effective as compared to at 295 nm while in case of BSA-drug complexes both have almost same effect and for most of drug-serum albumin complexes there is only one independent class of binding. For all drug-serum albumin complexes the quenching rate constant (K(q)) values suggest the static quenching procedure. The UV-vis results show that the change in protein conformation of PMT-serum albumin complexes was more prominent as compared to AMT-serum albumin complexes. The CD results also explain the conformational changes in the serum albumins on binding with drugs. The increase in α-helical structure for AMT-serum albumin complexes is found to be more as compared to PMT-serum albumin complexes. Hence, the various spectroscopic techniques provide a quantitative understanding of the binding of amphiphilic drugs with serum albumins.

  7. β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study.

    PubMed

    Anand, Resmi; Manoli, Francesco; Manet, Ilse; Daoud-Mahammed, Samia; Agostoni, Valentina; Gref, Ruxandra; Monti, Sandra

    2012-08-01

    The association of doxorubicin (DOX) and artemisinin (ART) to a β-CyD-epichlorohydrin crosslinked polymer (pβ-CyD), organized in nanoparticles of ca. 15 nm size, was investigated in neutral aqueous medium by circular dichroism (CD), UV-vis absorption and fluorescence. The stability constants and the absolute CD spectra of the drug complexes were determined by global analysis of multiwavelength data from spectroscopic titrations. The polymer pβ-CyD proved able to disrupt the DOX dimer when the latter is the predominant form of DOX in solution. The spectroscopic and photophysical properties of the complexes evidenced an alcohol-like environment for ART and an improved inherent emission ability for DOX in the nanoparticle frame.

  8. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  9. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  10. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  11. Perfluorodecanoic acid binding to hemoproteins: new insights from spectroscopic studies.

    PubMed

    Qin, Pengfei; Liu, Rutao; Teng, Yue

    2011-04-13

    Perfluorodecanoic acid (PFDA), a representative of the perfluoroalkyl acids, poses a great threat to humans and animals via food and other potential sources. In this work, we determined the effects of PFDA binding to two hemoproteins, bovine hemoglobin (BHb) and myoglobin (Mb). Using fluorescence spectroscopy, we found that PFDA greatly enhanced the fluorescence intensity of both hemoproteins, while perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPA) have minimal effects on the fluorescence. UV-vis absorption (UV) spectroscopy showed that PFDA induced the unfolding of the hemoproteins accompanied by exposure of the heme pocket and facilitating the formation of hemichrome. Additionally, as shown by the circular dichroism (CD) data, PFDA altered the secondary structure of both BHb and Mb. This work elucidates the interaction mechanism of PFDA with two hemoproteins.

  12. Fluorescence decay kinetics and localization of disulphonated aluminium phthalocyanine in fibroblasts: a confocal fluorescence microscopy study

    NASA Astrophysics Data System (ADS)

    Petrasek, Zdenek; Ostler, Richard B.; Eigenbrot, Ilya V.; Phillips, David

    1999-05-01

    Steady state and time resolved confocal fluorescence microscopy, using a point scanning system, is applied to an investigation of the early stages of photo-induced changes in 3T3-L1 murine fibroblasts using di-sulphonated aluminum phthalocyanine (AlPcS2) as a photosensitizer. A comparison is made with data obtained using a line scan system and V79-4 Chinese hamster fibroblasts. The steady state data obtained in this work demonstrate that intracellular AlPcS2 fluorescence intensity increases progressively on photoirradiation. Time-resolved studies indicate that this could result from a progressive decrease in the concentration of the self-quenched membrane-associated form of AlPcS2 following its conversion into the fluorescent monomeric form.

  13. Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: comparison of binary and ternary systems.

    PubMed

    Kabiri, Mona; Amiri-Tehranizadeh, Zeinab; Baratian, Ali; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2012-03-12

    For the first time, the binding of ropinirole hydrochloride (ROP) and aspirin (ASA) to human holo-transferrin (hTf) has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering), as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS) intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD) spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  14. Synthesis, Single X-ray Crystal, Spectroscopic and Photophysical Studies of Novel Heterocyclic Chalcones with Their Biological Application.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa

    2015-07-01

    Chalcones were synthesized by reaction of 3-acetyl-2,5-dimethylfuran with corresponding active aldehyde in ethanolic NaOH. The structure of these compounds was established by elemental analysis, IR, (1)H-NMR, (13)C-NMR and EI-MS spectral analysis. UV-vis and fluorescence spectroscopy measurements provided that compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that the compounds were sensitive to the polarity of the microenvironment provided by deferent solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, extenction coefficient, Stokes shift, oscillator strength and transition dipole moment were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of the compounds were first tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug Tetracycline. The results showed that compound 3 is better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) as compared to tetracycline. Graphical Abstract ᅟ.

  15. Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Zheng, Chengzhi; Wang, Huiping; Xu, Wei; Xu, Chaoyong; Liang, Jiangong; Han, Heyou

    2014-01-01

    The understanding of the protein-nanoclusters interaction has significant implications for biological applications of nanoclusters (NCs). In this manuscript, the interaction of histidine-capped Au nanoclusters (NCs) with bovine serum albumin (BSA) has been investigated by fluorescence, UV-vis, circular dichroism (CD) and Raman spectroscopic techniques under simulative physiological conditions. The results showed that the fluorescence of BSA was quenched by Au NCs. The quenching mechanism was discussed to be a dynamic quenching style, which was proved by the fluorescence spectra and UV-vis absorption spectra. According to modified Stern-Volmer equations at different temperatures, corresponding thermodynamic parameters, ΔHθ, ΔSθ and ΔGθ were observed to be 35.97 kJ mol-1, 199.53 J mol-1 K-1 and -23.49 kJ mol-1, respectively. The hydrophobic force played a key role in the interaction process. Further results from the CD spectra and Raman spectra demonstrated that the α-helical content in BSA was reduced upon interaction with Au NCs which induced a partial protein destabilization. This study contributes to a better understanding of the biology toxicity of Au NCs to biomolecular, which is very essential for the development of safe and functional Au NCs.

  16. Fluorescent N2,N3-ε-Adenine Nucleoside and Nucleotide Probes: Synthesis, Spectroscopic Properties, and Biochemical Evaluation**

    PubMed Central

    Sharon, Einat; Lévesque, Sébastien A.; Munkonda, Mercedes N.; Sévigny, Jean; Ecke, Denise; Reiser, Georg; Fischer, Bilha

    2016-01-01

    N1,N6-ethenoadenine, ε-A, nucleos(t)ides have been previously applied as fluorescent probes in numerous biochemical systems. However, these ε-A analogues lack the H-bonding capability of adenine. To improve the fluorescence characteristics while preserving the H-bonding pattern required for molecular recognition, we designed a novel probe: N2,N3-etheno-adenosine, (N2,N3-ε-A). Here, we describe four novel syntheses of the target ε-nucleoside and related analogues. These methods are short, facile, and provide the product regiospecifically. In addition, we report the absorption and emission spectra of N2,N3-ε-A and the dependence of the spectral features on the pH and polarity of the medium. Specifically, maximum emission of N2,N3-ε-A in water is observed at 420 nm (ϕ=0.03, excitation at 290 nm). The biochemical relevance of the new probe was evaluated with respect to the P2Y1 receptor and NTPDases 1 and 2. N2,N3-ε-ATP was found to be almost equipotent with ATP at the P2Y1 receptor and was hydrolyzed by NTPDases 1 and 2at about 80% of the rate of ATP. Furthermore, protein binding does not seem to shift the fluorescence of N2,N3-ε-ATP. Based on the fluorescence and full recognition by ATP-binding proteins, we propose N2,N3-ε-ATP and related nucleo(s)tides as unique probes for the investigation of adenine nucleo(s)tide-binding proteins as well as for other biochemical applications. PMID:16871613

  17. Interactions between natural organic ligands and trace metals studied by fluorescence lifetime and fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Nouhi, Ayoub; Hajjoul, Houssam; Redon, Roland; Gagné, Jean-Pierre; Mounier, Stéphane

    2017-04-01

    Improved insight on the interactions between natural organic ligands and trace metals is of paramount importance for better understanding transport and toxicity pathways of metal ions in the environment. Fluorescence spectroscopy allows introspecting ligands-metals interactions. Time-resolved laser fluorescence spectroscopy (TRLFS) measures fluorophore lifetime probing the local molecular environment. Excitation Emission Fluorescence Matrices (EEFMs) and their statistical treatment : parallel factor analysis (PARAFAC) using PROGMEEF Matlab homemade program, can give insight on the number or nature of organic fluorophores involved in the interactions. Quenching of fluorescence by metals can occur following two processes: dynamic and static quenching (Lakowicz, 2013). In the first case, quenching is caused by physical collisions among molecules and in the second case fluorophores can form nonfluorescent complexes with quenchers. It is possible to identify the different mechanisms because each type of quenching corresponds to a different mathematical model (Lakowicz, 2013; Valeur and Berberan-Santos, 2012). In TRLFS, the study of fluorescence decay's laws induced by nanosecond pulsed laser will allow to exactly qualify the type of interaction. The crucial point of the temporal deconvolution will be the evaluation of the best fitting between the different physical models and the decays measured. From the most suitable time decay model, it will be possible to deduce the quenching which modifies the fluorescence. The aim of this study was to characterize interactions between natural organic ligands and trace metals using fluorescence tools to evaluate the fluorescence lifetime of the fluorophore, the occurrence of quenching in presence of metal, discuss its mechanism and estimate conditional stability constants if a complex organic ligand-metal is formed. This study has been done in two steps. First, we have examined the interactions between salicylic acid and copper in

  18. Spectroscopic studies of the cytochrome P450 reaction mechanisms.

    PubMed

    Mak, Piotr J; Denisov, Ilia G

    2017-06-28

    The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dye analysis of Shosoin textiles using excitation-emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques.

    PubMed

    Nakamura, Rikiya; Tanaka, Yoko; Ogata, Atsuhiko; Naruse, Masakazu

    2009-07-15

    The dyes of 8th century textiles, treasured for more than 1250 years in the Shosoin treasure repository in Japan, were analyzed by nondestructive methods, i.e., excitation-emission matrix (EEM) fluorescence and ultraviolet-visible (UV-vis) reflectance spectrometry, in combination with natural dye references extracted from plants, which have been widely used from ancient times. In this analysis, five dyes were found in the following objects: embroidered shoes dedicated to Great Buddha of the Todaiji temple by the empress of that time, the cloth lining for a case holding a mirror belonging to the emperor of that time, two rolls of yellow and light green plain-weave silks, and a sleeveless coat used for a musical in a Buddhist ceremony in 752 A.D. EEM fluorescence spectrometry distinguished kihada yellow (Amur cork tree), kariyasu yellow (eulalia), and akane red (Japanese madder). UV-vis spectrometry also distinguished kariyasu yellow, ai blue (knotweed), akane red, and shikon purple (murasaki); the characteristic peaks of these dyes were detected by a second derivatization. The results show that although the dyes used easily degrade with age, EEM fluorescence and UV-vis reflectance spectrometry are useful for distinguishing dyes used in the Shosoin textiles, which had been stored for more than 1250 years.

  20. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  1. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  2. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    NASA Astrophysics Data System (ADS)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  3. Spectroscopic and Vibrational Energy Transfer Studies in Molecular Bromine

    DTIC Science & Technology

    1993-12-01

    Society Review , 15: 405-448 (1986). 19. Herzberg, G. Spectrum of Diatomic Molecules. Van Nostrand, New York, 1953. 132 20. Hirschfelder, J.O., C.F. Curtis...Laser," Journal of Chemical Physics, 82: 4831 (1985). 18. Heaven, M. C. "Fluorescence Decay Dynamics of the Halogens and Interhalogens," Chemical

  4. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups.

    PubMed

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  5. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups

    NASA Astrophysics Data System (ADS)

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  6. Single molecule spectroscopic studies of organic rectifiers composed of pyrene and perylenebisimide

    NASA Astrophysics Data System (ADS)

    Scardino, Debra Jo; Kota, Rajesh; Mattern, Daniell L.; Hammer, Nathan I.

    2012-10-01

    Single molecule spectroscopic characteristics of two organic molecular rectifiers are reported. Composed of pyrene as the donor and perylenebisimide (PBI) as the acceptor, these groups are separated by bridges of one or four carbon atoms. Whereas the solution phase absorption and fluorescence spectra are similar, spectra are much more diverse and exhibit different degrees of photostability at the single molecule level. It was found that the addition of pyrene affects the stability of PBI's emission and analysis of dipole emission patterns reveal that pyrene functions as an orientational directing group for PBI in polymer thin films.

  7. [Spectroscopic and dynamical studies of highly energized small polyatomic molecules]. [Stimulated emission pumping

    SciTech Connect

    Not Available

    1992-01-01

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0[sup 0][sub 0] band performed.

  8. Atomic fluorescence study of high temperature aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  9. Atomic fluorescence study of high temperature aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  10. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions

    NASA Astrophysics Data System (ADS)

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-01

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO22+) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO22+ is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD = 10 μM), cyt c (KD = 87 μM), and cyt b5-cyt c complex (KD = 30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  11. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.

    PubMed

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-24

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO2(2+)) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO2(2+) is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD=10 μM), cyt c (KD=87 μM), and cyt b5-cyt c complex (KD=30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  12. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-07-01

    Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.

  13. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    PubMed Central

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-01-01

    Abstract. Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response. PMID:24996661

  14. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  15. Fluorescent Antibody Studies in Malignant Melanoma

    PubMed Central

    Whitehead, R. H.

    1973-01-01

    Sera from 57 patients with malignant melanoma and 39 control patients were tested by immunofluorescence techniques against 6 melanoma cell lines. Thirty-two per cent of tests with sera from melanoma patients showed fluorescence with these cell lines whereas only 17% of tests with control sera were positive. Reactions occurred in 21% of tests with sera from patients with primary melanoma compared with 40% with secondary melanomata and 54% with “cured” melanomata. The cell lines varied in antigenicity but this did not correlate with either pigmentation or length of time in culture. The cell lines which were most reactive with sera from melanoma patients were also most reactive with control sera. PMID:4205845

  16. Acoustically levitated droplets: a contactless sampling method for fluorescence studies.

    PubMed

    Leiterer, Jork; Grabolle, Markus; Rurack, Knut; Resch-Genger, Ute; Ziegler, Jan; Nann, Thomas; Panne, Ulrich

    2008-01-01

    Acoustic levitation is used as a new tool to study concentration-dependent processes in fluorescence spectroscopy. With this technique, small amounts of liquid and solid samples can be measured without the need for sample supports or containers, which often limits signal acquisition and can even alter sample properties due to interactions with the support material. We demonstrate that, because of the small sample volume, fluorescence measurements at high concentrations of an organic dye are possible without the limitation of inner-filter effects, which hamper such experiments in conventional, cuvette-based measurements. Furthermore, we show that acoustic levitation of liquid samples provides an experimentally simple way to study distance-dependent fluorescence modulations in semiconductor nanocrystals. The evaporation of the solvent during levitation leads to a continuous increase of solute concentration and can easily be monitored by laser-induced fluorescence.

  17. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study.

    PubMed

    Lara-Severino, Reyna Del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M; Sandoval-Trujillo, Ángel H; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes.

  18. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  19. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  20. Spectroscopic studies of the interaction mechanisms between mono-caffeoylquinic acids and transferrin.

    PubMed

    Guan, Yanqing; Dong, Jing; Chen, Shizhong; Liu, Meixian; Wang, Daidong; Zhang, Xiaotian; Wang, Hong; Lin, Zongtao

    2017-03-07

    Transferrin (Tf) is an important protein responsible for circulating and transporting iron into cytoplasm. Tf can be taken into cells through endocytosis mediated by Tf receptor, which usually overexpresses in cancer cells. The Tf-Tf receptor pathway opens a possible avenue for novel targeted cancer therapy by utilizing Tf-binding active compounds. Among which, anti-cancer active caffeoylquinic acids (CQAs) were recently found to be promising Tf-binders by our group. For better understanding the anti-cancer activities of CQAs, it is important to unveil the binding mechanisms between CQAs and Tf. In this study, the fluorescence quenching, surface plasmon resonance (SPR), circular dichroism (CD) and molecular docking were used to investigate the interactions between CQA and Tf. The results showed that the calculated apparent association constants of interactions between 1-, 3-, 4- and 5-CQA and Tf at 298K were 7.97×10(5)M(-1), 4.36×10(7)M(-1), 6.58×10(5)M(-1) and 4.42×10(6)M(-1), respectively. The thermodynamic parameters indicated that the interaction between 1-, 3-, 5-CQA and Tf is due to H-bonding, and electrostatic interactions were likely involved in the binding of 4-CQA and Tf. The CD results indicated that bindings of 1-CQA, 4-CQA and 5-CQA with Tf resulted in more stretched β-turn and random coil translated from β-sheet. In contrast, 3-CQA led to more stable a-helix conformation. Molecular docking studies of CQAs with Tf further displayed that CQAs were able to interact with residues near Fe(3+) binding site. The spectroscopic studies revealed the action mechanisms, thermodynamics and interacting forces between CQAs and Tf, and thus are helpful for future design and discovery of Tf-binders for targeted cancer therapy applying Tf-Tf receptor pathway.

  1. Spectroscopic studies of the interaction mechanisms between mono-caffeoylquinic acids and transferrin

    NASA Astrophysics Data System (ADS)

    Guan, Yanqing; Dong, Jing; Chen, Shizhong; Liu, Meixian; Wang, Daidong; Zhang, Xiaotian; Wang, Hong; Lin, Zongtao

    2017-06-01

    Transferrin (Tf) is an important protein responsible for circulating and transporting iron into cytoplasm. Tf can be taken into cells through endocytosis mediated by Tf receptor, which usually overexpresses in cancer cells. The Tf-Tf receptor pathway opens a possible avenue for novel targeted cancer therapy by utilizing Tf-binding active compounds. Among which, anti-cancer active caffeoylquinic acids (CQAs) were recently found to be promising Tf-binders by our group. For better understanding the anti-cancer activities of CQAs, it is important to unveil the binding mechanisms between CQAs and Tf. In this study, the fluorescence quenching, surface plasmon resonance (SPR), circular dichroism (CD) and molecular docking were used to investigate the interactions between CQA and Tf. The results showed that the calculated apparent association constants of interactions between 1-, 3-, 4- and 5-CQA and Tf at 298 K were 7.97 × 105 M- 1, 4.36 × 107 M- 1, 6.58 × 105 M- 1 and 4.42 × 106 M- 1, respectively. The thermodynamic parameters indicated that the interaction between 1-, 3-, 5-CQA and Tf is due to H-bonding, and electrostatic interactions were likely involved in the binding of 4-CQA and Tf. The CD results indicated that bindings of 1-CQA, 4-CQA and 5-CQA with Tf resulted in more stretched β-turn and random coil translated from β-sheet. In contrast, 3-CQA led to more stable a-helix conformation. Molecular docking studies of CQAs with Tf further displayed that CQAs were able to interact with residues near Fe3 + binding site. The spectroscopic studies revealed the action mechanisms, thermodynamics and interacting forces between CQAs and Tf, and thus are helpful for future design and discovery of Tf-binders for targeted cancer therapy applying Tf-Tf receptor pathway.

  2. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA.

    PubMed

    Xue, Liang; Ranjan, Nihar; Arya, Dev P

    2011-04-12

    Synthesis of a novel perylene-neomycin conjugate (3) and the properties of its binding to human telomeric G-quadruplex DNA, 5'-d[AG3(T2AG3)3] (4), are reported. Various spectroscopic techniques were employed to characterize the binding of conjugate 3 to 4. A competition dialysis assay revealed that 3 preferentially binds to 4, in the presence of other nucleic acids, including DNA, RNA, DNA-RNA hybrids, and other higher-order structures (single strands, duplexes, triplexes, other G-quadruplexes, and the i-motif). UV thermal denaturation studies showed that thermal stabilization of 4 increases as a function of the increasing concentration of 3. The fluorescence intercalator displacement (FID) assay displayed a significantly tighter binding of 3 with 4 as compared to its parent constituents [220-fold stronger than neomycin (1) and 4.5-fold stronger than perylene diamine (2), respectively]. The binding of 3 with 4 resulted in pronounced changes in the molar ellipticity of the DNA absorption region as confirmed by circular dichroism. The UV-vis absorption studies of the binding of 3 to 4 resulted in a red shift in the spectrum of 3 as well as a marked hypochromic change in the perylene absorption region, suggesting that the ligand-quadruplex interaction involves stacking of the perylene moiety. Docking studies suggest that the perylene moiety serves as a bridge that end stacks on 4, making contacts with two thymine bases in the loop, while the two neomycin moieties branch into the grooves of 4.

  3. Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy.

    PubMed

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Cucina, Mirko; Massaccesi, Luisa; Gigliotti, Giovanni

    2016-04-01

    In a previous work co-digestion of food waste and sewage sludge was performed in a pilot apparatus reproducing operating conditions of an existing full scale digester and processing waste mixed sludge (WMS) and fruit and vegetable waste (FVW) at different organic loading rates. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity was conducted. In this paper we considered humification parameters and spectroscopic analysis. Humification parameters indicated a higher not humified fraction (NH) and a lower degree of humification (DH) of FVW with respect to WMS (NH=19.22 and 5.10%; DH=36.65 and 61.94% for FVW and WMS, respectively) associated with their different chemical compositions and with the stabilization process previously undergone by sludge. FVW additions seemed to be favourable from an agronomical point of view since a lower percentage of organic carbon was lost. Fourier transform infrared spectra suggested consumption of aliphatics associated with rising in bio-methane generation followed by accumulation of aliphatics and carboxylic acids when the biogas production dropped. The trend of peaks ratios can be used as an indicator of the process efficiency. Fluorescence intensity of peak B associated with tryptophan-like substances and peak D associated with humic-like substances observed on tridimensional Excitation Emission Matrix maps increased up to sample corresponding to the highest rate of biogas production. Overall spectroscopic results provided evidence of different chemical pathways of anaerobic digestion associated with increasing amount of FVW which led to different levels of biogas production.

  4. Study on the interaction of Co (III) DiAmsar with serum albumins: Spectroscopic and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Farahani, Bahman Vasheghani; Bardajee, Ghasem Rezanejade; Rajabi, Farzaneh Hosseinpour; Hooshyar, Zari

    2015-01-01

    This study was designed to examine the interaction of cobalt-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (Co(III) DiAmsar) as a hexadentate ligand with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions in Tris-HCl buffer solution at pH 7.4. To this aim, at first, Co (III) DiAmsar was synthesized and characterized by nuclear magnetic resonance (NMR), and mass spectroscopy and then its interaction with HSA and BSA was investigated by means of various spectroscopic methods (Fourier transform infrared (FT-IR), UV-visible (UV-vis), fluorescence, and cyclic voltammetry (CV)) and molecular docking technique. The results of fluorescence titration revealed that the Co (III) DiAmsar strongly quench the intrinsic fluorescence of HSA and BSA through a static quenching procedure. Binding constants (Ka) and the number of binding sites (n ∼ 1) were calculated using Stern-Volmer equations. The ΔG parameters at different temperatures were calculated. Subsequently, the values of ΔH and ΔS were also calculated, which revealed that the van der Waals and hydrogen bonding interaction splay a major role in Co (III) DiAmsar-HSA and Co (III) DiAmsar-BSA associations. The distance r between donor (HSA and BSA) and acceptor (Co (III) DiAmsar) was obtained according to fluorescence resonance energy transfer. The data obtained by the molecular modeling study revealed the surrounding residues of HSA and BSA around Co (III) DiAmsar.

  5. Study on the interaction of Co (III) DiAmsar with serum albumins: spectroscopic and molecular docking methods.

    PubMed

    Farahani, Bahman Vasheghani; Bardajee, Ghasem Rezanejade; Rajabi, Farzaneh Hosseinpour; Hooshyar, Zari

    2015-01-25

    This study was designed to examine the interaction of cobalt-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (Co(III) DiAmsar) as a hexadentate ligand with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions in Tris-HCl buffer solution at pH 7.4. To this aim, at first, Co (III) DiAmsar was synthesized and characterized by nuclear magnetic resonance (NMR), and mass spectroscopy and then its interaction with HSA and BSA was investigated by means of various spectroscopic methods (Fourier transform infrared (FT-IR), UV-visible (UV-vis), fluorescence, and cyclic voltammetry (CV)) and molecular docking technique. The results of fluorescence titration revealed that the Co (III) DiAmsar strongly quench the intrinsic fluorescence of HSA and BSA through a static quenching procedure. Binding constants (Ka) and the number of binding sites (n∼1) were calculated using Stern-Volmer equations. The ΔG parameters at different temperatures were calculated. Subsequently, the values of ΔH and ΔS were also calculated, which revealed that the van der Waals and hydrogen bonding interaction splay a major role in Co (III) DiAmsar-HSA and Co (III) DiAmsar-BSA associations. The distance r between donor (HSA and BSA) and acceptor (Co (III) DiAmsar) was obtained according to fluorescence resonance energy transfer. The data obtained by the molecular modeling study revealed the surrounding residues of HSA and BSA around Co (III) DiAmsar.

  6. Studies of the interaction between demeclocycline and human serum albumin by multi-spectroscopic and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Dong, Chengyu; Ma, Shuying; Liu, Ying

    2013-02-01

    This study was designed to examine the interaction of demeclocycline (DMCTC) with human serum albumin (HSA) by multi-spectroscopic and molecular docking methods. The inner filter effect was corrected before we calculated the binding parameters. Fluorescence and UV-vis spectroscopy revealed that DMCTC induced the fluorescence quenching of HSA though a static quenching procedure. Thermodynamic analysis by Van Hoff equation found enthalpy change (ΔH) and entropy change (ΔS) were -53.01 kJ mol-1 and -65.13 J mol-1 K-1, respectively, which indicated hydrogen bond and van der Waals force were the predominant force in the binding process. According to fluorescence resonance energy transfer (FRET), the specific binding distances between Trp-214 (donor) and DMCTC (acceptor) were 3.18 nm. Through site marker competitive experiments, subdomain IIA of HSA has been assigned to possess the high-affinity binding site of DMCTC. The three dimensional fluorescence showed that the conformation of HSA was changed after its complexation with DMCTC, and the alternations of protein secondary structure were quantitatively calculated from FT-IR with reduction of α-helices content about 4.8%, β-sheet from 30.3% to 21.6% and with increases of β-turn from 15.6% to 22.2%. Furthermore, the binding details between DMCTC and HSA were further confirmed by molecular docking studies, which revealed that DMCTC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces and π-π interactions. Moreover, the coexist metal ions such as Al3+, Fe3+, Cu2+, Cr3+ and Cd2+ can decrease the binding constants of DMCTC-HSA.

  7. Biosensors technologies: acousto-optic tunable filter-based hyperspectral and polarization imagers for fluorescence and spectroscopic imaging.

    PubMed

    Gupta, Neelam

    2009-01-01

    Filters are a critical element in fluorescence detection used by many biosensors. One of the main limitations of the conventional optical filters used in biosensors is that they are limited to a single wavelength operation while numerous wavelengths are used in a typical fluorescence detection used for biosensing. Acousto-optic tunable filters (AOTFs) have the potential to overcome this limitation and provide both spectral and polarization information because they are wavelength agile and polarization sensitive. Such filters can be used to develop compact hyperspectral/polarization imagers. Such an imager can be readily used for real-time two-dimensional spectral imaging applications. These imagers are small, vibration-insensitive, robust, remotely controlled, and programmable and can be used in the spectral region from the ultraviolet (UV) to the near infrared (NIR). A minimal amount of data processing is required for AOTF imagers because they can acquire images at only select wavelengths of interest, and the selected wavelengths can be changed based on the sensing requirements. We use AOTFs made of KDP, MgF2, and TeO2, with a Si-based CCD camera to cover different spectral regions from the UV to the NIR. A liquid crystal variable retarder (LCVR) is used to obtain two orthogonally polarized images at each wavelength The user can write software to control the operation and image acquisition for an AOTF imager for a fully computer controlled operation.

  8. Perspectives of studying fluorescence of dental solid tissues

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. T.; Taubinsky, Ilia M.; Kozma, S. J.; Romanov, A. M.

    1999-07-01

    As an object of study extracted human teeth were used. The whole was explored 30 teeth; measurements were conducted in intact regions of tooth: enamel, dentine, cement, root canal and in pathologically changed areas: caries of teeth and a solid teeth plaque. From present fluorescent spectrums of intact: enamel, dentine, cement; and of pathological: caries and teeth stone is seen that curves are likely shaped for each of the groups, but their amplitudes are not the same. Fluorescence maximum of all tooth areas falls on 700 nm, herewith possible to say that, spectrum shapes are specific for each tooth area, that can be used in diagnostic purposes, for example when processing a carious cavity. As to florescence intensity that teeth stone possesses the maximum of fluorescence, then an area submitted to caries, intact areas possess a weak fluorescence.

  9. Structure and vibrational spectroscopic study of alpha-tocopherol

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Sachdeva, Ritika; Rai, Bimal; Saini, G. S. S.

    2017-09-01

    We report here the vibrational and structural analysis of alpha-tocopherol. The vibrational analysis has been accomplished experimentally by infrared and Raman spectroscopic techniques and theoretically by density functional theory. Two conformers of alpha-tocopherol have been optimized with the help of density functional theory. Energy minimized structures have been further used for vibrational frequencies calculations. Calculated values of molecular parameters of both the conformers have been comparable with the available experimental values in literature. All the observed vibrational bands have been assigned with the help of potential energy distribution calculations and intensity patterns of the simulated spectra. The ultraviolet-visible spectrum has been reported in wavelength range of 200 nm-500 nm. Observed ultraviolet-visible bands have been assigned to various electronic transitions, which have also been calculated using time dependent density functional theory.

  10. Spectroscopic study of Er:Sm doped barium fluorotellurite glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2010-09-15

    In this paper, we report the physical and spectroscopic properties of Er(3+), Sm(3+) and Er(3+):Sm(3+) ions codoped barium fluorotellurite (BFT) glasses. Different Stokes and anti-Stokes emissions were observed under 532 nm and 976 nm laser excitations. Energy transfer from Er(3+) ion to Sm(3+) ion was confirmed on the basis of luminescence intensity variation and decay curve analysis in both the cases. Under green (532 nm) excitation emission intensity of Sm(3+) ion bands improves whereas on NIR (976 nm) excitation new emission bands of Sm(3+) ions were observed in Er:Sm codoped samples. Ion interactions and the different energy transfer parameters were also calculated. Copyright 2010 Elsevier B.V. All rights reserved.

  11. A Spectroscopic Study of Anomalous Stellar Populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney; King, Jeremy R.; Deliyannis, Constantine P.

    2015-01-01

    A population of so-called "yellow straggler" stars occupy precarious color magnitude diagram positions in the old open cluster M67 that cannot be explained by standard single star evolution theory. These stars may have been formed by Roche lobe overflow mass transfer in close binary systems. We present new radial velocities and spectroscopic abundances of M67 yellow stragglers to test this hypothesis, and find that these objects possess a high binary frequency, but no enhancements of s-process elements that might be a smoking gun signature of mass transfer. Observations were conducted using the WIYN 3.5 m telescope in conjunction with the HYDRA spectrograph at Kitt Peak National Observatory. Support for this project was provided by NSF grants AST 09-08342, AST 0607567, and AST 1211699.

  12. Using Spectroscopic Profiles to Study the Morphology of Comets

    NASA Astrophysics Data System (ADS)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2016-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3. CH, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets. We will present results for several comets, including 2009P1 (Garradd). This work was funded by NASA's Planetary Atmospheres program (Award No. NNX14AH186).

  13. Models of chemical biosignatures - a vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bödeker, B.; Böttger, U.; Hübers, H.-W.; deVera, J.-P.; Fox, S.; Strasdeit, H.

    2013-09-01

    Investigating possible biosignatures is of central interest in the search for the oldest traces of terrestrial life. Possible biosignatures are: (i) physical structures, such as fossilized single-celled or colonyforming microorganisms; (ii) biomolecules and their altered residues (chemical biosignatures); (iii) altered element, isotope and mineral compositions in former microbial habitats and related effects caused by metabolic activity [1]. New insights in this field of research are also important in the search for life on other planets and moons, especially Mars. However, abiotically formed organic compounds are widely distributed in the universe. Therefore, in future Mars missions, it will be essential to know whether organic molecules are actually of biological origin. Here, we describe the syntheses and spectroscopic (Raman and infrared) properties of artificial chemical biosignatures that might help answering this question.

  14. Spectroscopic and Photometric Study of Open Cluster Trumpler 27

    NASA Astrophysics Data System (ADS)

    Obonyo, W. O.; Baki, P.

    2016-12-01

    Open clusters are essential laboratories for understanding stellar evolution, as they allow constraints to be placed on stellar ages and luminosities. As distance indicators, they are important tracers of star formation in the Milky Way. One such cluster is Trumpler 27. Spectroscopic and photometric data of Trumpler 27 was used to estimate its distance, radial velocity, age, membership and reddening. The Spectroscopic data collected from SAAO's 1.9m telescope and photometric ones from catalogues were used to estimate reddening, identify cluster stars and approximate cluster distance. Classification of spectra was done by comparing them to spectral templates. The result from this work suggests that Trumpler 27 is made up of ∼55 stars which are at different stages of evolution. The stars include main sequence stars, blue supergiants, two cool supergiants and maybe the two WR stars. The cluster's age and distance were found to be 10Myrs old and 2.6 ± 0.2 kpc away from the Sun respectively suggesting that it is located on the outer part of Scutum Centaurus arm of the Galaxy. Its reddening, E(B - V) varies substantially across the field with the average value being 1.3±0.2. It has a radial velocity of -15.3±3km/s, as approximated from some of its cool supergiants. There is a likelihood of a younger population of OB stars located at 3.5 kpc away from the sun, that is right behind Trumpler 27 interpreted as either a cluster or background stars that mimic a cluster.

  15. Fluorescence Imaging Study of Impinging Underexpanded Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  16. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  17. Studies on the interaction of salvianolic acid B with human hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Zhu, Shajun; Cao, Hui; Shang, Yanfang; Wang, Miao; Jiang, Guoqing; Shi, Yujun; Lu, Tianhong

    2011-04-01

    The interaction between salvianolic acid B (Sal B) and human hemoglobin (HHb) under physiological conditions was investigated by UV-vis absorption, fluorescence, synchronous fluorescence and circular dichroism spectroscopic techniques. The experimental results indicate that the quenching mechanism of fluorescence of HHb by Sal B is a static quenching procedure, the binding reaction is spontaneous, and the hydrophobic interactions play a major role in binding of Sal B to HHb. Based on Förster's theory of non-radiative energy transfer, the binding distance between Sal B and the inner tryptophan residues of HHb was determined to be 2.64 nm. The synchronous fluorescence experiment revealed that Sal B can not lead to the microenvironmental changes around the Tyr and Trp residues of HHb, and the binding site of Sal B on HHb is located at α 1β 2 interface of HHb. Furthermore, the CD spectroscopy indicated the secondary structure of HHb is not changed in the presence of Sal B.

  18. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  19. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  20. Binding studies of lophirone B with bovine serum albumin (BSA): Combination of spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Chaves, Otávio Augusto; da Silva, Veridiana A.; Sant'Anna, Carlos Maurício R.; Ferreira, Aurélio B. B.; Ribeiro, Tereza Auxiliadora N.; de Carvalho, Mário G.; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos

    2017-01-01

    The interaction between the transport protein bovine serum albumin (BSA) and the natural product lophirone B, was investigated by spectroscopic techniques combined with a computational method (molecular docking). From the KSV and kq values it was concluded that lophirone B quenches the fluorescence of BSA by dynamic and static mechanisms. The Ka values, of the order of 104 M-1, and the number of binding sites (n ≈ 1), indicate that the binding is moderate and there is just one main binding site in BSA for lophirone B. The negative ΔG° values are in accordance with the spontaneity of the process and the positive ΔH° and ΔS° values indicate that the binding is entropically driven; the main binding forces for the association BSA:lophirone B are probably lipophilic interactions. Circular dichroism (CD) studies show there is not a significant perturbation on the secondary structure of the albumin upon the binding process. In order to better understand the spectroscopic results, a computational method was applied: molecular docking suggests Trp-213 site, as the main binding site for the ligand. Lophirone B seems to be exposed to the aqueous media as well as accommodated inside the protein cavity, resulting in a moderate affinity for the albumin. The Arg-198, His-287, Lys-294 and Lys-439 residues are interacting via hydrogen bonding with lophirone B, whereas the interaction with Trp-213 residue occurs through a lipophilic interaction.

  1. Laminar-flow fluid mixer for fast fluorescence kinetics studies.

    PubMed Central

    Pabit, Suzette A; Hagen, Stephen J

    2002-01-01

    The ability to mix aqueous liquids on microsecond time scales, while consuming minimal amounts of sample and maintaining UV-visible optical access to the mixing region, is highly desirable for a range of biophysical studies of fast protein and nucleic acid interactions and folding. We have constructed a laminar coaxial jet mixer that allows the measurement of UV-excited fluorescence from nanoliter and microliter quantities of material, mixed at microsecond rates. The mixer injects a narrow cylindrical stream (radius a < 1 microm) of fluorescent sample into a larger flow of diluting buffer that moves through a capillary (100 microm i.d.) at a speed approximately 20 cm/s, under laminar flow conditions (Re approximately equal to 14). Construction from a fused silica capillary allows the laser excitation (at 266 nm) and detection (at 350 nm) of tryptophan fluorescence at reasonably low working concentrations, without interference from background fluorescence. Using this mixer we have measured sub-millisecond fluorescence quenching kinetics while consuming fluorescent sample at rates no greater than 6 nl/s. Consumption of the diluting buffer is also very modest (approximately 1-3 microl/s) in comparison with other rapid mixer designs. PMID:12414719

  2. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.

  3. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S.

    2009-02-01

    Bluish phycocyanin was obtained from the cyanobacteria namely Spirulina sp. (marine form). The interaction between phycocyanin and bovine serum albumin (BSA) was studied by using absorption, FT-IR, steady-state, time resolved and synchronous fluorescence spectroscopy. Phycocyanin effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n) and binding constant ( K) was measured by fluorescence quenching method. The interaction between phycocyanin and BSA occurs through static quenching and conformational changes of BSA were observed.

  4. An Electrochemical and Spectroscopic Study of Electrode Systems.

    DTIC Science & Technology

    1987-09-01

    Purification of MEIC 1 1.2 Preparation of the Melt 2 1.3 Identification of the Melts 3 1.3.1 UV/VIS Spectra 3 1.3.2 Infrared and Raman Spectra 5 1.3.3...Fluorescence Spectra 9 II ELECTROCHEMISTRY 14 21 Electrochemistry of Cerium 14 2.2 Electrochemistry of Uranium 18 2.3 Electrochemistry of Terbium 24...and (c) 0.4 Melt Containing CeCl3. 7 3 Raman Spectrum of a 0.33 Chloroaluminate (MEIC-AlCI3 ) Melt at Room Temperature 10 4 Raman Spectrum of a 0.66

  5. Mössbauer spectroscopic study on glaze of pottery

    NASA Astrophysics Data System (ADS)

    Endo, Kazutoyo; Haruta, Hiroshi; Honda, Chikako; Katada, Motomi; Nakahara, Hiromichi; Nakada, Masami; Saeki, Masakatsu; Aratono, Yasuyuki

    1994-12-01

    Iron-barium glaze was prepared from commercially available materials for ceramic arts and from chemical reagents, and investigated by means of Mössbauer spectroscopy and an electron probe micro analyzer (EPMA). Mössbauer spectra showed a doublet of paramagnetic high-spin Fe(II) and Fe(III) incorporated into aluminosilicate, and the magnetically-split hyperfine structures of hematite and magnetite, depending on the iron content and firing conditions. The EPMA indicated striped patterns on the secondary electron images, and the fluorescent X-ray analysis proved that the patterns are due to the heterogeneous distribution of elements in the glaze.

  6. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  7. Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies.

    PubMed

    Usman, Afia; Ahmad, Masood

    2017-08-01

    BPF (Bisphenol-F), a member of the bisphenol family, having a wide range of industrial applications is gradually replacing Bisphenol-A. It is a recognized endocrine disrupting chemical (EDC). EDCs have been implicated in increased incidences of breast, prostate and testis cancers besides diabetes, obesity and decreased fertility. Due to the adverse effects of EDCs on human health, attempts have been directed towards their mechanism of toxicity especially at the molecular level. Hence, to understand the mechanism at the DNA level, interaction of BPF with calf thymus DNA was studied employing multi-spectroscopic, voltammetric and molecular docking techniques. Fluorescence spectra, cyclic voltammetry (CV), circular dichroism (CD) and molecular docking studies of BPF with DNA were suggestive of minor groove binding of BPF. UV-visible absorption and fluorescence spectra suggested static quenching due to complex formation between BPF and ctDNA. Hoechst 33258 (HO) and ethidium bromide (EB) displacement studies further confirmed such mode of BPF interaction. Thermodynamic and molecular docking parameters revealed the mechanism of binding of BPF with ctDNA to be favorable and spontaneous due to negative ΔG and occurring through hydrogen bonds and van der waals interactions. BPF induced DNA cleavage under in vitro conditions by plasmid nicking assay suggested it to be genotoxic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    PubMed

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  9. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies.

    PubMed

    Pawar, Suma K; Naik, Roopa S; Seetharamappa, J

    2017-08-29

    Bosutinib (BST) and imatinib mesylate (IMT) are tyrosine kinase inhibitors (TKIs). In view of the importance of these inhibitors in cancer treatment, we investigated the mechanism of interaction between BST/IMT and bovine serum albumin (BSA) using various spectroscopic and molecular docking methods. Fluorescence studies indicated that BST/IMT interacted with BSA without affecting the microenvironment around the residue Trp213 of BSA. The quenching mechanism associated with the BST-BSA and IMT-BSA interactions was determined by performing fluorescence measurements at different temperatures. These results suggested that BST and IMT quenched the fluorescence intensity of BSA through static and dynamic processes, respectively, which was confirmed by time-resolved fluorescence measurements. Evaluation of the thermodynamic parameters ∆H°, ∆S°, and ∆G° suggested that hydrophobic and electrostatic interactions played significant roles in the BST-BSA interaction, while IMT-BSA was stabilized by hydrophobic forces. Competitive experimental results revealed that the primary binding sites for BST and IMT on BSA were sites II and I, respectively. This was supported by the results of molecular docking and dynamic simulation studies. The change in the secondary structure of BSA upon binding with BST/IMT was investigated by 3D fluorescence, absorption, and CD spectroscopic studies. In addition, the influences of β-cyclodextrin and metal ions (Cu(2+) and Zn(2+)) on the binding affinities of BST and IMT to BSA were examined. Graphical abstract Binding of BST and IMT in BSA at site II and site I respectively.

  10. Feasibility study of a Raman spectroscopic route to drug detection

    NASA Astrophysics Data System (ADS)

    Wróbel, Maciej S.; Siddhanta, Soumik; Jedrzejewska-Szczerska, Małgorzata; Smulko, Janusz; Barman, Ishan

    2017-02-01

    We present an surface-enhanced Raman spectroscopy (SERS) approach for detection of drugs of abuse in whole human blood. We utilize a near infrared laser with 830 nm excitation wavelength in order to reduce the influence of fluorescence on the spectra of blood. However, regular plasmon resonance peak of plasmonic nanoparticles, such as silver or gold fall in a much lower wavelength regime about 400 nm. Therefore, we have shifted the plasmon resonance of nanoparticles to match that of an excitation laser wavelength, by fabrication of the silver-core gold-shell nanoparticles. By combining the laser and plasmon resonance shift towards longer wavelengths we have achieved a great reduction in background fluorescence of blood. Great enhancement of Raman signal coming solely from drugs was achieved without any prominent lines coming from the erythrocytes. We have applied chemometric processing methods, such as Principal Component Analysis (PCA), to detect the elusive differences in the Raman bands which are specific for the investigated drugs. We have achieved good classification for the samples containing particular drugs (e.g., butalbital, α-hydroxyalprazolam). Furthermore, a quantitative analysis was carried out to assess the limit of detection (LOD) using Partial Least Squares (PLS) regression method. In conclusion, our LOD values obtained for each class of drugs was competitive with the gold standard GC/MS method.

  11. Optical properties of InN studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Chunya, Ye; Wei, Lin; Jin, Zhou; Shuping, Li; Li, Chen; Heng, Li; Xiaoxuan, Wu; Songqing, Liu; Junyong, Kang

    2016-10-01

    With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices. Project supported by the State Key Development Program for Basic Research of China (No. 2012CB619301), the National High Technology Research and Development Program of China (No. 2014AA032608), the National Natural Science Foundation of China (Nos. 11204254, 11404271), and the Fundamental Research Funds for the Central Universities (Nos. 2012121014, 20720150027).

  12. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  13. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  14. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  15. Microcrystalline silicon thin films studied using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Kang, T. D.; Lee, Hosun; Park, S. J.; Jang, J.; Lee, Soonil

    2002-09-01

    We used spectroscopic ellipsometry to characterize four different microcrystalline silicon (muc-Si) films, which were fabricated by crystallizing a-Si:H films predeposited on glass substrates using solid phase crystallization (SPC), excimer laser annealing (ELA), Ni induced silicide-mediated crystallization (Ni-SMC), and field enhanced silicide-mediated crystallization (FESMC) method, respectively. A linear regression analysis, which took the effective dielectric function of muc-Si layer into account using effective medium approximation, showed that all these films were homogeneous throughout their thickness except the oxide overlayers, and completely crystallized regardless of the crystallization method. In our linear regression analysis, the complex dielectric function of silicon microcrystallites was represented by the Adachi model dielectric function (MDF) [T. Suzuki and S. Adachi, Jpn. J. Appl. Phys., Part1 32, 4900 (1993)], and the broadening parameters of the critical points (CPs) in MDF were allowed to vary. The dielectric function of silicon microcrystallites showed systematic broadening and shrinking of the peak features corresponding to the E1 and E2 CPs, from which we concluded that the average microcrystallite size increased in the order of SPC, ELA, Ni-SMC, and FESMC muc-Si. The Raman spectra and the transmission-electron-microscopy images of these films also supported the idea of systematic variation in the microcrystallite size.

  16. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  17. Acid doping of polyaniline: Spectroscopic and electrochemical studies

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-16

    A detailed investigation of the acid doping behavior of polyaniline has led to a robust and reproducible procedure for controlled adjustment of the redox state of dry polyaniline films. The initial step in this procedure is the casting of PANI films from formic acid. The subsequent exchange of the trapped formic acid for other primary dopants obtained from mono- and polyprotic acids (e.g., CH{sub 3}COO{sup {minus}}, BF{sub 4}{sup {minus}}, HSO{sub 4}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and HPO{sub 4}{sup 2{minus}}) is demonstrated. The voltammetric and the spectroscopic behavior of the PANI doped with different anions indicate that both the protons and the anions of dopant acids influence the structure and redox properties of the polymer. The redox state of PANI doped with homologous series of chloroacetic and carboxylic acids correlates with the pK{sub a} of the dopant acid. These results show that it is possible to prepare the polymer with a desired oxidation state according to the pK{sub a} of the dopant acid of a given homologous series. The exchange of the formic acid for both stronger and weaker doping acid can be repeatedly accomplished by electrochemical cycling.

  18. Precise Theoretical Study of Spectroscopic Constants in Diatomics

    NASA Astrophysics Data System (ADS)

    Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.; Mosyagin, N. S.

    2013-06-01

    During the last decade a significant progress in methods of molecular spectroscopy was achieved. One of the most important applications of these methods is a measurement of an electron electric dipole moment in diatomic molecules and cations containing heavy elements. In order to speed up such experiments, which usually prepared for many years, one can apply accurate ab initio quantum-chemical methods to predict different spectroscopic constants of a molecule or cation under consideration: scheme of electronic terms, vibrational and rotation constants, hyperfine structure constants, g-factors, lifetimes etc. In such calculations both correlation and relativistic effects should be taken into account. This is not a trivial problem for systems containing transition elements and especially lanthanides and actinides. %Therefore, ``direct'' 4-component Hamiltonians are not always the best choice and some alternative We report results of our recent investigations of a number of diatomics including theoretical investigation of HfF^{+}. Details of used methods are discussed. K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell and J. Ye, Chem. Phys. Lett., 546, 1 (2012).

  19. A fluorescence microscopy study of quantum dots as fluorescent probes for brain tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Vernier, P. Thomas; Sun, Yinghua; Gundersen, Martin A.; Marcu, Laura

    2005-03-01

    In vivo fluorescent spectroscopy and imaging using endogenous and exogenous sources of contrast can provide new approaches for enhanced demarcation of brain tumor margins and infiltration. Quantum dots (QDs), nanometer-size fluorescent probes, represent excellent contrast agents for biomedical imaging due to their broader excitation spectrum, narrower emission spectra, and higher sensitivity and stability. The epidermal growth factor receptor (EGFR) is implicated in the development and progression of a number of human solid tumors including brain tumors and thus a potential target for brain tumor diagnosis. In this study, we investigate the up-take of ODs by brain tumor cells and the potential use of EGFR-targeted QDs for enhanced optical imaging of brain tumors. We conducted fluorescence microscopy studies of the up-take mechanism of the anti-EGFR-ODs complexes by Human U87, and SKMG-3 glioblastoma cells. Our preliminary results show that QDs can enter into glioma cells through anti-EGFR mediated endocytosis, suggesting that these nano-size particles can tag brain tumor cells.

  20. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  1. Fluorescence probes for studying the mechanisms of transcription activation

    NASA Astrophysics Data System (ADS)

    Heyduk, Tomasz; Callaci, Sandhya

    1994-08-01

    Regulation of transcription involves a complex interplay between protein-ligand, protein-DNA, and protein-protein interactions. Fluorescence probes seem to be very well suited to study such complex systems since the selectivity and sensitivity of fluorescence makes possible to select only a part of the system for observation leaving the rest of it transparent to the technique. We have used fluorescence spectroscopy to study the activation of E.coli RNA polymerase by cAMP receptor protein (CRP). The cAMP interactions with CRP, domain flexibility in CRP molecule, the structure of CRP-DNA complex, and interaction of CRP with RNA-polymerase have been studied. Here we report the preparation and properties of 5-OH-Trp derivative of the sigma subunit of E.coli RNA polymerase. This subunit is responsible for specific promoter recognition. The obtained results show that the biological activities of the derivative are identical as observed for the native protein. Comparison of fluorescence properties of the 5-OH-Trp sigma derivative free and bound to the core RNA polymerase suggests a conformational change in the sigma protein induced by this interaction. These data show that replacement of Trp residues with 5-OH-Trp can be a very useful approach to prepare specific fluorescence derivatives of multimeric proteins.

  2. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    PubMed Central

    Lang, Kathrin; Rieder, Renate; Micura, Ronald

    2007-01-01

    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures. PMID:17693433

  3. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here.

  4. Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity.

    PubMed

    Cherif, Jaouhra; Derbel, Najoua; Nakkach, Mohamed; von Bergmann, Hubertus; Jemal, Fatma; Lakhdar, Zohra Ben

    2012-06-04

    The in vivo chlorophyll (Chl) fluorescence spectra of Solanum lycopersicum leaves were recorded in the spectral region 650-800nm using a spectroscopic method based on ultraviolet light emitting diode induced fluorescence spectroscopy (UV-LED IFS). These spectra have been used to analyze the interactive functions of cadmium (Cd(2+)) and zinc (Zn(2+)) on photosynthetic activities of S. lycopersicum plants. The fluorescence intensity ratios (F(690)/F(735)) of the chlorophyll bands at 685 and 730nm were calculated by evaluating curve fitted parameters using a Gaussian spectral function, for control as well as treated plants. The fluorescence induction kinetics (Kautsky effect) was also measured on dark adapted intact plant leaves at the chlorophyll bands for determining the variable chlorophyll fluorescence decrease ratio (R(Fd) values) and the stress adaptation index (Ap). In addition, metal accumulation in plants, plant growth and photosynthetic pigments content were estimated. It was found that the R(Fd)(690), R(Fd)(730) and Ap values decreased whereas the F(690)/F(735) ratio increased in the case of 10μM Cd(2+) treated plants, indicating an impairment of the photosynthetic efficiency. Zn(2+) supplementation, at low concentration (10 and 50μM), in combination with Cd(2+) protect the photochemical functions. However, the high Zn(2+) concentration exacerbated the negative effects of Cd(2+) and showed a severe decrease of R(Fd)(690), R(Fd)(730) and Ap values compared to Cd(2+) alone. It is seen that F(690)/F(735) ratios are strongly correlated with chlorophyll contents. The results demonstrate the usefulness of F(690)/F(735), Ap and R(Fd) values in determining the potential photosynthetic activity of an intact attached leaf in a non-destructive way. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  6. Spectroscopic studies of yellow supergiants in the Cepheid instability strip

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.

    2017-04-01

    High-resolution spectra of nine yellow nonvariable supergiants (NVSs) located within the canonical Cepheid instability strip from Sandage and Tammann (1969) ( α Aqr, ɛ Leo, μ Per, ω Gem, BD+60 2532, HD 172365, HD 187299, HD 190113, and HD 200102) were taken with the 1-m Zeiss and 6-m BTA telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in the 1990s. These have been used to determine the atmospheric parameters, chemical composition, radial velocities, reddenings, luminosities, distances, and radii. The spectroscopic estimates of T eff and the luminosities determined from the Hipparcos parallaxes have shown eight of the nine program NVSs on the T eff-log( L/ L ⊙) diagram to be outside the canonical Cepheid instability strip. When the edges of the Cepheid instability strip from Bono et al. (2000) are used, out of the NVSs from the list on the diagram one is within the Cepheid instability strip but closer to the red edge, two are at the red edge, three are beyond the red edge, two are at the blue edge, and one is beyond the blue edge. The evolutionary masses of the objects have been estimated. The abundances of α-elements, r- and s-process elements for all program objects have turned out to be nearly solar. The CNO, Na, Mg, and Al abundance estimates have shown that eight of the nine NVSs from the list have already passed the first dredge-up. Judging by the abundances of the key elements and its position on the T eff-log( L/ L ⊙) diagram, the lithium-rich supergiant HD 172365 is at the post-main-sequence evolutionary stage of gravitational helium core contraction and moves toward the first crossing of the Cepheid instability strip. The star ɛ Leo should be assigned to bright supergiants, while HD 187299 and HD 190113 may have already passed the second dredge-up and move to the asymptotic branch.

  7. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    PubMed

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×10(3) at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Angelescu, Daniel G.

    2012-10-01

    The photophysical properties of the bovine serum albumin (BSA) and human serum albumin (HSA) adsorbed on (non) functionalized Ag(0) nanoparticles have been studied by spectroscopic techniques. The surface plasmon resonance kinetic of the BSA/HSA-Ag(0) nanoparticle complexes has been assessed by UV-Vis absorption spectroscopy. Transmission electron microscopy analysis showed that the average size of the particles is 9 nm and the core-shell structure of the protein-Ag(0) nanoparticle complexes has been supported by UV-Vis spectra. The structure, stability, dynamics, and conformation of the proteins have been investigated by steady-state, time-resolved fluorescence, and circular dichroism spectroscopy. Insights of the HSA conformation at the nanoparticle surface were obtained by the Monte Carlo simulations carried out using an appropriate coarse-grained model. The HSA conformation upon adsorption on the nanoparticle surface is distorted so that the Trp fluorescence is quenched and the α-helix content diminished. The adsorbed protein exhibited an extended conformation with Trp residue depleted from the nanoparticle surface and rather located toward the protein boundary. Experimental and simulated experiments were in good agreements and the results are discussed in terms of functional properties of the serum albumins in protein-Ag(0) nanoparticle complex.

  9. Molecular modeling and multi-spectroscopic approaches to study the interaction between antibacterial drug and human immunoglobulin G.

    PubMed

    Wang, Qin; Min, Suotian; Liu, Zhifeng; Zhang, Shengrui

    2016-05-01

    Mechanistic and conformational studies on the interaction of sulfamethoxazole (SMX) with human immunoglobulin G (HIgG) were performed by molecular modeling and multi-spectroscopic methods. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HIgG. The binding parameters and thermodynamic parameters at different temperatures had been calculated according to the Stern-Volmer, Scatchard, Sips and Van 't Hoff equations, respectively. Experimental results showed that the fluorescence intensity of HIgG was quenched by the gradual addition of SMX. The binding constants of SMX with HIgG decreased with the increase of temperature, which meant that the quenching mechanism was a static quenching. Meanwhile, the results also confirmed that there was one independent class of binding site on HIgG for SMX during their interaction. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH(0) and entropy ΔS(0), had been calculated to be -14.69 kJ·mol(-1) and 22.99 J·mol(-1) ·K(-1), respectively, which suggested that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the SMX-HIgG complex. Furthermore, experimental results obtained from three-dimensional fluorescence spectroscopy, UV-vis absorption spectroscopy and circular dichroism (CD) spectroscopy confirmed that the conformational structure of HIgG was altered in the presence of SMX.

  10. Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Liang, Jiangong; Cheng, Yanping; Han, Heyou

    2008-12-01

    The interaction between bovine serum albumin (BSA) and CdTe quantum dots (QDs) was studied by fluorescence, UV-vis and Raman spectroscopic techniques. The results showed that the fluorescence of BSA was strongly quenched by CdTe QDs. The quenching mechanism was discussed to be a static quenching procedure, which was proved by the quenching rate constant ( Kq) and UV-vis absorption spectra. According to Lineweaver-Burk equations at different temperatures, the thermodynamic parameters, Δ H θ, Δ S θ and Δ G θ were observed to be -23.69 kJ mol -1, 48.39 J mol -1 K -1 and -38.04 kJ mol -1, respectively. The binding constant ( KA) and the number of binding sites ( n) were obtained by Scatchard equation. It was found that hydrophobic force and sulfhydryl group played a key role in the interaction process. Further results from Raman spectra indicated that the α-helical content in BSA reduced after binding with CdTe QDs.

  11. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    NASA Astrophysics Data System (ADS)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  12. Remote Raman and fluorescence studies of mineral samples.

    PubMed

    Bozlee, Brian J; Misra, Anupam K; Sharma, Shiv K; Ingram, Melissa

    2005-08-01

    In the present study, we investigated remote laser-induced fluorescence (LIF), at a distance of 4.8 m, of a variety of natural minerals and rocks, and Hawaiian Ti (Cordyline terminalis) plant leaves. These minerals included calcite cleavage, calcite onex and calcite travertine, gypsum, fluorapatite, Dover flint and chalk, chalcedony and nephelene syenite, and rubies containing rock. Pulsed laser excitation of the samples at 355 and 266 nm often resulted in strong fluorescence. The LIF bands in the violet-blue region at approximately 413 and approximately 437 nm were observed only in the spectrum of calcite cleavage. The green LIF bands with band maxima in the narrow range of approximately 501-504 nm were observed in the spectra of all the minerals with the exception of the nephelene syenite and ruby rocks. The LIF red bands were observed in the range approximately 685-711 nm in all samples. Excitation with 532 nm wavelength laser gave broad but relatively low fluorescence background in the low-frequency region of the Raman spectra of these minerals. One microsecond signal gating was effective in removing nearly all background fluorescence (with peak at approximately 610 nm) from calcite cleavage Raman spectra, indicating that the fluorescence was probably from long-lifetime inorganic phosphorescence.

  13. Picosecond spectroscopic studies of energy transfer in phycobiliproteins and model dye systems

    SciTech Connect

    Switalski, S.C.

    1987-02-01

    Energy transfer was investigated in the ..cap alpha beta.. monomer and separated ..cap alpha.. and ..beta.. subunits of C-phycocyanin from Anabaena variabilis and Anacystis nidulans, using steady-state and picosecond spectroscopy. Fluorescence excitation polarization spectra were consistent with a sensitizing (s) - fluorescing (f) model using a Forster energy transfer mechanism. The rise in polarization across the absorption band towards longer wavelength for the ..beta.. subunit and the ..cap alpha beta.. monomer was attributed to energy transfer among the three chromophores in the ..cap alpha beta.. monomer and between the 2 chromophores in the ..beta.. subunit. The constant polarization of the ..cap alpha.. subunit, with one chromophore, is consistent with a lack of any possibility of energy transfer. Fluorescence emission maxima were at 640 nm for the ..cap alpha beta.. monomer and the separated subunits of Anabaena variabilis, and 645 nm for the ..beta.. subunit, 640 nm for the ..cap alpha.. subunit, and 644 nm for ..cap alpha beta.. monomer of Anacystis nidulans. We have shown that the labels s and f are not consistent with all the steady-state spectroscopic results. 171 refs., 32 figs., 15 tabs.

  14. Spectroscopic study on the interaction of bovine serum albumin with zinc(II) phthalocyanine.

    PubMed

    Li, Yejing; Wang, Yi; Wang, Ao; Lu, Shan; Zhou, Lin; Zhou, Jiahong; Lin, Yun; Wei, Shaohua

    2015-12-01

    The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)-tetra-(((2-aminoethylamino)methyl)phenoxy)phthalocyaninato-zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug-albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern-Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non-radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Probing the binding of two fluoroquinolones to lysozyme: a combined spectroscopic and docking study.

    PubMed

    Qin, Pengfei; Su, Baoling; Liu, Rutao

    2012-04-01

    Ciprofloxacin (CPFX) and enrofloxacin (ENFX) are two of the most widely used fluoroquinolones (FQs) in human and veterinary medicines. Their occurrence in the environment has received much attention because of the potential adverse effects on humans and ecosystem functions. In this paper, we investigated the interaction mechanism between the two FQs and lysozyme by the spectroscopic and molecular docking methods. As shown by the fluorescence spectroscopy, additions of CPFX or ENFX effectively quenched the intrinsic fluorescence of lysozyme, which was attributed to the formation of a moderately strong complex. The enthalpy change (ΔH) and entropy change (ΔS) indicated that van der Waals forces and hydrogen bonds were the dominant intermolecular forces in the binding of two FQs to lysozyme. Furthermore, data obtained by UV-vis absorption, synchronous fluorescence and circular dichroism (CD) suggested that both CPFX and ENFX could lead to the conformational and some microenvironmental changes of lysozyme. Finally, the molecular docking illustrated that the two FQs had specific interactions with the residues of Trp62 and Trp63.

  16. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  17. Study of the fluorescence signal for gastrointestinal dysplasia detection

    NASA Astrophysics Data System (ADS)

    Pimenta, S.; Castanheira, E. M. S.; Minas, G.

    2014-08-01

    The detection of cancer at the dysplasia stage is one of the most important goals in biomedical research. Optical techniques, specifically diffuse reflectance and intrinsic fluorescence, may improve the ability to detect gastrointestinal (GI) cancers, since they have exquisite sensitivity to some intrinsic biomarkers present on the tissues. This work follows the research that has been done towards the implementation of a spectroscopy microsystem for the early detection of GI cancers. For that purpose, the behavior of the fluorescence signal, at different temperatures and considering the most important biomarkers in GI malignancy detection, was studied and presented.

  18. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  19. Preparation and Spectroscopic Studies of Cobalt(II)-Stellacyanin

    PubMed Central

    McMillin, David R.; Holwerda, Robert A.; Gray, Harry B.

    1974-01-01

    The cobalt(II) derivative of the “blue” copper protein stellacyanin has been prepared, and its visible-ultraviolet spectrum is reported. Tryptophan fluorescence quenching and p-mercuribenzoate titration results strongly suggest that Co(II) and Cu(II) compete for the same stellacyanin binding site and that a cysteine sulfur atom is coordinated in both cases. This interpretation is supported by the finding of an intense band at 355 nm in Co(II)-stellacyanin attributable to a charge transfer transition of the RS- → Co(II) type. The visible absorption spectrum of Co(II)-stellacyanin exhibits band maxima at 540, 625, and 655 nm. These bands are attributable to d-d transitions originating in a high-spin Co(II) center. It is suggested that a correspondence exists between charge transfer bands observed at 355 and 300 nm in the Co(II) derivative to those found at 604 and 450 nm in the native protein. It is concluded that the intense 604-nm peak in Cu(II)-stellacyanin is attributable to a cys-S → Cu(II) charge transfer transition. PMID:4275396

  20. Preparation and spectroscopic studies of cobalt(II)-stellacyanin.

    PubMed

    McMillin, D R; Holwerda, R A; Gray, H B

    1974-04-01

    The cobalt(II) derivative of the "blue" copper protein stellacyanin has been prepared, and its visible-ultraviolet spectrum is reported. Tryptophan fluorescence quenching and p-mercuribenzoate titration results strongly suggest that Co(II) and Cu(II) compete for the same stellacyanin binding site and that a cysteine sulfur atom is coordinated in both cases. This interpretation is supported by the finding of an intense band at 355 nm in Co(II)-stellacyanin attributable to a charge transfer transition of the RS(-) --> Co(II) type. The visible absorption spectrum of Co(II)-stellacyanin exhibits band maxima at 540, 625, and 655 nm. These bands are attributable to d-d transitions originating in a high-spin Co(II) center. It is suggested that a correspondence exists between charge transfer bands observed at 355 and 300 nm in the Co(II) derivative to those found at 604 and 450 nm in the native protein. It is concluded that the intense 604-nm peak in Cu(II)-stellacyanin is attributable to a cys-S --> Cu(II) charge transfer transition.

  1. Solvatochromic, spectroscopic and DFT studies of a novel synthesized dye: l-(4-Dimethylaminophenyl)-2-(5 H-phenanthridine-6-ylidene)-ethanone (6-KMPT)

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Ali; Loghmani-Khouzani, Hossein; Sadeghi, Majid M.; Mehrabi, Hossein

    2007-05-01

    A novel solvatochromic l-(4-dimethylaminophenyl)-2-(5 H-phenanthridine-6-ylidene)-ethanone (6-KMPT) dye was synthesized and characterized by means of NMR, IR, mass spectroscopies. Also, it was studied using UV-vis and fluorescence spectroscopic methods in a broad range of solvents. UV-vis results showed that increasing 6-KMPT concentration dose not cause molecular aggregation in chloroform. Varying the temperature in the range from 25 to 55 °C dose not have a significant effect on the characteristics bands of the molecule. However, in the presence of surfactant SDS the UV-vis spectrum undergoes drastic alteration. This phenomenon is related to the removal of hydrogen atom from nitrogen atom of phenanthridine moiety. Fluorescence spectroscopic results showed that 6-KMPT has an appreciable fluorescence quantum yield. The effect of excitation wavelength, concentration of 6-KMPT, concentration of oxygen and surfactants (SDS, C 16TAB, CPC, Brij-35) were studied. Further results showed that the fluorescent behavior of 6-KMPT can be attributed to planarity induced by intramolecular hydrogen bonding which can in turn be destroyed by anionic surfactant SDS. Results showed that oxygen and SDS can be operate as fluorescence quencher compounds for 6-KMPT and Stern-Volmer plot showed a straight line. Fluorescence polarization and anisotropy of 6-KMPT in chloroform strongly depend on concentration. The 6-KMPT exhibits solvent-induced spectral band shifts. By using Lippert equation, the change of dipole moment of 6-KMPT molecule upon excitation was estimated as 6.39 D. Furthermore, absorption, fluorescence emission, Stokes shift values and fluorescence quantum yield ( ΦF) of 6-KMPT in different solvents of polarity were determined. Maximum ΦF value of 0.372 for 6-KMPT molecule was found in ethanol solvent with a Stokes shift of 2446.8 cm -1. The results of DFT calculations showed that tautomer 2c (enol) energetically is more stable than tautomer 2b (keto) in gas phase whereas

  2. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  3. Fluorescence polarization studies of rat intestinal microvillus membranes.

    PubMed Central

    Schachter, D; Shinitzky, M

    1977-01-01

    Rat intestinal microvillus membranes and lipid extracts prepared from them have been studied by fluorescence polarization with three lipid-soluble fluorophores: diphenylhexatriene, retinol, and anthroyl-stearate. The degree of fluorescence polarization of diphenylhexatriene, which provides an index of the "microviscosity" of the lipid regions of the membrane, is exceptionally high in microvillus membranes, the highest yet reported in normal biological membranes. Both the membrane proteins and lipids were found to contribute to the high values. With each of the three probes the polarization values are higher in ileal microvillus membranes as compared to membranes from proximal intestinal segments. Temperature-dependence studies of the fluorescence polarization of diphenylhexatriene and anthroylstearate demonstrate a phase transition in microvillus membranes and in liposomes prepared from their lipid extracts at approximately 26+/-2 degrees C. Ambient pH influences markedly the diphenylhexatriene fluorescence polarization in microvillus membranes but has little effect on that of human erythrocyte ghost membranes. The "microviscosity" of jejunal microvillus membranes is maximal at pH 6.5-7.0 and decreases as much as 50% at pH 3.0, an effect which depends largely upon the membrane proteins. Addition of calcium ions to suspensions of microvillus membranes increases the fluorescence polarization of retinol and anthroyl-stearate, but not that of diphenyl-hexatriene. This confirms the localization of the last compound to the hydrophobic interior of the membrane, relatively distant from the hydrophilic head groups of the polar lipids. Microvillus membrane proteins solubilized with Triton X-100 give relatively high fluorescence polarization and intensity values with retinol, suggesting the presence of binding proteins which could play a role in the normal absorptive mechanism for the vitamin. PMID:14174

  4. Study of anti-cancer effects of chemotherapeutic agents and radiotherapy in breast cancer patients using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chithra, K.; Vijayaraghavan, S.; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    The analysis of the variations in the spectroscopic patterns of the key bio molecules using Native fluorescence spectroscopy, without exogenous labels, has emerged as a new trend in the characterization of the Physiological State and the Discrimination of Pathological from normal conditions of cells and tissues as the relative concentration of these bio-molecules serve as markers in evaluating the presence of cancer in the body. The aim of this unique study is to use these features of Optical spectroscopy in monitoring the behavior of cells to treatment and thus to evaluate the response to Chemotherapeutic agents and Radiation in Breast Cancer Patients. The results of the study conducted using NFS of Human blood plasma of biopsy proved Breast Cancer patients undergoing treatment are promising, enhancing the scope of Native fluorescence Spectroscopy emerging as a promising technology in the evaluation of Therapeutic Response in Breast Cancer Patients.

  5. Laser Raman and infrared spectroscopic studies of molecular systems: Structural analysis of some clathrate compounds

    NASA Astrophysics Data System (ADS)

    Akyuz, S.

    1990-09-01

    The structural analyses of some molecular systems, namely clathrates, depending on the laser Raman and infrared spectroscopic studies are reported. The following subject areas are covered: Raman effect; Raman spectroscopy; IR spectroscopy; mutual exclusion principle; vibrational spectra of the polymeric layers; and fundamental vibrations of pyrazine molecules.

  6. A Spectroscopic study on the fuel value of softwoods in relation to chemical composition

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt; Les Groom; Todd F. Shupe

    2012-01-01

    The recent focus on bioenergy has led to interest in developing alternative technologies for assessing the fuel value of available biomass resources. In this study, both near- and mid-infrared spectroscopic datawere used to predict fuel value in relation to extractives and lignin contents for longleaf pine wood. Samples were analyzed both before and after extraction....

  7. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells.

    PubMed

    Roshchina, Victoria V

    2016-05-01

    Fluorescence as a parameter for analysis of intracellular binding and localization of neurotransmitters also named biomediators (acetylcholine and biogenic amines such as catecholamines, serotonin, histamine) as well as their receptors in plant cells has been estimated basing on several world publications and own experiments of the author. The subjects of the consideration were 1. application of reagents forming fluorescent products (for catecholamines - glyoxylic acid, for histamine - formaldehyde or ortho-phthalic aldehyde) to show the presence and binding of the compounds in cells, 2. binding of their fluorescent agonists and antagonists with cell, 3. effects of the compounds, their agonists and antagonists on autofluorescence, 4. action of external factors on the accumulation of the compounds in cells. How neurotransmitters can bind to certain cellular compartments has been shown on intact individual cells (vegetative microspores, pollens, secretory cells) and isolated organelles. The staining with reagents on biogenic amines leads to the appearance blue or blue-green emission on the surface and excretions of intact cells as well in some DNA-containing organelles within cells. The difference between autofluorescence and histochemically induced fluorescence may reflect the occurrence and amount of biogenic amines in the cells studied. Ozone and salinity as external factors can regulate the emission of intact cells related to biogenic amines. After the treatment of isolated cellular organelles with glyoxylic acid blue emission with maximum 460-475 nm was seen in nuclei and chloroplasts (in control variants in this spectral region the noticeable emission was absent) and very expressive fluorescence (more than twenty times as compared to control) in the vacuoles. After exposure to ortho-phthalic aldehyde blue emission was more noticeable in nuclei and chloroplasts. Fluorescent agonists (muscarine, 6,7-diOHATN, BODIPY-dopamine or BODIPY-5HT) or antagonists (d

  8. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  9. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    PubMed

    Nogara, Leonardo; Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.

  10. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones.

    PubMed

    Ren, Tiegang; Liu, Shuyun; Li, Guihui; Zhang, Jinglai; Guo, Jia; Li, Weijie; Yang, Lirong

    2012-11-01

    A series of novel bis-Schiff base were synthesized from 1-aryl-3-methyl-4-benzoyl-5-pyrazolones and diethylenetriamine (or triethylenetetramine) as the starting materials. All of these bis-Schiff bases were characterized by means of NMR, IR, and MS. The UV-vis absorption spectra and fluorescent spectra of these bis-Schiff bases were also measured. Moreover, the B3LYP/6-31G(d) method was used to optimize the ground state geometry of the bis-Schiff bases; and the UV-vis spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVDZ basis set of TD-B3LYP method. It has been found that all of these bis-Schiff bases show a remarkable absorption peak in a wavelength range of 270-340 nm; and their maximum emission peaks are around 348 nm.

  11. Spectroscopic and molecular modeling studies of the interaction between morin and polyamidoamine dendrimer.

    PubMed

    Zhang, Hongmei; Cao, Jian; Wang, Yanqing

    2014-09-01

    Interactions between the polyamidoamine (PAMAM) dendrimer and drug molecules are of interest for their potential biomedical applications. The goal of this work is to examine the interaction of PAMAM-C12 25% dendrimer with morin. The ultraviolet-visible, fluorescence spectroscopic methods as well as molecular modeling were used to analyze drug-binding mode, binding constants and binding sites, etc. The experimental data showed that the binding constant of morin-PAMAM-C12 25% is about 10(5) L/mol. The interaction of morin with PAMAM-C12 25% is mainly driven by the hydrophobic, electrostatic, hydrogen bonds and van der Waals forces. There are mainly three classes of binding site of morin at the interface of PAMAM-C12 25%. These results provided some useful information for self-assembling and disassembling the PAMAM dendrimer as well as efficient drug delivery and therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Spectroscopic study of firefly oxyluciferin in an enzymatic environment on the basis of stability monitoring.

    PubMed

    Wang, Yu; Hayamizu, Yuhei; Akiyama, Hidefumi

    2014-02-27

    To understand the influence of the enzyme microenvironment on the properties of the emitter oxyluciferin (OL) in firefly bioluminescence, we investigated the spectroscopic characteristics of OL in a complex with the enzyme luciferase formed in a consumed reaction mixture. By monitoring the in situ absorption spectra, we analyzed the enzymatic synthesis and the stability of OL in luciferase environment. The absorption spectra of OL in Photinus pyralis luciferase showed that the dominant form was neutral OL, probably the enol form, which emitted blue fluorescence (∼450 nm). A monoanionic OL emitting green fluorescence (∼560 nm) exhibited a weak pH-dependent equilibrium with the neutral enol-OL. The red-emitting form of OL was almost completely absent from the consumed reaction mixture. The peak wavelengths of the green and red emissions of the fluorescence and bioluminescence were similar, but the peak intensities, and hence the spectral shapes, differed greatly. The above characteristics were also found in the absorption and fluorescence spectra of OL in a complex with the H433Y mutant of Luciola cruciata luciferase, which catalyzes pH-independent red bioluminescence. Optical excitation could not reproduce the excited states of bioluminescence that was generated from the chemical reaction. The probable reason is that the chemical excited states formed from a keto-like transition state after decomposition of a dioxetanone intermediate, whereas the optical excited states were generated by exciting the neutral enol-OL. Different luciferases only influenced the chemical transition state during the bioluminescence reaction; they did not influence the ground states or optical excited states after the reaction.

  13. A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings

    NASA Astrophysics Data System (ADS)

    Mosca, S.; Alberti, R.; Frizzi, T.; Nevin, A.; Valentini, G.; Comelli, D.

    2016-09-01

    We propose a non-invasive approach for the identification and mapping of pigments in paintings. The method is based on three highly complementary imaging spectroscopy techniques, visible multispectral imaging, X-Ray fluorescence mapping and Raman mapping, combined with multivariate data analysis of multidimensional spectroscopic datasets for the extraction of key distribution information in a semi-automatic way. The proposed approach exploits a macro-Raman mapping device, capable of detecting Raman signals from non-perfectly planar surfaces without the need of refocusing. Here, we show that the presence of spatially correlated Raman signals, detected in adjacent points of a painted surface, reinforces the level of confidence for material identification with respect to single-point analysis, even in the presence of very weak and complex Raman signals. The new whole-mapping approach not only provides the identification of inorganic and organic pigments but also gives striking information on the spatial distribution of pigments employed in complex mixtures for achieving different hues. Moreover, we demonstrate how the synergic combination on three spectroscopic methods, characterized by highly different time consumption, yields maximum information.

  14. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  15. Spectroscopic study for a chromium-adsorbed montmorillonite

    NASA Astrophysics Data System (ADS)

    Nurtay, Maidina ·; Tuersun, Maierdan ·; Cai, Yuanfeng; Açıkgöz, Muhammed; Wang, Hongtao; Pan, Yuguan; Zhang, Xiaoke; Ma, Xiaomei

    2017-02-01

    Samples of purified montmorillonite with trace amounts of quartz were subjected to different concentrations of chromium sulphate solutions for one week to allow cation exchange. The chromium-bearing montmorillonites were verified and tested using powder X-ray diffractometry (XRD), X-ray fluorescence spectrometry, electron spin resonance (ESR) spectrometry and Fourier transformation infrared (FTIR) spectroscopy to explore the occupation sites of the chromium. The ESR spectra recorded before and after the chromium exchange show clear differences: a strong and broad resonance with two shoulders at the lower magnetic field side was present to start, and its intensity as well as that of the ferric iron resonance, increased with the concentration of added chromium. The signals introduced by the chromium, for example at g = 1.975 and 2.510 etc., suggested that the chromium had several occupational sites. The ESR peak with g = 2.510 in the second derivative spectrum suggested that Cr3+ was weakly bounded to TOT with the form of [Cr(H2O)3]3+ in hexagonal cavities. This was verified by comparing the FTIR spectra of the pure and modified montmorillonite. The main resonance centred at g = 1.975 indicated that the majority of Cr3+ occupied the interlayer region as [Cr(H2O)6]3+. The substitution of Ca2 + by Cr3+ also greatly affected the vibration of the hydrogens associate to water, ranged from 3500 to 2600 cm-1 in FTIR. Furthermore, the presence of two diffraction lines in the XRD results (specifically those with d-values of 1.5171 and 1.2673 nm) and the calculations of the size of the interlayer space suggested the presence of two types of montmorillonite with different hydration cations in the sample exposed to 0.2 M chromium sulphate. The two diffraction lines were assigned to [Cr(H2O)6]3+ and [Cr(H2O)3O3]3+, respectively. This also suggested that the species of hydration cation was constrained by the concentration of the chromium solution.

  16. Spectroscopic Studies on Binding of Lotus Seedpod Oligomeric Procyanidins to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Li, Sh.; Fu, X.; Yang, T.; Chen, H.; Guan, Y.; Xie, B.; Sun, Zh.

    2014-01-01

    The binding of lotus seedpod oligomeric procyanidins (LSOPC) and catechin (a major constituent unit of LSOPC) to bovine serum albumin (BSA) was studied by a fluorescence quenching technique. The results revealed that LSOPC could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure, but catechin could not. The Stern-Volmer quenching constant, K SV, and corresponding thermodynamic parameters, Δ G 0, Δ H 0 and Δ S 0, were calculated. The results of synchronous fluorescence and circular dichroism studies showed that LSOPC could cause a conformational change in BSA. In addition, glucose and metal ions could affect the interaction between LSOPC and BSA.

  17. In vivo optical analysis of pancreatic cancer tissue in living model mice using fluorescence and Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiaki; Hattori, Yusuke; Katagiri, Takashi; Mitsuoka, Hiroki; Sato, Ken-ichi; Asakura, Toru; Shimosegawa, Toru; Sato, Hidetoshi

    2009-02-01

    Living pancreatic cancer tissues grown subcutaneously in nude mice are studied by in vivo Raman spectroscopy and autofluorescence imaging. Comparing the same point spectra of alive pancreatic cancer tissue to that of the dead tissue, it is found that they are different each other. The results suggest that the spectral changes reflect the protein conformational changes in the tumor tissue with death of the host animal. From the result of autofluorescence study, in vivo autofluorescence imaging has potential as a method to assign the histological elements of the pancreatic cancer tissue without any staining. These results strongly suggest that combination of these techniques is very important to study biological tissue.

  18. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    SciTech Connect

    Pizarro, Shelly Ann

    2000-05-01

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because L

  19. Study of Characterization of Pure and Malachite Green Doped Samples Using Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti; Mishra, Pankaj K.; Khare, P. K.

    2011-07-01

    This paper describes the results of SEM, EDX, UV-vis and TSDC study of malachite green doped PVK thermelectrets. TSDC study has been carried out in the temperature range 300 °C to 1500 °C with four different polarizing fields. One peak was observed at 110±10 °C which shifts toward high temperature with the increase in polarizing field. The activation energy found by initial rise method are 0.27±0.02 eV for pure and 0.40±0.03 eV for malachite green doped PVK thermoelectrets. Spectroscopic study concluded that impregnation of malachite green in polymer matrix forms charge transfer complexes.

  20. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-05

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations.

  1. Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Liu, Congqiang; Guo, Jianyang; Fu, Pingqing; Li, Wen; Xing, Baoshan

    2008-01-01

    Carbamazepine is a popular drug that has been detected in natural environments, but little is known about its biogeochemical cycling, influencing factors, and eco-environmental effects in aquatic ecosystems. Interaction between carbamazepine and humic substances, including fulvic and humic acids, was studied using three-dimensional excitation-emission matrix fluorescence spectroscopy and synchronous-scan fluorescence spectroscopy. The intrinsic fluorescence of humic substances was quenched on the addition of carbamazepine, and static quenching was the primary mechanism. The binding parameters on their interaction, including the conditional binding constants (log K) and binding capacities (C(L)), were estimated by the Ryan-Weber nonlinear theory equation. Log K ranged from 3.41 to 5.04 L/mol at 25 degrees C and pH 7.0. The influence of pH on the complexation and the competition between carbamazepine and Cu(II) for fluorescence-binding sites also were discussed. The present results would be helpful in understanding the fate and biogeochemical cycling of other pharmaceuticals and personal care products in aquatic ecosystems.

  2. Inclusion of Ethyl Acetoacetate Bearing 7-Hydroxycoumarin Dye by β-Cyclodextrin and its Cooperative Assembly with Mercury(II) Ions: Spectroscopic and Molecular Modeling Studies.

    PubMed

    Aliaga, Margarita E; Fierro, Angélica; Uribe, Iván; García-Río, Luis; Cañete, Álvaro

    2016-10-18

    The inclusion of the fluorescent organic dye, ethyl 3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate (1) by the host β-cyclodextrin (β-CD), and its response toward mercuric ions (Hg(2+) ), was studied by UV/Vis, fluorescence, and (1) H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. (1) H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β-CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β-CD, with a binding constant (Kb1 =1.8×10(4)  m(-1) ) and for the dye 1 (keto form)-Hg(2+) (Kb2 =2.3×10(3)  m(-1) ). Interestingly, in the presence of 1-β-CD complex and mercuric ions, a ternary supramolecular system (Hg-1-β-CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×10(3)  m(-1) , with the keto form of the dye being the only one present in this assembly. The three-component system provides a starting point for the development of novel and directed supramolecular assemblies.

  3. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  4. Fluorescence-based characterization of non-fluorescent transient states of tryptophan - prospects for protein conformation and interaction studies

    NASA Astrophysics Data System (ADS)

    Hevekerl, Heike; Tornmalm, Johan; Widengren, Jerker

    2016-10-01

    Tryptophan fluorescence is extensively used for label-free protein characterization. Here, we show that by analyzing how the average tryptophan fluorescence intensity varies with excitation modulation, kinetics of tryptophan dark transient states can be determined in a simple, robust and reliable manner. Thereby, highly environment-, protein conformation- and interaction-sensitive information can be recorded, inaccessible via traditional protein fluorescence readouts. For verification, tryptophan transient state kinetics were determined under different environmental conditions, and compared to literature data. Conformational changes in a spider silk protein were monitored via the triplet state kinetics of its tryptophan residues, reflecting their exposure to an air-saturated aqueous solution. Moreover, tryptophan fluorescence anti-bunching was discovered, reflecting local pH and buffer conditions, previously observed only by ultrasensitive measurements in highly fluorescent photo-acids. Taken together, the presented approach, broadly applicable under biologically relevant conditions, has the potential to become a standard biophysical approach for protein conformation, interaction and microenvironment studies.

  5. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-01

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment.

  6. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe.

    PubMed

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-03

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy.

    PubMed

    Chourpa, I; Millot, J M; Sockalingum, G D; Riou, J F; Manfait, M

    1998-03-02

    Potent antitumor activity exhibited by 20-S-camptothecin (CPT) and numerous derivatives is known to be lost upon opening of the alpha-hydroxy-lactone ring of these drugs, hydrolyzable at neutral and basic pH. To quantify in 'real time' the lactone hydrolysis reaction in CPTs under physiological conditions, we have applied a non-perturbing approach by fluorescence spectroscopy. CPT and a set of its derivatives (21-lactam-S-CPT, 10,11-(methylenedioxy)-CPT, CPT-11, SN-38, topotecan, tricyclic ketone-CPT) with antitumor activity varying from negligible to 10 times that of CPT have been studied. Prior to the kinetic measurements, the effects of substitutions, pH, polarity of molecular environment, lactone ring opening (lactone-carboxylate transition) have been investigated in terms of the UV-visible absorption and fluorescence emission spectra of CPTs. Then the determined parameters of the fluorescence emission spectra corresponding to the respective lactone and carboxylate forms have been used to estimate the residual lactone percentage as a function of time. The reproducibility of the obtained data demonstrates that the spectroscopic approach provides a satisfactory precision for this kind of measurements. For CPT at pH 7.3, the lactone half-life was 29.4 +/- 1.7 min and the lactone percentage at equilibrium was 20.9 +/- 0.3%. Within a series of derivatives with substitutions at quinoline rings, the lactone half-life varied from 29 to 32 min and the equilibrium lactone content varied from 15% to 23%. For each compound, even slight increase of pH from 7.1 to 7.3 or from 7.3 to 7.6 logically leads to a remarkable decrease of both lactone half-life and equilibrium lactone percentage.

  8. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    PubMed

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods.

    PubMed

    Cheng, Zhengjun; Liu, Rong; Jiang, Xiaohui

    2013-11-01

    The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium