Science.gov

Sample records for fluorescent aromatic compounds

  1. HPLC Determination Of Polycyclic Aromatic Compounds By Fluorescence Detected With A Charge-Coupled Device

    NASA Astrophysics Data System (ADS)

    Jalkian, Rafi D.; Denton, M. Bonner

    1989-05-01

    A solid-state two-dimensional charge-coupled device (CCD) is used to quantitate polycyclic aromatic compounds by native fluorescence. The mixture is separated by reverse phase high performance liquid chromatography (HPLC) and the fluorescence emission from each peak is integrated by the detector. A new technique, charge-dependent variable binning, applied to one-dimensional spectroscopy leads to outstanding dynamic range. Excellent linearity and limits of detection are obtained for several priority pollutants. Synchronous and derivative techniques can be applied to the two-dimensional fluorescence data obtained to resolve overlapping peaks. The analyzed mixture consists of fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, and perylene.

  2. Biliary fluorescent aromatic compounds (FACs) measured by fixed wavelength fluorescence (FF) in several marine fish species from the NW Mediterranean.

    PubMed

    Insausti, David; Carrasson, Maite; Maynou, Francesc; Cartes, Joan E; Solé, Montserrat

    2009-11-01

    The fixed wavelength fluoresce (FF) method was used to estimate the levels of fluorescent aromatic compounds (FACs) in the bile of fourteen fish species of commercial and/or ecological interest. Sampling was carried out in the NW Mediterranean at depths ranging from 50 to 1000 m during four seasonal cruises. During the summer sampling period, some species were also collected from another site (Vilanova fishing grounds) for comparison. Baseline levels of the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, pyrene and benzo[a]pyrene were measured. Some seasonality was observed, with reduced FF levels in summer and no differences among sites, consistent with sediment PAH levels. We discuss our results in relation to fish phylogeny, season, depth, diet, trophic level and swimming capacity. Overall FF levels indicated differences among species; the suprabenthic feeders from shallow and deep communities, and Mullus barbatus in particular, displayed elevated FF values and are potential candidates for additional monitoring studies.

  3. Development of a flow-injection fluorescence method for estimation of total polycyclic aromatic compounds in asphalt fumes.

    PubMed

    Neumeister, Charles E; Olsen, Larry D; Dollberg, Donald D

    2003-01-01

    Traditionally, measurements of specific polycyclic aromatic compounds (PACs) have been attempted as an estimate of asphalt fume exposure. However, asphalt fumes contain numerous alkyl substituted PACs, including PACs containing heteroatoms of nitrogen, oxygen, and sulfur. Many of these compounds coelute precluding the resolution of the individual compounds resulting in ambiguous data. Moreover, many researchers believe that some observed health hazards are associated with PACs overall and not just a few select PACs. Therefore, NIOSH method 5800 was developed to evaluate total PACs as a chemical class in asphalt fumes. Asphalt fume samples were collected on a poly(tetrafluoroethylene) filter backed by an XAD-2 sorbent tube. The samples were extracted with hexane; then, a cyano-solid-phase-extraction column was used to remove the polar compounds while the aliphatic and aromatic compounds were eluted with hexane. An equal volume of dimethyl sulfoxide (DMSO) was added to the hexane extract, causing the aromatic compounds to partition into the DMSO, thus isolating the PACs. The PACs were then analyzed for fluorescence using a flow-injection method with two fluorescence detectors. Wavelength settings for the first detector (254-nm excitation, 370-nm emission) emphasized the 2- to 4-ring PACs that may cause eye and respiratory tract irritation. Wavelength settings of the second detector (254-nm excitation, 400-nm emission) emphasized the 4- and higher-ring PACs that are often mutagenic and possibly carcinogenic. PMID:14521431

  4. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  5. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  6. Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate.

    PubMed

    Zhang, Wei; Wilson, Christopher R; Danielson, Neil D

    2008-02-15

    An indirect fluorescence (FL) detection method via the reactivity of UV-photolyzed 2-phenylbenzimidazole-5-sulfonate (PBSA) has been developed for non-fluorescent aromatic compounds. At high pH with UV photolysis, PBSA in the excited state is known to be quenched by reaction with oxygen species and analyte compounds that are reactive toward these oxygen species produced during photolysis can lessen the loss of PBSA FL. After off-line photolysis of PBSA in the presence of various nitro-aromatic test compounds, the increase in PBSA FL is clearly evident. A flow injection (FI) instrument using a PBSA mobile phase propelled through a Teflon coil wrapped around a Hg lamp is optimized and modified for use for liquid chromatography (LC). For the on-line FI determination of the non-fluorescent nitro-aromatic compounds such as 4-nitroaniline, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, and alpha-nitronaphthalene, a positive linear response for PBSA FL from about 0.5 to 15 microM and detection limits generally between 0.2 and 1 microM (4-20 pmol) are found. Linear responses and detection limits of selected pharmaceutical compounds such as the antibacterial nitrofurantoin, antihistamines chlorpheniramine and brompheniramine, and other compounds were similar. In general, detection limits using UV detection at about 214 nm were not as good in the 1-2 microM range but linearity extended up to 100 microM. The amino acid phenylalanine and small peptides containing this aromatic amino acid were also determined using this method. Application of this detection method for the liquid chromatography determination of 4-nitroaniline, 2-nitrophenol, nitrofurantoin, and salicylate is shown.

  7. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    SciTech Connect

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  8. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  9. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  10. Asymmetrical/symmetrical D-π-A/D-π-D thiazole-containing aromatic heterocyclic fluorescent compounds having the same triphenylamino chromophores.

    PubMed

    Tao, Tao; Ma, Bin-Bin; Peng, Yu-Xin; Wang, Xiao-Xu; Huang, Wei; You, Xiao-Zeng

    2013-09-01

    A family of linear asymmetrical D-π-A and symmetrical D-π-D types of thiazole-based aromatic heterocyclic fluorescent compounds bearing various electron-donating and electron-withdrawing tails (bromo, triphenylamino, pyridyl, thienyl and benzoic acid) have been designed and prepared successfully. Synthetic, structural, thermal, spectral and computational comparisons have been carried out for related compounds because of their adjustable electronic properties. It is interesting to mention that compound 2 can be prepared from 5-bromothiazole by one-pot Suzuki-Miyaura coupling and subsequent C-H activation reactions via a 5-TPA-substituted thiazole intermediate 1. X-ray single-crystal structures of six compounds indicate that they all crystallize in the triclinic P1 space group and the thiazole core exhibits different dihedral angles with its adjacent benzene ring of the triphenylamino group (3.6(3)-40.8(3)°). The photophysical and electrochemical results demonstrate that compound 7 exhibits high electrochemical activity with a green fluorescence emission. Meanwhile, compounds 1, 2, and 6 show high luminescence quantum yields, and compound 8 exhibits excellent thermal stability (T(d(10)) = 503 °C).

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  17. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  18. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  19. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  20. Heterogeneous photocatalytic reactions of sulfur aromatic compounds.

    PubMed

    Samokhvalov, Alexander

    2011-11-18

    Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed.

  1. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    PubMed

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  2. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    PubMed

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  3. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  4. The Industrial Reduction of Aromatic Nitro Compounds.

    ERIC Educational Resources Information Center

    Gilbert, G.

    1980-01-01

    Describes methods for enriching an A-level chemistry course with a series of chemical company visits. The rationale is discussed for an emphasis of the visits on the industrial reduction of aromatic nitro compounds. (CS)

  5. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  6. Nucleophilic fluorination of aromatic compounds

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  7. Bacterial strategies for growth on aromatic compounds.

    PubMed

    George, Kevin W; Hay, Anthony G

    2011-01-01

    Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.

  8. Reaction of disubstituted aromatic compounds with styrene

    SciTech Connect

    Grushin, A.I.; Grigor'ev, V.V.; Prokof'ev, K.V.; Kozlova, N.M.

    1988-03-20

    Hydrocarbons of the 1,1-diphenylethane type were obtained by the reaction of styrene with various disubstituted derivatives of benzene in the presence of titanium tetrachloride. It was found that the yield of the desired compound depends on the strength of the electron-donating substituents and on steric factors in the aromatic ring.

  9. Overview of Polycyclic Aromatic Compounds (PAC)

    PubMed Central

    Achten, Christine; Andersson, Jan T.

    2015-01-01

    The chemical group of polycyclic aromatic compounds (PAC), including the better-known subgroup of polycyclic aromatic hydrocarbons (PAH) and the heterocyclic aromatic compounds (NSO-PAC, heterocycles), comprise several thousand individual compounds. It is hard to find a comprehensive overview in the literature of these PACs that includes a substantial amount of relevant properties. Here an attempt is made to summarize the most studied but also some less well-known PACs. In addition to basic data such as recommended names, abbreviations, CAS numbers, molecular formulas, chemical structures, and exact mono-isotopic molecular weights, physico-chemical properties taken from the literature like boiling points, vapor pressures, water solubilities, Henry's Law constants, n-octanol-water partition coefficients (log KOW), and pKa are summarized. Selected toxicological data are listed indicating carcinogenic and mutagenic activity or effects on different organisms. PAC nomenclature is a complex topic, so suggestions for practical use are made. Regarding available data, estimated (instead of measured) values should be used with caution because considerable deviations from experimentally determined values can occur. For an enhanced understanding of the behavior of single PACs in comparison with each other, some of the properties mentioned above are plotted vs. the number of rings or the degree of alkylation. Also, some physico-chemical data are correlated with different functional groups as substituents of the PAHs. This article reveals that rather little is known about the less common PACs, e.g., higher molecular weight compounds, alkylated or otherwise substituted aromatics, for instance, keto-, oxo-, amino-, nitro-, cyano-PAHs, or some heterocyclic aromatic compounds, including their derivatives. It mirrors the limited state of knowledge about the variety of PACs that do not belong to the 16 EPA PAHs. PMID:26823644

  10. Fluorescent aromatic sensors and their methods of use

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)

    2012-01-01

    Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.

  11. Chemotaxis of Azospirillum species to aromatic compounds

    SciTech Connect

    Lopez-de-Victoria, G.; Lovell, C.R. )

    1993-09-01

    Azospirillum sspeciesare free-living nitrogen fixing bacteria commonly found in soils and in association with plant roots, including important agricultural crops. Rhizosphere colonization my Azospirillum species has been shown to stimulate growth of a variety of plant species. Chemotaxis is one of the properties which may contribute to survival, rhizosphere colonization and the initiation of mutualistic interactions by Azospirillum species. This study evaluates the chemotactic responses of three Azospirillum stains to a variety of aromatic compounds:benzoate, catechol, 4-HB, and PCA. Results indicate that the same aromatic substance can elicit different chemotactic responses from different Azospirillum species, and that Azospirillum can detect aromatic substrates at concentrations similar to those they encounter naturally. 36 refs., 1 fig., 6 tabs.

  12. 40 CFR 721.875 - Aromatic nitro compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic nitro compound. 721.875... Substances § 721.875 Aromatic nitro compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aromatic nitro compound (PMN P-86-335) is subject to reporting...

  13. 40 CFR 721.750 - Aromatic amine compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic amine compound. 721.750... Substances § 721.750 Aromatic amine compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aromatic amine compound (PMN P-86-334) is subject to reporting...

  14. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.

    PubMed Central

    Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.

    1964-01-01

    Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630

  15. Enzyme catalytic nitration of aromatic compounds.

    PubMed

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration. PMID:26002502

  16. Enzyme catalytic nitration of aromatic compounds.

    PubMed

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration.

  17. Metabolism of aromatic compounds by Caulobacter crescentus

    SciTech Connect

    Chatterjee, D.K.; Bourquin, A.W.

    1987-05-01

    Cultures of Caulobacter crescentus were found to grow on a variety of aromatic compounds. Degradation of benzoate, p-hydroxybenzoate, and phenol was found to occur via ..beta..-ketoadipate. The induction of degradative enzymes such as benzoate 1,2-dioxygenase, the ring cleavage enzyme catechol 1,2-dioxygenase, and cis,cis-muconate lactonizing enzyme appeared similar to the control mechanism present in Pseudomonas spp. Both benzoate 1,2-dioxygenase and catechol 1,2-dioxygenase had stringent specificities, as revealed by their action toward substituted benzoates and substituted catechols, respectively.

  18. Petroleum hydrocarbons, fluorescent aromatic compounds in fish bile and organochlorine pesticides from areas surrounding the spill of the Kab121 well, in the Southern Gulf of Mexico: a case study.

    PubMed

    Gold-Bouchot, G; Ceja-Moreno, V; Chan-Cocom, E; Zapata-Perez, O

    2014-01-01

    In October 2007, a light crude oil spill took place in the off shore Kab121 oil well, 32 km north of the mouth of the Grijalva River, Tabasco, Mexico. In order to estimate the possible effects of oil spill on the biota in the area surrounding the spilled well, the level of different fractions of petroleum hydrocarbons were measured in fish, as well as the concentration of some chlorinated hydrocarbons and PCBs. The organisms examined were cat fish (Ariopsis felis), in addition fluorescent aromatic compounds in bile, the contaminants above mentioned and their relationship with cyotochrome P-450 and Ethoxyresorufin-O-deethylase, Glutathion-S-Transferase and catalase activities in liver were determined. The concentration of most pollutants were low, except PAHs. Spatial distribution of these compounds, as well as most biomarkers, reflected the highest exposure of fish to pollutants in the area adjacent to well, as well as in the proximity of rivers. The profile of exposure to this environment was chronic in nature and not temporary.

  19. Comparison of high-performance liquid chromatography/fluorescence screening and gas chromatography/mass spectrometry analysis for aromatic compounds in sediments sampled after the Exxon Valdez oil spill

    SciTech Connect

    Krahn, M.M.; Ylitalo, G.M.; Buzitis, J.; Chan, S.L.; Varanasi, U. ); Wade, T.L.; Jackson, T.J.; Brooks, J.M. ); Wolfe, D.A.; Manen, C.A. )

    1993-04-01

    After the grounding of the Exxon Valdez, sediment samples were collected to determine the degree and distribution of the oiling. Sixty sediments from 10 sites in Prince William Sound, AK, were analyzed for Prudhoe Bay crude oil (PBCO) using a rapid HPLC screening method that measured fluorescence at wavelength pairs specific for two- and three-ring petroleum-related aromatic compounds (ACs). Concentrations of individual ACs in the sediments were also determined by GC/MS to compare the results of the two methods. Concentrations of ACs measured by HPLC screening were highly correlated with the sums of ACs determined by GC/MS, thus validating the screening method as an effective tool for estimating concentrations of petroleum-related ACs in sediments. Moreover, differences in HPLC chromatographic patterns among sediments suggested different sources of contamination, e.g., crude oil or diesel fuel. Finally, GC/MS analyses confirmed that PBCO was a primary source of contamination in many sediments. 21 refs., 5 figs., 2 tabs.

  20. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  1. Fluorescence quenching of vaporous polycyclic aromatic hydrocarbons by oxygen

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Piuzzi, F.; Sambor, E. G.

    2007-04-01

    The fluorescence quenching by oxygen of vapors of nine polycyclic aromatic hydrocarbons with strongly different oxidation potentials 0.44 eV < E ox < 1.61 eV (anthracene, 9-methylanthracene, 2-aminoanthracene, 9,10-dibromanthracene, pyrene, chrysene, phenanthrene, fluoranthene, and carbazole) is studied. From the dependences of the fluorescence decay rates and intensities on the oxygen pressure P O2, the quenching rate constants k S O2 for the excited singlet states S 1 and the fraction f S O2 of the S 1 states quenched by oxygen are estimated. At P O2 = 5 Torr, the k S O2 constants vary from 1.2 × 107 to 3.0 × 105 s-1 Torr-1, while the fraction of the quenched excited singlet states changes from 0.1 (fluoranthene) to 0.7 (chrysene) and 0.8 (pyrene). The dependences of k S O2 on the photophysical and electron-donor characteristics of the fluorescing compounds are analyzed. It is shown that, in the gas phase of anthracene and its derivatives, the magnitudes of k S O2 are limited by the rate constants of gas-kinetic collisions k gk and do not depend on the electron-donor characteristics of fluorophores, while the fraction of quenched states f S O2 changes with the oxidation potential. For compounds with k S O2 < k gk, both the rate constants k S O2 and the fraction of quenched states f S O2 depend on the E ox of sensitizers, which demonstrates an important role played by the charge-transfer interactions in quenching of the S 1 states. The dependence of the rate constants k S O2 on the free energy of electron transfer ΔG et is considered.

  2. Reductive carbonylation of aromatic nitro compounds

    SciTech Connect

    Wehman, P.; Kamer, P.C.J.; Leeuwen, P.W.N.M. van

    1995-12-31

    In the reductive carbonylation of aromatic nitro compounds carbamates and isocyanates are prepared through a direct reaction between the nitro group and CO under the influence of a catalyst. This route avoids the major disadvantages of the traditional process for the production of the industrially important isocyanates and carbamates. The authors have developed a stable, active, and rather selective homogeneous palladium catalyst for the reductive carbonylation of the nitro substrate. Best results were obtained with Pd-phenanthroline complexes in which the ligands bear moderately donating substituents. Noncoordinating anions in the catalyst complex are clearly preferable. The highest activity was reached with the Pd(4,7-Me{sub 2}-1,10-phen){sub 2}(OTf){sub 2} catalyst complex (t.o.f. = 311 mol/mol/h, selectivity toward the desired carbamate = 84%). With the Pd(1,10-phenanthroline){sub 2}(OTf){sub 2} catalyst complex, the authors studied the scope of the reaction in order to prepare a wide range of functionalized carbamates for the fine chemistry. During this study, it was found that a remarkable improvement of the catalytic activity and selectivity on addition of a benzoic acid (t.o.f. > 365 mol/mol/h, selectivity toward carbamate = 94%). In the presence of 4-chlorobenzoic acid even aromatic dinitro compounds could be converted easily, resulting in the best results reported ever for the conversion of 1,4-dinitrobenzene into the corresponding dicarbamate (t.o.f. = 73 mol/mol/h, selectivity toward the dicarbamate = 86%).

  3. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  4. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  5. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    PubMed

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  6. Structure-Activity Relationships in Nitro-Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Vogt, R. A.; Rahman, S.; Crespo-Hernández, C. E.

    Many nitro-aromatic compounds show mutagenic and carcinogenic properties, posing a potential human health risk. Despite this potential health hazard, nitro-aromatic compounds continue to be emitted into ambient air from municipal incinerators, motor vehicles, and industrial power plants. As a result, understanding the structural and electronic factors that influence mutagenicity in nitro-aromatic compounds has been a long standing objective. Progress toward this goal has accelerated over the years, in large part due to the synergistic efforts among toxicology, computational chemistry, and statistical modeling of toxicological data. The concerted influence of several structural and electronic factors in nitro-aromatic compounds makes the development of structure-activity relationships (SARs) a paramount challenge. Mathematical models that include a regression analysis show promise in predicting the mutagenic activity of nitro-aromatic compounds as well as in prioritizing compounds for which experimental data should be pursued. A major challenge of the structure-activity models developed thus far is their failure to apply beyond a subset of nitro-aromatic compounds. Most quantitative structure-activity relationship papers point to statistics as the most important confirmation of the validity of a model. However, the experimental evidence shows the importance of the chemical knowledge in the process of generating models with reasonable applicability. This chapter will concisely summarize the structural and electronic factors that influence the mutagenicity in nitro-aromatic compounds and the recent efforts to use quantitative structure-activity relationships to predict those physicochemical properties.

  7. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  8. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  9. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  10. Capillary column gas chromatography, resonance enhanced multiphoton ionization, time-of-flight mass spectrometry laser-induced fluorescence, flame ionization detection system for the determination of polynuclear aromatic compounds in complex mixtures

    SciTech Connect

    Dobson, R.L.M.

    1986-06-01

    Of the thousands of chemical compounds that have been deemed mutagenic or carcinogenic, it is generally agreed that the polynuclear aromatic hydrocarbons (PAC) are among the most potent. Because of the wide range of potency of PAC, even among geometric isomers and substitutional derivatives, it is important to fully characterize these samples. This task is a formidable one, usually requiring elaborate sample clean-up and fractionation prior to analysis. A multidimensional, laser-based analytical instrument has been developed that, when utilized to the full extent of its capabilities, could be the solution to this complex analytical problem. The overall technique is termed Capillary Column Gas Chromatography, Resonance Enhanced Multiphoton Ionization, Time-Of-Flight Mass Spectrometry, Laser-induced Fluorescence, with parallel Flame Ionization Detection (CC/GC-REMPI-TOF/MS-LIF-FID). This system combines the selectivity and sensitivity of two complementary laser-based methods, REMPI and LIF, with an extremely powerful and proven analytical tool, GC/MS. The GC effluent passes through the ion source of a TOF/MS, where it is interrogated by a tunable ultraviolet laser beam. All laser-analyte interaction products (cations, electrons, and photons) are simultaneously monitored utilizing the TOF/MS, a total electron current detector (TECD), and a LIF detector. The simultaneous availability of this information simplifies the characterization task. The present absolute detection limits for several PAC have been determined to be in the low picogram range. Also, a linear dynamic range of approximately four orders of magnitude has been established for the TECD, indicating that this technique is both sensitive and quantitative. Further, the use of deuterated analogs, of selected PAC, as internal reference standards greatly assists in quantitation. 219 refs., 37 figs., 13 tabs.

  11. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    EPA Science Inventory

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  12. Terahertz Spectroscopy of Biochars and Related Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Lepodise, L. M.; Horvat, J.; Lewis, R. A.

    2016-07-01

    A recent application of terahertz spectroscopy is to biochar, the agricultural charcoal produced by pyrolysis of various organic materials. Biochars simultaneously improve soil fertility and assist in carbon sequestration. Terahertz spectroscopy allows different biochars to be distinguished. However, the origin of the absorption features observed has not been clear. Given that biochar-based fertilizers are rich in aromatic compounds, we have investigated simple aromatic compounds as an approach to unravelling the complex biochar spectrum.

  13. Synthesis of Functional Fluorescent BODIPY‐based Dyes through Electrophilic Aromatic Substitution: Straightforward Approach towards Customized Fluorescent Probes

    PubMed Central

    Schoenmakers, Daniël C.; Veranič, Peter; Muševič, Igor

    2016-01-01

    Abstract Fluorescent materials are widely used in biological and material applications as probes for imaging or sensing; however, their customization is usually complicated without the support of an organic chemistry laboratory. Here, we present a straightforward method for the customization of BODIPY cores, which are among the most commonly used fluorescent probes. The method is based on the formation of a new C−C bond through Friedel–Crafts electrophilic aromatic substitution carried out at room temperature. The method presented can be used to obtain completely customized fluorescent materials in one or two steps from commercially available compounds. Examples of the preparation of fluorescent materials for cell staining and functionalization of silica colloids are also presented. PMID:27777837

  14. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.

  15. Epoxy Coenzyme A Thioester Pathways for Degradation of Aromatic Compounds

    PubMed Central

    Gescher, Johannes

    2012-01-01

    Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance. PMID:22582071

  16. Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds.

    PubMed

    Ismail, Wael; Gescher, Johannes

    2012-08-01

    Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.

  17. Antibacterial activity of phenolic compounds and aromatic alcohols.

    PubMed

    Lucchini, J J; Corre, J; Cremieux, A

    1990-05-01

    The antibacterial properties of phenolic compounds and aromatic alcohols (growth inhibition, lethal effect and cytological damage) were investigated. The role of protein and RNA synthesis in the bactericidal action was also determined. All compounds tested demonstrated lethal properties and the ability to alter membranes, especially in Gram-negative bacteria. Efficacious concentrations, however, varied greatly among the compounds. These data corroborate previous findings which suggest that the mechanism of action of these compounds is related to their lipophilia. Moreover, since it was demonstrated that the lethal effect of two aromatic alcohols (phenethyl alcohol and benzyl alcohol) stops when protein synthesis is inhibited, it is likely that both possess specific mechanisms of action.

  18. Anaerobic metabolism of aromatic compounds by phototrophic bacteria: Progress report

    SciTech Connect

    Harwood, C.S.; Gibson, J.

    1986-12-19

    Vast quantities of aromatic compounds in the form of lignin, lignin derivatives, and aromatic pollutants are continually being introduced into the biosphere and much of this material accumulates in anaerobic environments. This project seeks to elucidate anaerobic routes of benzoate and 4-hydroxybenzoate metabolism by the photorophic bacterium, Rhodopseudomonas palustris. Recent evidence suggests that diverse aromatics must first be metabolized to form one or the other of these compounds prior to cleavage of the aromatic ring and so these pathways probably play general role as major degradative routes. R. palustris is particularly well suited for these studies because its ability to separate carbon metabolism from energy generating mechanisms frees it from the thermodynamic constraints that restrict the anaerobic metabolism of aromatics by pure cultures of fermentative bacteria. Studies include identification of the number and specificity of enzymes involved in benzoate and 4-hydroxybenzoate metabolism, identification of cofactors and electron carriers involved in each pathway, and a determination of the precise nature of the products formed. Mutants that are blocked in aromatic metabolism have been isolated. These mutants will be used, together with physiological approaches, to identify compounds (inducers and repressors) that regulate the expression of genes for aromatic degradation. 8 refs., 2 figs., 1 tab.

  19. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    SciTech Connect

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi; France, L.L.; Sutherland, J.D.

    1992-04-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo[a]pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  20. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    SciTech Connect

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi . Dept. of Chemistry); France, L.L.; Sutherland, J.D. )

    1992-01-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo(a)pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  1. Hydrocracking and recovering polynuclear aromatic compounds in slop wax stream

    SciTech Connect

    Gruia, A.J.

    1987-10-06

    This patent describes a catalytic hydrocracking process which comprises: (a) introducing a reduced crude into a fractionation zone to produce a vacuum gas oil stream having a propensity to form polynuclear aromatic compounds in a hydrocracking zone and a slop wax stream; (b) contacting the vacuum gas oil stream in a hydrocracking zone with added hydrogen and a metal promoted hydrocracking catalyst at elevated temperature and pressure sufficient to gain a substantial conversion to lower boiling products; (c) partially condensing the hydrocarbon effluent from the hydrocracking zone and separating the same into a low boiling hydrocarbon product stream and an unconverted hydrocarbon stream boiling above about 650/sup 0/F (343/sup 0/C) and containing trace quantities of polynuclear aromatic compounds; and (d) introducing at least a portion of the unconverted hydrocarbon stream containing polynuclear aromatic compounds into the fractionation zone thereby recovering a substantial portion of the polynuclear aromatic compounds in the slop wax stream which significantly minimizes the introduction of the polynuclear aromatic compounds into the hydrocracking zone.

  2. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  3. Fluorescence line-narrowing spectrometry of polycyclic compounds on filter paper substrates

    SciTech Connect

    Vo-Dinh, T.; Suter, G.W.; Kallir, A.J.; Wild, U.P.

    1986-12-01

    The fluorescence line-narrowing (FLN) technique was used to characterize polynuclear aromatic compounds adsorbed on a simple and practical substrate consisting of a filter paper material. Narrow-based excitation was used to produce highly resolved fluorescence spectra of benzo(a)pyrene, chrysene, and pyrene on Whatman 4 paper substrate at 4 K. The detection of these compounds in a complex mixture was illustrated by the analysis of an unfractionated coal liquid sample.

  4. The oxidation degradation of aromatic compounds

    NASA Technical Reports Server (NTRS)

    Brezinsky, Kenneth; Glassman, Irvin

    1987-01-01

    A series of experiments were conducted which focused on understanding the role that the O atom addition to aromatic rings plays in the oxidation of benzene and toluene. Flow reactor studies of the oxidation of toluene gave an indication of the amount of O atoms available during an oxidation and the degree to which the O atom adds to the ring. Flow reactor studies of the oxidation of toluene and benzene to which NO2 was added, have shown that NO2 appears to suppress the formation of O atoms and consequently reduce the amount of phenols and cresols formed by O atom addition. A high temperature pyrolysis study of phenol has confirmed that the major decomposition products are carbon monoxide and cyclopentadiene. A preliminary value for the overall decomposition rate constant was also obtained.

  5. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  6. Global atmospheric budget of simple monocyclic aromatic compounds

    NASA Astrophysics Data System (ADS)

    Cabrera-Perez, David; Taraborrelli, Domenico; Sander, Rolf; Pozzer, Andrea

    2016-06-01

    The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with an ensemble of surface and aircraft observations with the goal of understanding emission, production and removal of these compounds.Anthropogenic emissions provided by the RCP database represent the largest source of aromatics in the model (≃ 23 TgC year-1) and biomass burning from the GFAS inventory the second largest (≃ 5 TgC year-1). The simulated chemical production of aromatics accounts for ≃ 5 TgC year-1. The atmospheric burden of aromatics sums up to 0.3 TgC. The main removal process of aromatics is photochemical decomposition (≃ 27 TgC year-1), while wet and dry deposition are responsible for a removal of ≃ 4 TgC year-1.Simulated mixing ratios at the surface and elsewhere in the troposphere show good spatial and temporal agreement with the observations for benzene, although the model generally underestimates mixing ratios. Toluene is generally well reproduced by the model at the surface, but mixing ratios in the free troposphere are underestimated. Finally, larger discrepancies are found for xylenes: surface mixing ratios are not only overestimated but also a low temporal correlation is found with respect to in situ observations.

  7. Aromatic compounds from the liverwort Conocephalum japonicum.

    PubMed

    Liu, Na; Guo, Dong-Xiao; Wang, Yan-Yan; Wang, Li-Ning; Ji, Mei; Lou, Hong-Xiang

    2011-01-01

    Two undescribed dimeric ArC2 derivatives, cis- and trans-1,2-bis(3,4-dimethoxyphenyl)cyclobutane (1 and 2), one new monoterpenes esters, 2alpha,5beta-dihydroxybornane-2-cis-cinnamate (3), along with eight known compounds, 2alpha,5beta-dihydroxybornane-2-trans-cinnamate (4), perrottetin E (5), isoriccardin C (6), marchantin A (7), marchantin E (8), marchantin C (9), and isomarchantin C (10) were isolated from the liverwort Conocephalum japonicum. All the structures were established by extensive spectroscopic analysis. The isolated compounds 3-10 were evaluated for their cytotoxicity against the human KB cell line with IC50 values ranging from 16.5 to 50.2 microM.

  8. [Spectrophotometric determination of aromatic amino compounds with J-acid].

    PubMed

    Yin, Xiao-hang; Shi, Wen-jian; Shen, Xin; Ma, Jun-tao; Li, Liang

    2015-01-01

    The problems such as chromogenic reaction selectivity, reaction rate, sensitivity and water-solubility of azo compounds were considered. The molecular structures of coupling components were theoretically designed and screened in the present research The reaction conditions and methods of chromogenic reaction were investigated. J-Acid (2-amino-5-naphthol-7-sulfonic acid) as a coupling reagent to determine aromatic amino compounds was established. In the presence of potassium bromide, at room temperature, nitrite reacted with aromatic amino compounds in the medium of thin hydrochloric acid. Then diazonium salt reacted with J-Acid in the aqueous solution of sodium carbonate, forming coloured azo dye, which had a maximum adsorption at 480 nm. The molar adsorption coeffcients of aniline, 4-aminobenzene sulfonic acid and 1-naphthylamine were 3. 95 X 10(4), 3. 24 X 10(4) and 3. 91 X 10(4) L . mol-1 . cm-1 , respectively. Experimental results showed that common coexisting ions on the surface water did not affect the results of determination. J-Acid of spectrophotometry was used to determine the samples of Shanghai Fu Xing Dao canal. Meanwhile, recovery experiments by standard addition method were done. Experiment results showed that the recoveries of aniline were in the range of 98. 5%-102. 1%, and RSD was 2. 08%. J-Acid is a common organic reagent. It is soluble in water and low volatile, and its toxicity is much lower than N-ethylenediamine. spectrophotometric determination of aromatic amino compounds by J-Acid has the advantage of high sensitivity, good selectivity, simple rapid operation and accurate results, and thus it can be used for the determination of trace aromatic amino compounds in the environmental water.

  9. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  10. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  11. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  12. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  13. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  14. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  15. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  16. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  17. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  18. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  19. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  20. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    SciTech Connect

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    2000-05-30

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  1. Ultrasound assisted regioselective sulfonation of aromatic compounds with sulfuric acid.

    PubMed

    Qureshi, Ziyauddin S; Deshmukh, Krishna M; Jagtap, Sachin R; Nandurkar, Nitin S; Bhanage, Bhalchandra M

    2009-03-01

    A simple and convenient methodology for selective sulfonation of aromatic compounds using sulfuric acid under sonication is described. The present methodology shows a considerable enhancement in the reaction rate along with improved selectivity compared with the reactions performed under silent conditions. The effect of various parameters such as agitation speed, sulfuric acid concentration, and temperature on reaction system have been investigated and are explained on the basis of ultrasonically generated cavitational effects. PMID:19014895

  2. Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts.

    PubMed

    Grirrane, Abdessamad; Corma, Avelino; Garcia, Hermenegildo

    2010-03-01

    This protocol describes the aerobic oxidation of aromatic anilines to aromatic azo compounds using gold (Au) nanoparticles supported on TiO(2) as a catalyst. Yields above 98% are achieved under a few bars of oxygen pressure. It should be noted that the use of stoichiometric amounts of environmentally unfriendly reagents, e.g., transition metals and nitrites, commonly used in current syntheses of azo compounds, is avoided using this approach. The protocol is illustrated with the synthesis of parent azobenzene from aniline, and this reaction takes 22 h. Au on TiO(2) can also be used as a hydrogenation catalyst, making it possible to prepare azo compounds directly from nitroaromatics through a two-step (hydrogenation followed by aerobic oxidation), one-pot, one-catalyst reaction. In addition, the catalytic process is efficient for the synthesis of symmetric and a range of asymmetric aromatic azo compounds from the mixtures of two anilines substituted with electron-donor and electron-acceptor substituents.

  3. DNA nanostructures based biosensor for the determination of aromatic compounds.

    PubMed

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  4. Capillary column gas chromatography, resonance enhanced multiphoton ionization, time-of-flight mass spectrometry, laser-induced fluorescence, flame ionization detection system for the determination of polynuclear aromatic compounds in complex mixtures

    SciTech Connect

    Dobson, R.L.M.

    1986-01-01

    A method is reached to fully characterize the polynuclear aromatic hydrocarbons (PAC) that have been deemed to be highly mutagenic or carcinogenic. A multidimensional, laser-based analytical instrument has been developed that, when utilized to the full extent of its capabilities could be the solution to this complex analytical problem. The overall technique is termed Capillary Column Gas Chromatography, Resonance Enhanced Multiphoton Ionization, Time-of-Flight Mass Spectrometry, Laser-induced Fluorescence, with parallel Flame Ionization Detection (CC/GC-REMPI-TOF/MS-LIF-FID). This system combines the selectivity of two complementary laser-based methods, REMPI and LIF, with an extremely powerful and proven analytical tool, GC/MS. The GC effluent passes through the ion source of a TOF/MS, where it is interrogated by a tunable ultraviolet laser beam. Thus, PAC and other absorbing species may be selectively excited and/or ionized in the presence of nonabsorbing components. All laser-analyte interaction products (actions, electrons, and photons) are simultaneously monitored utilizing the TOF/MS, a total electron current detector (TECD), and a LIF detector. The main advantage of this technique is that all analytically useful data for each absorbing chromatographic eluent may be collected on-the-fly. The simultaneous availability of this information simplifies the characterization task. The present absolute detection limits for several PAC have been determined to be low picogram range. Also, a linear dynamic range of approximately four orders of magnitude has been established for the TECD, indicating that this technique is both sensitive and quantitative. Further, the use of deuterated analogs, of selected PAC, as internal reference standards greatly assists in quantitation.

  5. Aromatic fluorine compounds. VII. Replacement of aromatic -Cl and -NO2 groups by -F

    USGS Publications Warehouse

    Finger, G.C.; Kruse, C.W.

    1956-01-01

    Replacement of -Cl by -F in aryl chlorides with potassium fluoride has been extended from 2,4-dinitrochlorobenzene to less activated halides by the use of non-aqueous solvents, especially dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Also replacement of -NO2 by -F in substituted nitrobenzenes was studied in DMF. As a direct result of this study, many aromatic fluorine compounds can now be obtained by a relatively simple synthetic route.

  6. [Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].

    PubMed

    Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa

    2015-06-01

    In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture

  7. (Anaerobic metabolism of aromatic compounds by phototrophic bacteria: Biochemical aspects)

    SciTech Connect

    Gibson, J.

    1989-01-01

    Two aspects of the work proposed have received major emphasis during the period since the grant was activated: isolation and characterization of transposon insertion mutants of Rhodopseudomonas palusrtis defective in phototrophic growth on aromatic compounds, and attempts to purify and characterize the Coenzyme A ligase enzyme involved in activating 4-hydroxybenzoate. The HPLC apparatus was installed in August, and calibration of columns both for metabolite and for protein separations has been initiated. A start has also been made on synthesis of Coenzyme A thioesters of compounds that are potential intermediates in the anaerobic degradation pathways. 1 tab.

  8. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  9. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally. PMID:25867932

  10. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  11. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G. ); Sims, R.C. . Dept. of Civil and Environmental Engineering)

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  12. An evaluation of uncertainty associated to analytical measurements of selected polycyclic aromatic compounds in ambient air.

    PubMed

    Barrado-Olmedo, Ana Isabel; Pérez-Pastor, Rosa María; García-Alonso, Susana

    2012-11-15

    This paper presents an evaluation of uncertainty associated to analytical measurement of 18 polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM(10), PM(2.5) and gas phase fractions. Main analytical uncertainty was estimated for 11 polycyclic aromatic hydrocarbons (PAHs), four nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro-PAHs the highest (20-30%). Range and mean concentration of selected PACs measured in gas phase and PM(10)/PM(2.5) particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature.

  13. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  14. FISH BILIARY POLYCYCLIC AROMATIC HYDROCARBON METABOLITES ESTIMATED BY FIXED-WAVELENGTH FLUORESCENCE: COMPARISON WITH HPLC-FLUORESCENT DETECTION

    EPA Science Inventory

    Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...

  15. Determination of polycyclic aromatic compounds in fish tissue.

    PubMed

    Birkholz, D A; Coutts, R T; Hrudey, S E

    1988-09-30

    A method is presented for the analysis of polycyclic aromatic hydrocarbons (PAHs), polycyclic aromatic sulfur heterocycles (PASHs), and basic polycyclic aromatic nitrogen heterocycles (PANHs) in fish. The analytical procedure includes Soxhlet extraction of prepared fish tissue with methylene chloride followed by gel permeation chromatography (GPC) using Bio-beads SX-3. For PAHs/PASHs, further cleanup is performed using adsorption chromatography on Florisil (5% water deactivated) and elution with hexane. For basic PANHs further cleanup of the fish extracts after GPC is achieved using liquid-liquid partitioning with 6 M hydrochloric acid and chloroform and then basifying the aqueous phase and extracting it with chloroform. Analysis of fortified fish samples was performed using capillary gas chromatography with flame ionization detection and capillary gas chromatography-mass spectrometry. Good agreement was observed for both methods of analysis when applied to fish samples fortified with PAHs, PASHs and basic PANHs at 0.1 to 1 microgram/g, suggesting that the method is effective at removing interfering biogenic compounds prior to analysis. Average recovery of PAHs/PASHs from fortified fish tissue was 87% and 70% for fish tissue fortified at 0.24-1.1 and 0.024-0.11 microgram/g, respectively. Average recovery for basic PANHs was 97% for fish fortified at 1.2-1.4 micrograms/g.

  16. Biocatalytic synthesis of polycatechols from toxic aromatic compounds.

    PubMed

    Ward, Gary; Parales, Rebecca E; Dosoretz, Carlos G

    2004-09-15

    A process is described in which toxic aromatic compounds are converted by toluene dioxygenase and in turn toluene cis-dihydrodiol dehydrogenase to catechols which are further polymerized by peroxidase-catalyzed oxidation producing polycatechols. Three approaches for obtaining catechols were employed: (1) addition of halogenated aromatics to P. putida F1, resulting in the accumulation of halogenated catechols; (2) inhibition of catechol 2,3-dioxygenase of P. putida F1 by known aromatic and aliphatic inhibitors; and (3) overexpression of toluene dioxygenase and toluene cis-dihydrodiol dehydrogenase genes in E. coli JM109. The process is suitable for producing novel catechols that upon oxidation may yield polymers with unique properties, presenting a tool for producing tailor-made biopolymers. Formation of 3-chlorocatechol from chlorobenzene, 3,4-dichlorocatechol from 1,2-dichlorobenzene, and catechol from benzene and their subsequent oxidation and polymerization was demonstrated. Oxidation of catechol yielded polymers with molecular weights of up to 4000 Daltons. Their apparently high water solubility eliminates the need for water-miscible solvents. In aqueous solution oxidation of catechols was rapid, yet the presence of 20%, 30%, and 40% ethanol, resulted in a rate decrease of 31%, 95%, and 93%, respectively. The advantage is that significantly less peroxidase is required for performing the reactions if miscible solvents are not employed. Furthermore, water-soluble polymers may be desirable for many applications.

  17. Decomposition mechanisms of trinitroalkyl compounds: a theoretical study from aliphatic to aromatic nitro compounds.

    PubMed

    Fayet, Guillaume; Rotureau, Patricia; Minisini, Benoit

    2014-04-14

    The chemical mechanisms involved in the decomposition of trinitroethyl compounds were studied for both aliphatic and aromatic derivatives using density functional theory calculations. At first, in the case of 1,1,1-trinitrobutane, used as a reference molecule, two primary channels were highlighted among the five investigated ones: the breaking of the C-N bond and the HONO elimination. Then, the influence of various structural parameters was studied for these two reactions by changing the length of the carbon chain, adding substituents or double bonds along the carbon chain. If some slight changes in activation energies were observed for most of these features, no modification of the competition between the two investigated reactions was highlighted and the breaking of the C-N bond remained the favoured mechanism. At last, the reactions involving the trinitroalkyl fragments were highlighted to be more competitive than reactions involving nitro groups linked to aromatic cycles in two aromatic systems (4-(1,1,1-trinitrobutyl)-nitrobenzene and 2-(1,1,1-trinitrobutyl)-nitrobenzene). This showed that aromatic nitro compounds with trinitroalkyl derivatives decompose from their alkyl part and may be considered more likely as aliphatic than as aromatic regarding the initiation of their decomposition process.

  18. Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds.

    PubMed

    Xu, Chang; Wang, Ruihua; Zhang, Y F; Cheng, P; Choi, Martin M F; Poon, Karen

    2015-03-01

    Handling of two nitro-aromatic compounds, 4-nitroaniline (4NA) and 4-nitrophenol (4NP), simultaneously by Chlorella pyrenoidosa was investigated. Algae would secrete or degrade nitro-aromatic compounds depending on different environmental conditions, in which the mode of handling was determined by the relative formation and degradation rate of the compound. Repeated intermittent trigger with externally added 4NA would induce the continuous secretion of 4NA by algae. Simultaneous exposure of both 4NA and 4NP to algae at normal condition would induce the algae to secrete both compounds. An increase in 4NA exposure concentration would elevate both 4NA and 4NP secretion, and that would be inhibited by the stress conditions of starving or lack of oxygen. Increased 4NA degradation per production rate induced by starving or lack of oxygen might explain the subsequent decrease in 4NA secretion in the presence of 4NP in algae. For 4NP in the presence of 4NA, secretion at normal condition was completely stopped and turned to degradation mode in stress conditions. The decreased formation and increased degradation of 4NP during starving for replenishing energy would explain the net degradation of 4NP in starving condition. The condition of lack of oxygen would inhibit the 4NP formation from 4NA via oxidative deamination, while the degradation of 4NP might not be significantly affected because alternative pathway of degradation via nitro-reduction was available. It may lead to the degradation rate exceeding the formation and explain the net degradation of 4NP in the condition of lack of oxygen.

  19. Iridium-catalyzed intermolecular dehydrogenative silylation of polycyclic aromatic compounds without directing groups.

    PubMed

    Murai, Masahito; Takami, Keishi; Takai, Kazuhiko

    2015-03-16

    This study describes the iridium-catalyzed intermolecular dehydrogenative silylation of C(sp(2))-H bonds of polycyclic aromatic compounds without directing groups. The reaction produced various arylsilanes through both Si-H and C-H bond activation, with hydrogen as the sole byproduct. Reactivity was affected by the electronic nature of the aromatic compounds, and silylation of electron-deficient and polycyclic aromatic compounds proceeded efficiently. Site-selectivity was controlled predominantly by steric factors. Therefore, the current functionalization proceeded with opposite chemo- and site-selectivity compared to that observed for general electrophilic functionalization of aromatic compounds.

  20. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  1. Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds.

    PubMed

    Myers, Matthew; Podolska, Anna; Heath, Charles; Baker, Murray V; Pejcic, Bobby

    2014-03-28

    The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). PMID:24636414

  2. Gas and Particulate Sampling of Airborne Polycyclic Aromatic Compounds

    SciTech Connect

    Lane, D.A.; Gundel, L.A.

    1995-10-01

    The denuder surfaces of the gas and particle (GAP) sampler (developed at the Atmospheric Environment Service of Environment Canada) have been modified by coating with XAD-4 resin, using techniques developed at Lawrence Berkeley National Laboratory (LBNL) for the lower capacity integrated organic vapor/particle sampler (IOVPS). The resulting high capacity integrated organic gas and particle sampler (IOGAPS) has been operated in ambient air at 16.7 L min{sup -1} for a 24-hour period in Berkeley, California, USA. Simultaneous measurements were made at the same collection rate with a conventional sampler that used a filter followed by two sorbent beds. Gas and particle partition measurements were determined for 13 polycyclic aromatic hydrocarbons (PAH) ranging from 2-ring to 6-ring species. The IOGAPS indicated a higher particle fraction of these compounds than did the conventional sampler, suggesting that the conventional sampler suffered from 'blow-off' losses from the particles collected on the filter.

  3. Removal of aromatic compounds in gas by electron attachment

    SciTech Connect

    Tamon, Hajime; Imanaka, Hiroyuki; Sano, Noriaki; Okazaki, Morio; Tanthapanichakoon, W.

    1998-07-01

    Ultrahigh gas purification has been of interest in various fields: (1) removal of indoor air pollutants, (2) complete removal of dioxins from incineration plants, (3) complete removal of radioactive iodine compounds, (4) simultaneous removal of NO{sub x} and SO{sub x} in exhaust gases from cogeneration plants, (5) removal and decomposition of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs), (6) ultrahigh purification of gas used for semiconductor industries, etc. A corona-discharge reactor was applied to remove benzene and p-dichlorobenzene from nitrogen and a nitrogen-oxygen mixture. Although benzene was not effectively removed from nitrogen by electron attachment, the removal efficiency was improved greatly by mixing oxygen. On the other hand, the high removal efficiencies of p-dichlorobenzene were obtained in nitrogen or a nitrogen-oxygen mixture. The removal mechanism was studied based on the contribution of the ozone reaction and the analysis of the deposit on the anode of the reactor. As a result, the ozone reaction does not contribute to the removals. An FT-IR measurement and thermogravimetry suggest that benzene or p-dichlorobenzene is decomposed by dissociative electron attachment and deposits as polycyclic aromatic compounds of a high boiling point on the anode surface.

  4. Determination of polycyclic aromatic hydrocarbons in Italian milk by HPLC with fluorescence detection.

    PubMed

    Girelli, A M; Sperati, D; Tarola, A M

    2014-04-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in Italian commercial milk samples is reported. The study was carried out on lactating (cow and goat) and plant (rice, soya, oat) milk. The quantitative determination involved liquid-liquid extraction of PAHs, a pre-concentration and determination by HPLC using a fluorescence detector. The recovery of analytes was in the range of 70-115%. The precision of the method was found to be between 6% and 24%. The detection limit ranged from 0.66 to 33.3 µg l(-1) corresponding to 0.03-1.66 µg kg(-1) milk (wet weight), at a signal-to-noise ratio of 3, depending on the compound. By this procedure, the levels of more volatile PAHs (two to three aromatic rings) were confirmed in 34 commercial milk and three plant milk samples, whereas benzo[a]pyrene was found only in five pasteurised milk samples at a mean concentration of 0.17 µg kg(-1) milk. These results provide evidence that PAH levels are influenced by heat treatments and skimming processes of milk production. PMID:24417240

  5. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris.

    PubMed

    Austin, Samantha; Kontur, Wayne S; Ulbrich, Arne; Oshlag, J Zachary; Zhang, Weiping; Higbee, Alan; Zhang, Yaoping; Coon, Joshua J; Hodge, David B; Donohue, Timothy J; Noguera, Daniel R

    2015-07-21

    Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.

  6. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  7. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  8. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  9. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  10. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  11. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  12. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. [Pseudomonas sp

    SciTech Connect

    Nozawa, T.; Maruyama, Y. )

    1988-12-01

    The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coeznyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.

  13. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, [OH]dt) of the different VOC. It is found that [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform [OH]dt for VOC with different reactivity is not justified and that the observed values for [OH]dt are the result of mixing of VOC from air masses with different values for [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine [OH]dt would result in values for [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform [OH]dt for an air mass has to be replaced by the concept of individual values of an average [OH]dt for VOC with different reactivity.

  14. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs.

  15. Effects of aromatic compounds on antennal responses and on the pheromone-binding proteins of the gypsy moth (Lymantria dispar).

    PubMed

    Gong, Yongmei; Plettner, Erika

    2011-03-01

    Female gypsy moths emit a pheromone, (+)-disparlure, which the males follow until they locate the emitter. The male moths' antennae are covered with innervated sensory hairs, specialized in detection of the pheromone. The neurons in these sensory hairs are bathed by a solution rich in pheromone-binding protein (PBP). PBPs are soluble proteins that bind the pheromone and other odorants reversibly with variable thermodynamic and kinetic selectivity and are essential for olfactory responses. Here, we have studied the interaction between 2 gypsy moth PBPs with aromatic compounds that modulate the responses of male moth antennae to (+)-disparlure. The aromatic compounds do not elicit responses by themselves, but when administered together with pheromone, they inhibit, enhance, or prolong the electrophysiological response to the pheromone. Three interactions between the compounds and PBPs were studied: 1) the equilibrium binding of the compounds by themselves to the PBPs, 2) the equilibrium binding of the compounds in the presence of pheromone or a fluorescent reporter ligand, and 3) the effect of the compounds on the conformation of the pheromone-PBP complex. A subset of compounds causes a prolongation of the electroantennogram response, and from this study, we conclude that these compounds follow a structure-activity pattern and stabilize a particular conformer of the PBPs that appears to activate the olfactory response.

  16. Effects of polyhalogenated aromatic compounds on porphyrin metabolism.

    PubMed Central

    Hill, R H

    1985-01-01

    Heme production is a vital metabolic process that occurs in the bone marrow and liver. Porphyrins are unused by-products of this biosynthetic process and normally occur in urine and other body fluids in low concentrations. Various disorders can disrupt the heme biosynthetic process, causing greater quantities of porphyrins in urine. The porphyrias are a group of diseases characterized by excessive porphyrins and other precursors in urine. Porphyrias may be either hereditary or acquired through exposure to certain drugs or chemicals. Porphyria cutanea tarda (PCT) is the disease associated with exposure to polyhalogenated aromatic compounds. The urinary porphyrin pattern is of great value in diagnosing PCT and defining the etiology of the disease. As this liver disease from chemical damage develops, the urinary pattern progressively changes. With the development of a rapid and sensitive high-performance liquid chromatography analysis, urinary porphyrin patterns can be easily monitored. All free porphyrin acids can be quantitatively analyzed in less than 15 min. In our studies of groups exposed to porphyrinogenic chemicals, we have not observed clear differences in the urinary porphyrin patterns of cases when compared with carefully selected controls. In animal studies, however, PCT was clearly associated with polybrominated biphenyl exposure. Future evaluation of the utility of urinary porphyrin patterns as a diagnostic tool will require a cohort that has received a recent, well-documented exposure and a comparable control population. Assay of erythrocyte uroporphyrinogen decarboxylase activity will also be needed to define the form of the PCT. PMID:4029097

  17. Interaction of gaseous aromatic and aliphatic compounds in thermophilic biofilters.

    PubMed

    Hu, Qing-yuan; Wang, Can

    2015-12-30

    Two thermophilic biofilters were applied in treating a mixture of gaseous aromatic (benzene) and aliphatic compounds (hexane) to evaluate the interaction of the compounds. The performance of the biofilters was investigated in terms of removal efficiencies, elimination capacity, kinetic analysis, interaction indices, and microbial metabolic characteristics. Results showed that the removal performance of benzene was unaffected by the addition of hexane. The removal efficiencies of benzene were maintained at approximately 80% and the biodegradation rate constant was maintained at 120 h(-1). However, the removal efficiencies of hexane decreased significantly from 60% to 20% and the biodegradation rate constant exhibited a distinct decrease from 93.59 h(-1) to 56.32 h(-1). The interaction index of benzene with the addition of hexane was -0.029, which indicated that hexane had little effect on the degradation of benzene. By contrast, the interaction index of hexane by benzene was -0.557, which showed that benzene inhibited the degradation of hexane significantly. Similar conclusions were obtained about the substrate utilization. Moreover, the utilization degree of carbon sources and the microbial metabolic activities in the biofilter treating hexane were significantly improved with the addition of benzene, whereas the addition of hexane had a slight effect on the microbial communities in the biofilter treating benzene. Conclusions could be obtained that when mixtures of benzene and hexane were treated using biofilters, the degradation of benzene, which was more easily degradable, was dominant and unaffected; whereas the degradation of hexane, which was less easily degradable, was inhibited because of the changing of microbes.

  18. Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates.

    PubMed Central

    Nozawa, T; Maruyama, Y

    1988-01-01

    A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Protocatechuate and catechol were neither utilized nor detected as metabolic intermediates during the metabolism of these aromatic compounds under both aerobic and anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds. Some other characteristic properties on metabolism and regulation of this strain are also discussed for their physiological aspects. PMID:3372476

  19. NIR fluorescent ytterbium compound for in vivo fluorescence molecular imaging.

    PubMed

    Aita, Kazuki; Temma, Takashi; Kuge, Yuji; Seki, Koh-ichi; Saji, Hideo

    2010-01-01

    We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)-1-(pyridin-2-yl-diazenyl)naphthalen-2-ol (PAN) complex. This probe emits near-infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (lambda(ex)= 530 nm, lambda(em)= 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging.

  20. Primary photochemistry of nitrated aromatic compounds: excited-state dynamics and NO· dissociation from 9-nitroanthracene.

    PubMed

    Plaza-Medina, Eddy F; Rodríguez-Córdoba, William; Morales-Cueto, Rodrigo; Peon, Jorge

    2011-02-10

    We report results of femtosecond-resolved ex-periments which elucidate the time scale for the primary photoinduced events in the model nitroaromatic compound 9-nitroanthracene. Through time-resolved fluorescence measurements, we observed the ultrafast decay of the initially excited singlet state, and through transient absorption experiments, we observed the spectral evolution associated with the formation of the relaxed phosphorescent T(1) state. Additionally, we have detected for the first time the accumulation of the anthryloxy radical which results from the nitro-group rearrangement and NO(•) dissociation from photoexcited 9-nitroanthracene, a photochemical channel which occurs in parallel with the formation of the phosphorescent state. The spectral evolution in this molecule is highly complex since both channels take place in similar time ranges of up to a few picoseconds. Despite this complexity, our experiments provide the general time scales in which the primary products are formed. In addition, we include calculations at the time-dependent density functional level of theory which distinguish the molecular orbitals responsible for the n-π* character of the "receiver" vibronic triplet states that couple with the first singlet state and promote the ultrafast transfer of population between the two manifolds. Comparisons with the isoelectronic compounds anthracene-9-carboxylic acid and its conjugated base, which are highly fluorescent, show that in these two compounds the near-isoenergeticity of the S(1) with an appropriate "receiver" triplet state is disrupted, providing support to the idea that a specific energy coincidence is important for the ultrafast population of the triplet manifold, prevalent in polycyclic nitrated aromatic compounds.

  1. Redox Switching of Orthoquinone-Containing Aromatic Compounds with Hydrogen and Oxygen Gas.

    PubMed

    Urakawa, Kazuki; Sumimoto, Michinori; Arisawa, Mitsuhiro; Matsuda, Masaki; Ishikawa, Hayato

    2016-06-20

    Unique redox switching of orthoquinone-containing pentacyclic aromatic compounds with molecular hydrogen and oxygen in the presence of a palladium nanoparticle catalyst (SAPd) is disclosed. These molecules were predicted by in silico screening before synthesis. Efficient protocols for the synthesis of orthoquinone-containing aromatic compounds by palladium-mediated homocoupling and the benzoin condensation reaction were developed. Clear switching between orthoquinone and aromatic hydroquinone compounds was observed on the basis of their photoluminescence properties. Furthermore, the twist strain of the orthoquinone moiety could induce dramatic changes in color and emission.

  2. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics

    PubMed Central

    Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan

    2014-01-01

    A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767

  3. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  4. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    ERIC Educational Resources Information Center

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  5. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  7. [Distribution and sources of oxygen and sulfur heterocyclic aromatic compounds in surface soil of Beijing, China].

    PubMed

    He, Guang-Xiu; Zhang, Zhi-Huan; Peng, Xu-Yang; Zhu, Lei; Lu, Ling

    2011-11-01

    62 surface soil samples were collected from different environmental function zones in Beijing. Sulfur and oxygen heterocyclic aromatic compounds were detected by GC/MS. The objectives of this study were to identify the composition and distribution of these compounds, and discuss their sources. The results showed that the oxygen and sulfur heterocyclic aromatic compounds in the surface soils mainly contained dibenzofuran, methyl- and C2-dibenzofuran series, dibenzothiophene, methyl-, C2- and C3-dibenzothiophene series and benzonaphthothiophene series. The composition and distribution of the oxygen and sulfur heterocyclic aromatic compounds in the surface soil samples varied in the different environmental function zones, of which some factories and the urban area received oxygen and sulfur heterocyclic aromatic compounds most seriously. In Beijing, the degree of contamination by oxygen and sulfur heterocyclic aromatic compounds in the north surface soil was higher than that in the south. There were preferable linear correlations between the concentration of dibenzofuran series and fluorene series, as well as the concentration of dibenzothiophene series and dibenzofuran series. The oxygen and sulfur heterocyclic aromatic compounds in the surface soil were mainly derived from combustion products of oil and coal and direct input of mineral oil, etc. There were some variations in pollution sources of different environmental function zones.

  8. Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation

    NASA Astrophysics Data System (ADS)

    Callis, Patrik R.

    2014-12-01

    The three amino acids with aromatic ring side chains-phenylalanine (Phe), tyrosine (Tyr), and especially tryptophan (Trp) have played a long and productive role in helping unlock the secrets of protein behavior by optical spectroscopy (absorption, fluorescence, circular dichroism, etc.) In principle, an appropriately placed Trp will undergo fluorescence wavelength and/or intensity changes upon whatever functional process a protein performs. Although perceived to be enigmatic and not well understood, Trp is arguably now better understood than many of the extrinsic probes currently in use. Basic principles of intrinsic tryptophan fluorescence quenching and wavelength shifts in proteins are presented, with strong emphasis on the importance of electrostatics. The condensed description of findings from recent experiments and simulations of tryptophan fluorescence and intrinsic quenching in proteins is designed to help authors in planning and interpreting experimental results of ligand binding studies.

  9. Fluorescence enhancement of glutaraldehyde functionalized polyaniline nanofibers in the presence of aromatic amino acids.

    PubMed

    Borah, Rajiv; Kumar, Ashok

    2016-04-01

    Polyaniline nanofibers (PNFs) synthesized by dilute polymerization method have been surface functionalized with glutaraldehyde at their N-terminals in Phosphate Buffered Saline (PBS) at P(H)=7.4 in order to achieve improved interaction of surface functionalized polyaniline nanofibers (SF-PNFs) with aromatic amino acids-Tyrosine, Tryptophan and Phenylalanine through incorporation of aldehyde (-CHO) and hydroxyl (-OH) functionalities. HRTEM reveals nanofibers of average diameter of 35.66 nm. FESEM depicts interconnected networks of nanofibers of polyaniline (PAni). UV-visible absorption and Fluorescence spectroscopy indicate that the PNFs and SF-PNFs are in emeraldine base (EB) form. FT-IR, (1)H NMR spectroscopy suggests covalent interactions of SF-PNFs with aromatic amino acids and possible reaction mechanisms have been proposed based on these results. Remarkable enhancement in fluorescence signals of SF-PNFs in the presence of aromatic amino acids has been observed and the apparent binding constant (KA) and the number of binding sites (n) have been calculated using fluorescence enhancement equation. The KA value is found to be highest for SF-PNFs+Tyrosine and n is two for all the polymer amino acid complexes, which are in agreement with the FT-IR and (1)H NMR results. Fluorescence resonance energy transfer (FRET) efficiency has been found to be highest for SF-PNFs+Tyrosine giving maximum fluorescence enhancement. The study of interaction mechanisms by means of an extremely sensitive technique like fluorescence using SF-PNFs as a substrate may provide a promising analytical tool for detection and monitoring any biochemical reactions involving these three aromatic amino acids.

  10. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    PubMed

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds.

  11. Aromatic fumaronitrile core-based donor-linker-acceptor-linker-donor (D-pi-A-pi-D) compounds: synthesis and photophysical properties.

    PubMed

    Panthi, Krishna; Adhikari, Ravi M; Kinstle, Thomas H

    2010-04-01

    A new class of aromatic fumaronitrile core-based compounds with different donors and linkers has been synthesized and well characterized. Compounds 1 and 2 have indole and 2-phenylindole groups as electron donors, respectively. Compounds 3 and 4 have a diphenylamino group as the electron donor, and compound 5 has a 3,6-di-tert-butylcarbazole group as an electron donor. These compounds absorb in the blue-to-green region and emit in the blue-to-red region depending on the electron donor, linker, and solvents. The quantum yields of fluorescence of these compounds in solution are measured and found to be moderate, but in solid states, they are high. These compounds display strong emission solvatochromism that is reflected by a large shift in their fluorescence emission maxima on changing the solvents. This change is accompanied by a successive decrease in fluorescence intensity. The fluorescence lifetimes of these compounds are measured in different solvent and found to vary from <1 to 7 ns. Optical switching of these compounds with solvents, concentration, and excitation energy have been studied. The correlation between the functional group and optical properties has been established to some extent. The ability of these compounds to function as colorimetric and luminescence pH sensors is demonstrated with color changes and luminescence switching upon the addition of trifluoroacetic acid. The potentiality of these compounds for application in optoelectronics has been optically assessed.

  12. Volatile compounds in dry dog foods and their influence on sensory aromatic profile.

    PubMed

    Koppel, Kadri; Adhikari, Koushik; Di Donfrancesco, Brizio

    2013-02-27

    The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  13. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium?

    PubMed

    Shen, Xi-Hui; Zhou, Ning-Yi; Liu, Shuang-Jiang

    2012-07-01

    With the implementation of the well-established molecular tools and systems biology techniques, new knowledge on aromatic degradation and assimilation by Corynebacterium glutamicum has been emerging. This review summarizes recent findings on degradation of aromatic compounds by C. glutamicum. Among these findings, the mycothiol-dependent gentisate pathway was firstly discovered in C. glutamicum. Other important knowledge derived from C. glutamicum would be the discovery of linkages among aromatic degradation and primary metabolisms such as gluconeogenesis and central carbon metabolism. Various transporters in C. glutamicum have also been identified, and they play an essential role in microbial assimilation of aromatic compounds. Regulation on aromatic degradation occurs mainly at transcription level via pathway-specific regulators, but global regulator(s) is presumably involved in the regulation. It is concluded that C. glutamicum is a very useful model organism to disclose new knowledge of biochemistry, physiology, and genetics of the catabolism of aromatic compounds in high GC content Gram-positive bacteria, and that the new physiological properties of aromatic degradation and assimilation are potentially important for industrial applications of C. glutamicum.

  14. Selective Fluorescence Detection of Polycyclic AromaticHydrocarbons in Environmental Tobacco Smoke and Other AirborneParticles

    SciTech Connect

    Mahanama, K.R.R.; Gundel, L.A.; Daisey, J.M.

    1992-11-01

    An analytical method is described for the simultaneous quantitation of polycyclic aromatic hydrocarbons [pAHs] and alkylderivatives [alkyl-PAHs] in 'real world' samples using microbore reversed-phase high performance liquid chromatography in conjunction with two programmable fluorescence detectors. Sensitivity and selectivity were enhanced by analyzing PAHs under their optimum fluorescence wavelengths. The accuracy of the analytical method was evaluated by determination of PAHs in 5 mg of standard reference material SRM 1649. The method was also successfilly employed to analyze major parent PAHs and some alkyl-PAHs from environmental tobacco smoke [ETS] with a sample size of 2 mg using class-selective fluorescence wavelengths. Some alkyl-PAHs were tentatively identified even in the absence of standard compounds. Coeluting pairs were identified and analyzed by careful selection of excitation and emission wavelengths for each compound. Identities of the signals were confirmed by comparing both the retention behavior and the peak-height ratios at two or more different excitation and emission wavelength combinations.

  15. The potential production of aromatic compounds in flowers of Vanda tricolor

    NASA Astrophysics Data System (ADS)

    Darmasiwi, Sari; Indriani, Vitri; Innata, Dita; Semiarti, Endang

    2015-09-01

    Vanda tricolor is a famous natural orchid that has beautiful flowers with fragrance, therefore analysis of aromatic compounds of this orchid are important. The objective of this research was to isolate and identify the aromatic compounds of Vanda tricolor flower. The flower petals were picked at various developmental stages (0,4,7, and 10 days of flower opened) at 12.00 noon. It was then extracted using solvent extraction method and enfleurage method. The hexane:acetone (9:1) extract was considered as concrete extract, while some parts of concrete that were further extracted with ethanol, considered as absolute extract. The olive oil extract was considered as enfleurage extract. Those extracts were then evaporated using nitrogen gas, and analyzed by GC/MS (GC/MS-QP 2010S Shimadzu, Agilent HP-5 MS UI column, 30 m ID length: 0.25 mm, Helium gas carrier). The results showed that aromatic compounds composition in Vanda tricolor flower extracts were consisted of fatty acid derivates, monoterpenoids, sesquiterpenoids, benzenoids, phenylpropanoids, hydrocarbons and other oxygenated compounds. The highest diversity of aromatic compounds were found at the 10th days after floral opened, and the sensory test among those 3 (three) extracts showed that the absolute extract had more similarity with the original flower scent profile rather than the other extracts. This research showed that Vanda tricolor has potential production of aromatic compounds which was different compare to another species of Vanda.

  16. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki; Morisawa, Shinsuke

    2010-03-15

    The relationship between the formation of chlorinated aromatic (aromatic-Cl) compounds and ferric chloride in the solid phase during a thermal process motivated us to study the chemical characteristics of iron in a model solid sample, a mixture of FeCl(3) x 6H(2)O, activated carbon, and boron nitride, with increasing temperature. Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed drastic changes in the chemical form of amorphous iron, consistent with other analytical methods, such as X-ray diffraction using synchrotron radiation (SR-XRD) and Fourier-transform infrared (FT-IR) spectroscopy. Atomic-scale evidence of the chlorination of aromatic carbon was detected by Cl-K X-ray absorption near edge structure (XANES) spectroscopy. These results showed the thermal formation mechanism of aromatic-Cl compounds in the solid phase with ferric chloride. We attribute the formation of aromatic-Cl compounds to the chlorination of carbon, based on the oxychlorination reaction of FeCl(3) at temperatures in excess of ca. 300 degrees C, when the carbon matrix is activated by carbon gasification, catalyzed by Fe(2)O(3), and surface oxygen complexes (SOC) generated by a catalytic cycle of FeCl(2) and FeOCl. Chemical changes of trace iron in a thermal process may offer the potential to generate aromatic-Cl compounds in the solid phase.

  17. Pioneering Metal-Free Oxidative Coupling Strategy of Aromatic Compounds Using Hypervalent Iodine Reagents.

    PubMed

    Kita, Yasuyuki; Dohi, Toshifumi

    2015-10-01

    We started our hypervalent iodine research about 30 years ago in the mid-1980s. We soon successfully developed the single-electron-transfer oxidation ability of a hypervalent iodine reagent, specifically, phenyliodine(III) bis(trifluoroacetate) (PIFA), toward aromatic rings of phenyl ethers for forming aromatic cation radicals. This was one of the exciting and unexpected events in our research studies so far, and the discovery was reported in 1991. It also led to the next challenge, developing the metal-free oxidative couplings for C-H functionalizations and direct couplings between the C-H bonds of valuable aromatic compounds in organic synthesis. In order to realize the effective oxidative coupling, pioneering new aromatic ring activations was essential and several useful methodologies have been found for oxidizable arenes. The achievements regarding this objective obtained in our continuous research are herein summarized with classification of the aromatic ring activation strategies.

  18. Argentation chromatography for the separation of polycyclic aromatic compounds according to ring number.

    PubMed

    Nocun, Margarete; Andersson, Jan T

    2012-01-01

    Crude oils are the most complex mixtures known and every speciation method relies on a simplification of their complexity. Argentation chromatography is shown to be superior to traditional liquid chromatographic ways of separating aromatic compounds based on the number of aromatic carbon atoms. A silver(I) mercaptopropano silica gel allows an efficient group separation of polycyclic aromatic compounds to be achieved. The usefulness of this phase is demonstrated for SRM 1582 Wilmington crude oil and a diesel fuel. Furthermore, the phase can also be used for semi-preparative purposes to collect fractions for further analysis with high resolution mass spectrometry. Orbitrap mass spectra are obtained here for the polycyclic aromatic sulfur heterocycles and it is demonstrated that they can contain one to five naphtheno rings.

  19. Design, construction, and characterization of a set of biosensors for aromatic compounds.

    PubMed

    Xue, Haoran; Shi, Hailing; Yu, Zhou; He, Shuaixin; Liu, Shiyu; Hou, Yuhang; Pan, Xingjie; Wang, Huan; Zheng, Pu; Cui, Can; Viets, Helena; Liang, Jing; Zhang, Yihao; Chen, Shuobing; Zhang, Haoqian M; Ouyang, Qi

    2014-12-19

    Aromatic pollutants in the environments pose significant threat to human health due to their persistence and toxicity. Here, we report the design and comprehensive characterization of a set of aromatic biosensors constructed using green fluorescence protein as the reporter and aromatics-responsive transcriptional regulators, namely, NahR, XylS, HbpR, and DmpR, as the detectors. The genetic connections between the detectors and the reporter were carefully adjusted to achieve fold inductions far exceeding those reported in previous studies. For each biosensor, the functional characteristics including the dose-responses, dynamic range, and the detection spectrum of aromatic species were thoroughly measured. In particular, the interferences that nontypical inducers exert on each biosensor's response to its strongest inducer were evaluated. These well-characterized biosensors might serve as potent tools for environmental monitoring as well as quantitative gene regulation.

  20. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    SciTech Connect

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.; Cole, F.A.; Ozretich, R.J.; Boese, B.L.; Schults, D.W.; Behrenfeld, M.; Ankley, G.T.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC), 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.

  1. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  2. Synthesis and phtoluminescence study of Microporous Metal Organic Frameworks (MMOFs) for sensing and detection of nitroexplosives and aromatic compounds

    NASA Astrophysics Data System (ADS)

    Pramanik, Sanhita

    Due to the increased terrorist activity worldwide and the use of modern bombs in those attacks, the development of a new method capable of rapidly and cost-efficiently detecting trace vapor of explosives is highly desirable. Chemical explosives composed of a diverse group of compounds, including nitroaromatics, nitramines, nitrate esters as well as some inorganic/organic nitrates and peroxides. Current methodologies include use of well trained dogs and sophisticated instrumentation such as gas chromatography coupled with a mass spectrometer, nuclear quadruple resonance, ionization mass spectrometry (IMS). These methods are highly sensitive and selective, but often expensive, not always easily accessible, and require intense training for operation. As a complementary method, chemical sensors can provide new ways to the rapid detection of ultra trace explosives, and can be easily incorporated into inexpensive and portable microelectronic devices. Fluorescence based sensors utilizing conjugated polymers have attracted enormous attention in the recent years for their excellent performance. In this thesis, a systematic study was performed in a series of luminescent MMOFs and their behavior upon exposure to the vapor of different analytes. For example, [Zn2(oba)2(bpy)]·DMA, one of the MMOFs made of paddle-wheel SBU, selectively responds to nitroaromatics (with electron-withdrawing groups) and other aromatic compounds, like benzene, toluene (with electron-donating groups) via fluorescent quenching and enhancement respectively. The study also shows that nitro-containing non-aromatic analytes (nitroaliphatics) make negligible effect on the fluorescence of [Zn2(oba)2(bpy)]·DMA . The results demonstrate the exceptional ability of this particular MMOF to selectively detect explosives of different types (e.g. aromatic DNT vs. non-aromatic or aliphatic DMNB). Another series of highly luminescent MMOFs made of the same metal center (Zn) and similar ligands (bpdc, bpy, 2,2'dmbpy

  3. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  4. Biodegradation of soluble aromatic compounds of jet fuel under anaerobic conditions: laboratory batch experiments.

    PubMed

    Zheng, Z; Breedveld, G; Aagaard, P

    2001-11-01

    Laboratory batch experiments were performed with contaminated aquifer sediments and four soluble aromatic components of jet fuel to assess their biodegradation under anaerobic conditions. The biodegradation of four aromatic compounds, toluene, o-xylene, 1,2,4-trimethylbenzene (TMB), and naphthalene, separately or together, was investigated under strictly anaerobic conditions in the dark for a period of 160 days. Of the aromatic compounds, toluene and o-xylene were degraded both as a single substrate and in a mixture with the other aromatic compounds, while TMB was not biodegraded as a single substrate, but was biodegraded in the presence of the other aromatic hydrocarbons. Substrate interaction is thus significant in the biodegradation of TMB. Biodegradation of naphthalene was not observed, either as a single substrate or in a mixture of other aromatic hydrocarbons. Although redox conditions were dominated by iron reduction, a clear relation between degradation and sulfate reduction was observed. Methanogenesis took place during the later stages of incubation. However, the large background of Fe(II) masked the increase of Fe(II) concentration due to iron reduction. Thus, although microbial reduction of Fe(III) is an important process, the evidence is not conclusive. Our results have shown that a better understanding of the degradation of complex mixtures of hydrocarbons under anaerobic conditions is important in the application of natural attenuation as a remedial method for soil and groundwater contamination.

  5. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  6. Demonstration of the interactions between aromatic compound-loaded lipid nanocapsules and Acinetobacter baumannii bacterial membrane.

    PubMed

    Montagu, A; Joly-Guillou, M-L; Guillet, C; Bejaud, J; Rossines, E; Saulnier, P

    2016-06-15

    Acinetobacter baumannii is an important nosocomial pathogen that is resistant to many commonly-used antibiotics. One strategy for treatment is the use of aromatic compounds (carvacrol, cinnamaldehyde) against A. baumannii. The aim of this study was to determine the interactions between bacteria and lipid nanocapsules (LNCs) over time based on the fluorescence of 3,3'-Dioctadecyloxacarbocyanine Perchlorate-LNCs (DiO-LNCs) and the properties of trypan blue to analyse the physicochemical mechanisms occurring at the level of the biological membrane. The results demonstrated the capacity of carvacrol-loaded LNCs to interact with and penetrate the bacterial membrane in comparison with cinnamaldehyde-loaded LNCs and unloaded LNCs. Modifications of carvacrol after substitution of hydroxyl functional groups by fatty acids demonstrated the crucial role of hydroxyl functions in antibacterial activity. Finally, after contact with the efflux pump inhibitor, carbonylcyanide-3-chlorophenyl hydrazine (CCCP), the results indicated the total synergistic antibacterial effect with Car-LNCs, showing that CCCP is associated with the action mechanism of carvacrol, especially at the level of the efflux pump mechanism. PMID:27039148

  7. Electron-transfer fluorescence quenching of aromatic hydrocarbons by europium and ytterbium ions in acetonitrile.

    PubMed

    Inada, Taeko; Funasaka, Yoko; Kikuchi, Koichi; Takahashi, Yasutake; Ikeda, Hiroshi

    2006-03-01

    To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.

  8. [GC x GC measurements of atmospheric aromatic compounds near a busy high-speed road in Beijing].

    PubMed

    Mao, Ting; Xu, Xiao-bin; Wang, Ying

    2009-10-15

    Comprehensive two-dimensional gas chromatography (GC x GC) is a powerful instrumental tool often used to analyze complex mixtures. An optimized GC x GC method had been applied to the quantitative analysis of aromatic compounds in air samples collected near a busy high-speed road in Beijing during the 2007 National Holidays. In the resulting GC x GC chromatograms, aromatic species were resolved from other compound classes and were grouped in a manner that facilitated identification and integration, showing more information of aromatic compounds compared to traditional one-dimensional GC. Totally more than 30 aromatic species were identified and quantified. The average concentrations of monocyclic aromatic compounds ranged from 0.75 x 10(-9) to 24.64 x 10(-9) C, with toluene having the highest concentration, followed by m, p-xylene and ethylbenzene. The average concentrations of the measured polycyclic aromatic compounds ranged from 0.03 x 10(-9) to 2.28 x 10(-9) C, with naphthalene having the highest concentration, followed by 2-methyl-naphthalene and 4-methyl-1, 1'-biphenyl. The four-ring and higher polycyclic aromatic compounds were not detectable in the gaseous samples. The levels of aromatic compounds were significantly influenced by meteorological parameters. Benzene and toluene were poorly correlated with higher aromatic compounds though the latter compounds were highly correlated among each other, suggesting that both were significantly influenced by sources other than vehicle exhaust and gasoline evaporation.

  9. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    PubMed

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks. PMID:25252021

  10. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.

    PubMed

    Thakur, Mamta; Thakur, Abhilash; Balasubramanian, Krishnan

    2006-01-01

    This work describes QSAR and SAR studies on the reduction of 27 aromatic nitro compounds by xanthine oxidase using both distance-based topological indices and quantum molecular descriptors along with indicator parameters. The application of a multiple linear regression analysis indicated that a combination of distance-based topological indices with the ad hoc molecular descriptors and the indicator parameters yielded a statistically significant model for the activity, log K (the reduction of aromatic nitro compounds by xanthine oxidase). The final selection of a potential aromatic nitro compound for the reduction by xanthine oxidase is made by quantum molecular modeling. We have found that, among the various parameters, the quantum Mulliken charge parameters on the fourth atom or para position relative to the nitro group correlated best with the activity.

  11. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    PubMed

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks.

  12. Double fluorescence conversion in ultraviolet and visible region for some praseodymium complexes of aromatic carboxylates.

    PubMed

    Yan, Bing; Wang, Wei-Jing; Song, Yi-Shan

    2006-07-01

    Four praseodymium complexes of aromatic carboxylates (benzoate, 4-tert-butylbenzoate, 2-benzoylbe-noate, and benzimidazole-5-carboxylate) have been synthesized and characterized, whose photophysical properties have been studied with ultraviolet spectra, phosphorescence spectra, and fluorescence spectra. The fluorescent emission spectra of all praseodymium complexes show two emission peaks under the excitation band of 245 nm at about 395 and 595 nm respectively, while one peak under 415 nm at about 595 nm, which attributed to be 1S0 --> 1I6 (395 nm) transition and the characteristic emission 1D2 --> 3H4 (595 nm) transition of Pr3+ ion. The 1S0 --> 1I6 transition can be ascribed as the transition of charge transfer state, and the 1D2 --> 3H4 can be further proved that there exists an antenna effect in the fluorescence of praseodymium with aromatic carboxylic acids. In conclusion, the praseodymium complexes systems can realize the double fluorescent conversion in both ultraviolet and visible region and can be further studied the application of this conversion.

  13. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  14. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  15. Postfunctionalization of BN-embedded polycyclic aromatic compounds for fine-tuning of their molecular properties.

    PubMed

    Wang, Xiao-Ye; Yang, Dong-Chu; Zhuang, Fang-Dong; Liu, Jia-Jie; Wang, Jie-Yu; Pei, Jian

    2015-06-01

    New BN-embedded, thiophene-fused, polycyclic aromatic compounds with planar geometry were designed and synthesized. The molecules showed excellent stability and chemical robustness. Postfunctionalization on this skeleton was demonstrated with a series of electrophilic bromination, palladium-catalyzed cross-coupling, and Knoevenagel condensation reactions. The π skeleton remained intact during these late-stage transformations. The optical and electronic properties have been well tuned through incorporation of electron-rich and -deficient groups on the backbone. This work shows the great advantage of the postfunctionalization strategy on BN-containing polycyclic aromatic compounds for fast diversification and materials screening. PMID:25955825

  16. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.

    PubMed

    Zhang, Meng; Shu, Liang; Shen, Xiaofang; Guo, Xiaoying; Tao, Shu; Xing, Baoshan; Wang, Xilong

    2014-12-01

    Biochars from nitrogen-rich biomaterials (i.e., α-amylase, chitin and zein) were produced at different temperatures (i.e. 170, 250, 350 and 450 °C) and characterized, and their sorption for phenanthrene, naphthalene and 1-naphthol was investigated. The organic carbon content normalized-sorption coefficient (Koc) of the tested compounds by biochars increased with increasing charring temperature, attributed to the reduction of O-containing polar moieties especially the O-alkyl components, and the newly created aromatic carbon domains. The N-heterocyclic ring structure formed during charring process may enhance π-π interactions between aromatics and the aromatic components in the resulting biochars. However, π-π interactions did not dominate sorption of aromatics by N-rich biochars. Sorption of the tested compounds by N-rich biochars was predominantly controlled by the hydrophobic interactions between these chemicals and the aromatic components in biochars. Both N- and O-containing polar moieties at the biochar surfaces negatively affected their sorption for aromatics.

  17. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    USGS Publications Warehouse

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  18. Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

    PubMed Central

    Fernández, Helga; Prandoni, Nicolás; Fernández-Pascual, Mercedes; Fajardo, Susana; Morcillo, César; Díaz, Eduardo; Carmona, Manuel

    2014-01-01

    Background Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. Methodology/Principal Findings Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. Conclusions/Significance This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology. PMID:25340341

  19. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect

    Wear, J.E. Jr.

    1993-01-01

    This study examines the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics contaminating groundwater environments, due to exposure to naturally occurring recalcitrant aromatics in their environment. Ground water was pumped at monthly intervals from twelve wells at four different sites. Two of these sites could be considered pristine. The other two sites were contaminated, one with trichloroethylene, the other with polyaromatic hydrocarbons and possible sulfur compounds. There are great variations in physiological states and metabolic needs of bacteria in these different aquifers. All but one of the wells studied demonstrated higher counts on low nutrient media than high nutrient media, suggesting the oligotrophic nature of these groundwater environments. The subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. Utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This has important implications for in situ bioremediation as a method of environmental cleanup.

  20. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and their Ions. 6; Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.

  1. Identification of polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter by synchronous fluorescence spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.

    2007-09-01

    The synchronous fluorescence (SF) technique has been used in the identification of polycyclic aromatic hydrocarbons (PAHs) from air particulate sample in an urban environment of Delhi, Jawaharlal Nehru University. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. PAHs were extracted from the filter papers using dichloromethane (DCM) + hexane with ultrasonication method. Qualitative measurements of the polycyclic aromatic hydrocarbons (PAHs) were carried out using the SF technique at various wavelength intervals (Δ λ). Due to the difference in chemical structure, each PAH gives specific characteristic spectrum for each Δ λ. Following PAHs were detected in our measurement: benz(a)anthracene (BaA), pyrene (Pyr), chrysene (Chry), fluoranthene (Flan), phenanthrene (Phen), and benz(ghi)perylene (BghiP). This is in agreement with our earlier work for determination of these PAHs using gas chromatography (GC). The seasonal variation of the PAHs was found to be maximum in winter and minimum during the monsoon.

  2. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.

    PubMed

    Ni, Bin; Huang, Zhou; Fan, Zheng; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2013-11-01

    Bacterial chemotaxis towards aromatic compounds has been frequently observed; however, knowledge of how bacteria sense aromatic compounds is limited. Comamonas testosteroni CNB-1 is able to grow on a range of aromatic compounds. This study investigated the chemotactic responses of CNB-1 to 10 aromatic compounds. We constructed a chemoreceptor-free, non-chemotactic mutant, CNB-1Δ20, by disruption of all 19 putative methyl-accepting chemotaxis proteins (MCPs) and the atypical chemoreceptor in strain CNB-1. Individual complementation revealed that a putative MCP (tagged MCP2201) was involved in triggering chemotaxis towards all 10 aromatic compounds. The recombinant sensory domain of MCP2201 did not bind to 3- or 4-hydroxybenzoate, protocatechuate, catechol, benzoate, vanillate and gentisate, but bound oxaloacetate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate and malate. The mutant CNB-1ΔpmdF that lost the ability to metabolize 4-hydroxybenzoate and protocatechuate also lost its chemotactic response to these compounds, suggesting that taxis towards aromatic compounds is metabolism-dependent. Based on the ligand profile, we proposed that MCP2201 triggers taxis towards aromatic compounds by sensing TCA cycle intermediates. Our hypothesis was further supported by the finding that introduction of the previously characterized pseudomonad chemoreceptor (McpS) for TCA cycle intermediates into CNB-1Δ20 likewise triggered chemotaxis towards aromatic compounds.

  3. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].

    PubMed

    Zhang, Xiaoyan; Peng, Xue; Masai, Eiji

    2014-08-01

    Lignin is complex heteropolymer produced from hydroxycinnamyl alcohols through radical coupling. In nature, white-rot fungi are assumed initially to attack native lignin and release lignin-derived-low-molecular-weight compounds, and soil bacteria play an importent role for completely degradation of these compounds. Study on the soil bacteria degrading lignin-derived-low-molecular-weight compounds will give way to understand how aromatic compounds recycle in nature, and to utilize lignin compounds as the renewable materials for valuable materials production. Sphingobium sp. SYK-6 that grows on lignin biphenyl (5,5'-dehydrodivanillate) had been isolated from pulp effluent in 1987. We have researched this bacterium more than 25 years, a serious aromatic metabolic pathway has been determined, and related genes have been isolated. As the complete genome sequence of SYK-6 has been opened to the public in 2012, the entire aromatic compounds degradation mechanisms become more clear. Main contents in our review cover: (1) genome information; (2) aryl metabolism; (3) biphenyl metabolism; (4) ferulate metabolism; (5) tetrahydrofolate-dependent O-demethylation system for lignin compound degrdation; (6) protocatechuate 4,5-cleavage pathway; (7) multiple pathways for 3-O-methylgallate metabolism.

  4. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  5. Phosphorylation of C-H bonds of aromatic compounds using metals and metal complexes

    NASA Astrophysics Data System (ADS)

    Budnikova, Yu H.; Sinyashin, O. G.

    2015-09-01

    Key achievements and current trends in the development of methods for phosphorylation of aromatic C-H bonds catalyzed by metal salts and complexes are considered. The most important and promising approaches of the last decade, including those concerning the synthesis and properties of arylphosphonates, are distinguished. Methods for the introduction of a phosphonate group into non-activated and functionally substituted aromatic compounds and heteroaromatic molecules and phosphorylation-cyclization reactions involving acetylenes, 2-isocyanobiphenyls and alkynoates are analyzed. The possibilities of ligand-directed phosphorylation of compounds with aromatic C-H bonds and presumed mechanisms and intermediates in the C-P bond formation reactions are considered. The potential of this extensively developing research trend in organic and organoelement chemistry is highlighted. The bibliography includes 263 references.

  6. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    NASA Astrophysics Data System (ADS)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  7. Ab initio determination of dark structures in radiationless transitions for aromatic carbonyl compounds.

    PubMed

    Fang, Wei-Hai

    2008-03-01

    Mechanistic photodissociation of a polyatomic molecule has long been regarded as an intellectually challenging area of chemical physics, the results of which are relevant to atmospheric chemistry, biological systems, and many application fields. Carbonyl compounds play a unique role in the development of our understanding of the spectroscopy, photochemistry, and photophysics of polyatomic molecules and their photodissociation has been the subject of numerous studies over many decades. Upon irradiation, a molecule can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides photochemical and other photophysical processes. Transient intermediates formed in the IC and ISC radiationless processes, which are termed "dark", are not amenable to detection by conventional light absorption or emission. However, these dark intermediates play critical roles in IC and ISC processes and thus are essential to understanding mechanistic photochemistry of a polyatomic molecule. We have applied the multiconfiguration complete active space self-consistent field (CASSCF) method to determine the dark transient structures involved in radiationless processes for acetophenone and the related aromatic carbonyl compounds. The electronic and geometric structures predicted for the dark states are in a good agreement with those determined by ultrafast electron diffraction experiments. Intersection structure of different electronic states provides a very efficient "funnel" for the IC or ISC process. However, experimental determination of the intersection structure involved in radiationless transitions of a polyatomic molecule is impossible at present. We have discovered a minimum energy crossing point among the three potential energy surfaces (S1, T1, and T2) that appears to be common to a wide variety of aromatic carbonyl compounds with a constant structure. This new type of crossing point holds the key to understanding much about radiationless processes after

  8. Photoluminescence of Traces of Aromatic Compounds in Aqueous Solutions Upon Excitation by a Repetitively Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Agal'Tsov, A. M.; Gorelik, V. S.; Moro, R. A.

    2000-06-01

    A method is suggested for quantitative and qualitative analysis of aromatic compounds in water at extremely low concentrations (<1 ng/l). The method is based on excitation of luminescence by short (20 ns) UV laser pulses with a peak power of 104 W at 255.3 nm and a pulse repetition rate of 10 kHz. The shape of luminescence spectra of benzene, benzoic acid, saccharin, aspirin, and L-tryptophan at low concentrations in water is analyzed. The luminescence kinetics of these compounds is studied at short delay times (10 20 ns). The lifetimes of the electronic excited states of the aromatic compounds are measured. The applications of the method for studies of low-concentration aqueous solutions of biological and medicine compounds are analyzed.

  9. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds.

    PubMed

    Parrilli, Ermengilda; Papa, Rosanna; Tutino, Maria Luisa; Sannia, Giovanni

    2010-01-01

    Microbial degradation of aromatic hydrocarbons has been studied with the aim of developing applications for the removal of toxic compounds. Efforts have been directed toward the genetic manipulation of mesophilic bacteria to improve their ability to degrade pollutants, even though many pollution problems occur in sea waters and in effluents of industrial processes which are characterized by low temperatures. From these considerations the idea of engineering a psychrophilic microorganism for the oxidation of aromatic compounds was developed.In a previous paper it was demonstrated that the recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (PhTAC/tou) expressing a toluene-o-xylene monooxygenase (ToMO) is able to convert several aromatic compounds into corresponding catechols. In our work we improved the metabolic capability of PhTAC/tou cells by combining action of recombinant ToMO enzyme with that of the endogenous P. haloplanktis TAC125 laccase-like protein. This strategy allowed conferring new and specific degradative capabilities to a bacterium isolated from an unpolluted environment; indeed engineered PhTAC/tou cells are able to grow on aromatic compounds as sole carbon and energy sources. Our approach demonstrates the possibility to use the engineered psychrophilic bacterium for the bioremediation of chemically contaminated marine environments and/or cold effluents.

  10. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified...

  11. Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates. [Pseudomonas sp. strain P136

    SciTech Connect

    Nozawa, T.; Maruyama, Y.

    1988-06-01

    A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds.

  12. Detection of Medium-Sized Polycyclic Aromatic Hydrocarbons via Fluorescence Energy Transfer

    PubMed Central

    Serio, Nicole; Prignano, Lindsey; Peters, Sean; Levine, Mindy

    2015-01-01

    Reported herein is the use of proximity-induced non-covalent energy transfer for the detection of medium-sized polycyclic aromatic hydrocarbons (PAHs). This energy transfer occurs within the cavity of γ-cyclodextrin in various aqueous environments, including human plasma and coconut water. Highly efficient energy transfer was observed, and the efficiency of the energy transfer is independent of the concentration of γ-cyclodextrin used, demonstrating the importance of hydrophobic binding in facilitating such energy transfer. Low limits of detection were also observed for many of the PAHs investigated, which is promising for the development of fluorescence-based detection schemes. PMID:25821390

  13. Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions.

    PubMed

    Nehr, Sascha; Bohn, Birger; Wahner, Andreas

    2012-06-21

    The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.

  14. Photocatalytic degradation-excitation-emission matrix fluorescence for increasing the selectivity of polycyclic aromatic hydrocarbon analyses.

    PubMed

    Kim, Yoon-Chang; Jordan, James A; Nahorniak, Michelle L; Booksh, Karl S

    2005-12-01

    The application of photocatalysis enhancement to calibration of fluorescence excitation-emission matrixes (EEMs) with parallel factor (PARAFAC) analysis is described. In this study, three- and four-way PARAFAC analysis was employed to extract the fluorescent species' spectra from overlapping EEMs. Time-dependent photocatalysis degradation of the polycyclic aromatic hydrocarbons (PAHs) was employed to create an additional dimension for analysis. The consequent four-dimension degradation-EEM data cubes have greater selectivity for each PAH than do three-dimension EEM data cubes alone. On a scale of 0 to 1, with 0 being completely collinear spectra and 1 being orthogonal spectra, including the time-dependent measurements increased the selectivity an average of 21%, from 0.73 to 0.87.

  15. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics.

  16. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions.

    PubMed

    Singh, Beena G; Thomas, Elizabeth; Sawant, Shilpa N; Takahashi, Kohei; Dedachi, Kenchi; Iwaoka, Michio; Priyadarsini, K Indira

    2013-09-26

    Selenium centered radical cations in aliphatic selenium compounds are stabilized by formation of two-center-three electron (2c-3e) hemi bonds either with nearby heteroatoms forming monomer radicals or with selenium atoms of the parent molecules forming dimer radicals. Such radicals in aromatic selenium compounds would generally be stabilized as monomers by the delocalization of the spin density along the aromatic ring. To test the assumption if aromatic selenides having Se···X nonbonding interactions can show different types of radical cations, we have performed pulse radiolysis studies of three structurally related aromatic selenium compounds and the results have been substantiated with cyclic voltammetry and quantum chemical calculations. The three aromatic selenium compounds have functional groups like -CH2N(CH3)2 (1), -CH2OH (2), and -CH3 (3) at ortho position to the -SeCH3 moiety. The energy of Se···X nonbonding interactions (E(nb)) for these compounds is in the order 1 (Se···N) > 2 (Se···O) > 3 (Se···H). Radical cations, 1(•+), 2(•+) and 3(•+) were produced by the one-electron oxidation of 1, 2 and 3 by radiolytically generated (•)OH and Br2(•-) radicals. Results on transient spectra, lifetime, and secondary reactions of 1(•+), 2(•+), and 3(•+) indicated that 1(•+) shows a significantly different absorption spectrum, longer lifetime, and less oxidizing power compared to those of 2(•+) or 3(•+). Quantum chemical calculations suggested that 1(•+) is stabilized by the formation of a 2c-3e bond between Se and N atoms, whereas 2(•+) and 3(•+) acquire stability through the delocalization of the spin density on the aromatic ring. These results provide evidence for the first time that stronger nonbonding interactions between Se···N in the ground state, facilitate the formation of stabilized radical cations, which can significantly influence the redox chemistry and the biological activity of aromatic selenium compounds.

  17. Bacterial Community Dynamics during Start-Up of a Trickle-Bed Bioreactor Degrading Aromatic Compounds

    PubMed Central

    Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz

    1998-01-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433

  18. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    PubMed

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  19. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  20. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  1. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.

    PubMed

    Hoffmann, Norbert

    2012-11-01

    Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.

  2. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria.

    PubMed

    Agarwal, Vinayak; El Gamal, Abrahim A; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D; Schorn, Michelle; Allen, Eric E; Moore, Bradley S

    2014-08-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention because of their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominases revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds.

  3. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria

    PubMed Central

    Agarwal, Vinayak; El Gamal, Abrahim A.; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D.; Schorn, Michelle; Allen, Eric E.; Moore, Bradley S.

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention due to their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominase enzymes revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds. PMID:24974229

  4. Antitumor and antiparasitic activity of novel ruthenium compounds with polycyclic aromatic ligands.

    PubMed

    Miserachs, Helena Guiset; Cipriani, Micaella; Grau, Jordi; Vilaseca, Marta; Lorenzo, Julia; Medeiros, Andrea; Comini, Marcelo A; Gambino, Dinorah; Otero, Lucía; Moreno, Virtudes

    2015-09-01

    Five novel ruthenium(II)-arene complexes with polycyclic aromatic ligands were synthesized, comprising three compounds of the formula [RuCl(η(6)-p-cym)(L)][PF6], where p-cym = 1-isopropyl-4-methylbenzene and L are the bidentate aromatic ligands 1,10-phenanthroline-5,6-dione, 1, 5-amine-1,10-phenanthroline, 4, or 5,6-epoxy-5,6-dihydro-phenanthroline, 5. In the other two complexes [RuCl2(η(6)-p-cym)(L')], the metal is coordinated to a monodentate ligand L', where L' is phenanthridine, 2, or 9-carbonylanthracene, 3. All compounds were fully characterized by mass spectrometry and elemental analysis, as well as NMR and IR spectroscopic techniques. Obtained ruthenium compounds as well as their respective ligands were tested for their antiparasitic and antitumoral activities. Even though all compounds showed lower Trypanosoma brucei activity than the free ligands, they also resulted less toxic on mammalian cells. Cytotoxicity assays on HL60 cells showed a moderate antitumoral activity for all ruthenium compounds. Compound 1 was the most potent antitumoral (IC50 = 1.26±0.78 μM) and antiparasitic (IC50 = 0.19 ± 0.05 μM) agent, showing high selectivity towards the parasites (selectivity index >100). As complex 1 was the most promising antitumoral compound, its interaction with ubiquitin as potential target was also studied. In addition, obtained ruthenium compounds were found to bind DNA, and they are thought to interact with this macromolecule mainly through intercalation of the aromatic ligand.

  5. Removal of aromatic hydrocarbon compounds by hydroxypropyl-cyclodextrin

    SciTech Connect

    1999-09-15

    Activated carbon has been used for the recovery and removal of benzene, toluene, and xylenes in air and water for a long time. However, removal of benzene, toluene, and xylenes from soil is very difficult. They can be removed by an increase in the apparent solubility of organic compounds in soil. The apparent solubilities of benzene, toluene, and xylene were investigated to estimate their inclusion behavior into natural cyclodextrins (CDs) and hydroxypropyl-cyclodextrins (HP-CDs) in the liquid phase. The apparent solubilities of benzene, toluene, and xylenes did not increase by adding natural CDs but did increase when HP-CDs were added. Benzene, toluene, and xylenes in a HP-CD solution depended on the relationship between the molecular diameter of benzene, toluene, and xylenes, the CD cavity size, and the 1-octanol-water partition coefficient. That of p-xylene was larger than that of o-xylene and m-xylene because of the smallest steric hindrance of p-xylene.

  6. Tryptophan and tyrosine to terbium fluorescence resonance energy transfer as a method to 'map' aromatic residues and monitor docking

    SciTech Connect

    Allen, John E.; McLendon, George L. . E-mail: george.mclendon@duke.edu

    2006-11-03

    Fluorescent lanthanide ions, with large Stokes shifts and narrow emission bands, are excellent tools for the development of FRET-based assays. In this work, a terbium ion is tethered to a peptide which binds to the BIR3 domain of XIAP, an anti-apoptotic protein. Excitation of tryptophan and tyrosine residues in the BIR3 domain causes the peptide bound terbium ion to fluoresce relative to its distance from these aromatic residues. By developing ligands with terbium ions tethered at different residues, the relative terbium emission can be used to 'map' the aromatic residues within the ligand binding pocket.

  7. Leaching of styrene and other aromatic compounds in drinking water from PS bottles.

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2007-01-01

    Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.

  8. Leaching of styrene and other aromatic compounds in drinking water from PS bottles.

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2007-01-01

    Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks. PMID:17915704

  9. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni.

    PubMed

    Huang, Zhou; Ni, Bin; Jiang, Cheng-Ying; Wu, Yu-Fan; He, Yun-Zhe; Parales, Rebecca E; Liu, Shuang-Jiang

    2016-07-01

    Micro-organisms sense and chemotactically respond to aromatic compounds. Although the existence of chemoreceptors that bind to aromatic attractants and subsequently trigger chemotaxis have long been speculated, such a chemoreceptor has not been demonstrated. In this report, we demonstrated that the chemoreceptor MCP2901 from Comamonas testosteroni CNB-1 binds to aromatic compounds and initiates downstream chemotactic signaling in addition to its ability to trigger chemotaxis via citrate binding. The function of gene MCP2901 was investigated by genetic deletion from CNB-1 and genetic complementation of the methyl-accepting chemotaxis protein (MCP)-null mutant CNB-1Δ20. Results showed that the expression of MCP2901 in the MCP-null mutant restored chemotaxis toward nine tested aromatic compounds and nine carboxylic acids. Isothermal titration calorimetry (ITC) analyses demonstrated that the ligand-binding domain of MCP2901 (MCP2901LBD) bound to citrate, and weakly to gentisate and 4-hydroxybenzoate. Additionally, ITC assays indicated that MCP2901LBD bound strongly to 2,6-dihydroxybenzoate and 2-hydroxybenzoate, which are isomers of gentisate and 4-hydroxybenzoate respectively that are not metabolized by CNB-1. Agarose-in-plug and capillary assays showed that these two molecules serve as chemoattractants for CNB-1. Through constructing membrane-like MCP2901-inserted Nanodiscs and phosphorelay activity assays, we demonstrated that 2,6-dihydroxybenzoate and 2-hydroxybenzoate altered kinase activity of CheA. This is the first evidence of an MCP binding to an aromatic molecule and triggering signal transduction for bacterial chemotaxis.

  10. The studies on the aromaticity of fullerenes and their holmium endohedral compounds.

    PubMed

    Tan, Bisheng; Peng, Rufang; Li, Hongbo; Wang, Bing; Jin, Bo; Chu, Shijin; Long, Xinping

    2011-02-01

    Density functional theory BLYP/DNP was employed to optimize a series of fullerenes and their holmium endohedral compounds, including C(20), Ho@C(20), Ho(3+)@C(20), C(60), Ho@C(60), Ho(3+)@C(60),C(70), Ho@C(70), Ho(3+)@C(70) C(78), Ho@C(78), Ho(3+)@C(78), C(82),Ho@C(82) and Ho(3+)@C(82). DFT semi core pseudospot approximation was taken into consideration in the calculations of the element holmium because of its particular electronic structure. Fullerenes and their holmium endohedral compounds' aromaticity were studied in terms of structural criteria, energetic criteria, and reactivity criteria. The results indicate that the aromaticity of fullerenes was reduced when a holmium atom was introduced into the carbon cage, and the endohedral fullerenes' reactive activity enhance; but the aromaticity of the carbon cage increased when a Ho(3+) cation was encapsulated into a fullerene. Calculations of aromaticity and stability indicate that two paths can lead to the similar aim of preparing holmium endohedral fullerenes; that is, they can form from either a holmium atom or a holmium cation (Ho(3+)) reacting with fullerenes, respectively, and the latter is more favorable.

  11. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm‑1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  12. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm-1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  13. Mechanisms on electrical breakdown strength increment of polyethylene by aromatic carbonyl compounds addition: a theoretical study.

    PubMed

    Zhang, Hui; Shang, Yan; Wang, Xuan; Zhao, Hong; Han, Baozhong; Li, Zesheng

    2013-12-01

    A theoretical investigation is accomplished on the mechanisms of electrical breakdown strength increment of polyethylene at the atomic and molecular levels. It is found that the addition of aromatic carbonyl compounds as voltage stabilizers is one of the important factors for increasing electrical breakdown strength of polyethylene, as the additives can trap hot electrons, obtain energy of hot electrons, and transform the aliphatic cation to relatively stable aromatic cation to prevent the degradation of the polyethylene matrix. The HOMO-LUMO energy gaps (E(g)), the ionization potentials (IPs), and electron affinities (EAs) at the ground states of a series of aromatic carbonyl compounds are obtained at the B3LYP/6-311+G(d,p) level. The theoretical results are in good agreement with the available experimental findings, show that 2,4-dioctyloxybenzophenone (Bzo) and 4,4'-didodecyloxybenzil (Bd) molecules can effectively increase the electrical breakdown strength when they are doped into polyethylene because of their much smaller E g values than all the other studied aromatic carbonyl molecules and excellent compatibility with polymers matrix.

  14. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.

  15. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms.

  16. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms. PMID:27413112

  17. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model.

  18. Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds

    NASA Astrophysics Data System (ADS)

    Czupryniak, Justyna; Fabiańska, Aleksandra; Stepnowski, Piotr; Ossowski, Tadeusz; Bogdanowicz, Robert; Gnyba, Marcin; Siedlecka, Ewa

    2012-10-01

    The aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy (SEM) confirmed that the synthesized layer was continuous and formed a densely packed grain structure with an average roughness of less than 0:5 μm. The influence of important electrochemical parameters: current density, kind of reactor, pH or mixing operation, on the efficiency of the oxidation was investigated. The fouling of electrode's surface caused by the deposition of organic material was observed during CV and galvanostatic experiments. At low current density the oxidation rate constant k was low, but the current efficiency was relatively high. The BDD can be used successfully to remove heterogeneous aromatic compounds existing either as molecules or cations. During 4 h of electrolysis 95% of aromatic compounds were electrochemically decomposed to mineral forms. It was observed that the influence of the initial pH on mineralization was marginal.

  19. Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds

    NASA Astrophysics Data System (ADS)

    Czupryniak, Justyna; Fabiańska, Aleksandra; Stepnowski, Piotr; Ossowski, Tadeusz; Bogdanowicz, Robert; Gnyba, Marcin; Siedlecka, Ewa M.

    2012-10-01

    The aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy (SEM) confirmed that the synthesized layer was continuous and formed a densely packed grain structure with an average roughness of less than 0 :5 μm. The influence of important electrochemical parameters: current density, kind of reactor, pH or mixing operation, on the efficiency of the oxidation was investigated. The fouling of electrode's surface caused by the deposition of organic material was observed during CV and galvanostatic experiments. At low current density the oxidation rate constant k was low, but the current efficiency was relatively high. The BDD can be used successfully to remove heterogeneous aromatic compounds existing either as molecules or cations. During 4 h of electrolysis 95% of aromatic compounds were electrochemically decomposed to mineral forms. It was observed that the influence of the initial pH on mineralization was marginal.

  20. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  1. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.

  2. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar.

    PubMed

    Yang, Kun; Yang, Jingjing; Jiang, Yuan; Wu, Wenhao; Lin, Daohui

    2016-03-01

    Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin-Ashtakhov (DA) model. Correlations of adsorption capacity (Q(0)) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and αm), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents.

  3. Field effect transistors based on polycyclic aromatic hydrocarbons for the detection and classification of volatile organic compounds.

    PubMed

    Bayn, Alona; Feng, Xinliang; Müllen, Klaus; Haick, Hossam

    2013-04-24

    We show that polycyclic aromatic hydrocarbon (PAH) based field effect transistor (FET) arrays can serve as excellent chemical sensors for the detection of volatile organic compounds (VOCs) under confounding humidity conditions. Using these sensors, w/o complementary pattern recognition methods, we study the ability of PAH-FET(s) to: (i) discriminate between aromatic and non-aromatic VOCs; (ii) distinguish polar and non-polar non-aromatic compounds; and to (iii) identify specific VOCs within the subgroups (i.e., aromatic compounds, polar non-aromatic compounds, non-polar non-aromatic compounds). We further study the effect of water vapor on the sensor array's discriminative ability and derive patterns that are stable when exposed to different constant values of background humidity. Patterns based on different independent electronic features from an array of PAH-FETs may bring us one step closer to creating a unique fingerprint for individual VOCs in real-world applications in atmospheres with varying levels of humidity.

  4. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  5. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  6. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2016-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  7. Analysis of industrial contaminants in indoor air: part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls.

    PubMed

    Barro, Ruth; Regueiro, Jorge; Llompart, María; Garcia-Jares, Carmen

    2009-01-16

    This article reviews recent literature on the analysis of industrial contaminants in indoor air in the framework of the REACH project, which is mainly intended to improve protection of human health and the environment from the risks of more than 34 millions of chemical substances. Industrial pollutants that can be found in indoor air may be of very different types and origin, belonging to the volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) categories. Several compounds have been classified into the priority organic pollutants (POPs) class such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/PCDFs) and related polychlorinated compounds, and polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are partially associated to the air gas phase, but also to the suspended particulate matter. Furthermore, settled dust can act as a concentrator for the less volatile pollutants and has become a matrix of great concern for indoors contamination. Main literature considered in this review are papers from the last 10 years reporting analytical developments and applications regarding VOCs, aldehydes and other carbonyls, PCBs, PCDDs, PCDFs, and PAHs in the indoor environment. Sample collection and pretreatment, analyte extraction, clean-up procedures, determination techniques, performance results, as well as compound concentrations in indoor samples, are summarized and discussed. Emergent contaminants and pesticides related to the industrial development that can be found in indoor air are reviewed in a second part in this volume.

  8. Solubilization of Polycyclic Aromatic Compounds into n-Decyltrimethylammonium Perfluorocarboxylate Micelles.

    PubMed

    Yoshida; Moroi

    2000-12-01

    Solubilization of polycyclic aromatic compounds in aqueous dilute solutions of three cationic amphiphiles was studied. The maximum additive concentrations (MACs) of the aromatic compounds were constant below their critical micelle concentrations (cmcs) and monotonically increased above the cmcs. The first stepwise association constants (K(1)) between a solubilizate monomer and a vacant micelle were evaluated from the MACs for the solubilizates using the mass action model for solubilization into micelles in the dilute solution. The standard Gibbs energy changes of solubilization (DeltaG degrees ) were calculated from K(1), and the enthalpy and entropy changes of solubilization were estimated from the temperature dependence. MACs of each surfactant at the same surfactant concentration above the cmc were different depending on the cmc, but there was little difference in the DeltaG degrees values. Some differences appeared in the enthalpy and entropy values in accordance with their micellar size or degrees of counterion binding to micelles. DeltaG degrees for solubilization decreased linearly with carbon number of aromatic solubilizate for each micellar solution. Copyright 2000 Academic Press.

  9. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  10. Characterization of a fluorescent compound isolated from Legionella pneumophila

    SciTech Connect

    Swanson, S.J.

    1987-01-01

    Legionella pneumophila requires the presence of amino acids for growth and utilizes them for energy. Along with other amino acids, either phenylalanine or tyrosine is essential for the growth of the organism and tyrosine has been identified as an energy source. When L. pneumophila is grown in the presence of tyrosine, a brown melanin-like pigment is produced. A green fluorescent pigment, fg2, was isolated from centrifuged culture fluid after the organism was grown in the presence of tyrosine. Fg2 is water soluble with a molecular weight of 152 as determined by mass spectral analysis. A mutant of L. pneumophila unable to produce fg2 was isolated to assist in elucidation of the biosynthesis of fg2. Radiolabeling experiments were utilized to conclude that neither tyrosine nor any other amino acid was a precursor in the biosynthesis of fg2. Shikimic acid, an intermediate in tyrosine biosynthesis, was found to also be an intermediate in the biosynthesis of fg2. A series of experiments in which L. pneumophila was grown in a chemically defined medium containing various combinations of aromatic amino acids determined that fg2 and the brown pigment always occur in tandem.

  11. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil.

    PubMed

    Lundstedt, Staffan; Haglund, Peter; Oberg, Lars

    2003-07-01

    The goals of this study were to investigate the relative degradation rates of polycyclic aromatic compounds (PACs) in contaminated soil, and to assess whether persistent oxidation products are formed during their degradation. Samples were taken on five occasions during a pilot-scale bioslurry treatment of soil from a former gasworks site. More than 100 PACs were identified in the soil, including unsubstituted polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs (alkyl-PAHs), heterocyclic PACs, and oxygenated PAHs (oxy-PAHs), such as ketones, quinones, and coumarins. During the treatment, the low molecular weight PAHs and heterocyclics were degraded faster than the high molecular weight compounds. The unsubstituted PAHs also appear to have degraded more quickly than the corresponding alkyl-PAHs and nitrogen-containing heterocyclics. No new oxidation products that were not present in the untreated soil were identified after the soil treatment. However, oxy-PAHs that were present in the untreated soil were generally degraded more slowly than the parent compounds, suggesting that they were formed during the treatment or that they are more persistent. Two oxidation products, 1-acenaphthenone and 4-oxapyrene-5-one, were found at significantly higher concentrations at the end of the study. Because oxy-PAHs can be acutely toxic, mutagenic, or carcinogenic, we suggest that this group of compounds should also be monitored during the treatment of PAH-contaminated soil. PMID:12836964

  12. The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase

    NASA Astrophysics Data System (ADS)

    Boulamanti, Aikaterini K.; Korologos, Christos A.; Philippopoulos, Constantine J.

    In the present study, the gas-solid heterogeneous photocatalytic oxidation (PCO) of six aromatic species of volatile organic compounds (VOCs), benzene, toluene, ethylbenzene, m-, o- and p-xylene over illuminated titania was carried out at ambient temperature in a continuous stirring-tank reactor. Initial VOC concentrations were in the low parts per million (ppm) range. Maximum conversions were over 90% for all compounds except from benzene, ethylbenzene and o-xylene, while the residence time varied from 50 to 210 s. Intermediates were detected only in the case of the xylenes, but catalyst deactivation occurred for all six compounds. The PCO kinetics were well fit by a Langmuir-Hinshelwood (L-H) model for monomolecular surface reaction and it was proved that the reaction rate is related to both constants. The rate constants ranged from 0.147 ppm s -1 g cat-1 for benzene to 1.067 ppm s -1 g cat-1 for m-xylene, while the adsorption constants from 0.424 ppm -1 for ethylbenzene to 0.69 ppm -1 for toluene. The molecular structure of the compounds was found to play an important role in the reaction. Finally the efficiency of the procedure in the case of a mixture of these aromatic substances was tested.

  13. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    SciTech Connect

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  14. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE PAGESBeta

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  15. Adsorption behavior of some aromatic compounds on hydrophobic magnetite for magnetic separation.

    PubMed

    Sasaki, Takahiro; Tanaka, Shunitz

    2011-11-30

    In this study, a hydrophobic magnetite coated with an alkyl chain or a phenyl group on the surface was prepared and used as an adsorbent to investigate the adsorption behavior of aromatic compounds having various values of log P(ow) (phenol 1.46, benzonitrile 1.56, nitrobenzene 1.86, benzene 2.13, toluene 2.73, chlorobenzene 2.84 and o-dichlorobenzene 3.38) onto hydrophobic magnetite. The hydrophobic magnetites were modified with stearic acid and phenyltrimethoxysilane, and the modification amounts were 9.84 × 10(-3) and 4.17 × 10(-2)mmol/g, respectively. The aromatic compounds used in this study were divided into 3 groups depending on the log P(ow): 1aromatic compounds. The adsorption mechanism for 2compounds and modified functional groups and the fitting for adsorption isotherm models suggested that this adsorption might form a multi-layer adsorption in the most cases.

  16. Transition-Metal Planar Boron Clusters: a New Class of Aromatic Compounds with High Coordination

    NASA Astrophysics Data System (ADS)

    Wang, Lai-Sheng

    2012-06-01

    Photoelectron spectroscopy in combination with computational studies over the past decade has shown that boron clusters possess planar or quasi-planar structures, in contrast to that of bulk boron, which is dominated by three-dimensional cage-like building blocks. All planar or quasi-planar boron clusters are observed to consist of a monocyclic circumference with one or more interior atoms. The propensity for planarity has been found to be due to both σ and π electron delocalization throughout the molecular plane, giving rise to concepts of σ and π double aromaticity. We have found further that the central boron atoms can be substituted by transition metal atoms to form a new class of aromatic compounds, which consist of a central metal atom and a monocyclic boron ring (M B_n). Eight-, nine-, and ten-membered rings of boron have been observed, giving rise to octa-, ennea-, and deca-coordinated aromatic transition metal compounds [1-3]. References: [1] ``Aromatic Metal-Centered Monocyclic Boron Rings: Co B_9^- and Ru B_9^-" (Constantin Romanescu, Timur R. Galeev, Wei-Li Li, A. I. Boldyrev, and L. S. Wang), Angew. Chem. Int. Ed. {50}, 9334-9337 (2011). [2] ``Transition-Metal-Centered Nine-Membered Boron Rings: M B_9 and M B_9^- (M = Rh, Ir)" (Wei-Li Li, Constantin Romanescu, Timur R. Galeev, Zachary Piazza, A. I. Boldyrev, and L. S. Wang), J. Am. Chem. Soc. {134}, 165-168 (2012). [3] ``Observation of the Highest Coordination Number in Planar Species: Decacoordinated Ta B10^- and Nb B_9^- Anions" (Timur R. Galeev, Constantin Romanescu, Wei-Li Li, L. S. Wang, and A. I. Boldyrev), Angew. Chem. Int. Ed. {51}, 2101-2105 (2012).

  17. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  18. Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles.

    PubMed

    Culleré, Laura; Ferreira, Vicente; Venturini, María E; Marco, Pedro; Blanco, Domingo

    2013-11-01

    The Tuber indicum (Chinese truffle) and Tuber melanosporum (Black truffle) species are morphologically very similar but their aromas are very different. The black truffle aroma is much more intense and complex, and it is consequently appreciated more gastronomically. This work tries to determine whether the differences between the aromatic compounds of both species are sufficiently significant so as to apply them to fraud detection. An olfactometric evaluation (GC-O) of T. indicum was carried out for the first time. Eight important odorants were identified. In order of aromatic significance, these were: 1-octen-3-one and 1-octen-3-ol, followed by two ethyl esters (ethyl isobutyrate and ethyl 2-methylbutyrate), 3-methyl-1-butanol, isopropyl acetate, and finally the two sulfides dimethyldisulfide (DMDS) and dimethylsulfide (DMS). A comparison of this aromatic profile with that of T. melanosporum revealed the following differences: T. indicum stood out for the significant aromatic contribution of 1-octen-3-one and 1-octen-3-ol (with modified frequencies (MF%) of 82% and 69%, respectively), while in the case of T. melanosporum both had modified frequencies of less than 30%. Ethyl isobutyrate, ethyl 2-methylbutyrate and isopropyl acetate were also significantly higher, while DMS and DMDS had low MF (30-40%) compared to T. melanosporum (>70%). The volatile profiles of both species were also studied by means of headspace solid-phase microextraction (HS-SPME-GC-MS). This showed that the family of C8 compounds (3-octanone, octanal, 1-octen-3-one, 3-octanol and 1-octen-3-ol) is present in T. indicum at much higher levels. The presence of 1-octen-3-ol was higher by a factor of about 100, while 1-octen-3-one was detected in T. indicum only (there was no chromatographic signal in T. melanosporum). As well as showing the greatest chromatographic differences, these two compounds were also the most powerful from the aromatic viewpoint in the T. indicum olfactometry. Therefore

  19. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    PubMed

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  20. Characterization of Transport Proteins for Aromatic Compounds Derived from Lignin: Benzoate Derivative Binding Proteins

    PubMed Central

    Michalska, Karolina; Chang, Changsoo; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein–ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure–function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequencebased methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria. PMID:22925578

  1. Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2.

    PubMed

    Zhong, Qiuzan; Zhang, Haiyan; Bai, Wenqin; Li, Mei; Li, Baotong; Qiu, Xinghui

    2007-12-01

    The potential capacity of a soil methyl parathion-degrading bacterium strain, Ochrobactrum sp. B2, for degrading various aromatic compounds were investigated. The results showed B2 was capable of degrading diverse aromatic compounds, but amino-substituted benzene compounds, at a concentration up to 100 mg L(-1) in 4 days. B2 could use 4-nitrocatechol (4-NC) as a sole carbon and energy source with release of nitrite ion. The pathway for 4-NC degradation via 1,2,4-benzenetriol (BT) and hydroquinone (HQ) formation in B2 was proposed based on the identification and quantification of intermediates by gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography (HPLC). Degradation studies carried out on a plasmid-cured derivative showed that the genes for 4-NC degradative pathway was plasmid-borne in B2, suggesting that B2 degrades both p-nitrophenol and 4-NC by enzymes encoded by genes on the same plasmid.

  2. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida).

    PubMed

    Matscheko, Nadja; Lundstedt, Staffan; Svensson, Linda; Harju, Mikael; Tysklind, Mats

    2002-08-01

    Accumulation and elimination of different polycyclic aromatic compounds (PACs) were studied in earthworms (Eisenia fetida) exposed to contaminated soil from an old gasworks site. In total, 12 polycyclic aromatic hydrocarbons (PAHs), two N- and S-heterocyclic PACs, and two PAC-quinones were included in the study. Peak-shaped accumulation curves were found for many of the compounds. After 19 d of exposure, the ratio between concentrations in worm lipids and soil organic matter was 0.02 on average. The half-lives of the PACs were relatively long, between 2 and 11 d. The elimination rate constants, k2, correlated both with literature-derived octanol-water partition coefficients (Kow) for PAHs (r2 = 0.93) and the computed polarizability (r2 = 0.88) of all the compounds. The elimination rate constants of PAHs are comparable to those of PCBs found in earlier studies, and the linear regression coefficient, r2, of k2 against Kow for PAHs and PCBs together was 0.93. PMID:12152775

  3. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes.

    PubMed

    Boll, Matthias; Löffler, Claudia; Morris, Brandon E L; Kung, Johannes W

    2014-03-01

    Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well-studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal- and/or flavin-containing cofactors, of which many use unprecedented radical mechanisms for C-H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram-positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl-coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.

  4. Sono-bromination of aromatic compounds based on the ultrasonic advanced oxidation processes.

    PubMed

    Fujita, Mitsue; Lévêque, Jean-Marc; Komatsu, Naoki; Kimura, Takahide

    2015-11-01

    A novel, mild "sono-halogenation" of various aromatic compounds with potassium halide was investigated under ultrasound in a biphasic carbon tetrachloride/water medium. The feasibility study was first undertaken with the potassium bromide and then extended to chloride and iodide analogues. This methodology could be considered as a new expansion of the ultrasonic advanced oxidation processes (UAOPs) into a synthetic aspect as the developed methodology is linked to the sonolytic disappearance of carbon tetrachloride. Advantages of the present method are not only that the manipulation of the bromination is simple and green, but also that the halogenating agents used are readily available, inexpensive, and easy-handling.

  5. Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities.

    PubMed

    Li, Wei; Zhou, Wei; Kim, Eun-Ji; Shim, Sang Hee; Kang, Hee Kyoung; Kim, Young Ho

    2015-03-01

    Lion's Mane Mushroom (Hericium erinaceum) is a traditional edible mushroom widely used in culinary applications and as an herbal medicine in East Asian countries. In the present study, two new aromatic compounds, hericerin A (1) and isohericenone J (5), along with five known compounds, isoericerin (2), hericerin (3), N-De phenylethyl isohericerin (4), hericenone J (6), and 4-[3',7'-dimethyl-2',6'-octadienyl]-2-formyl-3-hydroxy-5-methyoxybenzylalcohol (7), were isolated from a methanol extract of the fruiting bodies of H. erinaceum. The chemical structures of the compounds were determined from mass spectra and 1D- and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in HL-60 human acute promyelocytic leukaemia cells. Hericerin A (1) and hericerin (3) significantly reduced cell proliferation with IC50 values of 3.06 and 5.47 μM, respectively. These same compounds also induced apoptosis of HL-60 cells, accompanied by time-dependent down-regulation of p-AKT and c-myc levels. These data suggest that compounds 1 and 3 from H. erinaceum are suitable for use in potential cancer treatments.

  6. Determination of polynuclear aromatic hydrocarbons in seafood by liquid chromatography with fluorescence detection

    SciTech Connect

    Perfetti, G.A.; Nyman, P.J.; Fisher, S.; Joe, F.L. Jr.; Diachenko, G.W.

    1992-09-01

    Modification of a previously published method for determination of polynuclear aromatic hydrocarbons (PAHs) produces very clean seafood extracts in less than half the time. After alkaline digestion of the seafood, PAHs were partitioned into 1,2,3-trichlorotrifluoroethane. The resulting extract was cleaned up by solid-phase extraction on alumina, silica, and C{sub 18} adsorbents and then analyzed by gradient reversed-phase liquid chromatography with programmable fluorescence detection. Average recoveries of 12 PAHs [acenaphthene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)-fluoranthene, benzo(k)-fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(ghi)perylene, and indeno(1,2,3-cd)pyrene] from 5 different matrixes (mussels, oysters, clams, crabmeat, and salmon)spiked at low parts-per-billion levels ranged from 76 to 94%. Estimated limits of quantitation ranged from 0.01 to 0.6 ppb PAHs in extracts that were free of matrix interferences. Results of analyses of a mussels standard reference material obtained from the National Institute of Standards and Technology were in good agreement with the certified values. 16 refs., 3 figs., 4 tabs.

  7. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.

    1993-01-01

    We have modeled the family of interstellar IR emission bands at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 microns by calculating the fluorescence from a size distribution of interstellar polycyclic aromatic hydrocarbons (PAHs) embedded in the radiation field of a hot star. It is found that the various emission bands are dominated by distinctly different PAHs, from molecules with much less than about 80 C atoms for the 3.3 micron feature, to molecules with 10 exp 2-10 exp 5 C atoms for the emission in the IRAS 12 and 25 micron bands. We quantitatively describe the influence on the emergent spectrum of various PAH properties such as the molecular structure, the amount of dehydrogenation, the intrinsic strength of the IR active modes, and the size distribution. Comparing our model results to the emission spectrum from the Orion Bar region, we conclude that interstellar PAHs are likely fully, or almost fully, hydrogenated. Moreover, it is found that the intrinsic strengths of the 6.2 and 7.7 micron C-C stretching modes, and the 8.6 micron C-H in-plane bending mode are 2-6 times larger than measured for neutral PAHs in the laboratory.

  8. Controlling the Adsorption of Aromatic Compounds on Pt(111) with Oxygenate Substituents: From DFT to Simple Molecular Descriptors.

    PubMed

    Réocreux, Romain; Huynh, Minh; Michel, Carine; Sautet, Philippe

    2016-06-01

    Aromatic chemistry on metallic surfaces is involved in many processes within the contexts of biomass valorization, pollutant degradation, or corrosion protection. Albeit theoretically and experimentally challenging, knowing the structure and the stability of aromatic compounds on such surfaces is essential to understand their properties. To gain insights on this topic, we performed periodic ab initio calculations on Pt(111) to determine a set of simple molecular descriptors that predict both the stability and the structure of aromatic adsorbates substituted with alkyl and alkoxy (or hydroxy) groups. While the van der Waals (vdW) interaction is controlled by the molecular weight and the deformation energy by both the nature and the relative position of the substituents to the surface, the chemical bonding can be correlated to the Hard and Soft Acids and Bases (HSAB) interaction energy. This work gives general insights on the interaction of aromatic compounds with the Pt(111) surface. PMID:27206155

  9. Controlling the Adsorption of Aromatic Compounds on Pt(111) with Oxygenate Substituents: From DFT to Simple Molecular Descriptors.

    PubMed

    Réocreux, Romain; Huynh, Minh; Michel, Carine; Sautet, Philippe

    2016-06-01

    Aromatic chemistry on metallic surfaces is involved in many processes within the contexts of biomass valorization, pollutant degradation, or corrosion protection. Albeit theoretically and experimentally challenging, knowing the structure and the stability of aromatic compounds on such surfaces is essential to understand their properties. To gain insights on this topic, we performed periodic ab initio calculations on Pt(111) to determine a set of simple molecular descriptors that predict both the stability and the structure of aromatic adsorbates substituted with alkyl and alkoxy (or hydroxy) groups. While the van der Waals (vdW) interaction is controlled by the molecular weight and the deformation energy by both the nature and the relative position of the substituents to the surface, the chemical bonding can be correlated to the Hard and Soft Acids and Bases (HSAB) interaction energy. This work gives general insights on the interaction of aromatic compounds with the Pt(111) surface.

  10. Polycyclic aromatic hydrocarbons in asteroid 2008 TC3: Dispersion of organic compounds inside asteroids

    NASA Astrophysics Data System (ADS)

    Sabbah, Hassan; Morrow, Amy L.; Jenniskens, Peter; Shaddad, Muawia H.; Zare, Richard N.

    2010-10-01

    Ureilites are carbon-bearing ultramafic rocks characterized by partial melt depletion and a violent disruption resulting in graphitic carbon and diamonds. Among the predominantly polymict ureilite meteorites collected from the impact of asteroid 2008 TC3 on October 7, 2008—the first time an asteroid was spotted in space and subsequently recovered in the form of meteorites—were many fresh-looking chondrites. Four were classified as EH6 (#16), H5 (sample #25), EL6 (#41), and L4 (#A100) chondrites. All are called "Almahata Sitta," named after the nearby inhabited outpost of Station 6. Six hundred meteorites were collected, which show a wide range of densities, textures, reflection properties, and elemental compositions. In this study, we employ laser desorption laser ionization mass spectrometry to analyze the polycyclic aromatic hydrocarbon (PAH) contents of six meteorites from 2008 TC3 that are ureilites (sample #1, #4, #7, #15, #27, and #47) and three anomalous fragments (sample #25, #16, and #41). Numerous organic compounds were detected with a PAH signature that has not been observed in the carbonaceous chondrites previously studied by our experimental apparatus. Specifically, the Almahata Sitta spectra lack the diversity of alkylation series of parent PAHs commonly observed in Murchison and other carbonaceous chondrites. Spatial mappings of aromatic species across the surface of a fragment of sample #4 are presented including detection of what appears to be the aromatic amino acid tyrosine. Potential sources of terrestrial organic contamination are discussed and ruled out as a source of our observations. Meteorites #25 and #16 are found to have the same distribution of PAHs as the Almahata Sitta meteorites. Other chondrites have much different organic fingerprints. We conclude that both an H5 and E chondrite were included in asteroid 2008 TC3 as foreign clasts and that organic compounds contained in ureilites can spread into other parts of an asteroid.

  11. Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR: kinetic studies.

    PubMed

    Arts, Derek; Abdus Sabur, Md; Al-Abadleh, Hind A

    2013-03-14

    Aromatic organoarsenicals p-arsanilic acid (pAsA) and roxarsone (ROX) are used as feed additives in developing countries that allow the use of arsenic-containing compounds in their poultry industry. These compounds are introduced to the environment through the application of contaminated poultry litter. Little is known about the surface chemistry of these organoarsenicals on the molecular level with reactive components in soils. We report herein the first in situ and surface-sensitive rapid kinetic studies on the adsorption and desorption of pAsA to/from hematite nanoparticles at pH 7 using ATR-FTIR. Values for the apparent initial rates of adsorption and desorption were extracted from experimental data as a function of spectral components. Hydrogen phosphate was used as a desorbing agent due to its ubiquitous presence in litter, and its adsorption kinetics was investigated on surfaces with and without surface arsenic. Initial first-order pseudo-adsorption rate constant for pAsA was lower by a factor of 1.6 than that of iAs(V), suggesting an average behavior for the formation of quantitatively more weakly bonded monodentate or hydrogen-bonded complexes for the former relative to strongly bonded bidentate surface complexes for the latter under our experimental conditions. Initial first-order pseudo-adsorption rate constants for hydrogen phosphate decrease in this order: fresh hematite > pAsA/hematite ≈ phenylarsonic acid (PhAs)/hematite > iAs/hematite by factors 1.5 and 3 relative to fresh films, respectively. Initial desorption kinetics of aromatic organoarsenicals due to flowing hydrogen phosphate proceed with a nonunity overall order, suggesting a complex mechanism, which is consistent with the existence of more than one type of surface complexes. The impact of our studies on the environmental fate and transport of aromatic organoarsenicals in geochemical environments and their overall surface chemistry with iron (oxyhyr)oxides is discussed.

  12. The nature of the mutagenicity and carcinogenicity of nitrated, aromatic compounds in the environment.

    PubMed

    Tokiwa, H; Nakagawa, R; Horikawa, K; Ohkubo, A

    1987-08-01

    Gaseous substances such as nitrogen dioxide (NO2) and sulfur dioxide (SO2) stimulate the process of nitration of polycyclic aromatic hydrocarbons, and the transformation products display a broad spectrum of mutagenicity, genotoxicity, and carcinogenicity. Bacterial mutation by nitroarenes is specific. Tetracyclic nitroarenes are thought to be the most mutagenic compounds in the Salmonella test system, and some are carcinogenic in rats and mice. Furthermore, it was found that the mutational nitroarenes produced mostly DNA damage, which is subject to recombination repair in the rec assay system using Bacillus subtilis. Nitroarenes in the environment seem to be ubiquitous; the majority of the compounds are emitted directly from diesel emissions, kerosene heaters, and gas and liquefied-gas burners or heaters. In nitroarenes induced during incomplete combustion, nitropyrene and nitrofluoranthene derivatives are the most important mutagens/carcinogens for determining the chronic toxicity of nitroarenes overall. PMID:3117527

  13. The nature of the mutagenicity and carcinogenicity of nitrated, aromatic compounds in the environment.

    PubMed Central

    Tokiwa, H; Nakagawa, R; Horikawa, K; Ohkubo, A

    1987-01-01

    Gaseous substances such as nitrogen dioxide (NO2) and sulfur dioxide (SO2) stimulate the process of nitration of polycyclic aromatic hydrocarbons, and the transformation products display a broad spectrum of mutagenicity, genotoxicity, and carcinogenicity. Bacterial mutation by nitroarenes is specific. Tetracyclic nitroarenes are thought to be the most mutagenic compounds in the Salmonella test system, and some are carcinogenic in rats and mice. Furthermore, it was found that the mutational nitroarenes produced mostly DNA damage, which is subject to recombination repair in the rec assay system using Bacillus subtilis. Nitroarenes in the environment seem to be ubiquitous; the majority of the compounds are emitted directly from diesel emissions, kerosene heaters, and gas and liquefied-gas burners or heaters. In nitroarenes induced during incomplete combustion, nitropyrene and nitrofluoranthene derivatives are the most important mutagens/carcinogens for determining the chronic toxicity of nitroarenes overall. PMID:3117527

  14. Sorption of polar and nonpolar aromatic compounds to two humic acids with varied structural heterogeneity

    SciTech Connect

    Sun, H.Y.; Zhu, D.Q.; Mao, J.D.

    2008-12-15

    The major objective of the present study was to evaluate the correlation between structural nature of humic acids (HAs) and sorption affinity of organic compounds with varied polarity. We compared the sorption behavior of three aromatic compounds-nonpolar phenanthrene (PHEN) and 1,2,4,5-tetrachlorobenzene (TeCB) and highly polar 2,4-dichlorophenol (DCP)-to a solid-phase coal humic acid (CHA) and a soil humic acid (SHA) suspended in aqueous solution. The structural nature of HAs was characterized using elemental analysis, ultraviolet absorbance, diffusive reflectance Fourier-transform infrared, and solid-state C-13 nuclear magnetic resonance. The two tested HAs have very different structural properties: CHA consists primarily of poly(methylene)-rich aliphatics with high aromatic content and some COO/N-C=O but low polarity, while SHA consists of young materials of lignin, carbohydrates, and peptides with high polarity. In response to the structural heterogeneity of HAs, sorption of nonpolar and more hydrophobic solutes (PHEN, TeCB) to CHA is much greater than that to SHA because of the predominance of hydrophobic effects; however, disparities in sorption affinity between the two HAs become smaller for polar and less hydrophobic DCP because of the major role played by polar interactions. The influence of pH on the sorption of different solutes to the two HAs was also discussed. The results of the present work highlight the importance of structural heterogeneity of both solutes and HAs in the sorption process.

  15. Enzymatic Combustion of Aromatic and Aliphatic Compounds by Manganese Peroxidase from Nematoloma frowardii

    PubMed Central

    Hofrichter, Martin; Scheibner, Katrin; Schneegaß, Ivonne; Fritsche, Wolfgang

    1998-01-01

    The direct involvement of manganese peroxidase (MnP) in the mineralization of natural and xenobiotic compounds was evaluated. A broad spectrum of aromatic substances were partially mineralized by the MnP system of the white rot fungus Nematoloma frowardii. The cell-free MnP system partially converted several aromatic compounds, including [U-14C]pentachlorophenol ([U-14C]PCP), [U-14C]catechol, [U-14C]tyrosine, [U-14C]tryptophan, [4,5,9,10-14C]pyrene, and [ring U-14C]2-amino-4,6-dinitrotoluene ([14C]2-AmDNT), to 14CO2. Mineralization was dependent on the ratio of MnP activity to concentration of reduced glutathione (thiol-mediated oxidation), a finding which was demonstrated by using [14C]2-AmDNT as an example. At [14C]2-AmDNT concentrations ranging from 2 to 120 μM, the amount of released 14CO2 was directly proportional to the concentration of [14C]2-AmDNT. The formation of highly polar products was also observed with [14C]2-AmDNT and [U-14C]PCP; these products were probably low-molecular-weight carboxylic acids. Among the aliphatic compounds tested, glyoxalate was mineralized to the greatest extent. Eighty-six percent of the 14COOH-glyoxalate and 9% of the 14CHO-glyoxalate were converted to 14CO2, indicating that decarboxylation reactions may be the final step in MnP-catalyzed mineralization. The extracellular enzymatic combustion catalyzed by MnP could represent an important pathway for the formation of carbon dioxide from recalcitrant xenobiotic compounds and may also have general significance in the overall biodegradation of resistant natural macromolecules, such as lignins and humic substances. PMID:16349496

  16. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  17. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  18. Fluorescence-line-narrowing spectrometry of polycyclic aromatic hydrocarbons in organic glasses. [Pyrene, 1-alkylpyrene, benzo(e)pyrene, benzo(a)pyrene, benzo(k)fluoranthene, perylene

    SciTech Connect

    Brown, J.C.

    1982-07-01

    Fluoresence line narrowing spectrometry (FLNS), also known as optical site selection spectroscopy, is a relatively new technique holding great promise as an analytical tool. Species specific analysis of complex samples for low concentrations of polycyclic aromatic hydrocarbons (PAHs) is a difficult analytical problem. The PAH analysis problem is reviewed herein as are the mechanisms and characteristics of FLNS which make this new methodology appear ideal for application to the problem. Organic glasses are presented as the cryogenic matrices of choice for analytical FLNS. An experimental arrangement utilizing sensitive gated signal detection is used to test the analytical utility of FLNS. Data presented show that linear quantitative response from concentrations between saturation (about 1 ppM) and the low parts per trillion range is obtained. The demonstrated high precision and linearity of response show that routine analytical FLNS using organic glass matrices need not use internal standard and/or standard addition quantitation schemes. Unambiguous determinations of compounds in complex samples are shown to be expected. This expectation is shown to be realistic by demonstrating, in successive chapters: the unique FLNS behavior of each of 27 polycyclic aromatic compounds tested; resolution of the 13 fluorescing species in a 14 component artificial mixture; and determination of pyrene, 1-alkylpyrene, benzo(e)pyrene, anthracene, benzo(a)pyrene, benzo(k)fluoranthene, and perylene in an unseparated sample of SRC-II coal liquification product. (51 figures, 4 tables.)

  19. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds. PMID:26498763

  20. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  1. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  2. Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea.

    PubMed

    Wang, Yong; Yang, Jiangke; Lee, On On; Dash, Swagatika; Lau, Stanley C K; Al-Suwailem, Abdulaziz; Wong, Tim Y H; Danchin, Antoine; Qian, Pei-Yuan

    2011-10-01

    Hydrothermal ecosystems have a wide distribution on Earth and many can be found in the basin of the Red Sea. Production of aromatic compounds occurs in a temperature window of ∼60-150 °C by utilizing organic debris. In the past 50 years, the temperature of the Atlantis II Deep brine pool in the Red Sea has increased from 56 to 68 °C, whereas the temperature at the nearby Discovery Deep brine pool has remained relatively stable at about 44 °C. In this report, we confirmed the presence of aromatic compounds in the Atlantis II brine pool as expected. The presence of the aromatic compounds might have disturbed the microbes in the Atlantis II. To show shifted microbial communities and their metabolisms, we sequenced the metagenomes of the microbes from both brine pools. Classification based on metareads and the 16S rRNA gene sequences from clones showed a strong divergence of dominant bacterial species between the pools. Bacteria capable of aromatic degradation were present in the Atlantis II brine pool. A comparison of the metabolic pathways showed that several aromatic degradation pathways were significantly enriched in the Atlantis II brine pool, suggesting the presence of aromatic compounds. Pathways utilizing metabolites derived from aromatic degradation were also significantly affected. In the Discovery brine pool, the most abundant genes from the microbes were related to sugar metabolism pathways and DNA synthesis and repair, suggesting a different strategy for the utilization of carbon and energy sources between the Discovery brine pool and the Atlantis II brine pool.

  3. Ozone-related fluorescent compounds in mouse liver and lung

    SciTech Connect

    Csallany, A.S.; Manwaring, J.D.; Menken, B.Z.

    1985-08-01

    Groups of ten female, weanling mice were fed a basal, vitamin E-deficient diet or a basal diet supplemented with RRR-alpha-tocopheryl acetate for 14 months. During the last month one group from each dietary regimen was exposed for 30-60 min/day to 1.5 ppm ozone (25 hr total ozone exposure) and the remaining groups to control ambient air. The liver and lung tissues were homogenized and extracted with 2:1 chloroform:methanol and water. Excitation and emission wavelengths for the eluting fractions were determined by continuous emission scans from 250 to 600 nm for each excitation wavelength between 250 and 500 nm. Ozone exposure did not effect the concentration of any of the fluorescent materials examined in the lung, but it resulted in a significant increase in two of four water-soluble compounds in the liver with excitation wavelength maxima/emission wavelength maxima of 270 nm/310 nm and 275 nm/350 nm (smaller molecular weight material) suggesting in vivo lipid oxidation.

  4. Migration kinetics of primary aromatic amines from polyamide kitchenware: Easy and fast screening procedure using fluorescence.

    PubMed

    Sanllorente, S; Sarabia, L A; Ortiz, M C

    2016-11-01

    Primary aromatic amines, PAAs, and their derivatives constitute a health risk and control of their migration from food contact materials is the subject of permanent attention by the authorities. 25.1% of notifications made by Rapid Alert System for Food and Feed in the European Union between 2010 and 2015 concerned PAAs, polyamide cooking utensils being a common source. It is thus useful to have fast and efficient analytical methods for their control. In this work a non-separative, easy, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of aniline (ANL), 2,4-diaminotoluene (2,4-TDA) and 4,4'-methylenedianiline (4,4'-MDA) in polyamide cooking utensils. The procedure made it possible to identify unequivocally each analyte. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so the factors of the decomposition match up with the analytes. The three analytes were unequivocally identified by the correlation between the pure spectra and the PARAFAC excitation and emission spectral loadings. The recovery percentages found were, 82.6%, 112.7% and 84.4% for ANL, 2,4-TDA and 4,4'-MDA respectively. The proposed method was applied to carry out a migration test from polyamide cooking utensils, using a 3% (w/v) acetic acid in aqueous solution as food simulant. Detectable levels of 4,4'-MDA were found in food simulant from some of the investigated cooking utensils. Finally, a kinetic model for the migration of 4,4'-MDA has been fitted to experimental data obtained in the migration test. Thanks to the selectivity of PARAFAC calibration, which greatly simplifies sample treatment avoiding the use of toxic solvents, the developed method follows most green analytical chemistry principles. PMID:27591586

  5. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  6. Migration kinetics of primary aromatic amines from polyamide kitchenware: Easy and fast screening procedure using fluorescence.

    PubMed

    Sanllorente, S; Sarabia, L A; Ortiz, M C

    2016-11-01

    Primary aromatic amines, PAAs, and their derivatives constitute a health risk and control of their migration from food contact materials is the subject of permanent attention by the authorities. 25.1% of notifications made by Rapid Alert System for Food and Feed in the European Union between 2010 and 2015 concerned PAAs, polyamide cooking utensils being a common source. It is thus useful to have fast and efficient analytical methods for their control. In this work a non-separative, easy, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of aniline (ANL), 2,4-diaminotoluene (2,4-TDA) and 4,4'-methylenedianiline (4,4'-MDA) in polyamide cooking utensils. The procedure made it possible to identify unequivocally each analyte. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so the factors of the decomposition match up with the analytes. The three analytes were unequivocally identified by the correlation between the pure spectra and the PARAFAC excitation and emission spectral loadings. The recovery percentages found were, 82.6%, 112.7% and 84.4% for ANL, 2,4-TDA and 4,4'-MDA respectively. The proposed method was applied to carry out a migration test from polyamide cooking utensils, using a 3% (w/v) acetic acid in aqueous solution as food simulant. Detectable levels of 4,4'-MDA were found in food simulant from some of the investigated cooking utensils. Finally, a kinetic model for the migration of 4,4'-MDA has been fitted to experimental data obtained in the migration test. Thanks to the selectivity of PARAFAC calibration, which greatly simplifies sample treatment avoiding the use of toxic solvents, the developed method follows most green analytical chemistry principles.

  7. How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator.

    PubMed

    Kim, Youngchang; Joachimiak, Grazyna; Bigelow, Lance; Babnigg, Gyorgy; Joachimiak, Andrzej

    2016-06-17

    Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Å resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. The current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR. PMID:27129205

  8. Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite.

    PubMed

    Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A

    2015-07-01

    A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons. PMID:26029791

  9. Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite.

    PubMed

    Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A

    2015-07-01

    A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons.

  10. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Gao, Ding; Yu, Yanjun; Fu, Wenjun; Cheng, Dengmiao; Cui, Baoshan; Bai, Junhong

    2015-01-01

    The kinetics of abiotic reduction of mono-nitro aromatic compounds (mono-NACs) catalyzed by activated carbon (AC) in an anaerobic system were examined. There were 6 types of substituent groups on nitrobenzene, including methyl, chlorine, amino, carboxyl, hydroxyl and cyanogen groups, at the ortho, meta or para positions. Our results showed that reduction followed pseudo-first order reaction kinetics, and that the rate constant (logkSA) varied widely, ranging between -4.77 and -2.82, depending upon the type and position of the substituent. A quantitative structure-activity relationship (QSAR) model using 15 theoretical molecular descriptors and partial-least-squares (PLS) regression was developed for the reduction rates of mono-NACs catalyzed by AC. The cross-validated regression coefficient (Qcum(2), 0.861) and correlation coefficient (R(2), 0.898) indicated significantly high robustness of the model. The VIP (variable importance in the projection) values of energy of the lowest unoccupied molecular orbital (ELUMO) and the maximum net atomic charge on the aromatic carbon bound to the nitro group (QC(-)) were 1.15 and 1.01, respectively. These values indicated that the molecular orbital energies and the atomic net charges might play important roles in the reduction of mono-NACs catalyzed by AC in anaerobic systems.

  11. Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds.

    PubMed

    Peller, Julie; Wiest, Olaf; Kamat, Prashant V

    2003-05-01

    Merits of using advanced oxidation processes such as sonolysis and photocatalysis as well as a combination of the two have been explored using model herbicides such as 2,4-dichlorophenoxy acetic acid and 2,4-dichlorophenoxypropionic acid and the chlorinated phenols 2,4-dichlorophenol and 2,4,6-trichlorophenol. Whereas sonolysis is quite effective in the initial degradation of chlorinated aromatic molecules, complete mineralization is difficult to achieve. Photocatalysis is selective toward the degradation of polar compounds but causes the build up of undesirable chemical intermediates. In contrast to sonolytic degradation, photocatalysis is very effective toward achieving complete mineralization. By simultaneously carrying out high-frequency sonolysis and photocatalysis we have succeeded in achieving faster and complete mineralization with no build up of toxic intermediates even at very low catalyst loadings. The synergy of combining the two advanced oxidation processes is discussed.

  12. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    NASA Astrophysics Data System (ADS)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-04-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  13. Helical inversion reaction pathway for π/ π stacking in aromatic compounds

    NASA Astrophysics Data System (ADS)

    Muraoka, Azusa; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    Polyaromatics have the π/ π stacking interaction, which shows that two aromatic units preferentially interact in a parallel-displaced orientation, such as the crystal packing of organic molecules. Recently, π/ π stacking compounds have become of interest in the photocatalysis solor energy transformational materials. In particular, the stable configurations of neutral and cationic o-phenylenes have helical tightly packed n-phenylenes with π/ π stacking interactions. To investigate helical inversion pathways, we have studied theoretically the stable and transition-state geometries of neutral and cationic o-phenylenes using the density functional theory method. We have found that o-phenylenes follow an inversion reaction pathway with three transition-states in which the configuration of each phenylene is inverted. This means that o-phenylenes cannot convert from right- to left-handed geometry at once; however, we suggest a step-by-step reaction pathway through the three transition-state structures.

  14. Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts*

    PubMed Central

    Xie, Bo; Yang, Jun; Yang, Qing

    2012-01-01

    Extracts from various vegetables and fruits were investigated for their abilities to reduce nitro-polycyclic aromatic hydrocarbons (NPAHs). The extracts from grape and onion exhibited an interesting selectivity, yielding corresponding hydroxylamines or amines as major products under mild conditions of 30 °C and pH 7.0. Grape extracts reduced the 4-nitro-1,8-naphthalic anhydride with the highest conversion rate (>99%) and the highest ratio of hydroxylamine to amine (95:5). In contrast, the onion extracts reduced 4-nitro-1,8-naphthalic anhydride with a conversion rate of 94% and a ratio of hydroxylamine to amine of 8:92. The thiol-reducing agent, β-mercaptoethanol, and metal cations, Ca2+ and Mg2+, greatly increased the reductive efficiency. This work provides an alternative strategy for biotransformation of nitro-polycyclic compounds. PMID:22467365

  15. Effects and uptake of polycyclic aromatic compounds in snails (Helix aspersa).

    PubMed

    Sverdrup, Line Emilie; De Vaufleury, Annette; Hartnik, Thomas; Hagen, Snorre B; Loibner, Andreas Paul; Jensen, John

    2006-07-01

    The International Standardization Organization recently launched a soil toxicity test with snails (Helix aspersa). We assessed the sensitivity of this test for seven polycyclic aromatic compounds. Control animals had 100% survival and low variability for growth measurements. Maximum exposure concentrations of 2800 mg/kg (4000 mg/kg for acridine) had no effect on survival. Similarly, growth (biomass and shell size) was not affected by pyrene, fluoranthene, fluorene, carbazole, phenanthrene, or acridine, whereas dibenzothiophene gave a 10% effect concentration of 1600 mg/kg. Measured internal concentrations of carbazole, dibenzothiophene, and acridine increased with increasing soil concentrations, but biota-soil accumulation factors were low (0.002-0.1). Compared to previously tested organisms, with all being exposed in the same soil type and under similar test conditions, the H. aspersa test was relatively insensitive to all substances.

  16. Synergistic and diminutive effects between halogen bond and lithium bond in complexes involving aromatic compounds.

    PubMed

    Liu, Mingxiu; Cai, Mengyang; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo

    2015-10-01

    Quantum chemical calculations have been performed to study the interplay between halogen bond and lithium bond in the ternary systems FX-C6H5CN-LiF, FLi-C6H5CN-XF, and FLi-C6H5X-NH3 (X = Cl, Br, and I) involving aromatic compounds. This effect was studied in terms of interaction energy, electron density, charge transfer, and orbital interaction. The results showed that both FX-C6H5CN-LiF and FLi-C6H5CN-XF exhibit diminutive effects with the weakening of halogen bond and lithium bond, while FLi-C6H5X-NH3 displays synergistic effects with the strengthening of halogen bond and lithium bond. The nature of halogen bond and lithium bond in the corresponding binary complexes has been unveiled by the quantum theory of atoms in molecules methodology and energy decomposition analysis.

  17. Detection of nitro polynuclear aromatic compounds by surface-enhanced Raman spectrometry

    SciTech Connect

    Enlow, P.D.; Buncick, M.; Warmack, R.J.; Vo-Dinh, T.

    1986-05-01

    The various nitro polynuclear aromatic compounds, including 1-nitropyrene, 9-nitroanthracene, 2-nitronaphthalene, and 2-nitrofluorene have been investigated by use of the surface-enhanced Raman scattering (SERS) spectrometry technique. Silver-coated substrates consisting of latex spheres on glass and filter paper and prolate SiO/sub 2/ posts on quartz were used. The limit of detection of 1-nitropyrene was found to be 0.3 ng. The SERS signals were enhanced over conventional Raman signals by a factor of 5 x 10/sup 6/ to 9 x 10/sup 6/ for 1-nitropyrene adsorbed on various SERS-active substrates. The production and practicality of SERS-active substrates with glass, paper, and quartz supports are discussed. 30 references, 6 figures, 1 table.

  18. Utilisation of aromatic organosulfur compounds as sulfur sources by Lipomyces starkeyi CBS 1807.

    PubMed

    Linder, Tomas

    2016-10-01

    Aromatic organosulfur compounds that contain aryl carbon-sulfur bonds are rare in nature but occur frequently in industrial processes and products. The utilisation of aryl sulfur compounds as a sulfur source has not been described previously among the budding yeasts (phylum Ascomycota, sub-phylum Saccharomycotina). A total of 31 strains representing 30 species and 28 genera of the budding yeasts were assayed for utilisation of benzene sulfonate as source of sulfur. Lipomyces starkeyi CBS 1807 was the only strain in this screen that was able to utilise benzene sulfonate as a sulfur source. Further study of L. starkeyi demonstrated that it could also utilise methyl phenyl sulfoxide, 1-naphthalene sulfonate, 2-naphthalene sulfonate, 1-anthraquinone sulfonate and 2-anthraquinone sulfonate as sulfur sources but not diphenylsulfone. This study represents the first reported case of the utilisation of sulfonated naphthalenes and anthraquinones as sulfur sources by a fungus. However, it should be stressed that the remaining 30 strains in this study were not assayed for the utilisation of these additional aryl sulfur compounds as sulfur sources. The present study highlights the potential of L. starkeyi and related species as a source of novel enzyme activities with possible applications in chemical manufacturing, disposal of xenobiotics and bioremediation.

  19. Evaluation of Aromatic Plants and Compounds Used to Fight Multidrug Resistant Infections

    PubMed Central

    Perumal Samy, Ramar; Manikandan, Jayapal; Al Qahtani, Mohammed

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100 μg of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylococcus aureus, of which Tragia involucrata L., Citrus acida Roxb. Hook.f., and Aegle marmelos (L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study. PMID:24223059

  20. My favorite aromatic compounds--a tribute to friedrich August Kekulé.

    PubMed

    Hopf, Henning

    2014-10-01

    [For a discussion of this picture, please see the Editor's postscript at the end of the paper] Note from the Editor: We are all collectors. All one needs to do is explore a flea market, an antique fair or especially a weekend street market to understand the range of human collections. Tetsuo Nozoe, whom this project celebrates, collected autographs as well as the friendship of those who signed his books! What we collect doesn't necessarily have to be tangible. We all collect memories, stories, and anecdotes. We chemists are particularly privileged: we also collect molecules and reactions. In the essay that follows, Professor Henning Hopf shares with us his collection of favorite aromatic compounds. Hopf is the perfect chemist to have undertaken this sharing, for he has been active in the field of novel aromatic compounds for over four decades. Furthermore, Hopf is a deeply philosophical scientist. I very much admire his 2008 paper with Roald Hoffmann, "Learning from Molecules in Distress" published in Angewandte Chemie, a journal from the same pubilshers as The Chemical Record. As you read the paper that follows, imagine that Professor Hopf has just welcomed you to his home and is giving you a tour of his artwork. The walls are covered with works of Boekelheide, Cram, Fittig, Hückel, Kuck, Müllen, Newman, Scott, and Willstätter among others. Oh, yes, there's a Hopf or two! Enjoy your time in this very special museum. -Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E-mail: jseeman@richmond.edu.

  1. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-01

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  2. My favorite aromatic compounds--a tribute to friedrich August Kekulé.

    PubMed

    Hopf, Henning

    2014-10-01

    [For a discussion of this picture, please see the Editor's postscript at the end of the paper] Note from the Editor: We are all collectors. All one needs to do is explore a flea market, an antique fair or especially a weekend street market to understand the range of human collections. Tetsuo Nozoe, whom this project celebrates, collected autographs as well as the friendship of those who signed his books! What we collect doesn't necessarily have to be tangible. We all collect memories, stories, and anecdotes. We chemists are particularly privileged: we also collect molecules and reactions. In the essay that follows, Professor Henning Hopf shares with us his collection of favorite aromatic compounds. Hopf is the perfect chemist to have undertaken this sharing, for he has been active in the field of novel aromatic compounds for over four decades. Furthermore, Hopf is a deeply philosophical scientist. I very much admire his 2008 paper with Roald Hoffmann, "Learning from Molecules in Distress" published in Angewandte Chemie, a journal from the same pubilshers as The Chemical Record. As you read the paper that follows, imagine that Professor Hopf has just welcomed you to his home and is giving you a tour of his artwork. The walls are covered with works of Boekelheide, Cram, Fittig, Hückel, Kuck, Müllen, Newman, Scott, and Willstätter among others. Oh, yes, there's a Hopf or two! Enjoy your time in this very special museum. -Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E-mail: jseeman@richmond.edu. PMID:25205433

  3. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. PMID:24813351

  4. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  5. Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Faust, Stephan; Dreier, Thomas; Schulz, Christof

    2015-12-01

    One- and two-ring aromatics such as toluene and naphthalene are frequently used molecular tracer species in laser-induced fluorescence (LIF) imaging diagnostics. Quantifying LIF signal intensities requires knowledge of the photo-physical processes that determine the fluorescence quantum yield. Collision-induced and intramolecular energy transfer processes in the excited electronic state closely interact under practical conditions. They can be separated through experiments at variable low pressures. Effective fluorescence lifetimes of gaseous toluene, 1,2,4-trimethylbenzene, anisole, naphthalene, and 1-methylnaphthalene diluted in CO2 were measured after picosecond laser excitation at 266 nm and time-resolved detection of fluorescence intensities. Measurements in an optically accessible externally heated cell between 296 and 475 K and 0.010-1 bar showed that effective fluorescence lifetimes generally decrease with temperature, while the influence of the bath-gas pressure depends on the respective target species and temperature. The results provide non-radiative and fluorescence rate constants and experimentally validate the effect of photo-induced cooling.

  6. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue.

    PubMed

    Wang, Lei; Asimakopoulos, Alexandros G; Kannan, Kurunthachalam

    2015-05-01

    The extensive use of environmental phenols (e.g., bisphenol A) and heterocyclic aromatic compounds (e.g., benzothiazole) in consumer products as well as widespread exposure of humans to these compounds have been well documented. Biomonitoring studies have used urinary measurements to assess exposures, based on the assumption that these chemicals are metabolized and eliminated in urine. Despite the fact that some of these chemicals are moderately lipophilic, the extent of their accumulation in adipose fat tissues has not been convincingly demonstrated. In this study, human adipose fat samples (N=20) collected from New York City, USA, were analyzed for the presence of environmental phenols, including bisphenol A (BPA), benzophenone-3 (BP-3), triclosan (TCS), and parabens, as well as heterocyclic aromatic compounds, including benzotriazole (BTR), benzothiazole (BTH), and their derivatives. BPA and TCS were frequently detected in adipose tissues at concentrations (geometric mean [GM]: 3.95ng/g wet wt for BPA and 7.21ng/g wet wt for TCS) similar to or below the values reported for human urine. High concentrations of BP-3 were found in human adipose tissues (GM: 43.4; maximum: 4940ng/g wet wt) and a positive correlation between BP-3 concentrations and donor's age was observed. The metabolite of parabens, p-hydroxybenzoic acid (p-HB), also was found at elevated levels (GM: 4160; max.: 17,400ng/g wet wt) and a positive correlation between donor's age and sum concentration of parabens and p-HB were found. The GM concentrations of BTR and BTH in human adipose tissues were below 1ng/g, although the methylated forms of BTR (i.e., TTR and XTR) and the hydrated form of BTH (i.e., 2-OH-BTH) were frequently detected in adipose samples, indicating widespread exposure to these compounds. Our results suggest that adipose tissue is an important repository for BP-3 and parabens, including p-HB, in the human body.

  7. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  8. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  9. Charge migration in dicationic electrophiles and its application to the synthesis of aza-polycyclic aromatic compounds.

    PubMed

    Li, Ang; Kindelin, Patrick J; Klumpp, Douglas A

    2006-03-16

    [reaction: see text] Superacid-promoted reactions of dicationic electrophiles have been studied, and the positive charge centers are found to migrate apart in a predictable manner. Using isotopic labeling the charge migration is found in one system to occur through successive deprotonation-reprotonation steps. The charge migration chemistry is the basis for new general synthetic route to aza-polycyclic aromatic compounds.

  10. The fate of BDAT polynuclear aromatic compounds during biotreatment of refinery API oil separator sludge

    SciTech Connect

    Huesemann, M.H.; Moore, K.O.; Johnson, R.N. )

    1993-02-01

    A 16 week laboratory study was conducted to assess the biotreatability of regulated (BDAT list) polynuclear aromatic compounds (PNA) in refinery API oil separator sludge. The three different treatments consisted of a biotic, nutrient amended, inoculated aerated slurry reactor, a second biotic oxygen-sparged reactor, and a sterile, nitrogen-sparged control. Naphthalene, anthracene, phenanthrene, and benzo(a)pyrene were completely biodegraded in the first 4 weeks in both biotic treatments. Chrysene disappeared within 4 weeks in the aerated bioreactor, whereas it required 16 weeks to degrade in the oxygen-sparged reactor. Pyrene degraded only 30% in the aerated bioreactor and did not exhibit any significant concentration changes in the oxygen-sparged reactor. Phenanthrene, chrysene, and pyrene concentration levels did not change significantly during the 16 week treatment period in the nitrogen-sparged control reactor indicating the absence of stripping losses for these PNAs. By contrast, naphthalene, anthracene, and benzo(a)pyrene levels remained constant during the first 2-4 weeks in the control but decreased to below detection limits (5 mg/kg) at the end of the treatment. It is not clear whether the disappearance of these compounds is due to stripping, irreversible sorption or some anaerobic/aerobic biodegradation processes. In conclusion, the aerobic biotreatment of refinery API oil separator sludge was successful in removing most BDAT PNA compounds. The reduced biodegradability of pyrene may be explained in terms of either the inherently low biodegradation rate of this compound or the limited bioavailability in the weathered oily sludge system. 24 refs., 9 figs., 2 tabs.

  11. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review.

    PubMed

    Blum, Philipp; Sagner, Anne; Tiehm, Andreas; Martus, Peter; Wendel, Thomas; Grathwohl, Peter

    2011-11-01

    NSO heterocycles (HET) are typical constituents of coal tars. However, HET are not yet routinely monitored, although HET are relatively toxic coal tar constituents. The main objectives of the study is therefore to review previous studies and to analyse HET at coal tar polluted sites in order to assess the relevance of HET as part of monitored natural attenuation (MNA) or any other long-term monitoring programme. Hence, natural attenuation of typical HET (indole, quinoline, carbazole, acridine, methylquinolines, thiophene, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, methylbenzofurans, dimethylbenzofurans and xanthene) were studied at three different field sites in Germany. Compound-specific plume lengths were determined for all main contaminant groups (BTEX, PAH and HET). The results show that the observed plume lengths are site-specific and are above 250m, but less than 1000m. The latter, i.e. the upper limit, however mainly depends on the level of investigation, the considered compound, the lowest measured concentration and/or the achieved compound-specific detection limit and therefore cannot be unequivocally defined. All downstream contaminant plumes exhibited HET concentrations above typical PAH concentrations indicating that some HET are generally persistent towards biodegradation compared to other coal tar constituents, which results in comparatively increased field-derived half-lives of HET. Additionally, this study provides a review on physicochemical and toxicological parameters of HET. For three well investigated sites in Germany, the biodegradation of HET is quantified using the centre line method (CLM) for the evaluation of bulk attenuation rate constants. The results of the present and previous studies suggest that implementation of a comprehensive monitoring programme for heterocyclic aromatic compounds is relevant at sites, if MNA is considered in risk assessment and for remediation.

  12. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T.; Sidorov, Vladimir; Kotch, Frank W.

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  13. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134

    PubMed Central

    Pérez-Pantoja, Danilo; Leiva-Novoa, Pablo; Donoso, Raúl A.; Little, Cedric; Godoy, Margarita; Pieper, Dietmar H.

    2015-01-01

    Cupriavidus pinatubonensis JMP134, like many other environmental bacteria, uses a range of aromatic compounds as carbon sources. Previous reports have shown a preference for benzoate when this bacterium grows on binary mixtures composed of this aromatic compound and 4-hydroxybenzoate or phenol. However, this observation has not been extended to other aromatic mixtures resembling a more archetypal context. We carried out a systematic study on the substrate preference of C. pinatubonensis JMP134 growing on representative aromatic compounds channeled through different catabolic pathways described in aerobic bacteria. Growth tests of nearly the entire set of binary combinations and in mixtures composed of 5 or 6 aromatic components showed that benzoate and phenol were always the preferred and deferred growth substrates, respectively. This pattern was supported by kinetic analyses that showed shorter times to initiate consumption of benzoate in aromatic compound mixtures. Gene expression analysis by real-time reverse transcription-PCR (RT-PCR) showed that, in all mixtures, the repression by benzoate over other catabolic pathways was exerted mainly at the transcriptional level. Additionally, inhibition of benzoate catabolism suggests that its multiple repressive actions are not mediated by a sole mechanism, as suggested by dissimilar requirements of benzoate degradation for effective repression in different aromatic compound mixtures. The hegemonic preference for benzoate over multiple aromatic carbon sources is not explained on the basis of growth rate and/or biomass yield on each single substrate or by obvious chemical or metabolic properties of these aromatic compounds. PMID:25795675

  14. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134.

    PubMed

    Pérez-Pantoja, Danilo; Leiva-Novoa, Pablo; Donoso, Raúl A; Little, Cedric; Godoy, Margarita; Pieper, Dietmar H; González, Bernardo

    2015-06-15

    Cupriavidus pinatubonensis JMP134, like many other environmental bacteria, uses a range of aromatic compounds as carbon sources. Previous reports have shown a preference for benzoate when this bacterium grows on binary mixtures composed of this aromatic compound and 4-hydroxybenzoate or phenol. However, this observation has not been extended to other aromatic mixtures resembling a more archetypal context. We carried out a systematic study on the substrate preference of C. pinatubonensis JMP134 growing on representative aromatic compounds channeled through different catabolic pathways described in aerobic bacteria. Growth tests of nearly the entire set of binary combinations and in mixtures composed of 5 or 6 aromatic components showed that benzoate and phenol were always the preferred and deferred growth substrates, respectively. This pattern was supported by kinetic analyses that showed shorter times to initiate consumption of benzoate in aromatic compound mixtures. Gene expression analysis by real-time reverse transcription-PCR (RT-PCR) showed that, in all mixtures, the repression by benzoate over other catabolic pathways was exerted mainly at the transcriptional level. Additionally, inhibition of benzoate catabolism suggests that its multiple repressive actions are not mediated by a sole mechanism, as suggested by dissimilar requirements of benzoate degradation for effective repression in different aromatic compound mixtures. The hegemonic preference for benzoate over multiple aromatic carbon sources is not explained on the basis of growth rate and/or biomass yield on each single substrate or by obvious chemical or metabolic properties of these aromatic compounds. PMID:25795675

  15. The Highly Conserved Escherichia coli Transcription Factor YhaJ Regulates Aromatic Compound Degradation

    PubMed Central

    Palevsky, Noa; Shemer, Benjamin; Connolly, James P. R.; Belkin, Shimshon

    2016-01-01

    The aromatic compound 2,4-dinitrotoluene (DNT), a common impurity in 2,4,6-trinitrotoluene (TNT) production, has been suggested as a tracer for the presence of TNT-based landmines due to its stability and high volatility. We have previously described an Escherichia coli bioreporter capable of detecting the presence of DNT vapors, harboring a fusion of the yqjF gene promoter to a reporter element. However, the DNT metabolite which is the direct inducer of yqjF, has not yet been identified, nor has the regulatory mechanism of the induction been clarified. We demonstrate here that the YhaJ protein, a member of the LysR type family, acts as a transcriptional regulator of yqjF activation, as well as of a panel of additional E. coli genes. This group of genes share a common sequence motif in their promoters, which is suggested here as a putative YhaJ-box. In addition, we have linked YhaJ to the regulation of quinol-like compound degradation in the cell, and identified yhaK as playing a role in the degradation of DNT. PMID:27713734

  16. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-08-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult's law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult's Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa.

  17. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2013-01-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult’s law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult’s law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult’s Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa. PMID:23807818

  18. Adsorption on Mesoporous Metal-Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds.

    PubMed

    Samokhvalov, Alexander

    2015-11-16

    Adsorption and desorption play major roles in separations, purification of water, waste streams, liquid fuels, catalysis, biomedicine and chromatography. Mesoporous metal-organic frameworks (MOFs) with pore sizes 2-50 nm are particularly suitable for adsorption of organic compounds in solution. Tens of thousands of aromatic and heterocyclic compounds are major components of liquid fuels, feedstock for industrial synthesis, solvents, dyestuffs, agricultural chemicals, medicinal drugs, food additives, and so forth. This Review provides a systematization and analysis of studies on adsorption/desorption on mesoporous MOFs in solution and their underlying chemical mechanisms. The (in)stability of mesoporous MOFs in water is critically discussed. Adsorption capacity and selectivity are covered for organic dyes, medicinal drugs, major components of liquid fuels, and miscellaneous industrial chemicals. Ionic interactions, Brønsted acid-base interactions, hydrogen bonding, coordination bonding, π-π interactions, and non-specific interactions are covered amongst adsorption mechanisms. The effects of post-synthetic modifications of mesoporous MOFs on their stability, adsorption capacity, selectivity, and mechanisms of adsorption and desorption are analyzed. To encourage research in this quickly growing field, we identify "niches" for which no application-oriented and/or mechanistic studies were reported. Perspectives and limitations of a wide use of mesoporous MOFs as industrial sorbents are discussed.

  19. Quenching of ππ* triplet states of vaporous polycyclic aromatic compounds by oxygen

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Kuchinskiĭ, A. V.

    2007-05-01

    The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm-1 < E T < 24500 cm-1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s-1 Torr-1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.

  20. Biophysical and structural characterization of a sequence-diverse set of solute-binding proteins for aromatic compounds.

    PubMed

    Pietri, Ruth; Zerbs, Sarah; Corgliano, Danielle M; Allaire, Marc; Collart, Frank R; Miller, Lisa M

    2012-07-01

    Rhodopseudomonas palustris metabolizes aromatic compounds derived from lignin degradation products and has the potential for bioremediation of xenobiotic compounds. We recently identified four possible solute-binding proteins in R. palustris that demonstrated binding to aromatic lignin monomers. Characterization of these proteins in the absence and presence of the aromatic ligands will provide unprecedented insights into the specificity and mode of aromatic ligand binding in solute-binding proteins. Here, we report the thermodynamic and structural properties of the proteins with aromatic ligands using isothermal titration calorimetry, small/wide angle x-ray scattering, and theoretical predictions. The proteins exhibit high affinity for the aromatic substrates with dissociation constants in the low micromolar to nanomolar range. The global shapes of the proteins are characterized by flexible ellipsoid-like structures with maximum dimensions in the 80-90-Å range. The data demonstrate that the global shapes remained unaltered in the presence of the aromatic ligands. However, local structural changes were detected in the presence of some ligands, as judged by the observed features in the wide angle x-ray scattering regime at q ~0.20-0.40 Å(-1). The theoretical models confirmed the elongated nature of the proteins and showed that they consist of two domains linked by a hinge. Evaluation of the protein-binding sites showed that the ligands were found in the hinge region and that ligand stabilization was primarily driven by hydrophobic interactions. Taken together, this study shows the capability of identifying solute-binding proteins that interact with lignin degradation products using high throughput genomic and biophysical approaches, which can be extended to other organisms.

  1. Bromination of aromatic compounds by residual bromide in sodium chloride matrix modifier salt during heated headspace GC/MS analysis.

    PubMed

    Fine, Dennis D; Ko, Saebom; Huling, Scott

    2013-12-15

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis.

  2. The relationship between mutagenicity and chemical composition of polycyclic aromatic compounds from coal pyrolysis.

    PubMed Central

    Wornat, M J; Braun, A G; Hawiger, A; Longwell, J P; Sarofim, A F

    1990-01-01

    The polycyclic aromatic compounds (PAC) produced from the pyrolysis of a bituminous coal at temperatures of 1125 to 1425 degrees K prove to be mutagenic to S. typhimurium, both in the presence and in the absence of postmitochondrial supernatant (PMS) prepared from Aroclor 1254-induced rat liver. Mutagenicity of the PAC samples measured in the absence of PMS exhibits little dependence on pyrolysis temperature; that measured in its presence is higher at the higher pyrolysis temperatures. However, because of the decrease in PAC yield as the temperature is raised, mutagenicity per mass of coal consumed falls with an increase in temperature if measured without PMS (-PMS) and peaks at an intermediate temperature of 1378 degrees K if measured with PMS (+PMS). Using a new chromatographic technique, we have split each coal-derived PAC sample into two fractions: LC1, containing PAC with alkyl and O-containing substitutions and LC2, consisting of unsubstituted PAC. Substituted (LC1) fractions show no significant +PMS mutagenicity, indicating that, as a whole, the alkylated PAC in our coal pyrolysis products are not mutagenic. Only at the higher temperatures do the substituted fractions exhibit significant -PMS mutagenicity, attributed to PAC with carbonyl or etheric functionalities. The extremely low yields of the substituted PAC under the conditions where they show some activity, however, ensure that they contribute little to overall mutagenicity. In contrast to the substituted fractions, the unsubstituted (LC2) fractions display significant mutagenicity under all conditions and appear to be responsible for virtually all of the mutagenicity in these coal-derived PAC samples. In this fraction, -PMS activity is attributed to nitrogen-containing heterocyclic aromatics. PMID:2190813

  3. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    PubMed

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  4. Sources of SOA gaseous precursors in contrasted urban environments: a focus on mono-aromatic compounds and intermediate volatility compounds

    NASA Astrophysics Data System (ADS)

    Salameh, Therese; Borbon, Agnès; Ait-Helal, Warda; Afif, Charbel; Sauvage, Stéphane; Locoge, Nadine; Bonneau, Stéphane; Sanchez, Olivier

    2016-04-01

    Among Volatile Organic Compounds (VOC), the mono-aromatic compounds so-called BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) and the intermediate volatility organic compounds (IVOC) with C>12 are two remarkable chemical families having high impact on health, as well as on the production of secondary pollutants like secondary organic aerosols (SOA) and ozone. However, the nature and relative importance of their sources and, consequently, their impact on SOA formation at urban scale is still under debate. On the one hand, BTEX observations in urban areas of northern mid-latitudes do not reconcile with emission inventories; the latter pointing to solvent use as the dominant source compared to traffic. Moreover, a recent study by Borbon et al. (2013) has shown an enrichment in the C7-C9 aromatic fraction in Paris atmosphere by a factor of 3 compared to other cities. Causes would be: (i) differences in gasoline composition, (ii) differences in vehicle fleet composition, and (iii) differences in solvent use related sources. On the other hand, many smog chamber studies have highlighted IVOCs as important SOA precursors over the last decade but their origin and importance in urban areas relative to other precursors like BTEX is still poorly addressed. Here we combined large VOC datasets to investigate sources of BTEX and IVOC in contrasted urban areas by source-receptor approaches and laboratory experiments. Ambient data include multi-site speciated ambient measurements of C2 to C17 VOCs (traffic, urban background, and tunnel) from air quality networks (ie. AIRPARIF in Paris) and intensive field campaigns (MEGAPOLI-Paris, TRANSEMED in Beirut and Istanbul, PHOTOPAQ in Brussels). Preliminary results for Paris suggest that traffic dominates BTEX concentrations while traffic and domestic heating for IVOC (>70%). In parallel, the detailed composition of the fuel liquid phase was determined at the laboratory for typical fuels distributed in Ile de France region (diesel, SP95

  5. Portable spotter for fluorescent contaminants on surfaces

    DOEpatents

    Schuresko, Daniel D.

    1980-01-01

    A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

  6. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain.

    PubMed

    Dahlgren, Elin; Lindqvist, Dennis; Dahlgren, Henrik; Asplund, Lillemor; Lehtilä, Kari

    2016-02-01

    Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels.

  7. Influence of polychlorinated aromatic compounds on the biotransformation and toxicity of organophosphorus pesticides (OP) to the Daphnia magna

    SciTech Connect

    Tonkopii, V.; Zagrebin, A.; Sherstneva, L.

    1995-12-31

    The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besides that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.

  8. Uncovering a broad class of fluorescent amine-containing compounds by heat treatment.

    PubMed

    Jia, Dandan; Cao, Lei; Wang, Dongni; Guo, Xuemin; Liang, He; Zhao, Fangfang; Gu, Yaohang; Wang, Dongjun

    2014-10-01

    Amine-containing compounds including polymers, oligomers and small molecules, without conventional fluorophores, are found to emit strong visible fluorescence after a one-step heat treatment. Furthermore, our results demonstrate for the first time that not only tertiary amine groups but also primary and secondary amine groups can act as fluorescent moieties.

  9. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve

  10. Valence structures of aromatic bioactive compounds: a combined theoretical and experimental study.

    PubMed

    Wickrama Arachchilage, Anoja Pushpamali; Feyer, Vitaliy; Plekan, Oksana; Iakhnenko, Marianna; Prince, Kevin C; Wang, Feng

    2012-09-01

    Valence electronic structures of three recently isolated aryl bioactive compounds, namely 2-phenylethanol (2PE), p-hydroxyphenylethanol (HPE) and 4-hydroxybenzaldehyde (HBA), are studied using a combined theoretical and experimental method. Density functional theory-based calculations indicate that the side chains cause electron charge redistribution and therefore influence the aromaticity of the benzene derivatives. The simulated IR spectra further reveal features induced by the side chains. Solvent effects on the IR spectra are simulated using the polarizable continuum model, which exhibits enhancement of the O-H stretch vibrations with significant red-shift of 464 cm(-1) in 2PE. A significant spectral peak splitting of 94 cm(-1) between O(4)-H and O(8)-H of HPE is revealed in an aqueous environment. Experimental measurements for valence binding energy spectra for 2PE, HPE and HBA are presented and analyzed using outer-valence Green function calculations. The experimental (predicted) first ionization energies are measured as 9.19 (8.79), 8.47 (8.27) and 8.97 (8.82) eV for 2PE, HPE and HBA, respectively. The frontier orbitals (highest occupied molecular orbitals, HOMOs, and lowest unoccupied molecular orbitals, LUMOs) have similar atomic orbital characters although the HOMO-LUMO energy gaps are quite different.

  11. Polycyclic aromatic compound profiles from extracts of Dreissenid mussels and gammarid amphipods coexisting in Hamilton Harbor

    SciTech Connect

    Marvin, C.H.; McCarry, B.E.; Allan, L.; Bryant, D.W.

    1995-06-01

    Aggregates of dreissenid mussels were collected in Hamilton Harbour (western Lake Ontario) from a south shore site (Randle Reef) in an area characterized by coal tar-contaminated sediments, and from a site on the north shore exposed to particulates circulating in the harbour water column. Samples were separated into three components: dreissend mussels, gammarid amphipods (Gammarus fasciatus), and particulate material. The samples were freeze-dried, and extracted using ultrasonication in dichloromethane. The organic solvent extracts were subjected to an open-column alumina and Sephadex LH-20 gel column clean-up procedure, and characterized by gas chromatography-mass spectrometry (GC-MS). The chromatographic profiles of all sample extracts were dominated by polycyclic aromatic hydrocarbons (PAH). The concentrations of the individual compounds were normalized for contaminant profile comparison of the extracts of dreissenids, amphipods, and particulates associated with aggregates of dreissenid mussels. These profiles were also compared with extracts of coal tar-contaminated sediment from the Randle Reef area, and extracts of suspended particulates obtained from sediment traps. The similarities in the PAH profiles provide evidence of exposure to a common source of contaminants. These data also show that PAH associated with suspended particulates obtained from sediment traps. The similarities in the PAH profiles provide evidence of exposure to a common source of contaminants. These data also show that PAH associated with suspended particulates in Hamilton Harbour are being accumulated by dreissenid mussels and gammarid amphipods.

  12. Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes.

    PubMed

    Van Winkle, M R; Scheff, P A

    2001-03-01

    Ten homes were monitored at regular intervals from June 1994 through April 1995 as part of a Public Health Assessment in Southeast Chicago for exposure to volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and elements. Simultaneous 24-h indoor and outdoor samples were collected. VOCs were and analyzed using USEPA Method TO-14 with Selected Ion Monitoring Mass Spectrometry (GC/MS). PAHs were analyzed using USEPA Method TO-13 with GC/MS. Elements were collected on quartz fiber filters and analyzed by Inductively Coupled Argon Plasma (ICP) spectroscopy or Graphite Furnace Atomic Absorption (GFAA). Continuous measurements of CO2 and temperature were recorded for each indoor sample. Twenty-four h total CO2 emissions were determined from occupancy and estimated gas stove usage and were moderately correlated (R2 = 0.19) with 24 h average indoor CO2 concentrations. Modeled 24-h air exchange rates ranged from 0.04 to 3.76 air changes h-1 (ACH), with mean of 0.52 ACH. Median particle penetration was 0.89. Emission rates were calculated for each pollutant sampled. Using a detailed housing survey and field sampling questionnaires, it was possible to evaluate associations between housing characteristics and source activities, and pollutant source rates. The data indicate that several predictor variables, including mothball storage, air freshner use, and cooking activities, are reasonable predictors for emission rates for specific pollutants in the homes studied.

  13. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles.

    PubMed

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-28

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.

  14. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants.

    PubMed

    Boll, Esther S; Johnsen, Anders R; Christensen, Jan H

    2015-01-01

    This study investigated the sorption to soil of water-soluble metabolites from polycyclic aromatic compounds (PACs). The soil fungus Cunninghamella elegans was used to produce PAC metabolites from two un-substituted PACs (phenanthrene, pyrene), three alkyl-substituted PACs (2-methylnaphthalene, 1-methylphenanthrene, 1-methylpyrene), and one sulfur-containing heterocyclic PAC (dibenzothiophene). Fifty-eight metabolites were tentatively identified; metabolites from the un-substituted PACs were hydroxylated and sulfate conjugated, whereas metabolites from alkyl-substituted PACs were sulfate conjugated and either hydroxylated or oxidized to carboxylic acids at the methyl group. The metabolism of the sulfur-containing heterocyclic PAC resulted in sulfate conjugates. The sorption of the PAC metabolites to three soils was determined using a batch equilibrium method, and partition coefficients (Kd's) were calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching to surface- and groundwaters.

  15. Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees.

    PubMed

    Widdowson, Mark A; Shearer, Sandra; Andersen, Rikke G; Novak, John T

    2005-03-15

    A seven-year study was conducted to assess the effectiveness of hybrid poplar trees to remediate polycyclic aromatic hydrocarbon (PAH) compounds in soil and groundwater at a creosote-contaminated site. A reduction in the areal extent of the PAH plume was observed in the upper half of the 2-m-thick saturated zone, and PAH concentration levels in the groundwater declined throughout the plume. PAH concentrations began to decline during the period between the third and fourth growing seasons, which coincided with the propagation of the tree roots to the water table region. Remediation was limited to naphthalene and several three-ring PAHs (acenaphthylene and acenaphthene). PAH concentrations in soil and aquifer sediment samples also declined over time; however, levels of four-ring PAHs persisted at the lower depths during the study period. The naphthalene to total PAH concentration ratio in the most contaminated groundwater decreased from >0.90 at the beginning of the second growing season to approximately 0.70 at the end the study. Remediation in the lower region of the saturated zone was limited bythe presence of a 0.3-m-thick layer of creosote present as a dense nonaqueous phase liquid (DNAPL). The nearly steady-state condition of the PAH concentrations observed during the last three years of the study suggests that the effectiveness of the phytoremediation system is limited by the rate of PAH dissolution from the DNAPL source.

  16. Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions

    SciTech Connect

    O'Connor, O.A.

    1992-01-01

    The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid esters (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.

  17. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  18. Dehalococcoides mccartyi Strain DCMB5 Respires a Broad Spectrum of Chlorinated Aromatic Compounds

    PubMed Central

    Pöritz, Marlén; Schiffmann, Christian L.; Hause, Gerd; Heinemann, Ulrike; Seifert, Jana; Jehmlich, Nico; von Bergen, Martin; Nijenhuis, Ivonne

    2014-01-01

    Polyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments. Dehalococcoides mccartyi strain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature of D. mccartyi during organohalide respiration. PMID:25381236

  19. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.

    PubMed

    Scheel, T; Höfer, M; Ludwig, S; Hölker, U

    2000-11-01

    White-rot fungi (basidiomycetes) play an important role in the degradation of lignin which is, beside cellulose, the major compound of wood. This process is catalyzed by ligninolytic enzymes, which are able to cleave oxidatively aromatic rings in lignin structure. Manganese peroxidase and laccase of white-rot-fungi are the most important of these among the ligninolytic enzymes. In addition, they are able to degrade xenobiotic aromatic polymers, persisting as environmental pollutants. Manganese and aromatic compounds have often been discussed as being inducers, enhancers or mediators of these ligninolytic enzymes. It is known that supplementing the growth medium with either Mn2+, veratryl alcohol or coal-derived humic acids leads to significantly enhanced extracellular ligninolytic activities. Measuring the amount of expressed mRNA of the two enzymes by quantitative RT-PCR provided evidence that the expression of manganese peroxidase was induced in the three tested white-rot fungi, Clitocybula dusenii b11, Nematoloma frowardii b19, and a straw-degrading strain designated i63-2. Laccase, on the other hand, was expressed in all three fungi with a significant basic activity even without inducer added. However, since the level of laccase mRNA was higher in cultures supplemented with any one of the tested inducers, we conclude that both manganese and the aromatic substances also increase the expression of laccase.

  20. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  1. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies.

    PubMed

    Xie, Juan; Dong, Huanhuan; Yu, Yanying; Cao, Shuwen

    2016-01-01

    Three structurally similar aromatic heterocyclic compounds 2-thiophenecarboxaldehyde (a), 2-furaldehyde (b), 2-pyrrolecarboxaldehyde (c) were chosen and a series of their thiosemicarbazone derivatives(1a-3a, 1b-3b and 1c-3c) were synthesized to evaluate their biological activities as mushroom tyrosinase inhibitors. The inhibitory effects of these compounds on tyrosinase were investigated by using spectrofluorimetry, (1)H NMR titration and molecular docking techniques. From the results of fluorescence spectrum and (1)H NMR titration, it was found that forming complexes between the sulfur atom from thiourea and copper ion of enzyme center may play a key role for inhibition activity. Moreover, investigation of (1)H NMR spectra further revealed that formation of hydrogen bond between inhibitor and enzyme may be helpful to above complexes formation. The results were well coincident with the suggestion of molecular docking and obviously showed that 2-thiophone N(4)-thiosemicarbazone (1a), 2-furfuran N(4)-thiosemicarbazone (1b) and 2-pyrrole N(4)-thiosemicarbazone (1c) are potential inhibitors which deserves further investigation. PMID:26213029

  2. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies.

    PubMed

    Xie, Juan; Dong, Huanhuan; Yu, Yanying; Cao, Shuwen

    2016-01-01

    Three structurally similar aromatic heterocyclic compounds 2-thiophenecarboxaldehyde (a), 2-furaldehyde (b), 2-pyrrolecarboxaldehyde (c) were chosen and a series of their thiosemicarbazone derivatives(1a-3a, 1b-3b and 1c-3c) were synthesized to evaluate their biological activities as mushroom tyrosinase inhibitors. The inhibitory effects of these compounds on tyrosinase were investigated by using spectrofluorimetry, (1)H NMR titration and molecular docking techniques. From the results of fluorescence spectrum and (1)H NMR titration, it was found that forming complexes between the sulfur atom from thiourea and copper ion of enzyme center may play a key role for inhibition activity. Moreover, investigation of (1)H NMR spectra further revealed that formation of hydrogen bond between inhibitor and enzyme may be helpful to above complexes formation. The results were well coincident with the suggestion of molecular docking and obviously showed that 2-thiophone N(4)-thiosemicarbazone (1a), 2-furfuran N(4)-thiosemicarbazone (1b) and 2-pyrrole N(4)-thiosemicarbazone (1c) are potential inhibitors which deserves further investigation.

  3. Formation of aromatic compounds from carbohydrates. X reaction of xylose, glucose, and glucuronic acid in acidic solution at 300C

    SciTech Connect

    Theander, O.; Nelson, D.A.; Hallen, R.T.

    1987-04-01

    For several years our respective groups have investigated the formation of aromatic compounds from carbohydrates in aqueous solution at various pH-values under reflux or hydrothermolytic conditions. For instance, previous papers in this series concerned the degradation of hexoses, pentoses, erythrose, dihydroxyacetone, and hexuronic acids to phenolic and enolic components. Of particular interest were the isolation and identification of catechols, an acetophenone, and chromones from pentoses and hexuronic acids at pH 4.5. The formation of these compounds, as well as reductic acid, was found to be more pronounced than that of 2-furaldehyde under acidic conditions. The aromatic precursors of 3 and 4 were also isolated from these reaction mixtures. This is in contrast to the high yields of 2 obtained from pentoses and hexuronic acids at very low pH.

  4. Fluorescence Turn-on Sensory Compounds and Polymers for the Detection of Lead Ion in Water

    NASA Astrophysics Data System (ADS)

    Saha, Sukanta Kumar

    The goal of this thesis work is to synthesize a new type of fluorescence turn off-on sensory compounds and polymers for the detection of Pb2+ in aqueous medium. A sensory molecule was designed to have fluorene as a fluorophore and also as the building block for making a polymer. A new type of fluorescence turn-on sensory compound was successfully synthesized and characterized by IR, 1H-NMR, 13C-NMR and mass spectrometry. The sensory polymer was synthesized by the Yamamoto coupling reaction and characterized. The water-soluble sensory compound shows a high sensitivity and selectivity towards Pb2+ in aqueous medium. The fluorescence turns on when the Pb2+ ion binds with the sensory compound. The bromo-containing sensory compound shows the quenching effect of the bromine on fluorescence. The sensory polymer is soluble in water when it exits in the salt form and shows a high sensitivity towards Pb2+. In its acid form the polymer is soluble in DMF and displays a relatively low sensitivity towards Pb2+. With further modification of polymer structures, such as by copolymerization with other fluorescent or non-fluorescent monomers, the resulting sensory polymers could be used in fibre-optic sensor for detection of lead ion in water.

  5. Model compound study of the pathways for aromatic hydrocarbon formation in soot.

    SciTech Connect

    Tomczyk, N. A.; Hunt, J. E.; Winans, R. E.; Solum, M. S.; Pugmire, R. J.; Fletcher, T. H.

    2002-04-29

    To explore the mechanisms for formation of aromatic hydrocarbons as precursors to soot, a model system using combustion of biphenyl in a fuel rich flame is studied. The soots acquired at three different temperatures are solvent extracted and the extract characterized by both GCMS and high resolution mass spectrometry. A description of the NMR results for the whole soots has been published (1). The production of most products could be rationalized from the coupling of biphenyls and subsequent aromatic species and the addition of acetylenes to existing aromatic molecules. Early work by Badger on pyrolysis of hydrocarbons is used in developing these schemes (2). The reaction schemes to produce larger aromatic hydrocarbons will be discussed. Richter and Howard have discussed in detail potential reaction mechanisms in the formation of aromatics as precursors to soot (3).

  6. A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study

    PubMed Central

    Misner, Bill D

    2007-01-01

    Background Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. Methods A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Conclusion Application of this

  7. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources

    NASA Astrophysics Data System (ADS)

    Alam, Mohammed S.; Keyte, Ian J.; Yin, Jianxin; Stark, Christopher; Jones, Alan M.; Harrison, Roy M.

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAH) and their nitro and oxy derivatives have been sampled every three hours over one week in winter at two sites in Birmingham UK. One site is heavily influenced by road traffic and is close to residential dwellings, while the other site is a background urban location at some distance from both sources of emission. The time series of concentrations has been examined along with the ratio of concentrations between the two sampling sites. A comparison of averaged diurnal profiles has shown different patterns of behaviour which has been investigated through calculating ratios of concentration at 18:00-21:00 h relative to that at 06:00-09:00 h. This allows identification of those compounds with a strong contribution to a traffic-related maximum at 06:00-09:00 h which are predominantly the low molecular weight PAHs, together with a substantial group of quinones and nitro-PAHs. Changes in partitioning between vapour and particulate forms are unlikely to influence the ratio as the mean temperature at both times was almost identical. Most compounds show an appreciable increase in concentrations in the evening which is attributed to residential heating emissions. Compounds dominated by this source show high ratios of 18:00-21:00 concentrations relative to 06:00-09:00 concentrations and include higher molecular weight PAH and a substantial group of both quinones and nitro-PAH. The behaviour of retene, normally taken as an indicator of biomass burning, is suggestive of wood smoke only being one contributor to the evening peak in PAH and their derivatives, with coal combustion presumably being the other main contributor. Variations of PAH concentrations with wind speed show a dilution behaviour consistent with other primary pollutants, and high concentrations of a range of air pollutants were observed in an episode of low temperatures and low wind speeds towards the end of the overall sampling period consistent with poor local dispersion

  8. Petroleum alteration by thermochemical sulfate reduction - A comprehensive molecular study of aromatic hydrocarbons and polar compounds

    NASA Astrophysics Data System (ADS)

    Walters, Clifford C.; Wang, Frank C.; Qian, Kuangnan; Wu, Chunping; Mennito, Anthony S.; Wei, Zhibin

    2015-03-01

    Thermochemical sulfate reduction (TSR) alters petroleum composition as it proceeds towards the complete oxidation of hydrocarbons to CO2. The effects of TSR on the molecular and isotopic composition of volatile species are well known; however, the non-volatile higher molecular weight aromatic and polar species have not been well documented. To address this deficiency, a suite of onshore Gulf coast oils and condensates generated from and accumulating in Smackover carbonates was assembled to include samples that experienced varying levels of TSR alteration and in reservoir thermal cracking. The entire molecular composition of aromatic hydrocarbons and NSO species were characterized and semi-quantified using comprehensive GC × GC (FID and CSD) and APPI-FTICR-MS. The concentration of thiadiamondoids is a reliable indicator of the extent of TSR alteration. Once generated by TSR, thiadiamondoids remain thermally stable in all but the most extreme reservoir temperatures (>180 °C). Hydrocarbon concentrations and distributions are influenced by thermal cracking and TSR. With increasing TSR alteration, oils become enriched in monoaromatic hydrocarbons and the distribution of high molecular weight aromatic hydrocarbons shifts towards more condensed species with a decrease in the number of alkyl carbons. Organosulfur compounds are created by the TSR process. In addition to the increase in benzothiophenes and dibenzothiophenes noted in previous studies, TSR generates condensed species containing one or more sulfur atoms that likely are composed of a single or multiple thiophenic cores. We hypothesize that these species are generated from the partial oxidation of PAHs and dealkylation reactions, followed by sulfur incorporation and condensation reactions. The organosulfur species remaining in the TSR altered oils are "proto-solid bitumen" moieties that upon further condensation, oxidation or sulfur incorporation result in highly sulfur enriched solid bitumen, which is

  9. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.

    PubMed

    Gulvik, Christopher A; Buchan, Alison

    2013-06-01

    Plant-derived aromatic compounds are important components of the dissolved organic carbon pool in coastal salt marshes, and their mineralization by resident bacteria contributes to carbon cycling in these systems. Members of the roseobacter lineage of marine bacteria are abundant in coastal salt marshes, and several characterized strains, including Sagittula stellata E-37, utilize aromatic compounds as primary growth substrates. The genome sequence of S. stellata contains multiple, potentially competing, aerobic ring-cleaving pathways. Preferential hierarchies in substrate utilization and complex transcriptional regulation have been demonstrated to be the norm in many soil bacteria that also contain multiple ring-cleaving pathways. The purpose of this study was to ascertain whether substrate preference exists in S. stellata when the organism is provided a mixture of aromatic compounds that proceed through different ring-cleaving pathways. We focused on the protocatechuate (pca) and the aerobic benzoyl coenzyme A (box) pathways and the substrates known to proceed through them, p-hydroxybenzoate (POB) and benzoate, respectively. When these two substrates were provided at nonlimiting carbon concentrations, temporal patterns of cell density, gene transcript abundance, enzyme activity, and substrate concentrations indicated that S. stellata simultaneously catabolized both substrates. Furthermore, enhanced growth rates were observed when S. stellata was provided both compounds simultaneously compared to the rates of cells grown singly with an equimolar concentration of either substrate alone. This simultaneous-catabolism phenotype was also demonstrated in another lineage member, Ruegeria pomeroyi DSS-3. These findings challenge the paradigm of sequential aromatic catabolism reported for soil bacteria and contribute to the growing body of physiological evidence demonstrating the metabolic versatility of roseobacters.

  10. Measurement of diffusion of fluorescent compounds and autofluorescence in skin in vivo using a confocal instrument

    NASA Astrophysics Data System (ADS)

    Buttenschoen, K. K.; Sutton, E. E.; Daly, D.; Girkin, J. M.

    2016-02-01

    Using compact and affordable instrumentation based upon fluorescent confocal imaging we have tracked the movement of autofluorescent compounds through skin in near real time with high temporal and spatial resolution and sensitivity. The ability to measure the diffusion of compounds through skin with such resolution plays an important role for applications such as monitoring the penetration of pharmaceuticals applied to skin and assessing the integrity of the skin barrier. Several measurement methods exist, but they suffer from a number of problems such as being slow, expensive, non-portable and lacking sensitivity. To address these issues, we adapted a technique that we previously developed for tracking fluorescent compounds in the eye to measure the autofluorescence and the diffusion of externally applied fluorescent compounds in skin in vivo. Results are presented that show the change in autofluorescence of the volar forearm over the course of a week. We furthermore demonstrate the ability of the instrument to measure the diffusion speed and depth of externally applied fluorescent compounds both in healthy skin and after the skin barrier function has been perturbed. The instrument is currently being developed further for increased sensitivity and multi-wavelength excitation. We believe that the presented instrument is suitable for a large number of applications in fields such as assessment of damage to the skin barrier, development of topical and systemic medication and tracking the diffusion of fluorescent compounds through skin constructs as well as monitoring effects of skin products and general consumer products which may come into contact with the skin.

  11. Application of mesoporous carbon as a solid-phase microextraction fiber coating for the extraction of volatile aromatic compounds.

    PubMed

    Zhang, Xi; Zang, Xiaohuan; Zhang, Guijiang; Wang, Chun; Wang, Zhi

    2015-08-01

    A mesoporous carbon was fabricated using MCM-41 as a template and sucrose as a carbon source. The carbon material was coated on stainless-steel wires by using the sol-gel technique. The prepared solid-phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o-xylene, bromobenzene, and 4-chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 μg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 μg/L ranged from 73.1 to 99.1%.

  12. Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation.

    PubMed

    Pereira, Kelly L; Hamilton, Jacqueline F; Rickard, Andrew R; Bloss, William J; Alam, Mohammed S; Camredon, Marie; Ward, Martyn W; Wyche, Kevin P; Muñoz, Amalia; Vera, Teresa; Vázquez, Mónica; Borrás, Esther; Ródenas, Milagros

    2015-11-17

    Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.

  13. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGESBeta

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  14. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-01

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the

  15. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    PubMed

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter.

  16. Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds

    SciTech Connect

    Crecchio, C.; Ruggiero, P.; Pizzigallo, M.D.R.

    1995-12-20

    Gelatine gels originate from water in oil microemulsions in which the ternary system consists of isooctane/sulfosuccinic acid bis [2-ethyl hexyl] ester/water; the solubilization of gelatin in the water pool of these microemulsions transforms them into viscous gels in which it is possible to cosolubilize various reactive molecules. These gels were used to immobilize two phenoloxidases, a laccase from Trametes versicolor and a tyrosinase from mushroom. The best balance between gel retention and catalytic activity was reached at a gelatine concentration of 2.5% (w/v) in the case of tyrosinase, while laccase immobilization was independent of gelatine concentration. Both enzymes kept the same optimum pH as the corresponding soluble controls, while a partial loss of activity was observed when they were immobilized. Immobilized enzymes showed an increased stability when incubated for several days at 4 C with a very low release from the gels in the incubation solutions. The immobilization of tyrosinase and of laccase enhanced stability to thermal inactivation. Furthermore, gel-entrapped tyrosinase was almost completely preserved from proteolysis: more than 80% of the activity was maintained, while only 25% of the soluble control activity was detected after the same proteolytic treatments. A column packed with gel-immobilized tyrosinase was used to demonstrate that enzymes immobilized with this technique may be reused several times in the same reaction without loosing their efficiency. Finally, gel-entrapped tyrosinase and laccase were capable of removing naturally occurring and xenobiotic aromatic compounds from aqueous suspensions with different degrees of efficiency.

  17. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    PubMed

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter. PMID:26603953

  18. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    PubMed Central

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  19. Triazene 1-oxide compounds: Synthesis, characterization and evaluation as fluorescence sensor for biological applications

    NASA Astrophysics Data System (ADS)

    dos Santos, Aline Joana Rolina Wohlmuth Alves; Bersch, Patrícia; de Oliveira, Huéder Paulo Moisés; Hörner, Manfredo; Paraginski, Gustavo Luiz

    2014-02-01

    Triazene compounds have been known for over 100 years. This class of compounds is versatile because they have different applications as chemical and biological reagents. Currently, the tendency of applications of triazenes is as fluorescence sensors with biological and environmental functions. This work discusses the synthesis and structural characterization through IR, MS (EI), 13C NMR, 1H NMR, DSC and TGA analyzes of two triazene compounds, namely, 1-methyl-3-(p-carboxyphenyl)triazene 1-oxide (1) and 1-methyl-3-(phenyl)triazene 1-oxide (2). A comparative fluorescence study between these triazenes as potential compounds for application in the chemical sensors has also been carried out. The molecular and supramolecular structure of compound (1) is also determined by X-ray diffraction on single crystal, where the classic hydrogen bonds give the tridimensional arrangement. The presence of para-carboxylic group in compound (1) as well as the polarity and viscosity of the tested organic solvents resulted in a great influence on the evaluation of the fluorescence effect. These experimental findings show the potential use of triazenes as fluorescent biosensors, since the compounds (1) and (2) present antimicrobial activity.

  20. Chemical characterization of aromatic compounds in extra heavy gas oil by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    PubMed

    Avila, Bárbara M F; Pereira, Ricardo; Gomes, Alexandre O; Azevedo, Débora A

    2011-05-27

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis.

  1. Chemical characterization of aromatic compounds in extra heavy gas oil by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    PubMed

    Avila, Bárbara M F; Pereira, Ricardo; Gomes, Alexandre O; Azevedo, Débora A

    2011-05-27

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis. PMID:20934179

  2. Excited state complex formation between methyl glyoxal and some aromatic bio-molecules: a fluorescence quenching study

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Mandal, A.; Mukherjee, S.

    2003-01-01

    Fluorescence quenching of some important aromatic bio-molecules (ABM) such as 3-aminophthalhydrazide (luminol), tryptophan (Try), phenylalanine and tyrosine (Tyr) by methyl glyoxal (MG) has been studied employing different spectroscopic techniques. The interaction of MG with ABM in the excited state has been analysed using Stern-Volmer (S-V) mechanism. In the case of MG-luminol system time correlated single photon counting (TCSPC) technique has also been applied to explain the S-V mechanism. The bimolecular rate constants obtained are found to be higher than the rate constant for diffusion controlled process. A plausible explanation of the quenching mechanism has been discussed on the basis of hydrogen bonding, charge transfer and energy transfer interaction between the colliding species.

  3. High resolution-sensitivity characterization of polycyclic aromatic hydrocarbon-DNA adducts using fluorescence line narrowing spectrometry

    SciTech Connect

    Cooper, R.S.

    1988-07-01

    The application of fluorescence line narrowing spectrometry (FLNS) to the investigation of polar polycyclic aromatic hydrocarbon (PAH) metabolites and their corresponding DNA adducts is demonstrated. The selectivity is shown through the successful resolution of all components in separate mixtures of similar but distinct derivatives of benzo(a)pyrene, benz(a)anthracene, and chrysene. The separate mixtures were composed of six metabolites, five DNA adducts, each metabolite and its corresponding DNA adduct, and six metabolites and two DNA adducts. The broad applicability of FLNS is demonstrated through applications to the analysis of globin adducts, PAH metabolites in urine, and real samples, and to the investigation of carcinogenic metabolic pathways. 98 refs., 31 figs., 5 tabs.

  4. Solid-matrix fluorescence and phosphorescence and solid-phase microextraction of polycyclic aromatic hydrocarbons with hydrophobic paper

    SciTech Connect

    Ackerman, A.H.; Hurtubise, R.J.

    1999-07-01

    Solid-matrix fluorescence (SMF) and solid-matrix phosphorescence (SMP) have been used in conjunction with solid-phase microextraction to characterize mixtures of polycyclic aromatic hydrocarbons (PAHs) isolated from water. Whatman 1PS paper was used to extract the PAH from water, and then the isolated PAHs were directly identified on the paper by obtaining SMF and SMP spectra. The SMF and SMP properties of 10 PAH were obtained, and the PAHs in a two-component mixture, a three-component mixture, and a four-component mixture were easily identified by a combination of SMF and SMP. No external heavy atom was needed to acquire the SMP data. Benzo[{ital e}]pyrene gave a limit of detection of 6.2 pg/mL with SMP, and with SMF benzo[{ital a}]pyrene gave a limit of detection of 19 pg/mL. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}

  5. Quantification of polycyclic aromatic hydrocarbons in water: a comparative study based on three-dimensional excitation-emission matrix fluorescence.

    PubMed

    Wang, Huanbo; Zhang, Yujun; Xiao, Xue

    2010-01-01

    Excitation-emission matrix fluorescence (EEM) was proposed to quantify three polycyclic aromatic hydrocarbons of anthracene (AN), phenanthrene (PHE) and pyrene (PY) in this paper. Direct analysis through selecting the appropriate areas from the data of EEMs and another approach using all data of EEM combined with the Parallel Factor (PARAFAC) were discussed respectively. The results showed that the predicted concentrations of PHE and PY approached the actual one for both methodologies, and that the room-mean-square errors of the prediction were no more than 0.5 µg L(-1). In addition, a new quantificational method was suggested, in which the sum intensity around the peak value replaced the maximum intensity in the selected regions. The sensitivity can be improved ten times compared with the conventional analysis. PMID:21157096

  6. The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds.

    PubMed

    Samojłowicz, Cezary; Bieniek, Michał; Zarecki, Andrzej; Kadyrov, Renat; Grela, Karol

    2008-12-21

    Aromatic fluorinated hydrocarbons, used as solvents for olefin metathesis reactions, catalysed by standard commercially available Ru precatalysts, allow substantially higher yields to be obtained, especially of challenging substrates, including natural and biologically active compounds.

  7. Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste.

    PubMed

    Hecht, C; Griehl, C

    2009-01-01

    This paper presents laboratory scale studies on the anaerobic degradation of kitchen waste, with a high protein and fat content, using a quasi-continuous co-digestion process. The increased accumulation of non-degraded intermediates as an indication of process imbalances was examined in experiments where the substrate load was gradually increased. In addition to the critical rise of known toxic metabolites like ammonia, hydrogen sulphide or volatile fatty acids, aromatic acids accumulated with increasing substrate loading. These metabolites could be identified as intermediates from the anaerobe degradation of the aromatic amino acids phenylalanine, tyrosine and tryptophan. In most experiments the important finding was the early detection of aromatics, especially phenylacetic acid, even before the monitoring of volatile fatty acid concentrations gave an indication of a process imbalance. This demonstrates the potential use aromatic acids as indicators for an upcoming process failure.

  8. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.

    PubMed

    Mikolasch, Annett; Hahn, Veronika; Manda, Katrin; Pump, Judith; Illas, Nicole; Gördes, Dirk; Lalk, Michael; Gesell Salazar, Manuela; Hammer, Elke; Jülich, Wolf-Dieter; Rawer, Stephan; Thurow, Kerstin; Lindequist, Ulrike; Schauer, Frieder

    2010-08-01

    In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between L-lysine or lysine-containing peptides and dihydroxylated aromatics. L-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-L-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the epsilon-amino group of L-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing L-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.

  9. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  10. Long wave fluorophore sensor compounds and other fluorescent sensor compounds in polymers

    DOEpatents

    Walsh, Joseph C.; Heiss, Aaron M.; Noronha, Glenn; Vachon, David J.; Lane, Stephen M.; Satcher, Jr., Joe H.; Peyser, Thomas A.; Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-07-20

    Fluorescent biosensor molecules, fluorescent biosensors and systems, as well as methods of making and using these biosensor molecules and systems are described. Embodiments of these biosensor molecules exhibit fluorescence emission at wavelengths greater than about 650 nm. Typical biosensor molecules include a fluorophore that includes an iminium ion, a linker moiety that includes a group that is an anilinic type of relationship to the fluorophore and a boronate substrate recognition/binding moiety, which binds glucose. The fluorescence molecules modulated by the presence or absence of polyhydroxylated analytes such as glucose. This property of these molecules of the invention, as well as their ability to emit fluorescent light at greater than about 650 nm, renders these biosensor molecules particularly well-suited for detecting and measuring in-vivo glucose concentrations.

  11. Thermodynamics of the hydrogen bonding of nitrogen-containing cyclic and aromatic compounds with proton donors: The structure-property relationship

    NASA Astrophysics Data System (ADS)

    Rakipov, I. T.; Varfolomeev, M. A.; Kirgizov, A. Yu.; Solomonov, B. N.

    2014-12-01

    Enthalpies of dissolution are measured at infinite dilution of nitrogen-containing cyclic (pyrrolidine, piperidine) and aromatic compounds (aniline, N-methylaniline, N,N-dimethylaniline, N-methylimidazole, pyridine, 2-, 3-, 4-methylpyridine, pyrrole, N-methylpyrrole) in chloroform and dichloromethane, and vice versa ( T = 298.15 K). The enthalpies of hydrogen bonds in the above systems are calculated. Relationships between resulting thermochemical data and the structure of nitrogen-containing cyclic and aromatic compounds are explored.

  12. Scavenging ratio of polycyclic aromatic compounds in rain and snow at the Athabasca oil sands region

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cheng, I.; Muir, D.; Charland, J.-P.

    2014-07-01

    Athabasca oil sands industry in northern Alberta, Canada is a possible source of polycyclic aromatic compounds (PACs). Monitored PACs, including polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes, in precipitation and in air at three near-source sites in the Fort MacKay and Fort McMurray area during May 2011 to August 2012 were analyzed to generate a database of scavenging (or washout) ratios (Wt) for PACs scavenged by both snow and rain. Median precipitation and air concentrations of parent PAHs over the May 2011 to August 2012 period ranged from 0.3-184.9 (chrysene) ng L-1 and 0.01-3.9 (naphthalene) ng m-3, respectively, which were comparable to literature values. Higher concentrations in precipitation and air were observed for alkylated PAHs and dibenzothiophenes. The median precipitation and air concentrations were 11.3-646.7 (C3-fluoranthene/pyrene) ng L-1 and 0.21-16.9 (C3-naphthalene) ng m-3, respectively, for alkylated PAHs, and 8.5-530.5 (C4-dibenzothiophene) ng L-1 and 0.13-6.6 (C2-dibenzothiophene) ng m-3 for dibenzothiophenes and their alkylated derivatives. Median Wt over the measurement period were 6100-1.1 × 106 from snow scavenging and 350-2.3 × 105 from rain scavenging depending on the PAC species. Median Wt for parent PAHs were within the range of those observed at other urban and suburban locations. But Wt for acenaphthylene in snow samples was 2-7 times higher. Some individual snow and rain samples exceeded literature values by a factor of 10. Wt for benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in snow samples had reached 107, which is the maximum for PAH snow scavenging ratios reported in literature. From the analysis of data subsets, Wt for particulate-phase dominant PACs were 14-20 times greater than gas-phase dominant PACs in snow samples and 7-20 times greater than gas-phase dominant PACs in rain samples. Wt from snow scavenging was ∼9 times greater than rain scavenging for particulate

  13. Scavenging ratios of polycyclic aromatic compounds in rain and snow in the Athabasca oil sands region

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cheng, I.; Muir, D.; Charland, J.-P.

    2015-02-01

    The Athabasca oil sands industry in northern Alberta, Canada, is a possible source of polycyclic aromatic compounds (PACs). Monitored PACs, including polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes (DBTs), in precipitation and in air at three near-source sites in the Fort MacKay and Fort McMurray area during January 2011 to May 2012, were used to generate a database of scavenging ratios (Wt) for PACs scavenged by both snow and rain. Higher concentrations in precipitation and air were observed for alkylated PAHs and DBTs compared to the other PACs. The sums of the median precipitation concentrations over the period of data analyzed were 0.48 μ g L-1 for the 18 PAHs, 3.38 μ g L-1 for the 20 alkylated PAHs, and 0.94 μ g L-1 for the 5 DBTs. The sums of the median air concentrations for parent PAHs, alkylated PAHs, and DBTs were 8.37, 67.26, and 11.83 ng m-3, respectively. Median Wt over the measurement period were 6100 - 1.1 × 106 from snow scavenging and 350 - 2.3 × 105 from rain scavenging depending on the PAC species. Median Wt for parent PAHs were within the range of those observed at other urban and suburban locations, but Wt for acenaphthylene in snow samples were 2-7 times higher compared to other urban and suburban locations. Wt for some individual snow and rain samples exceeded literature values by a factor of 10. Wt for benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in snow samples had reached 107, which is the maximum for PAH snow scavenging ratios reported in the literature. From the analysis of data subsets, Wt for particulate-phase dominant PACs were 14-20 times greater than gas-phase dominant PACs in snow samples and 7-20 times greater than gas-phase dominant PACs in rain samples. Wt from snow scavenging were ~ 9 times greater than from rain scavenging for particulate-phase dominant PACs and 4-9.6 times greater than from rain scavenging for gas-phase dominant PACs. Gas-particle fractions of each PAC

  14. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. PMID:27234496

  15. Acid-promoted chemoselective introduction of amide functionality onto aromatic compounds mediated by an isocyanate cation generated from carbamate.

    PubMed

    Sumita, Akinari; Kurouchi, Hiroaki; Otani, Yuko; Ohwada, Tomohiko

    2014-10-01

    Carbamates have been used as precursors of isocyanates, but heating in the presence of strong acids is required because cleavage of the C-O bond in carbamates is energy-demanding even in acid media. Direct amidation of aromatic compounds by isocyanate cations generated at room temperature from carbamoyl salicylates in trifluoromethanesulfonic acid (TfOH) was examined. Carbamates with ortho-salicylate as an ether group (carbamoyl salicylates) showed dramatically accelerated O-C bond dissociation in TfOH, which resulted in facile generation of the isocyanate cation. These chemoselective intermolecular aromatic amidation reactions proceeded even at room temperature and showed good compatibility with other electrophilic functionalities and high discrimination between N-monosubstituted carbamate and N,N-disubstituted carbamate. The reaction rates of secondary and tertiary amide formation were markedly different, and this difference was utilized to achieve successive (tandem) amidation reactions of molecules with an N-monosubstituted carbamate and an N,N-disubstituted carbamate with two kinds of aromatic compounds.

  16. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions.

  17. Trypanocidal activity and selectivity in vitro of aromatic amidine compounds upon bloodstream and intracellular forms of Trypanosoma cruzi.

    PubMed

    De Souza, E M; da Silva, P B; Nefertiti, A S G; Ismail, M A; Arafa, R K; Tao, B; Nixon-Smith, C K; Boykin, D W; Soeiro, M N C

    2011-02-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, an important neglected illness affecting about 12-14 million people in endemic areas of Latin America. The chemotherapy of Chagas disease is quite unsatisfactory mainly due to its poor efficacy especially during the later chronic phase and the considerable well-known side effects. These facts emphasize the need to search for find new drugs. Diamidines and related compounds are minor groove binders of DNA at AT-rich sites and present excellent anti-trypanosomal activity. In the present study, six novel aromatic amidine compounds (arylimidamides and diamidines) were tested in vitro to determine activity against the infective and intracellular stages of T. cruzi, which are responsible for sustaining the infection in the mammalian hosts. In addition, their selectivity and toxicity towards primary cultures of cardiomyocyte were evaluated since these cells represent important targets of infection and inflammation in vivo. The aromatic amidines were active against T. cruzi in vitro, the arylimidamide DB1470 was the most effective compound presenting a submicromolar LD(50) values, good selectivity index, and good activity at 4 °C in the presence of blood constituents. Our results further justify trypanocidal screening assays with these classes of compounds both in vitro and in vivo in experimental models of T. cruzi infection.

  18. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs.

    PubMed

    Lemos, M Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-06-26

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein.

  19. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    PubMed Central

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  20. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    PubMed

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644

  1. Differential effects of topically applied formalin and aromatic compounds on neurogenic-mediated microvascular leakage in rat skin.

    PubMed

    Futamura, Masaki; Goto, Shiho; Kimura, Ryoko; Kimoto, Izumi; Miyake, Mio; Ito, Komei; Sakamoto, Tatsuo

    2009-01-01

    Various volatile organic compounds (VOCs) act as a causative agent of skin inflammation. We investigated the effect of topical application of several VOCs and formalin on microvascular leakage in rat skin. We tested capsaicin, which is a reagent that specifically causes the skin response via endogenously released tachykinins. Evans blue dye extravasation served as an index of the increase in skin vascular permeability. After shaving the abdomen, we applied formalin, m-xylene, toluene, styrene, benzene, ethylbenzene, acetone, diethyl ether, hexane, heptane, cyclohexane and capsaicin to the skin. At 40min after application, skin samples were collected. Among all of the VOCs tested, all of the aromatic compounds significantly produced skin microvascular leakage that was similar to formalin and capsaicin. We also investigated the skin responses seen after the intravenous administration of CP-99,994 (1.5 or 5mg/kg), which is a tachykinin NK1 receptor antagonist, ketotifen (1 or 3mg/kg), which is a histamine H1 receptor antagonist that stabilizes the mast cells, and the topical application of capsazepine (22.5 or 50mM), which is the transient receptor potential vanilloid 1 (TRPV1) antagonist. The response induced by formalin and capsaicin was completely inhibited by CP-99,994. On the other hand, the antagonist partially reduced the response induced by m-xylene, toluene and styrene by 39%, 50% and 46%, respectively. Capsazepine and ketotifen did not alter the response induced by formalin or any of the aromatic compounds. Like capsaicin, formalin and the aromatic compounds at least partially caused skin microvascular leakage, which was due to tachykinin NK1 receptor activation related to the release of tachykinins from the sensory nerve endings. However, it is unlikely that mast cells and TRPV1 play an important role in the skin response.

  2. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    PubMed

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.

  3. Determination of nitro polynuclear aromatic hydrocarbons in air and diesel particulate matter using liquid chromatography with electrochemical and fluorescence detection

    SciTech Connect

    MacCrehan, W.A.; May, W.E.; Yang, S.D.; Benner, B.A. Jr.

    1988-02-01

    Three different approaches to the liquid chromatographic detection of nitro polynuclear aromatic hydrocarbons in air and diesel particulate extracts are presented, based on differential pulse (LCDPD) and amperometric (LCEC) electrochemical detection and fluorescence detection following online reduction to the amine (LCFI). The particulate extraction/fractionation procedure for each detection approach is discussed. The operational advantages of oxygen removal with a platinum oxygen scrubber (all three types of detection), the use of modulated pulse detection, and wavelength-programmed fluorescence detection are explored. 1-Nitropyrene is determined in Standard Reference Material (SRM) 1650 diesel particulate matter and in several other round robin samples by all three methods. Results are compared to those obtained by other techniques (gas chromatography/mass spectrometry) and by other laboratories (LCFI). Additionally, 2-nitrofluorene, 9-nitroanthracene, 7-nitrobenz(a)anthracene, and 6-nitrobenzo(a)pyrene are determined in SRM 1650 by LCFI. The detection limits for 1-nitropyrene (expressed as picograms) are 5200 (LCDPD), 60 (LCEC), and 10 (LCFI).

  4. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  5. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  6. Catalytic destruction of brominated aromatic compounds studied in a catalyst microbed coupled to gas chromatography/mass spectrometry.

    PubMed

    Blazsó, Marianne; Czégény, Zsuzsanna

    2006-10-13

    The capability of solid porous catalysts has been studied for the destruction or modification of halogenated aromatic compounds contaminating the pyrolysis oil of recycled plastics from electronic waste. A fast and simple experimental procedure is carried out using a micropyrolyser coupled to GC-MS in such a way that catalyst microbed was placed in the sample tube of the pyrolyser. The pyrolysis products of polycarbonate blended with a frequently applied flame retardant tetrabromobisphenol A (TBBPA) and epoxy resin containing TBBPA monomer units have been analysed, and the brominated components were compared with the thermal decomposition products of TBBPA and its diallyl ether. When TBBPA vapour passes through molecular sieve 4A a slight debromination and a partial cleavage of bisphenol A into phenols occur. Over molecular sieves of larger pore size (13X and NaY zeolite) an important decrease of TBBPA amount is observed indicating effective trapping ability of these catalysts of basic character for brominated aromatic compounds. A total chemical modification of the vapour was achieved by Al-MCM-41 catalyst that split TBBPA into bromophenols. Analogous results were obtained by carrying out similar experiments on diallyl ether of TBBPA. Moreover, it was revealed that brominated bisphenol A compounds are modified essentially the same way, either evaporated or evolved from a polycarbonate blend or produced by pyrolysis from an epoxy resin.

  7. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    PubMed Central

    Feng, Yiming; Liu, Min; Ouyang, Yanan; Zhao, Xianfang; Ju, Yanlun; Fang, Yulin

    2015-01-01

    Background Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs) and relative odor contributions (ROCs) were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. Results In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types) of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54%) and mulberry wines (2.08%) were higher than those of strawberry wine (0.78%), and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. Conclusion The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was superior to

  8. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    SciTech Connect

    Kubo, Takanori; Yanagihara, Kazuyoshi; Takei, Yoshifumi; Mihara, Keichiro; Sato, Yuichiro; Seyama, Toshio

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  9. Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds.

    PubMed

    Grube, Mara; Muter, Olga; Strikauska, Silvija; Gavare, Marita; Limane, Baiba

    2008-11-01

    Previous studies showed that cabbage leaf extract (CLE) added to the growth medium can noticeably promote the degradation of nitro aromatic compounds by specific consortium of bacteria upon their growth. For further development of the approach for contaminated soil remediation it was necessary to evaluate the qualitative and/or quantitative composition of different origin CLE and their relevance on the growth of explosives-degrading bacteria. Six CLE (different by species, cultivars and harvesting time) were tested and used as additives to the growth medium. It was shown that nitro aromatic compounds can be identified in the FT-IR absorption spectra by the characteristic band at 1,527 cm(-1), and in CLE by the characteristic band at 1,602 cm(-1). The intensity of the CLE band at 1,602 cm(-1) correlated with the concentration of total nitrogen (R2=0.87) and decreased upon the growth of bacteria. The content of nitrogen in CLE differed (0.22-1.00 vol.%) and significantly influenced the content of total carbohydrates (9.50-16.00% DW) and lipids [3.90-9.90% dry weight (DW)] accumulated in bacterial cells while the content of proteins was similar in all samples. Though this study showed quantitative differences in the composition of the studied CLE and the response of bacterial cells to the composition of the growth media, and proved the potential of this additive for remediation of contaminated soil. It was shown that analysis of CLE and monitoring of the conversion of nitro aromatic compounds can be investigated by FT-IR spectroscopy as well as by conventional chemical methods.

  10. Immunological disorders associated with polychlorinated biphenyls and related halogenated aromatic hydrocarbon compounds

    USGS Publications Warehouse

    Noguchi, G.E.; Leatherland, J.F.; Woo, P.T.K.

    1998-01-01

    This review characterizes immunological disorders in fish associated with the widespread environmental contaminants, polychlorinated biphenyls (PCBs), and related halogenated aromatic hydrocarbons (HAHs). Special attention is devoted to comparing the sensitivity of fish species, identifying sensitive immunological endpoints and postulating mechanisms of action.

  11. Surfactants, aromatic and isoprenoid compounds, and fatty acid biosynthesis inhibitors suppress Staphylococcus aureus production of toxic shock syndrome toxin 1.

    PubMed

    McNamara, Peter J; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A

    2009-05-01

    Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1.

  12. [Analyses of biogenic related compounds based on intramolecular excimer-forming fluorescence derivatization].

    PubMed

    Yoshida, Hideyuki

    2003-08-01

    A highly selective and sensitive method based on a novel concept is introduced for the assay of biological substances. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, followed by reverse-phase HPLC. Polyamines, polyphenols, and dicarboxylic acids, which have two or more reactive functional groups in a molecule, were converted to the corresponding polypyrene-labeled derivatives by reaction with the appropriate pyrene reagent. The derivatives exhibited intramolecular excimer fluorescence (440-520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360-420 nm) emitted by pyrene reagents and monopyrene-labeled derivatives of monofunctional compounds. With excimer fluorescence detection, highly selective and sensitive determination of polyamines, polyphenols, and dicarboxylic acids can be achieved. Furthermore, the methods were successfully applied to the determination of various biological and environmental substances in real samples, which require only a small amount of sample and simple pretreatment.

  13. High-performance liquid chromatography determination of nitrated polycyclic aromatic hydrocarbons by indirect fluorescence detection.

    PubMed

    Al-Kindy, Salma M; Miller, James N

    2009-02-01

    A high-performance liquid chromatography (HPLC) method for the analysis of nitrated polcyclic aromatic hydrocarbons (NPAHs) is reported. NPAH mixtures were pre-concentrated using solid-phase extraction and well resolved on a C(18) column. They were detected using an indirect method involving the quenching of the emission from the fluorophores 5,6,7,8-tetrahydronaphthol (5,6,7,8-THN-1-OH), 7-amino-4-methyl coumarin (Coumarin 120, COU-120) and 3-hydroxy-4-(2-hydroxy-4-sulfo-1-naphthylazo)2-naphthalene carboxylic acid (Calcon carboxylic acid, CCA). Linear calibration curves were obtained in the range 1.1 x 10(-9) to 1.1 x 10(-8) mol/L. Using COU 120 as the fluorophore, the detection limit was 2.9 x 10(-10) mol/L for 1-nitronaphthalene and 2.1 x 10(-11) mol/L for 2-nitrofluorene. Recoveries of NPAHs from spiked tap water samples were between 88 and 100%. PMID:18816459

  14. Synthesis, double-helix formation, and higher-assembly formation of chiral polycyclic aromatic compounds: conceptual development of polyketide aldol synthesis.

    PubMed

    Yamaguchi, Masahiko; Shigeno, Masanori; Saito, Nozomi; Yamamoto, Koji

    2014-02-01

    Polycyclic aromatic compounds are an important group of substances in chemistry, and the study of their properties is a subject of interest in the development of drugs and materials. We have been conducting studies to develop chiral polycyclic aromatic compounds, i.e., helicenes and equatorenes. These helical molecules showed notable aggregate-forming properties and the capability for chiral recognition exerted by noncovalent bond interactions, which were not observed in compounds with central chirality. Homo- and hetero-double-helix-forming helicene oligomers were developed, and the latter self-assembled to form gels and vesicles. In this article, we describe such hierarchical studies of polycyclic aromatic compounds, which were started from polyketide aldol synthesis.

  15. Series of metal-nonmetal-metal sandwich compounds: out-of-plane sigma-aromaticity and electric properties.

    PubMed

    Chen, Mi-Mi; Ma, Fang; Li, Zhi-Ru; Li, Zong-Jun; Wang, Qin; Sun, Chia-Chung

    2009-07-30

    A new class of metal-nonmetal-metal sandwich structures M3-CO3-M3' (M, M' = Li, Na, K) with all real frequencies is obtained at the second-order Möller-Plesset theory (MP2) method with the 6-311+G (2d) basis set. Because the sandwich molecule M3-CO3-M3' is composed of superatoms (M3, CO3, and M3'), it is a sandwich "superomolecule". The superatoms M3 and M3' are electron donors and CO3 is the acceptor, and then there is a strong charge transfer between M3 (or M3') and CO3 superatom, so M3-CO3-M3' can be denoted as M3(+)CO3(2-)M3'(+). Owing to the CO3(2-) anion in the middle repulsing the valence electrons of two metal rings (M3 and M3') forming a pair of excess electrons, the compound with excess electrons is also a novel electride. In metal-nonmetal-metal sandwich compound M3(+)CO3(2-)M3'(+), superatom units M3(+) and M3'(+) exhibit unusual sigma-aromaticity: the maximum negative nucleus-independent chemical shift (NICSmax) value of each aromatic ring (M3(+) and M3'(+)) does not locate at the center of the ring plane but locates outside the ring plane. The distance value from the center of the M3(+) or M3'(+) ring plane to the point with NICSmax ranges from 0.8 to 1.9 A. This shows a notable out-of-plane sigma-aromaticity for these sandwich compounds. What is the reason? We find that the out-of-plane sigma-aromaticity of M3(+) (or M3'(+)) results from the action of CO3(2-)M3'(+) (or M3(+)CO3(2-)). For electric property, on account of excess electrons, the sandwich electride M3-CO3-M3' without the central symmetry can exhibit large static first hyperpolarizability (beta0). For Na3-CO3-K3, the beta0 value is close to 56,000 au.

  16. Chemical characterization and mutagenic properties of polycyclic aromatic compounds in sediment from tributaries of the Great Lakes

    USGS Publications Warehouse

    Fabacher, David L.; Schmitt, Christopher J.; Besser, John M.; Mac, Michael J.

    1988-01-01

    Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with solvents and characterized chemically for polycyclic aromatic compounds (PACs). An aqueous phase and a crude organic extract were obtained. The crude organic extract was further resolved into fractions A-2 (polycyclic aromatic hydrocarbons) and A-3 (nitrogen-containing polycyclic aromatic compounds), which were analyzed for PACs by gas chromatography and gas chromatography-mass spectrometry. The extracts and fractions were tested for mutagenicity in three assays: Ames, rat hepatocyte unscheduled DNA synthesis, and Chinese hamster ovary hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT). Sediments from the industrial sites contained 27 to 363 μg/g total PACs; the reference site, less than 1 μg/g. Qualitative differences in the residue profiles among the sites were attributable to the probable sources of the PACs (petroleum versus combustion). Only one industrial site yielded measurable (0.1 μg/g or more) concentrations of individual nitrogen-containing PACs. In the Ames assay, only the highest doses of the A-2 fractions from two sites approached positive results. Conversely, the crude organic extract and A-2 and A-3 fractions from all sites induced unscheduled DNA synthesis. Crude organic extracts and the A-2 and A-3 fractions from all industrial sites gave well-defined dose-response relations in the CHO/HGPRT assay. We established the presence of chemical mutagens in sediment that could be correlated with neoplasms in fish from many of the sites; however, the mutagenicity of the sediment extracts was not completely related to the degree of contamination by PACs. We also discuss the utility of mutagenicity assays in the evaluation of complex chemical mixtures and recommend the use of a CHO/HGPRT-type assay in which cells are not required to proliferate in the presence of potential interfering chemicals.

  17. Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    PubMed Central

    Karpinets, Tatiana V.; Pelletier, Dale A.; Pan, Chongle; Uberbacher, Edward C.; Melnichenko, Galina V.; Hettich, Robert L.; Samatova, Nagiza F.

    2009-01-01

    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase

  18. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds

    PubMed Central

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  19. Correlation of octanol/water partition coefficients and total molecular surface area for highly hydrophobic aromatic compounds

    SciTech Connect

    Doucette, W.J.; Andren, A.W.

    1987-08-01

    The relationship between the calculated total molecular surface area (TSA) and the octanolwater partition coefficient (K/sub ow/) is examined for a set of 32 highly hydrophobic aromatic compounds including several polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), polychlorinated dioxins (PCDDs), and polychlorinated furans (PCDFs). A generator column technique was used to experimentally measure log K/sub ow/ for each compound in order to provide an accurate, self-consistent set of values. A correlative method is presented that can be used to estimate log K/sub ow/ values from TSA within 14% for halogenated biphenyls, furans, and dioxins ranging from 3.89 to 8.58 in log K/sub ow/.

  20. Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds.

    PubMed

    Cambria, Maria Teresa; Ragusa, Santa; Calabrese, Vittorio; Cambria, Antonio

    2011-02-01

    The white rot fungus Rigidoporus lignosus produces substantial amounts of extracellular laccase, a multicopper blue oxidase which is capable of oxidizing a wide range of organic substrates. Laccase production can be greatly enhanced in liquid cultures supplemented with various aromatic and phenolic compounds. The maximum enzyme activity was reached at the 21st or 24th day of fungal cultivation after the addition of inducers. The zymograms of extracellular fluid of culture preparation in the presence of inducers, at maximum activity day, revealed two bands with enzymatic activity, called Lac1 and Lac2, having different intensities. Lac2 band shows the higher intensity which changed with the different inducers. Laccase induction can be also obtained by adding to the culture medium olive mill wastewaters, which shows a high content of phenolic compounds.

  1. Identification of polycyclic aromatic hydrocarbon metabololites and DNA adducts in mixtures using fluorescence line narrowing spectrometry

    SciTech Connect

    Sanders, M.J.; Cooper, R.S.; Jankowiak, R.; Small, G.J.; Heisig, V.; Jeffrey, A.M.

    1986-04-01

    Fluorescence line narrowing spectrometry is applied to five modifications of DNA (intact adducts) formed from diol epoxides of benzo(a)pyrene, chrysene, 5-methylchrysene, and benz(a)anthracene. The direct identification of all five adducts in a laboratory mixture is accomplished. In addition, a mixture of six corresponding metabolites plus the DNA adducts from benzo(a)pyrene and 5-methylchrysene is resolved. Each adduct can be distinguished from its corresponding tetrol metabolite. Utilization of an intensified diode array-optical multichannel analyzer provides detection of the adduct from benzo(a)pyrene with a S/N approx. 150 for a damage level of approx. 5 bases in 10/sup 6/. 25 references, 7 figures.

  2. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients

    PubMed Central

    Yang, Jie; Wang, Guozeng; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2016-01-01

    Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles. PMID:26793186

  3. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty; Dennis, Gary; Shalliker, R. Andrew

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

  4. Developing risk-based target concentrations for carcinogenic polycyclic aromatic hydrocarbon compounds assuming human consumption of aquatic biota.

    PubMed

    Petito Boyce, Catherine; Garry, Michael

    2003-01-01

    As part of the remediation process at a former creosote-handling facility in Washington, target groundwater concentrations were developed as goals for the planned cleanup efforts. Considering state regulatory requirements and site-specific conditions, these concentrations were established to protect surface water in the lake adjacent to the site. These risk-based values were calculated assuming that chemicals will (1) be transported in groundwater, (2) discharge into the lake, and (3) be taken up by aquatic organisms that may be consumed by humans. Among the primary chemicals driving remediation decisions at this site are carcinogenic polycyclic aromatic hydrocarbon (cPAH) compounds, which have limited environmental mobility and are metabolized by many types of potentially edible aquatic organisms. This work included assessing the validity for cPAH compounds of the required default regulatory assumptions and deriving alternative risk-based concentrations. These analyses focused on factors that would modify the generic assumption regarding bioconcentration of cPAH compounds in aquatic biota and influence bioavailability of cPAH compounds to humans consuming the biota. Modifications based on these factors and the use of toxicity equivalency factors resulted in alternative risk-based concentrations for individual cPAH compounds that ranged from approximately 7 to 700 times greater than the default value of 0.03 microg/l.

  5. Ozonation of pyridine and other N-heterocyclic aromatic compounds: Kinetics, stoichiometry, identification of products and elucidation of pathways.

    PubMed

    Tekle-Röttering, Agnes; Reisz, Erika; Jewell, Kevin S; Lutze, Holger V; Ternes, Thomas A; Schmidt, Winfried; Schmidt, Torsten C

    2016-10-01

    Pyridine, pyridazine, pyrimidine and pyrazine were investigated in their reaction with ozone. These compounds are archetypes for heterocyclic aromatic amines, a structural unit that is often present in pharmaceuticals, pesticides and dyestuffs (e.g., enoxacin, pyrazineamide or pyrimethamine). The investigated target compounds react with ozone with rate constants ranging from 0.37 to 57 M(-1) s(-1), hampering their degradation during ozonation. In OH radical scavenged systems the reaction of ozone with pyridine and pyridazine is characterized by high transformation (per ozone consumed) of 55 and 54%, respectively. In non scavenged system the transformation drops to 52 and 12%, respectively. However, in the reaction of pyrimidine and pyrazine with ozone this is reversed. Here, in an OH radical scavenged system the compound transformation is much lower (2.1 and 14%, respectively) than in non scavenged one (22 and 25%, respectively). This is confirmed by corresponding high N-oxide formation in the ozonation of pyridine and pyridazine, but probably low formation in the reaction of pyrimidine and pyrazine with ozone. With respect to reaction mechanisms, it is suggested that ozone adduct formation at nitrogen is the primary step in the ozonation of pyridine and pyridazine. On the contrary, ozone adduct formation to the aromatic ring seems to occur especially in the ozonation of pyrimidine as inferred from hydrogen peroxide yield. However, also OH radical reactions are supposed processes in the case of pyrimidine and in particular for pyrazine, albeit negligible OH radical yields are obtained. The low compound transformation in OH radical scavenged system can prove this. As a result of negligible OH radical yields in all cases (less than 6%) electron transfer as primary reaction pathway plays a subordinate role. PMID:27448509

  6. Ozonation of pyridine and other N-heterocyclic aromatic compounds: Kinetics, stoichiometry, identification of products and elucidation of pathways.

    PubMed

    Tekle-Röttering, Agnes; Reisz, Erika; Jewell, Kevin S; Lutze, Holger V; Ternes, Thomas A; Schmidt, Winfried; Schmidt, Torsten C

    2016-10-01

    Pyridine, pyridazine, pyrimidine and pyrazine were investigated in their reaction with ozone. These compounds are archetypes for heterocyclic aromatic amines, a structural unit that is often present in pharmaceuticals, pesticides and dyestuffs (e.g., enoxacin, pyrazineamide or pyrimethamine). The investigated target compounds react with ozone with rate constants ranging from 0.37 to 57 M(-1) s(-1), hampering their degradation during ozonation. In OH radical scavenged systems the reaction of ozone with pyridine and pyridazine is characterized by high transformation (per ozone consumed) of 55 and 54%, respectively. In non scavenged system the transformation drops to 52 and 12%, respectively. However, in the reaction of pyrimidine and pyrazine with ozone this is reversed. Here, in an OH radical scavenged system the compound transformation is much lower (2.1 and 14%, respectively) than in non scavenged one (22 and 25%, respectively). This is confirmed by corresponding high N-oxide formation in the ozonation of pyridine and pyridazine, but probably low formation in the reaction of pyrimidine and pyrazine with ozone. With respect to reaction mechanisms, it is suggested that ozone adduct formation at nitrogen is the primary step in the ozonation of pyridine and pyridazine. On the contrary, ozone adduct formation to the aromatic ring seems to occur especially in the ozonation of pyrimidine as inferred from hydrogen peroxide yield. However, also OH radical reactions are supposed processes in the case of pyrimidine and in particular for pyrazine, albeit negligible OH radical yields are obtained. The low compound transformation in OH radical scavenged system can prove this. As a result of negligible OH radical yields in all cases (less than 6%) electron transfer as primary reaction pathway plays a subordinate role.

  7. Screening of edible oils for polycyclic aromatic hydrocarbons using microwave-assisted liquid-liquid and solid phase extraction coupled to one- to three-way fluorescence spectroscopy analysis.

    PubMed

    Alarcón, Francis; Báez, María E; Bravo, Manuel; Richter, Pablo; Fuentes, Edwar

    2012-10-15

    The potential of microwave-assisted liquid-liquid and solid phase extraction coupled with fluorescence spectroscopy and employing one- to three-way spectral data was assessed in terms of their capacity for the rapid detection of heavy polycyclic aromatic hydrocarbons (PAHs) in olive and sunflower oils. Tocopherols and pigments groups (chlorophyll and pheophytin) present in oil matrices were the main interference compounds in the detection of PAHs using fluorescence spectroscopy. Partial spectral overlap and inner-filter effects were observed in the emission range of the analytes. The effectiveness of removing these interferences using solid phase extraction (silica, C18 and graphitized carbon black) was examined. Solid phase extraction with silica was the most effective method for the removal of pigments and tocopherol and allowed for the detection of PAHs in edible oils using fluorescence spectroscopy. The limit of detection was observed to depend on the use of one-, two- or three-way fluorescence spectral data in the range of 0.8 to 7.0 μg kg(-1). The individual recoveries of PAHs following the microwave-assisted L-L extraction and SPE with silica were assessed using HPLC-FD with satisfactory results. PMID:23141362

  8. Synthesis of a fluorescently labeled compound for the detection of arsenic-induced apoptotic HL60 cells.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Amor, M Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-03-01

    Arsenic compounds have shown medical usefulness since they proved to be effective in causing complete remission of acute promyelocytic leukemia. In this work we obtained a fluorescently labeled arsenic compound that can be used with current fluorescence techniques for basic and applied research, focused on arsenic-induced apoptosis studies. This compound is an arsanilic acid bearing a covalently linked FITC that was chemically synthesized and characterized by fluorescence, UV-Vis, mass and FTIR spectrometry. In addition, we assessed its apoptotic activity as well as its fluorescent labeling properties in HL60 cell line as a leukemia cell model through flow cytometry. We obtained a compound with a 1:1 FITC:arsenic ratio and a 595 m/z, confirming its structure by FTIR. This compound proved to be useful at inducing apoptosis in the leukemia cell model and labeling this apoptotic cell population, in such a way that the highest FITC fluorescence correlated with the highest arsenic amount.

  9. Synthesis and blue-violet two-photon excited fluorescence of a new organoboron compound

    NASA Astrophysics Data System (ADS)

    Cao, Duxia; Liu, Zhiqiang; Li, Guozhong; Liu, Guoqun; Zhang, Guohui

    2008-02-01

    A new A-π-D-π-A type organoboron compound, 3,6-bis(dimesitylboryl)- N-butyl-carbazole (abbreviated as BBC), with trivalent boron as electron acceptor and carbazole as electron donor and π-conjugated core, has been synthesized and its single and two-photon related photophysical properties experimentally investigated. Pumped by 720 nm laser pulses in femtosecond regime, it showed strong two-photon excited blue-violet fluorescence at 393 nm in toluene and 403 nm in THF. The measured two-photon absorption cross-section by two-photon fluorescence method in toluene and THF is 34 GM and 38 GM, respectively.

  10. Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2014-09-01

    The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  11. Hydrogen and carbon isotopic ratios of polycyclic aromatic compounds in two CM2 carbonaceous chondrites and implications for prebiotic organic synthesis

    NASA Astrophysics Data System (ADS)

    Huang, Yongsong; Aponte, José C.; Zhao, Jiaju; Tarozo, Rafael; Hallmann, Christian

    2015-09-01

    Study of meteoritic organic compounds offers a unique opportunity to understand the origins of the organic matter in the early Solar System. Meteoritic polycyclic aromatic hydrocarbons (PAHs) and heteropolycyclic aromatic compounds (HACs) have been studied for over fifty years, however; their hydrogen stable isotopic ratios (δD) have never been reported. Compound-specific δD measurements of PAHs and HACs are important, in part because the carbon isotopic ratios (δ13C) of various meteoritic PAHs cannot be readily distinguished from their terrestrial counterparts and it is difficult to rule out terrestrial contamination based on carbon isotopic ratios alone. In this study, we have extracted and identified more than sixty PAHs and HACs present in two CM2 carbonaceous chondrites Murchison and LON 94101. Their carbon and hydrogen stable isotopic ratios (δ13C and δD) were measured and used to discuss about their synthetic environments and formation mechanisms. The concentration of aromatic compounds is ∼30% higher in Murchison than in the Antarctic meteorite LON 94101, but both samples contained similar suites of PAHs and HACs. All PAHs and HACs found exhibited positive δD values (up to 1100‰) consistent with an extraterrestrial origin, indicating the relatively low δ13C values are indeed an inherent feature of the meteoritic aromatic compounds. The hydrogen isotopic data suggest aromatic compounds in carbonaceous chondrites were mainly formed in the cold interstellar environments. Molecular level variations in hydrogen and carbon isotopic values offer new insights to the formation pathways for the aromatic compounds in carbonaceous chondrites.

  12. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods

    PubMed Central

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644

  13. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  14. Effect of intercalated aromatic sulfonates on uptake of aromatic compounds from aqueous solutions by modified Mg-Al layered double hydroxide

    SciTech Connect

    Kameda, Tomohito; Yamazaki, Takashi; Yoshioka, Toshiaki

    2010-06-15

    In this study, we utilized Mg-Al layered double hydroxide (Mg-Al LDH) modified by intercalation with three aromatic sulfonates-2,7-naphthalene disulfonate (2,7-NDS{sup 2-}), benzenesulfonate (BS{sup -}), and benzenedisulfonate (BDS{sup 2-})-for the uptake of two aromatics-1,3-dinitrobenzene (DNB) and anisole (AS)-from aqueous solution and determined the effect of the aromatic sulfonates on the uptake of these aromatics. We found that the electron-rich aromatic ring of the intercalated aromatic sulfonates such as 2,7-NDS{sup 2-} undergoes strong {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB in aqueous solution, and these interactions result in a higher uptake of DNB by the modified Mg-Al LDHs. In contrast, the electron-poor aromatic ring of the aromatic sulfonates such as BDS{sup 2-} undergoes weak {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB, and these interactions result in a lower uptake of DNB by the modified Mg-Al LDHs.

  15. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    PubMed

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  16. Long-term performance and stability of a continuous granular airlift reactor treating a high-strength wastewater containing a mixture of aromatic compounds.

    PubMed

    Ramos, Carlos; Suárez-Ojeda, María Eugenia; Carrera, Julián

    2016-02-13

    Continuous feeding operation of an airlift reactor and its inoculation with mature aerobic granules allowed the successful treatment of a mixture of aromatic compounds (p-nitrophenol, o-cresol and phenol). Complete biodegradation of p-nitrophenol, o-cresol, phenol and their metabolic intermediates was achieved at an organic loading rate of 0.61 g COD L(-1)d(-1). Stable granulation was obtained throughout the long-term operation (400 days) achieving an average granule size of 2.0 ± 1 mm and a sludge volumetric index of 26 ± 1 mL g(-1) TSS. The identified genera in the aerobic granular biomass were heterotrophic bacteria able to consume aromatic compounds. Therefore, the continuous feeding regimen and the exposure of aerobic granules to a mixture of aromatic compounds make possible to obtain good granulation and high removal efficiency.

  17. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  18. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed. PMID:27310182

  19. Sulfur 1s near edge x-ray absorption fine structure spectroscopy of thiophenic and aromatic thioether compounds

    NASA Astrophysics Data System (ADS)

    Behyan, Shirin; Hu, Yongfeng; Urquhart, Stephen G.

    2013-06-01

    Thiophenic compounds are major constituents of fossil fuels and pose problems for fuel refinement. The quantification and speciation of these compounds is of great interest in different areas such as biology, fossil fuels studies, geology, and archaeology. Sulfur 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy has emerged as a qualitative and quantitative method for sulfur speciation. A firm understanding of the sulfur 1s NEXAFS spectra of organosulfur species is required for these analytical studies. To support this development, the sulfur 1s NEXAFS spectra of simple thiols and thioethers were previously examined, and are now extended to studies of thiophenic and aromatic thioether compounds, in the gas and condensed phases. High-resolution spectra have been further analyzed with the aid of Improved Virtual Orbital (IVO) and Δ(self-consistent field) ab initio calculations. Experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve the assignment of spectroscopic features important for the speciation and quantification of sulfur compounds. Systematic differences between gas and condensed phases are also explored; these differences suggest a significant role for conformational effects in the NEXAFS spectra of condensed species.

  20. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups.

    PubMed

    Nadeau, Lloyd J; He, Zhongqi; Spain, Jim C

    2003-05-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.

  1. Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection.

    PubMed

    Ferey, Ludivine; Delaunay, Nathalie; Rutledge, Douglas N; Huertas, Alain; Raoul, Yann; Gareil, Pierre; Vial, Jérôme

    2013-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most targeted contaminants by international regulatory institutions. There is thus a need for fast, selective and sensitive analytical methods to quantify these compounds at trace levels in complex samples. This article focuses on the optimization by means of an experimental design of a CE method with laser-induced fluorescence detection for the fast simultaneous separation of 8 heavy PAHs among food and environmental priority pollutants: benzo(a)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and benzo(ghi)perylene. In this method, capillary zone electrophoresis with a mixture of an anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and a neutral methyl-β-cyclodextrin (Me-β-CD) was used to separate PAHs, on the basis of their differential distribution between the two CDs. First, the factors most affecting PAH electrophoretic behavior were identified: SBE-β-CD and Me-β-CD concentrations and percentage of methanol added to the background electrolyte. Then, a response surface strategy using a central composite design was carried out to model the effects of the selected factors on the normalized migration times. To optimize the separation, desirability functions were applied on modeled responses: normalized migration time differences between peak end and peak start of two consecutive peaks, and overall analysis time. From the model, predicted optimum conditions were experimentally validated and full resolution of all 8 PAHs was achieved in less than 7min using a borate buffer composed of 5.3mM SBE-β-CD, 21.5mM Me-β-CD and 10.3% MeOH. This CE separation method was successfully applied to real edible oil analysis. PMID:23831002

  2. Effect of temperature on oxygen quenching of excited states polycyclic aromatic compounds in the vapor phase

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Kuchinskiĭ, A. V.

    2009-01-01

    The temperature dependences of oxygen quenching rate constants of singlet ( k_S^{O_2 } ) and triplet ( k_T^{O_2 } ) states, as well as of the fractions of singlet ( q_S^{O_2 } ) and triplet ( q_T^{O_2 } ) states quenched by oxygen in vapor pahse of polycyclic aromatic hydrocarbons (PAHs), namely, anthracene, 2-aminoanthracene, 9-methylanthracene, 9,10-dibromoanthracene, chrysene, phenanthrene, fluoranthene, and carbazole, are studied. It is found that in the temperature range 433-673 K, the oxygen quenching rate constants of polycyclic aromatic hydrocarbons either do not change or slightly decrease with increasing temperature. The quenching activation energies E a for these cases are determined. The effect of the stored vibrational energy and the free energy of electron transfer from a PAH to oxygen on the temperature dependences of k_S^{O_2 } and k_T^{O_2 } is considered. The role played by charge-transfer complexes in the observed temperature dependences k_S^{O_2 } of and k_T^{O_2 } , as well as the applicability of a model of electron transfer concerted with reorganization of reactants for description of quenching in heated vapors is discussed.

  3. Polycyclic aromatic hydrocarbons in Recent lake sediments—I. Compounds having anthropogenic origins

    NASA Astrophysics Data System (ADS)

    Wakeham, Stuart G.; Schaffner, Christian; Giger, Walter

    1980-03-01

    Polycyclic aromatic hydrocarbons (PAH) in sediment cores from Lake Lucerne, Lake Zürich, and Greifensee, Switzerland, and Lake Washington, northwest U.S.A., have been isolated, identified and quantified by glass capillary gas chromatography and gas chromatography/mass spectrometry. Surface sediment layers are greatly enriched in PAH—up to 40 times—compared to deeper layers. In addition, concentration increases in upper sediments generally correspond to increasing industrialization and urbanization in the catchment basins of the lakes. Few PAH could be detected in pre-industrial revolution sediments, indicating that background levels for most PAH in aquatic sediments are extremely low. These results are consistent with an anthropogenic source for most of the aromatic hydrocarbons present in the modern sediments. A comparison of PAH distributions in the sediments and in possible source materials shows that urban runoff of street dust may be the most important PAH input to these lacustrine sediments. There is evidence that a significant contribution to the PAH content of street dust comes from material associated with asphalt.

  4. Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2013-01-10

    The explicit-hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to various substituted benzenes through the parametrization of the exocyclic groups -F, -Cl, -Br, -C≡N, and -OH and to polycyclic aromatic hydrocarbons through the parametrization of the aromatic linker carbon atom for multiple rings. The linker carbon together with the TraPPE-EH parameters for aromatic heterocycles constitutes a force field for fused-ring heterocycles. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to compute vapor-liquid coexistence curves for fluorobenzene; chlorobenzene; bromobenzene; di-, tri-, and hexachlorobenzene isomers; 2-chlorofuran; 2-chlorothiophene; benzonitrile; phenol; dihydroxybenzene isomers; 1,4-benzoquinone; naphthalene; naphthalene-2-carbonitrile; naphthalen-2-ol; quinoline; benzo[b]thiophene; benzo[c]thiophene; benzoxazole; benzisoxazole; benzimidazole; benzothiazole; indole; isoindole; indazole; purine; anthracene; and phenanthrene. The agreement with the limited experimental data is very satisfactory, with saturated liquid densities and vapor pressures reproduced to within 1.5% and 15%, respectively. The mean unsigned percentage errors in the normal boiling points, critical temperatures, and critical densities are 0.9%, 1.2%, and 1.4%, respectively. Additional simulations were carried out for binary systems of benzene/benzonitrile, benzene/phenol, and naphthalene/methanol to illustrate the transferability of the developed potentials to binary systems containing compounds of different polarity and hydrogen-bonding ability. A detailed analysis of the liquid-phase structures is provided for selected neat systems and binary mixtures. PMID:23205778

  5. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-11-01

    We developed a tunable (220-285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1-2 orders of magnitude better than that for a commercial system.

  6. Fluorescence of new o-carborane compounds with different fluorophores: can it be tuned?

    PubMed

    Ferrer-Ugalde, Albert; González-Campo, Arántzazu; Viñas, Clara; Rodríguez-Romero, Jesús; Santillan, Rosa; Farfán, Norberto; Sillanpää, Reijo; Sousa-Pedrares, Antonio; Núñez, Rosario; Teixidor, Francesc

    2014-08-01

    Two sets of o-carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene-containing carboranes 6-9, was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1-[(9,9-dioctyl-fluorene-2-yl)ethynyl]carborane (11) was synthesized by the reaction of 9,9-dioctyl-2-ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4-(chloromethyl)styrene or 9-(chloromethyl)anthracene yielded compounds 12 and 13. Members of the second set of derivatives, comprising anthracene-containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1-Me-1,2-C2B10H11, 1-Ph-1,2-C2B10H11, and 1,2-C2B10H12 with 1 or 2 equivalents of 9-(chloromethyl)anthracene, respectively, to produce compounds 14-16. In addition, 2 equivalents of the monolithium salts of 1-Me-1,2-C2B10H11 (Me-o-carborane) and 1-Ph-1,2-C2B10H11 (Ph-o-carborane) were reacted with 9,10-bis(chloromethyl)anthracene to produce compounds 17 and 18, respectively. Fluorene derivatives 6-9 exhibit moderate fluorescence quantum yields (32-44 %), whereas 11-13, in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me-o-carborane moiety exhibit notably high fluorescence emissions, with ϕF = 82 and 94 %, whereas their Ph-o-carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc-Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene-containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the

  7. Identification of monomethylated polycyclic aromatic hydrocarbons in crude oils by liquid chromatography and high-resolution Shpol'skii effect fluorescence spectrometry

    SciTech Connect

    Garrigues, P.; Ewald, M.

    1983-11-01

    High-resolution spectrometry (HRS) of polycyclic aromatic compounds (PAC) in n-alkanes frozen at 15 K (Shpol'skii effect) is applied to the identification of monomethylated isomers in pyrene, phenanthrene, and chrysene. Best results for identification and estimation of the relative distribution of isomers are obtained after fractionation of the crude oil by a now classical way, the high-performance liquid chromatography (HPLC) procedure which includes two-steps: first, to isolate compounds according to the degree of aromaticity, and second, to separate parent compounds according to the degree of alkylation. The chromatographic fractions suspected of containing the studied PAH are then analyzed by HRS at different levels of fractionation. The results presented here illustrate the capability of this technique for the complete identification of methylated isomers in natural extracts. 7 figures.

  8. Ultraviolet and visible spectra of the 1,3,5-trinitrobenzolates of polycyclic aromatic hydrocarbons and other organic compounds: A method for their identification (Part II)

    SciTech Connect

    Tombesi, O.L.; Frontera, M.A.; Tomas, M.A.; Badajoz, M.A. )

    1993-01-01

    In a previous paper, a study of ultraviolet and visible spectra of the picrates of polycyclic aromatic hydrocarbons and other representative organic compounds was reported. In the present paper, a similar study of 1,3,5-trinitrobenzolates derivatives is described. In the following discussion, the ultraviolet and visible spectra of the 1,3,5-trinitrobenzolates of polycyclic aromatic hydrocarbons [naphthalene (I), [beta]-methylnaphthalene (II), anthracene (III), phenanthrene (IV), chrysene (V), pyrene (VI), fluorene (VII), and acenaphthene (VIII)] and other representative organic compounds [dibenzofuran (IX), [beta]-naphthol (X), and [alpha]-naphthylamine (XI)] are given. 9 refs.

  9. Iridium-catalyzed ortho-selective C-H silylation of aromatic compounds directed toward the synthesis of π-conjugated molecules with Lewis acid-base interaction.

    PubMed

    Wakaki, Takayuki; Kanai, Motomu; Kuninobu, Yoichiro

    2015-04-01

    We successfully developed an iridium-catalyzed ortho-selective C-H silylation of aromatic compounds. The reaction exhibited a wide substrate scope, and a variety of π-conjugated molecules were synthesized in good to excellent yields, even in gram scale. Several silyl groups could also be introduced into the products. The experimental results indicated that the regioselectivity could be controlled by a Lewis acid-base interaction between the Lewis acidic silicon atoms of fluorinated hydrosilanes and the Lewis basic nitrogen atoms of aromatic compounds.

  10. Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches

    PubMed Central

    Ferreira, Natalia C.; Marques, Icaro A.; Conceição, Wesley A.; Macedo, Bruno; Machado, Clarice S.; Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Yunes, Rosendo Augusto; Nunes, Ricardo José; Hughson, Andrew G.; Raymond, Lynne D.; Pascutti, Pedro G.; Caughey, Byron; Cordeiro, Yraima

    2014-01-01

    The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are

  11. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    PubMed

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-01

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity.

  12. Comparison of fluorescence optical respirometry and microbroth dilution methods for testing antimicrobial compounds.

    PubMed

    Hałasa, R; Turecka, K; Orlewska, C; Werel, W

    2014-12-01

    An analysis of the usefulness of the fluorescence optical respirometry test method to study several antimicrobials was performed. An oxygen-sensitive sensor: ruthenium-tris(4,7-diphenyl-1,10-phenanthroline) dichloride (Ru(DPP)3Cl2), the phosphorescence of which is quenched by molecular oxygen, was synthesised according to a method modified by us and then applied. A prototype sensitive measurement system was designed and constructed. Analyses of the impact of various antimicrobial chemical factors were performed: ampicillin, co-trimoxazole, nystatin, and newly synthesised compounds. It was shown that optical respirometry allows for analysis of the culture growth kinetics of bacteria and fungi and determination of cell growth parameters. It was shown also that MIC values obtained by fluorescence optical respirometry are consistent with the results of the MIC determinations made by serial dilution method (traditional MIC testing using CLSI). The method allows the time to obtain results to be significantly reduced (from 24-48 h to 5-7 h for bacteria and 24 yeasts) and allows the effect of concentrations below the MIC for the metabolic activity of microorganisms to be monitored. The sensitivity of the method allowed the volume of the tested samples to be lessened from 160 μl to 50 μl. Fluorescence optical respirometry allows for the rapid detection and evaluation of the action of various chemical compounds on the metabolic activity of microorganisms in real-time measurement of fluorescence intensity.

  13. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  14. Degradation of specific aromatic compounds migrating from PEX pipes into drinking water.

    PubMed

    Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten; Olsson, Mikael Emil; Procházková, Zuzana; Albrechtsen, Hans-Jørgen

    2015-09-15

    Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 μg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 μg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution.

  15. The synthesis of new fluorescent bichromophoric compounds as ratiometric pH probes for intracellular measurements.

    PubMed

    Saura, A Vanessa; Marín, María J; Burguete, M Isabel; Russell, David A; Galindo, Francisco; Luis, Santiago V

    2015-07-28

    Three different bichromophoric compounds (1-3) containing an aminomethyl anthracene moiety linked to a second chromophore (pyrene, 4-nitrobenzo-2-oxa-1,3-diazole (NBD) and dansyl) through a valine-derived pseudopeptidic spacer have been prepared and their fluorescent properties studied. The results obtained show that upon irradiation the photophysical behavior of these probes involves electronic energy transfer from the excited anthracene to the second chromophore and also intramolecular photoinduced electron transfer. The X-ray structure obtained for 3 reveals that the folding associated with the pseudopeptidic spacer favours a close proximity of the two chromophores. The emissive response of 3 is clearly dependent on the pH of the medium, hence this bichromophoric compound was shown to be an excellent ratiometric pH fluorescent sensor. The emission intensity due to the anthracene moiety exhibits a decrease at neutral-basic pH values that is concomitant with an increase in the intensity arising from the dansyl fluorophore. These properties make this compound a good candidate for biological pH sensing as has been confirmed by preliminary studies with RAW 264.7 macrophage cells imaged by means of confocal fluorescence microscopy with an average pH estimation of 5.4-5.8 for acidic organelles.

  16. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds.

  17. Dissolved-oxygen quenching of in-situ fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Chudyk, Wayne; Tonaszuck, David; Pohlig, Kenneth

    1993-04-01

    In-situ fluorescence measurements of aromatic organic ground water contaminants do not always agree with gas chromatographic methods. Dissolved oxygen quenching of fluorescence may be an interferant in field measurements. Two standard fluorescent aromatics, quinine sulfate and naphthalene, were evaluated in this study. Over the range of dissolved oxygen concentrations expected to be encountered in the field, no effects of oxygen quenching on fluorescence of these compounds was observed. Quenching of quinine sulfate fluorescence by sodium chloride was observed using this system. Sodium chloride quenching was shown to follow the Stern-Volmer relation.

  18. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds.

    PubMed

    Odachowski, Marcin; Bonet, Amadeu; Essafi, Stephanie; Conti-Ramsden, Philip; Harvey, Jeremy N; Leonori, Daniele; Aggarwal, Varinder K

    2016-08-01

    The stereospecific cross-coupling of secondary boronic esters with sp(2) electrophiles (Suzuki-Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel-Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C-C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp(2))-C(sp(3)) and an adjacent C-B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations. PMID:27384259

  19. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds

    PubMed Central

    2016-01-01

    The stereospecific cross-coupling of secondary boronic esters with sp2 electrophiles (Suzuki–Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel–Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C–C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp2)–C(sp3) and an adjacent C–B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations. PMID:27384259

  20. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal.

    PubMed

    Gustavsson, L; Engwall, M

    2012-01-01

    Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds. PMID:21944874

  1. The mechanism of action of dipeptidyl aminopeptidase. Inhibition by amino acid derivatives and amines; activation by aromatic compounds.

    PubMed

    Metrione, R M; MacGeorge, N L

    1975-12-01

    A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.

  2. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal.

    PubMed

    Gustavsson, L; Engwall, M

    2012-01-01

    Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds.

  3. Examining spatial patterns in polycyclic aromatic compounds measured in stream macroinvertebrates near a small subarctic oil and gas operation.

    PubMed

    Korosi, J B; Eickmeyer, D C; Chin, K S; Palmer, M J; Kimpe, L E; Blais, J M

    2016-03-01

    The Cameron River runs through a small, remote petrochemical development in the Cameron Hills (Northwest Territories, Canada). In order to evaluate the exposure of aquatic biota to contaminants from oil and gas activities, we measured polycyclic aromatic compounds (PACs) in macroinvertebrates collected from sites and tributaries along the Cameron River, including upstream and downstream of the development, and sites located near drilled wells (developed). Macroinvertebrate tissue PAC burdens ranged from 0.2-2.8 μg g(-1) lipid for unsubstituted compounds, and from 4.2-63.2 μg g(-1) lipid for alkylated compounds, relatively low compared to similar studies from more industrialized regions in North America. There was no significant difference in tissue PAC burdens between upstream, downstream, or developed sites (p = 0.12), although alkyl PACs in five out of seven developed sites were higher than the regional average. Petrogenic PACs were dominant in most samples, including alkyl fluorines, alkyl phenanthrene/anthracenes, and alkyl dibenzothiophenes. Minimal changes in PAC composition in macroinvertebrate tissues were detected along the Cameron River, with the exception of the two sites furthest downstream that had high concentrations of C3-C4 naphthalene. Overall, our results suggest that oil and gas development in the Cameron Hills has not resulted in substantial increases in PAC bioaccumulation in stream macroinvertebrates, although the potential that alkyl naphthalenes are being transported downstream from the development warrants further attention. PMID:26911593

  4. Examining spatial patterns in polycyclic aromatic compounds measured in stream macroinvertebrates near a small subarctic oil and gas operation.

    PubMed

    Korosi, J B; Eickmeyer, D C; Chin, K S; Palmer, M J; Kimpe, L E; Blais, J M

    2016-03-01

    The Cameron River runs through a small, remote petrochemical development in the Cameron Hills (Northwest Territories, Canada). In order to evaluate the exposure of aquatic biota to contaminants from oil and gas activities, we measured polycyclic aromatic compounds (PACs) in macroinvertebrates collected from sites and tributaries along the Cameron River, including upstream and downstream of the development, and sites located near drilled wells (developed). Macroinvertebrate tissue PAC burdens ranged from 0.2-2.8 μg g(-1) lipid for unsubstituted compounds, and from 4.2-63.2 μg g(-1) lipid for alkylated compounds, relatively low compared to similar studies from more industrialized regions in North America. There was no significant difference in tissue PAC burdens between upstream, downstream, or developed sites (p = 0.12), although alkyl PACs in five out of seven developed sites were higher than the regional average. Petrogenic PACs were dominant in most samples, including alkyl fluorines, alkyl phenanthrene/anthracenes, and alkyl dibenzothiophenes. Minimal changes in PAC composition in macroinvertebrate tissues were detected along the Cameron River, with the exception of the two sites furthest downstream that had high concentrations of C3-C4 naphthalene. Overall, our results suggest that oil and gas development in the Cameron Hills has not resulted in substantial increases in PAC bioaccumulation in stream macroinvertebrates, although the potential that alkyl naphthalenes are being transported downstream from the development warrants further attention.

  5. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds.

    PubMed

    Kuramochi, Hidetoshi; Maeda, Kouji; Kawamoto, Katsuya

    2007-04-01

    The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated. PMID:17215027

  6. Arhodomonas sp. Strain Seminole and Its Genetic Potential To Degrade Aromatic Compounds under High-Salinity Conditions

    PubMed Central

    Dalvi, Sonal; Nicholson, Carla; Najar, Fares; Roe, Bruce A.; Canaan, Patricia; Hartson, Steven D.

    2014-01-01

    Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments. PMID:25149520

  7. Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds.

    PubMed

    Bejarano, Adriana C; Barron, Mace G

    2016-01-01

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within studies. Target lipid (TLM) ICE models were also developed using target lipid concentrations of the type 2 model dataset (type 2-TLM). Analyses were performed to assess model prediction uncertainty introduced by each approach. Most statistically significant models (90%; 266 models total) had mean square errors < 0.27 and adjusted coefficients of determination (adj R(2) ) > 0.59, with the lowest amount of variation in mean square errors noted for type 2-TLM followed by type 2 models. Cross-validation success (>0.62) across most models (86% of all models) confirmed the agreement between ICE predicted and observed values. Despite differences in model predictive ability, most predicted values across all 3 ICE model types were within a 2-fold difference of the observed values. As a result, no statistically significant differences (p > 0.05) were found between most ICE-based and empirical species sensitivity distributions (SSDs). In most cases hazard concentrations were within or below the 95% confidence intervals of the direct-empirical SSD-based values, regardless of model choice. Interspecies correlation estimation-based 5th percentile (HC5) values showed a 200- to 900-fold increase as the log KOW increased from 2 to 5.3. Results indicate that ICE models for aromatic compounds provide a statistically based approach for deriving conservative hazard estimates for protecting aquatic life. PMID:26184086

  8. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    PubMed

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection.

  9. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Ringuet, Johany; Albinet, Alexandre; Leoz-Garziandia, Eva; Budzinski, Hélène; Villenave, Eric

    2012-12-01

    Reactivity of polycyclic aromatic compounds (PACs) adsorbed on natural aerosol particles exposed to different atmospheric oxidants (O3, OH and NO2/O3 mixture) was studied. Decay of polycyclic aromatic hydrocarbons (PAHs) and formation/decay of oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) were monitored. Overall, benzo[a]pyrene appeared to be the most reactive PAH (degradation of 50%). Only its nitrated derivative, 6-nitrobenzo[a]pyrene, was significantly formed explaining just 0.4% of reacted benzo[a]pyrene. No other nitrated or oxygenated benzo[a]pyrene derivatives were detected. Interestingly, B[e]P and In[1,2,3,c,d]P, which are usually considered as quite stable PAHs, also underwent decay in all experiments. In presence of O3, ketones were significantly formed but their amount was not totally explained by decay of parent PAH. These results suggest that PAH derivatives could be formed from the reaction of other compounds than their direct parent PAHs and raise the question to know if the oxidation of methyl-PAHs, identified in vehicle-exhausts, could constitute this missing source of OPAHs. NPAHs were significantly formed in presence of O3/NO2 and OH. Surprisingly, NPAH formation was clearly observed during O3 experiments. Nitrated species, already associated with aerosol particles (NO3-, NO2-) or formed by ozonation of particulate nitrogen organic matter, could react with PAHs to form NPAHs. Heterogeneous formation of 2-nitropyrene from pyrene oxidation was for the first time observed, questioning its use as an indicator of NPAH formation in gaseous phase. Equally, formation of 2-nitrofluoranthene by heterogeneous reaction of fluoranthene with O3/NO2 was clearly shown, while only its formation by homogeneous processes (gaseous phase) is reported in the literature. Finally, results obtained highlighted the dependence of heterogeneous PAH reactivity with the substrate nature and the importance to focus reactivity studies on natural particles, whatever the

  10. Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds.

    PubMed

    Bejarano, Adriana C; Barron, Mace G

    2016-01-01

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within studies. Target lipid (TLM) ICE models were also developed using target lipid concentrations of the type 2 model dataset (type 2-TLM). Analyses were performed to assess model prediction uncertainty introduced by each approach. Most statistically significant models (90%; 266 models total) had mean square errors < 0.27 and adjusted coefficients of determination (adj R(2) ) > 0.59, with the lowest amount of variation in mean square errors noted for type 2-TLM followed by type 2 models. Cross-validation success (>0.62) across most models (86% of all models) confirmed the agreement between ICE predicted and observed values. Despite differences in model predictive ability, most predicted values across all 3 ICE model types were within a 2-fold difference of the observed values. As a result, no statistically significant differences (p > 0.05) were found between most ICE-based and empirical species sensitivity distributions (SSDs). In most cases hazard concentrations were within or below the 95% confidence intervals of the direct-empirical SSD-based values, regardless of model choice. Interspecies correlation estimation-based 5th percentile (HC5) values showed a 200- to 900-fold increase as the log KOW increased from 2 to 5.3. Results indicate that ICE models for aromatic compounds provide a statistically based approach for deriving conservative hazard estimates for protecting aquatic life.

  11. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds.

    PubMed

    Kuramochi, Hidetoshi; Maeda, Kouji; Kawamoto, Katsuya

    2007-04-01

    The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.

  12. The characterization of polycyclic aromatic hydrocarbons produced in combustion and pyrolysis environments: Laboratory-generated products of model compounds

    NASA Astrophysics Data System (ADS)

    Marsh, Nathan Douglas

    Laboratory and computational techniques have been developed to characterize polycyclic aromatic hydrocarbons (PAH), presumed soot precursors and potentially harmful by-products of a variety of pyrolysis and combustion processes. Newly synthesized reference standards and the application of high-pressure liquid chromatography (HPLC) with ultraviolet-visible (UV) absorption spectroscopy have led to the unequivocal identification, among combustion and pyrolysis products, of several new PAH, many of which belong to the two newly recognized PAH classes, ethynyl-PAH and cyclopenta-fused PAH (CP-PAH). Empirical rules have also been formulated for the UV spectra of ethynyl- and CP-PAH; these rules allow preliminary identification of candidate compounds in combustion products, prior to labor-intensive synthetic procedures necessary for identity confirmation. Pyrolysis products have been analyzed in two sets of experiments: benzene droplet combustion and gas-phase catechol (ortho-dihydroxybenzene) pyrolysis. In the first, benzene droplets are ignited and then captured by a phase-discriminating sampling probe; gas-phase pyrolysis products transported into the liquid phase of the droplet are identified and quantified. In the second set of experiments, catechol is pyrolysed in a laminar-flow reactor, at 700--1000°C and 0.4--1 sec, producing a range of aromatic products; the 30 most abundant are quantified. Compositional analysis of the pyrolysis products by HPLC reveals a wide variety of PAH which have never before been identified as products of these fuels. In general, most products appear to be the result of multiple ring-buildup steps. The data reported here for catechol products represent one of the most extensive quantifications of aromatic products from any fuel, and the only one for catechol. Semiempirical quantum chemical computations have been performed in order to examine the potential energy surfaces and equilibrium distributions of several compounds. The observed

  13. N,N'-Dithiobisphthalimide, a disulfide aromatic compound, is a potent spermicide agent in humans.

    PubMed

    Florez, Martha; Díaz, Emilce S; Brito, Iván; González, Jorge; Morales, Patricio

    2011-12-01

    Several studies have shown that users of vaginal preparations containing nonoxynol-9 (N-9) are at a high risk for sexually transmitted diseases, including HIV. Therefore, there is a great interest in identifying compounds that can specifically inhibit sperm without damaging the vaginal lining, possess a powerful spermicide activity, and can be used in contraceptive vaginal preparations to replace N-9. In this work, we studied the spermostatic and/or spermicidal activity of five non-detergent, disulfide compounds on human sperm, HeLa cells, and Lactobacillus acidophilus. The motility and viability of human sperm in semen and culture medium was evaluated after treatment with different concentrations of the disulfide compounds (2.5 - 100 µM). In addition, we evaluated the cytotoxic effect on HeLa cells and L. acidophilus. We identified compound 101, N,N'-dithiobisphthalimide (No. CAS 7764-30-9), as the most effective molecule. It has a half maximal effective concentration (EC(50)) of 8 µM and a minimum effective concentration (defined as the concentration that immobilizes 100 percent of the sperm in 20 sec) of 24 µM. At these concentrations, compound 101 does not affect the viability of the sperm, HeLa cells, or L. acidophilus. Our results indicate that dithiobisphthalimide has a potent spermostatic, irreversible effect with no toxic effects on HeLa cells and L. acidophilus. PMID:21942567

  14. Investigation of chlorinated aromatic compounds in the environment: Methods development and data interpretation

    SciTech Connect

    Ding, Wanghsien.

    1989-01-01

    Detection of low levels of chlorinated benzene compounds (CLBZ) and polychlorinated biphenyls (PCBs) in soil samples has been investigated with respect to potential sources in an industrial area of western New York state. The extract obtained by steam distillation was used directly with minimal additional cleanup steps for high resolution gas chromatography/mass spectrometry (HRGC/MS) and high resolution gas chromatography with electron capture detection (HRGC/ECD) analysis. The Nielson-Kryger steam distillation technique was used to extract CLBZ compounds and PCB congeners from soil samples. The recoveries of the CLBZ compounds in soil samples were monitored by comparison of the response for the {sup 13}C-labelled analogues in each isomeric group. The mean recoveries from field samples ranged from 63% to 76%. The recoveries of PCB congeners were measured using four air-dried subsurface soils which were spiked with Aroclors standard mixture. The mean recoveries of most PCB congeners ranged from 80% to 99%. Using HRGC/MS in the selected ion monitoring mode (SIM), a detection limit below 10 pg/g (10 pptr, parts per trillion) of the CLBZ compounds was achieved. For GC/ECD, an Apiezon L-coated glass capillary column was used to determine PCB congeners at background levels. More than 69 PCB congeners were separated on this column. The detection limit for an individual congener was about 0.01 ng/g. Application of SIMCA (SImple Modeling by Chemical Analogy) pattern recognition and multiple discriminant analysis showed that the pattern of CLBZ compounds in soil samples collected near Love Canal was similar to the patterns from the other areas in the Niagara Falls area. The highest concentrations of CLBZ compounds were detected in the area which is near and downwind from an industrial center with many potential sources of airborne emissions.

  15. Solid compounds of europium and terbium with some aromatic carboxylic acids

    SciTech Connect

    Chupakhina, R.A.; Biryulina, V.N.; Kasimova, L.V.; Balakhonov, V.G.

    1986-10-20

    By the reactions of europium and terbium hydroxides with aqueous solutions of benzoic, salicylic, phthalic, and phthalaldehydic acids, compounds were obtained with the compositions: for phthalic acid M/sub 2/L/sub 3/ x 3H/sub 2/O, and for the other acids ML/sub 3/ x 3H/sub 2/O, in which M = Eu/sup 3 +/, Tb/sup 3 +/; L is the anion of the corresponding acid. The compounds of europium and terbium with phthalaldehydric acid were prepared for the first time.

  16. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...

  17. Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds.

    PubMed

    Zhao, Liu-Bin; Zhang, Meng; Huang, Yi-Fan; Williams, Christopher T; Wu, De-Yin; Ren, Bin; Tian, Zhong-Qun

    2014-04-01

    Taking advantage of the unique capacity of surface plasmon resonance, plasmon-enhanced heterogeneous catalysis has recently come into focus as a promising technique for high performance light-energy conversion. This work performs a theoretical study on the reaction mechanism for conversions of p-aminothiophenol (PATP) and p-nitrothiophenol (PNTP) to aromatic azo species, p,p'-dimercaptoazobenzene (DMAB). In the absence of O2 or H2, the plasmon-driven photocatalysis mechanism (hot electron-hole reactions) is the major reaction channel. In the presence of O2 or H2, the plasmon-assisted surface catalysis mechanism (activated oxygen/hydrogen reactions) is the major reaction channel. The present results show that the coupling reactions of PATP and PNTP strongly depend on the solution pH, the irradiation wavelength, the irradiation power, and the nature of metal substrates as well as the surrounding atmosphere. The present study has drawn a fundamental physical picture for understanding plasmon-enhanced heterogeneous catalysis.

  18. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal

    SciTech Connect

    Gustavsson, L.; Engwall, M.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer It is necessary to improve existing and develop new sludge management techniques. Black-Right-Pointing-Pointer One method is dewatering and biodegradation of compounds in constructed wetlands. Black-Right-Pointing-Pointer The result showed high reduction of all tested parameters after treatment. Black-Right-Pointing-Pointer Plants improve degradation and Phragmites australis is tolerant to xenobiotics. Black-Right-Pointing-Pointer The amount of sludge could be reduced by 50-70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds.

  19. Terpenoids and aromatic compounds from the New Zealand liverworts Plagiochila, Schistochila, and Heteroscyphus species.

    PubMed

    Nagashima, Fumihiro; Sekiguchi, Takashi; Takaoka, Shigeru; Asakawa, Yoshinori

    2004-05-01

    A new clerodane- and two new ent-rosane-type diterpenoids have been isolated from the New Zealand liverworts Heteroscyphus billardierii and Plagiochila deltoidea, respectively. The known bisbibenzyl compounds and acetophenones have also been isolated from Schistochila glaucescens and Plagiochila fasciculata. Their structures were established by extensive NMR techniques. Chemosystematics of the Plagiochila species have been discussed.

  20. Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds.

    PubMed

    Sulistyaningdyah, Woro Triarsi; Ogawa, Jun; Li, Qing-Shan; Maeda, Chiharu; Yano, Yuki; Schmid, Rolf D; Shimizu, Sakayu

    2005-06-01

    Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12-20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min(-1) nmol(-1) P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml(-1) 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml(-1) 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.

  1. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine.

    PubMed

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine's organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  2. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine

    PubMed Central

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  3. Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate

    SciTech Connect

    Kumbhar, P.S.; Sanchez-Valente, J.; Millet, J.M.M.; Figueras, F.

    2000-04-25

    Catalysts consisting of mixed oxides of Fe{sup 3+} and Mg{sup 2+} were prepared by decarbonation of Mg-Fe hydrotalcite-like precursors. They show high activity and selectivity for the selective reduction of aromatic nitro compounds under mild reaction conditions. they are regenerable and can be recycled without any loss of activity. The solids were characterized by XRD, XPS, and Moessbauer spectroscopy. From Moessbauer spectroscopy the solid appears as a well-dispersed ferrihydrite phase supported by a MgFeO matrix, and only Fe{sup 3+} ions in ferrihydrite can be reversibly reduced by hydrazine and reoxidized by the nitro compound. This observation and the value of the slope of the Hammett plot suggest that the mechanism is similar to that reported for iron oxides. The activity is proportional to the fractional surface of iron oxide, and at equal surface area, MgFe oxides are more active than iron oxides and form negligible amounts of hydroxylamine intermediates.

  4. Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a review.

    PubMed

    Ndunda, Elizabeth N; Mizaikoff, Boris

    2016-05-23

    Synthetic receptors and in particular molecularly imprinted polymers (MIPs) are gaining relevance as selective sorbent materials and biomimetic recognition elements for analyzing polychlorinated aromatic compounds (PACs) in the environment. PACs are still ubiquitous toxic pollutants requiring their continuous environmental assessment for protecting humans and animals from exposure. Since nowadays most PACs occur at ultra-trace concentration levels and in complex matrices, the selectivity of MIPs renders them ideally suited for facilitating either sample pre-treatment and quantitative enrichment, or acting as biomimetic recognition elements as an integral component of corresponding sensing schemes. Due to the diversity of PACs, imprinting polymers for these constituents appears particularly challenging. This review focuses on prevalent strategies towards successfully templating polymer materials towards polychlorinated biphenyls and their hydroxy forms, chlorophenols, dioxins and furans, and organochlorine pesticides, and successful applications of the polymer materials in monitoring of these compounds at trace-levels in real-world environmental matrices. Discussed are also group-selective sorbents for facilitating simultaneous detection and quantification of PACs. PMID:27109025

  5. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Burkhardt, Mark R.; Burbank, Teresa L.; Olson, Mary C.; Iverson, Jana L.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 38 polycyclic aromatic hydrocarbons (PAHs) and semivolatile organic compounds in solid samples is described. Samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from the solid sample twice at 13,800 kilopascals; first at 120 degrees Celsius using a water/isopropyl alcohol mixture (50:50, volume-to-volume ratio), and then the sample is extracted at 200 degrees Celsius using a water/isopropyl alcohol mixture (80:20, volume-to-volume ratio). The compounds are isolated using disposable solid-phase extraction (SPE) cartridges containing divinylbenzene-vinylpyrrolidone copolymer resin. The cartridges are dried with nitrogen gas, and then sorbed compounds are eluted from the SPE material using a dichloromethane/diethyl ether mixture (80:20, volume-to-volume ratio) and passed through a sodium sulfate/Florisil SPE cartridge to remove residual water and to further clean up the extract. The concentrated extract is solvent exchanged into ethyl acetate and the solvent volume reduced to 0.5 milliliter. Internal standard compounds are added prior to analysis by capillary-column gas chromatography/mass spectrometry. Comparisons of PAH data for 28 sediment samples extracted by Soxhlet and the accelerated solvent extraction (ASE) method described in this report produced similar results. Extraction of PAH compounds from standard reference material using this method also compared favorably with Soxhlet extraction. The recoveries of PAHs less than molecular weight 202 (pyrene or fluoranthene) are higher by up to 20 percent using this ASE method, whereas the recoveries of PAHs greater than or equal to molecular weight 202 are equivalent. This ASE method of sample extraction of solids has advantages over conventional Soxhlet extraction by increasing automation of the extraction process, reducing extraction time, and using less solvent. Extract cleanup also is greatly simplified because SPE replaces

  6. Combining cryogenic fiber optic probes with commercial spectrofluorimeters for the synchronous fluorescence Shpol'skii spectroscopy of high molecular weight polycyclic aromatic hydrocarbons.

    PubMed

    Moore, Anthony F T; Barbosa, Fernando; Campiglia, Andres D

    2014-01-01

    Cryogenic fiber optic probes are combined for the first time with a commercial spectrofluorometer for Shpol'skii spectroscopy measurements at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. Accurate and reproducible acquisition of fluorescence spectra and signal intensities is demonstrated with three well known Shpol'skii systems, namely, anthracene/heptane, pyrene/hexane, and benzo[a]pyrene/octane. The ability to adjust the excitation and emission bandpass of the spectrofluorimeter to reach both site-resolution and analytically valuable signal-to-noise ratios was illustrated with benzo[a]pyrene in n-octane. The analytical potential of 4.2 K synchronous fluorescence Shpol'skii spectroscopy for the analysis of high molecular weight-polycyclic aromatic hydrocarbons was then explored for the first time. The judicious optimization of wavelength offsets permitted the successful determination of dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and naphtho[2,3-a]pyrene without previous chromatographic separation from a soil extract with complex matrix composition. The simplicity of the experimental procedure, the competitive analytical figures of merit, and the selectivity of analysis turn 4.2 K synchronous fluorescence Shpol'skii spectroscopy into a valuable alternative for screening isomers of high molecular weight polycyclic aromatic hydrocarbons in environmental samples.

  7. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86.

    PubMed

    Shrivastava, Rahul; Basu, Bhakti; Godbole, Ashwini; Mathew, M K; Apte, Shree K; Phale, Prashant S

    2011-05-01

    Pseudomonas putida CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [¹⁴C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of P. putida KT2440 and carbohydrate-selective porin OprB of various Pseudomonas strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of P. putida CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain's ability to utilize aromatics and organic acids over glucose.

  8. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ρ (NH3-N)) < 8 mg/L, ρ (TN) < 15 mg/L with long-term stability for the effluent, and both species and abundances of aromatics reduced greatly by UASBs according to GC-MS. Microbial community analysis by PCR-DGGE showed that Bacteroidetes and Alphaproteobacteria were the dominant communities in the bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment.

  9. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight.

    PubMed

    Ramos, Juan L; González-Pérez, M Mar; Caballero, Antonio; van Dillewijn, Pieter

    2005-06-01

    Industrialization and the quest for a more comfortable lifestyle have led to increasing amounts of pollution in the environment. To address this problem, several biotechnological applications aimed at removing this pollution have been investigated. Among these pollutants are xenobiotic compounds such as polynitroaromatic compounds--recalcitrant chemicals that are degraded slowly. Whereas 2,4,6-trinitrophenol (TNP) can be mineralized and converted into carbon dioxide, nitrite and water, 2,4,6-trinitrotoluene (TNT) is more recalcitrant--although several microbes can use it as a nitrogen source. The most effective in situ biotreatments for TNT are the use of bioslurry (which can be preceded by an abiotic step) and phytoremediation. Phytoremediation can be enhanced by using transgenic plants alone or together with microbes. PMID:15961028

  10. Enhancing the Photostability of Arylvinylenebipyridyl Compounds as Fluorescent Indicators for Intracellular Zinc(II) Ions

    PubMed Central

    Yuan, Zhao; Younes, Ali H.; Allen, John R.; Davidson, Michael W.; Zhu, Lei

    2015-01-01

    Arylvinylenebipyridyl (AVB) ligands are bright, zinc(II)-sensitive fluoroionophores. The applicability of AVBs as fluorescent indicators for imaging cellular zinc(II), however, is limited by low photostability, partially attributable to the photoisomerization of the vinylene functionality. Two configurationally immobilized (i.e., “locked”) AVB analogues are prepared in this work. The zinc(II)-sensitive photophysical properties and zinc(II) affinities of both AVBs and their locked analogues are characterized in organic and aqueous media. The zinc(II) sensitivity of the emission is attributed to the zinc(II)-dependent energies of the charge transfer excited states of these compounds. The configurationally locked ligands have improved photostability, while maintaining the brightness and zinc(II) sensibility of their AVB progenitors. The feasibility of the “locked” AVB analogues with improved photostability for imaging intracellular Zn(II) of eukaryotic cells using laser confocal fluorescence microscopy is demonstrated. PMID:25942357

  11. Two rapid fluorescence procedures for the detection of some thio pungent compounds in plant tissues.

    PubMed

    Bruni, A; Dall'olio, G

    1980-01-01

    Two rapid flourescence procedures are described for detecting sulphydryl, disulphide and isothiocyanate groups of scented and pungent principles present in the vacuolar sap of onion, garlic and cabbage. To localize compounds containing sulphydryl groups, fresh or fixed frozen sections of the plants were treated with mercurochrome. After the fluorochromization, strongly-positive sulphydryl sites emitted an intense orange-red fluorescence, while weakly-positive sites emitted a distinctive red-brown fluorescence. Disulphide groups were detected by first reducing with thioglycolic acid to thiol groups before treating with mercurochrome. To effect isothiocyanate localization, frozen sections were exposed to ammonia: isothiocyanates were converted to thioureas and the engendered amino groups were revealed with fluorescamine. PMID:6154673

  12. The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis).

    PubMed

    Prajapati, Vimalkumar S; Purohit, Hemant J; Raje, Dhananjay V; Parmar, Nidhi; Patel, Anand B; Jones, Oliver A H; Joshi, Chaitanya G

    2016-02-01

    In developing countries, livestock are often fed a high-lignin, low-nutrient diet that is rich in aromatic compounds. It is therefore important to understand the structure of the microbial community responsible for the metabolism of these substances. A metagenomic analysis was therefore carried out to assess the microbial communities associated with the liquid and solid fractions of rumen biomaterial from domestic Mehsani buffalo (Bubalus bubalis) fed with varying proportions of roughage. The experimental design consisted of three feeding regimes (50, 75 and 100 % roughage) and two roughage types (green and dry). Genes associated with aromatic compound degradation were assessed via high-throughput DNA sequencing. A total of 3914.94 Mb data were generated from all treatment groups. Genes coding for functional responses associated with aromatic compound metabolism were more prevalent in the liquid fraction of rumen samples than solid fractions. Statistically significant differences (p < 0.05) were also observed between treatment groups. These differences were dependent on the proportion of roughage fed to the animal, with the type of roughage having little effect. The genes present in the highest abundance in all treatment groups were those related to aromatic compound catabolism. At the phylum level, Bacteroidetes were dominant in all treatments closely followed by the Firmicutes. This study demonstrates the use of feed type to selectively enrich microbial communities capable of metabolizing aromatic compounds in the rumen of domestic buffalo. The results may help to improve nutrient utilization efficiency in livestock and are thus of interest to farming industries, particularly in developing countries, worldwide.

  13. Analysis of the relationship between the structure and aromatic properties of chemical compounds.

    PubMed

    Debska, Barbara; Guzowska-Swider, Barbara

    2003-04-01

    This paper presents the results of research on the relationship between the structure and odour properties of a selection of chemical compounds. The research concerns five groups of esters, each with a different smell: almond, apricot, apple, pineapple and rose. The supposed relationship between the smell and certain selected attributes of each molecule was examined by various pattern recognition techniques using programs developed in the Department of Computer Chemistry at Rzeszów University of Technology.

  14. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation-emission matrices and parallel factor analysis.

    PubMed

    Ferretto, Nicolas; Tedetti, Marc; Guigue, Catherine; Mounier, Stéphane; Redon, Roland; Goutx, Madeleine

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) and pesticides are among the most widespread organic contaminants in aquatic environments. Because of their aromatic structure, PAHs and pesticides have intrinsic fluorescence properties in the ultraviolet/blue spectral range. In this study, excitation-emission matrix (EEM) fluorescence spectroscopy and parallel factor (PARAFAC) analysis were used to characterise and discriminate fluorescence signatures of nine PAHs and three pesticides at the μg L(-1) level in the presence of humic substances (0.1-10 mgCL(-1)). These contaminants displayed a diversity of fluorescence signatures regarding spectral position (λEx: 220-335 nm, λEm: 310-414 nm), Stokes shift (39-169 nm) and number of peaks (1-8), with detection limits ranging from 0.02 to 1.29μgL(-1). The EEM/PARAFAC method applied to mixtures of PAHs with humic substances validated a seven-component model that included one humic-like fluorophore and six PAH-like fluorophores. The EEM/PARAFAC method applied to mixtures of pesticides with humic substances validated a six-component model that included one humic-like fluorophore and three pesticide-like fluorophores. The EEM/PARAFAC method adequately quantified most of the contaminants for humic substance concentrations not exceeding 2.5 mg CL(-1). The application of this method to natural (marine) samples was demonstrated through (1) the match between the Ex and Em spectra of PARAFAC components and the Ex and Em spectra of standard PAHs, and (2) the good linear correlations between the fluorescence intensities of PARAFAC components and the PAH concentrations determined by GC-MS.

  15. Stability of polycyclic aromatic compounds in polyurethane foam-type passive air samplers upon O3 exposure

    NASA Astrophysics Data System (ADS)

    Jariyasopit, Narumol; Liu, Yongchun; Liggio, John; Harner, Tom

    2015-11-01

    Stability of polycyclic aromatic compounds (PACs) in polyurethane foam (PUF) disks upon O3 exposure was studied in a flow tube. A wide range of PACs was evaluated by spiking PUF disks with PACs and exposing to O3 at concentrations that were equivalent to two months exposure, a typical deployment period for these passive air samplers. Ambient concentrations of O3 (∼50 ppb) at 0% and 50% relative humidity (RH) were applied. At 0% RH, 23 of 68 PACs yielded more than 50% loss after exposure. The mean percent loss was 30% with perylene and 9,10-dimethylanthracene the most reactive polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, respectively. At 50% RH, 77% of the studied PACs was stable upon O3 exposure (PACexposed/PACunexposed > 0.7). The mean percent loss was 17% and only 7 of 68 PACs yielded greater than 50% loss. In general, the reactivity of most of the PACs decreased at higher RH, except for the reactive PAHs (acenaphthylene, 2,3-dimethylanthracene, 9,10-dimethylanthracene, dibenzothiophene, and 2-methyldibenzothiophene) which demonstrated lower RH dependence. The experimental conditions in this study represent a worst case scenario for the stability of PACs sorbed to PUF. In reality, the sampling of PACs in ambient air represents an 'aged' component of PACs where the most reactive species have already partially been removed. Also, PACs in ambient air will be associated with the particle phase to varying extents that will help to enhance their stability. Therefore, under regular operating conditions, over a 2-month exposure, we expect a minimal error in the measurement of total concentration of PACs in air using the PUF disk passive sampler.

  16. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank.

    PubMed

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Schwarzbauer, Jan; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-10-01

    Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.

  17. Semipolar polycyclic aromatic compounds: identification of 15 priority substances and the need for regulatory steps under REACH regulation.

    PubMed

    Schwarz, Markus A; Behnke, Andreas; Brandt, Marc; Eisenträger, Adolf; Hassauer, Martin; Kalberlah, Fritz; Seidel, Albrecht

    2014-07-01

    Semipolar polycyclic aromatic compounds (sPACs) are frequently found in association with homocyclic polycyclic aromatic hydrocarbons (PAHs) in substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) from coal or crude oil and products derived thereof. However, major information deficiencies exist with regard to their prevalence and their toxicological and ecotoxicological potential, persistency, and bioaccumulation characteristics. Therefore, in this work, the environmental concern and relevance of sPACs was addressed in a general, stepwise approach. First, a large list of sPACs was collected and subsequently refined by assessing their persistence, bioaccumulation, and toxicity (PBT) properties by quantitative structure-activity relationship (QSAR) methods and their relevance by determining their respective frequency of occurrence. In this way, 15 priority sPACs were identified. These 15 priority sPACs were further characterized in detail with respect to their ecotoxicological properties, environmental behavior, carcinogenicity, and genotoxicity attributes. All of these 15 substances were quantified in distillate or product samples. In the next step, some principles for nomination of indicator substances, indicative for the overall content of sPACs, are derived. Data gaps on ecotoxicological endpoints preclude final conclusions, but the respective necessary supplemental tests were identified. Five of the 15 sPACs were tentatively characterized as potential substances of very high concern (SVHC) for the environment. The overall results of this study also clearly show that regulatory risk management of homocyclic PAHs within the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) does not address the environmental concern created by sPACs within UVCBs from coal or crude oil. The study proves the need for additional regulatory steps under REACH and suggests indicator

  18. Semipolar polycyclic aromatic compounds: identification of 15 priority substances and the need for regulatory steps under REACH regulation.

    PubMed

    Schwarz, Markus A; Behnke, Andreas; Brandt, Marc; Eisenträger, Adolf; Hassauer, Martin; Kalberlah, Fritz; Seidel, Albrecht

    2014-07-01

    Semipolar polycyclic aromatic compounds (sPACs) are frequently found in association with homocyclic polycyclic aromatic hydrocarbons (PAHs) in substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) from coal or crude oil and products derived thereof. However, major information deficiencies exist with regard to their prevalence and their toxicological and ecotoxicological potential, persistency, and bioaccumulation characteristics. Therefore, in this work, the environmental concern and relevance of sPACs was addressed in a general, stepwise approach. First, a large list of sPACs was collected and subsequently refined by assessing their persistence, bioaccumulation, and toxicity (PBT) properties by quantitative structure-activity relationship (QSAR) methods and their relevance by determining their respective frequency of occurrence. In this way, 15 priority sPACs were identified. These 15 priority sPACs were further characterized in detail with respect to their ecotoxicological properties, environmental behavior, carcinogenicity, and genotoxicity attributes. All of these 15 substances were quantified in distillate or product samples. In the next step, some principles for nomination of indicator substances, indicative for the overall content of sPACs, are derived. Data gaps on ecotoxicological endpoints preclude final conclusions, but the respective necessary supplemental tests were identified. Five of the 15 sPACs were tentatively characterized as potential substances of very high concern (SVHC) for the environment. The overall results of this study also clearly show that regulatory risk management of homocyclic PAHs within the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) does not address the environmental concern created by sPACs within UVCBs from coal or crude oil. The study proves the need for additional regulatory steps under REACH and suggests indicator

  19. Development and application of fluorescent, green light-activatable caged compound

    NASA Astrophysics Data System (ADS)

    Umeda, Nobuhiro; Urano, Yasuteru; Nagano, Tetsuo

    2011-03-01

    Caged compound is one of the most powerful tools for spatiotemporal control of biomolecules in cells, which can be activated by irradiation of light. However, ultra violet light, which is required for activation of caged compounds, can damage cells and has poor permeability into tissues. In addition, invisibility of caged compounds makes it difficult to tell distribution of released small molecules. At the conference, we will describe the development of novel caging group and new caged compounds which are fluorescently visible and efficiently activatable with green light. We have found that boron dipyrromethene (BODIPY), known as a widely used fluorophore, is a potential caging group for phenol, carboxyl acid and amine, which can be photolized with irradiation of green light at around 500 nm wavelength. Based on the novel photo-reaction of 4-phenoxy BODIPY derivatives, we have developed caged histamine and applied it to HeLa cells. Photo-irradiation to cells in the presence of caged histamine induced transient increase of calcium ion in cytosol, which was specifically inhibited with pyrilamine, a H1 blocker. Also, we showed that BODIPY-caged compound can be utilized in vivo with tissue-permeable 500 nm green light.

  20. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  1. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus

    PubMed Central

    2014-01-01

    Background Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified. Results Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to ~40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%. Conclusions This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a

  2. Classification of wines from five Spanish origin denominations by aromatic compound analysis.

    PubMed

    Sáenz, Cecilia; Cedrón, Trinidad; Cabredo, Susana

    2010-01-01

    Wine is a complex matrix in which aroma compounds play an important role in the characterization of the flavor pattern of a given wine. Twelve volatile compounds were determined in 244 samples of Spanish red wines from different denominations of origin: Rioja, Navarra, Valdepeñas, La Mancha, and Cariñena. The samples were analyzed by GC using headspace solid-phase microextraction. The concentration (mg/mL) intervals obtained were 3-methyl-butyl acetate (3.9 to 116), 3-methyl-1-butanol (93 to 724), ethyl hexanoate (0.8 to 39), 1-hexanol (0.3 to 6.7), ethyl octanoate (1.4 to 41), diethyl succinate (0.2 to 13), 2-phenyl ethyl acetate (0 to 5.3), hexanoic acid (0 to 8.3), geraniol (0 to 3.0), 2-phenylethanol (1.5 to 56), octanoic acid (0 to 20), and decanoic acid (0 to 3.3). Wines were classified by multivariate statistical methods: principal component analysis, and lineal discriminant analysis. A correct differentiation among wines according to their origin was obtained by lineal discriminant analysis.

  3. Unusual high fluorescence of two nitro-distyrylbenzene-like compounds induced by CT processes affecting the fluorescence/intersystem-crossing competition.

    PubMed

    Carlotti, B; Elisei, F; Mazzucato, U; Spalletti, A

    2015-06-14

    Two nitro-substituted 1,4-distyrylbenzene-like compounds have been investigated using stationary and time-resolved (ns/fs) spectrometric techniques as a function of solvent polarity. In the two compounds the central benzene ring is substituted with a p-nitrostyryl group at one side while, at the other side, compound 1 (asymmetric) bears a pyrid-4-ylethenyl group and compound 2 (symmetric) another p-nitrostyryl group. The solvent dependent intramolecular charge transfer (ICT) in the singlet manifold was found to strongly affect the competition among fluorescence, intersystem crossing and trans-cis photoisomerization. The presence of nitro-groups in the 1,4-distyrylbenzene skeleton causes the usual strong decrease of fluorescence in favour of intersystem crossing to a reactive triplet state. However, the favoured formation of the ICT state in polar solvents induces an unexpected important increase of the fluorescence quantum yield (three/two order of magnitude for the nitro and dinitro derivatives, respectively). The ultrafast spectral transients helped to understand the solvent effects measured by stationary techniques and gave information on the dynamics of the locally excited singlet state ((1)LE*) and the (1)ICT* state, fast produced in polar solvents. Evidence of dual fluorescence in a limited range of solvent polarity, particularly for compound 1, is also reported. The role of an upper triplet state in a non-polar solvent is discussed also based on quantum-mechanical calculations (TD-DFT method) and temperature effects on the photophysical parameters. PMID:25975235

  4. Unusual high fluorescence of two nitro-distyrylbenzene-like compounds induced by CT processes affecting the fluorescence/intersystem-crossing competition.

    PubMed

    Carlotti, B; Elisei, F; Mazzucato, U; Spalletti, A

    2015-06-14

    Two nitro-substituted 1,4-distyrylbenzene-like compounds have been investigated using stationary and time-resolved (ns/fs) spectrometric techniques as a function of solvent polarity. In the two compounds the central benzene ring is substituted with a p-nitrostyryl group at one side while, at the other side, compound 1 (asymmetric) bears a pyrid-4-ylethenyl group and compound 2 (symmetric) another p-nitrostyryl group. The solvent dependent intramolecular charge transfer (ICT) in the singlet manifold was found to strongly affect the competition among fluorescence, intersystem crossing and trans-cis photoisomerization. The presence of nitro-groups in the 1,4-distyrylbenzene skeleton causes the usual strong decrease of fluorescence in favour of intersystem crossing to a reactive triplet state. However, the favoured formation of the ICT state in polar solvents induces an unexpected important increase of the fluorescence quantum yield (three/two order of magnitude for the nitro and dinitro derivatives, respectively). The ultrafast spectral transients helped to understand the solvent effects measured by stationary techniques and gave information on the dynamics of the locally excited singlet state ((1)LE*) and the (1)ICT* state, fast produced in polar solvents. Evidence of dual fluorescence in a limited range of solvent polarity, particularly for compound 1, is also reported. The role of an upper triplet state in a non-polar solvent is discussed also based on quantum-mechanical calculations (TD-DFT method) and temperature effects on the photophysical parameters.

  5. Studies on the metabolism and biological effects of nitropyrene and related nitro-polycyclic aromatic compounds in diploid human fibroblasts.

    PubMed

    Maher, V M; Patton, J D; McCormick, J J

    1988-03-01

    Nitro derivatives of polycyclic aromatic hydrocarbons are produced primarily as the result of incomplete combustion. Nitropyrenes have been identified as primary mutagenic compounds of diesel emission particulate and are tumorigenic in laboratory animals. Since nitropyrenes do not react directly with DNA, their effects presumably are mediated through cellular conversion of the parent compounds into reactive species. For example, 1-nitropyrene (1-NP) is activated by enzymatic reduction to 1-nitrosopyrene (1-NOP), followed by reduction to the hydroxylamine, which undergoes decomposition to yield a nitrenium ion, that reacts with DNA. The cytotoxic effects of 1-nitropyrene and 1-nitrosopyrene were compared in fibroblasts from normal persons, from excision-repair-deficient xeroderma pigmentosum (XP) patients, and from a patient with an inherited predisposition to malignant melanoma of the skin (hereditary cutaneous malignant melanoma [HCMM]). HCMM cells are more sensitive than normal cells to the cytotoxic and mutagenic effects of 4-nitroquinoline-1-oxide, and they form more DNA adducts per concentration of this agent than do normal cells. However, the HCMM cells exhibit the same sensitivity as normal cells to 4-hydroxyaminoquinoline-1-oxide, which suggests they are more capable than normal cells of metabolizing the parent compound into a more reactive form. On the basis of concentration, 1-NOP was much more cytotoxic than 1-NP. With both compounds, the normal cells exhibited a shoulder on their survival curves that was lacking for the XP cells. The dose of 1-NP giving 37% survival was 46 microM for a series of four normal cell lines, 22 microM for the HCMM cell line tested, and 12 microM for the XP cell line. The slope of the 1-nitropyrene survival curve for XP cells was 2.5 times steeper than the slope of the curve of the normal cells; the slope of the 1-NP survival curve for the HCMM cells was intermediate between the XP cells and the normal fibroblasts. The slope

  6. Aromatic fluorine compounds. X. The 2,3- and 2,6-difluoropyridines

    USGS Publications Warehouse

    Finger, G.C.; Starr, L.D.; Roe, A.; Link, W.J.

    1962-01-01

    The preparation of difluoropyridines by the Schiemann reaction was investigated. 2-Amino-6-fluoropyridine (IIIa), necessary for the synthesis of 2,6-difluoropyridine (IVa) by the Schiemann reaction, was conveniently prepared by the Curtius degradation of 6-fluoropicolinic hydrazide (IIa) and by the Hofmann reaction on 6-fluoropicolinamide (IId). Since an ??-fluorine on a pyridine nucleus is preferentially replaced by hydrazine when it is either adjacent to or opposite a carbomethoxy group, the hydrazides necessary for the synthesis of 3-amino-2- and 6-fluoropyridine could not be prepared. These amines were prepared from the appropriate 2-fluoropyridinecarboxamide by the Hofmann reaction. The preparation of difluoropyridines was successful with two of the aminofluoropyridines and led to the following new compounds: 2,3-difluoro(IVb) and 2,6-difluoropyridine (IVa).

  7. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases.

    PubMed

    Li, Weikai

    2016-04-01

    The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compounds serve as electron and proton carriers for cellular respiration and photosynthesis, as antioxidants to reduce cell damage, and as structural components of microbial cell walls and membranes. This article reviews the biological functions and enzymatic activities of representative members of the superfamily, focusing on the remarkable recent research progress revealing that the UbiA superfamily is centrally implicated in several important physiological processes and human diseases. Because prenyltransferases in this superfamily have distinctive substrate preferences, two recent crystal structures are compared to illuminate the general mechanism for substrate recognition. PMID:26922674

  8. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  9. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases.

    PubMed

    Li, Weikai

    2016-04-01

    The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compounds serve as electron and proton carriers for cellular respiration and photosynthesis, as antioxidants to reduce cell damage, and as structural components of microbial cell walls and membranes. This article reviews the biological functions and enzymatic activities of representative members of the superfamily, focusing on the remarkable recent research progress revealing that the UbiA superfamily is centrally implicated in several important physiological processes and human diseases. Because prenyltransferases in this superfamily have distinctive substrate preferences, two recent crystal structures are compared to illuminate the general mechanism for substrate recognition.

  10. An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Santos, Javier; Carbajal, María Laura; Amor, María Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-12-01

    Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.

  11. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    NASA Astrophysics Data System (ADS)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  12. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    PubMed

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500 μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5 pg (benzo[a]pyrene) to 2.1 pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2 pg (1-nitrobenzo[e]pyrene) and 22.2 pg (3-nitrophenanthrene), and for quinones ranged between 11.5 pg (1,4-naphthoquinone) and 458 pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15 ng m(-3) for PAHs, fromaromatic compounds in airborne particles from both polluted and non-polluted atmospheres.

  13. The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Hideyuki, Tamaki; Qiu, Yan-Ling; Sekiguchi, Yuji; Woyke, Tanja; Goodwin, Lynne; Davenport, Karen W; Kamagata, Yoichi; Liu, Wen-Tso

    2015-12-01

    How aromatic compounds are degraded in various anaerobic ecosystems (e.g. groundwater, sediments, soils and wastewater) is currently poorly understood. Under methanogenic conditions (i.e. groundwater and wastewater treatment), syntrophic metabolizers are known to play an important role. This study explored the draft genome of Syntrophorhabdus aromaticivorans strain UI and identified the first syntrophic phenol-degrading phenylphosphate synthase (PpsAB) and phenylphosphate carboxylase (PpcABCD) and syntrophic terephthalate-degrading decarboxylase complexes. The strain UI genome also encodes benzoate degradation through hydration of the dienoyl-coenzyme A intermediate as observed in Geobacter metallireducens and Syntrophus aciditrophicus. Strain UI possesses electron transfer flavoproteins, hydrogenases and formate dehydrogenases essential for syntrophic metabolism. However, the biochemical mechanisms for electron transport between these H2 /formate-generating proteins and syntrophic substrate degradation remain unknown for many syntrophic metabolizers, including strain UI. Analysis of the strain UI genome revealed that heterodisulfide reductases (HdrABC), which are poorly understood electron transfer genes, may contribute to syntrophic H2 and formate generation. The genome analysis further identified a putative ion-translocating ferredoxin : NADH oxidoreductase (IfoAB) that may interact with HdrABC and dissimilatory sulfite reductase gamma subunit (DsrC) to perform novel electron transfer mechanisms associated with syntrophic metabolism.

  14. Comparative study on catalytic hydrodehalogenation of halogenated aromatic compounds over Pd/C and Raney Ni catalysts

    PubMed Central

    Ma, Xuanxuan; Liu, Sujing; Liu, Ying; Gu, Guodong; Xia, Chuanhai

    2016-01-01

    Catalytic hydrodehalogenation (HDH) has proved to be an efficient approach to dispose halogenated aromatic compounds (HACs). Liquid-phase HDH of single and mixed halobenzenes/4-halophenols with H2 over 5% Pd/C and Raney Ni catalyst are investigated and compared. For liquid-phase HDH of single HACs, hydrogenolytic scission reactivity of C-X bonds decreases in order of C-Br > C-Cl > C-I > C-F over Pd/C catalyst, and in order of C-I > C-Br > C-Cl > C-F over Raney Ni catalyst. To clarify the reason why hydrogenolytic scission reactivity of C-X bonds over Pd/C and Raney Ni catalysts exhibits different trends, liquid-phase HDH of mixed HACs over Pd/C and Raney Ni catalysts were studied, and catalysts are characterized by SEM, EDX, and XRD techniques. It was found that the high adsorption of iodoarenes on Pd/C catalyst caused the HDH reactivity of iodoarenes to be lower than that of chloroarenes and bromoarenes in the HDH of single HACs. Moreover, the adsorption of in situ produced iodine ion (I−) to catalyst surface would result in the decline of catalytic activity, which might be the main reason why the HDH reactivity of HACs in the presence of NaI is rather low. PMID:27113406

  15. Simultaneous evaluation of polycyclic aromatic hydrocarbons and carbonyl compounds in the atmosphere of Niterói City, RJ, Brazil

    NASA Astrophysics Data System (ADS)

    Franco, Caroline Fernandes Jaegger; de Mendonça Ochs, Soraya; de Oliveira Grotz, Lucas; de Almeida Furtado, Leonardo; Pereira Netto, Annibal Duarte

    2015-04-01

    Atmospheric particulate matter (total suspended particulate - TSP - and inhalable particles - PM10) and gas-phase samples were collected in three periods of seven to nine consecutive days in June and December 2011, and May 2012, in the central area of Niterói City, Rio de Janeiro State, Brazil. TSP (48.8-214 μg m-3) showed higher concentrations than PM10 (nd - 82.6 μg m-3). Sixteen polycyclic aromatic hydrocarbons (PAH) and thirty-one carbonyl compounds (CC) were evaluated. Concentrations of individual PAH ranged from

  16. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    PubMed

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500 μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5 pg (benzo[a]pyrene) to 2.1 pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2 pg (1-nitrobenzo[e]pyrene) and 22.2 pg (3-nitrophenanthrene), and for quinones ranged between 11.5 pg (1,4-naphthoquinone) and 458 pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15 ng m(-3) for PAHs, fromaromatic compounds in airborne particles from both polluted and non-polluted atmospheres. PMID:26830633

  17. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms.

  18. Metagenomic Analysis of the Pygmy Loris Fecal Microbiome Reveals Unique Functional Capacity Related to Metabolism of Aromatic Compounds

    PubMed Central

    Xu, Bo; Xu, Weijiang; Yang, Fuya; Li, Junjun; Yang, Yunjuan; Tang, Xianghua; Mu, Yuelin; Zhou, Junpei; Huang, Zunxi

    2013-01-01

    The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. An analysis of 78,619 pyrosequencing reads generated from pygmy loris fecal DNA extracts was performed to help better understand the microbial diversity and functional capacity of the pygmy loris gut microbiome. The taxonomic analysis of the metagenomic reads indicated that pygmy loris fecal microbiomes were dominated by Bacteroidetes and Proteobacteria phyla. The hierarchical clustering of several gastrointestinal metagenomes demonstrated the similarities of the microbial community structures of pygmy loris and mouse gut systems despite their differences in functional capacity. The comparative analysis of function classification revealed that the metagenome of the pygmy loris was characterized by an overrepresentation of those sequences involved in aromatic compound metabolism compared with humans and other animals. The key enzymes related to the benzoate degradation pathway were identified based on the Kyoto Encyclopedia of Genes and Genomes pathway assignment. These results would contribute to the limited body of primate metagenome studies and provide a framework for comparative metagenomic analysis between human and non-human primates, as well as a comparative understanding of the evolution of humans and their microbiome. However, future studies on the metagenome sequencing of pygmy loris and other prosimians regarding the effects of age, genetics, and environment on the composition and activity of the metagenomes are required. PMID:23457582

  19. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Tanev, Peter T.; Chibwe, Malama; Pinnavaia, Thomas J.

    1994-03-01

    TITANIUM silicalite is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxylation of phenol and the epoxidation of alkenes in the presence of H2O2 (refs 1-3). The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework4. Large-pore (mesoporous) silica-based molecular sieves have been prepared recently by Kresge et all5-7 and Kuroda et al 8.; the former used a templating approach in which the formation of an inorganic mesoporous structure is assisted by self-organization of surfactants, and the latter involved topochemical rearrangement of a layered silica precursor. Here we describe the use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium-large-pore analogues of titanium silicalite. We find that these materials show selective catalytic activity towards the oxidation of 2,6-ditert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.

  20. Production of tyrosine and other aromatic compounds from phenylalanine by rumen microorganisms.

    PubMed

    Khan, R I; Onodera, R; Amin, M R; Mohammed, N

    1999-01-01

    Rumen contents from three fistulated Japanese native goats fed Lucerne hay cubes (Medicago sativa) and concentrate mixture were collected to prepare the suspensions of mixed rumen bacteria (B), mixed protozoa (P) and a combination of the two (BP). Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h with or without 1 mM of L-phenylalanine (Phe). Phe, tyrosine (Tyr) and other related compounds in both supernatant and microbial hydrolysates of the incubations were analyzed by HPLC. Tyr can be produced from Phe not only by rumen bacteria but also by rumen protozoa. The production of Tyr during 12 h incubation in B (183.6 mumol/g MN) was 4.3 times higher than that in P. One of the intermediate products between Phe and Tyr seems to be p-hydroxyphenylacetic acid. The rate of the net degradation of Phe incubation in B (76.0 mumol/g MN/h) was 2.4 times higher than in P. In the case of all rumen microorganisms, degraded Phe was mainly (> 53%) converted into phenylacetic acid. The production of benzoic acid was higher in P than in B suspensions. Small amount of phenylpyruvic acid was produced from Phe by both rumen bacteria and protozoa, but phenylpropionic acid and phenyllactic acid were produced only by rumen bacteria.

  1. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.

    PubMed Central

    Schmidt, E; Remberg, G; Knackmuss, H J

    1980-01-01

    Substituted muconic acids were prepared from the corresponding catechols by pyrocatechase II from Pseudomonas sp. B13. The stabilities of substituted muconic acids were compared under different pH conditions. 3-Substituted cis, cis-muconic acids cycloisomerized readily in slightly acidic solutions, whereas 2-chloro- and 2-fluoro-cis,cis-muconic acids were stable under these conditions and could be isolated as crystalline compounds. They were isomerized to the cis, trans-form in highly acidic solution (pH 1), particularly when heated to 80 degrees C. Cycloisomerization of 2-chloro-cis,cis-muconic acid in 75% (v/v) H2SO4 yields 4-carboxymethyl-2-chloro-but-2-en-4-olide (4-chloro-2,5-dihydro-5-oxo-3H-furan-2-ylacetic acid). THe cis,cis-configuration of 2-chloromuconic acid was certified by 1H n.m.r. spectroscopy and by enzymic cycloisomerization. Although the cis,cis-configuration of 2-fluoromuconic acid was confirmed by corresponding spectroscopic data, it was not cycloisomerized by crude extracts or cycloisomerase II preparations from Pseudomonas sp. B13. PMID:7305905

  2. Analysis and prediction of structure-reactive toxicity relationships of substituted aromatic compounds

    SciTech Connect

    Liu, Z.T.; Wang, L.S.; Chen, S.P.; Li, W.; Yu, H.X.

    1996-12-31

    The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant into the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.

  3. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    PubMed

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo

    2016-02-01

    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument. PMID:26653509

  4. A novel pathway to the ultimate mutagens of aromatic amino and nitro compounds.

    PubMed Central

    Wild, D

    1990-01-01

    Photolysis of arylazides in aqueous media was recently found to generate presumed nitrenium ions, species which are generally considered as the ultimate mutagens/carcinogens derived from arylamines and nitroarenes. The primary photolysis products of arylazides, the arylnitrenes, can possibly react as electrophiles themselves, or they can be protonated and thus form the electrophilic nitrenium ions. Numerous arylazides and aryldiazides can be photoactivated to short-lived mutagens detectable in Salmonella typhimurium TA98. Structure-activity comparisons between arylazides and the matching arylamines and nitroarenes show correlations; e.g., phenyl azide and methyl-substituted phenyl azides are not mutagenic or only weakly mutagenic like aniline, nitrobenzene, and their methyl homologues, whereas 4-azidodiphenyl, 2-azidofluorene, 1-azidopyrene, azido-IQ, and azido-isoIQ are increasingly mutagenic in that order, like the matching amino and nitro compounds. It is hypothesized on the basis of these data that the nitrene/nitrenium ion is the reactive intermediate common to the three mutagenic pathways and that the reaction of the nitrene/nitrenium ion with DNA is rate limiting for the overall mutagenic process in Salmonella. The photochemical generation from arylazides of the reactive species, the nitrene/nitrenium ions, opens new perspectives for the understanding of the genotoxic activity of arylamines and nitroarenes in general and, specifically, of the food mutagens/carcinogens of the IQ type. PMID:2272323

  5. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    PubMed

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo

    2016-02-01

    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument.

  6. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  7. Spectroscopic investigation of fluorescence quenching agents. Part III: Effect of solvent polarity on the selectivity of nitromethane for discriminating between alternate versus nonalternant polycyclic aromatic hydrocarbons

    SciTech Connect

    Tucker, S.A.; Acree, W.E. Jr. ); Fetzer, J.C. ); Harvey, R.G. ); Tanga, M.J. ); Cheng, P.C.; Scott, L.T. )

    1993-06-01

    To better assess the applicability of nitromethane as a selective quenching agent for alternant versus nonalternant polycyclic aromatic hydrocarbons in HPLC, TLC, and HPTLC analysis, the authors measured the effect that it has on the fluorescence emission behavior of 96 different polycyclic aromatic hydrocarbons dissolved in binary toluene/acetonitrile solvent mixtures. Results of these measurements revealed that the [open quotes]selective quenching[close quotes] rule is obeyed for the vast majority of PAHs, with the coronene derivatives being the only major exceptions. Fluorescence emission spectra are also reported for benzo[g]chrysene, naphtho[2,3g]chrysene, 4H-benzo[c]cyclo-penta[mno]chrysene, dibenzo[ghi,mno]fluoranthene (commonly called corannulene), rubicene, diacenaphtho[1,2j:1',2']fluoranthene, 10-methyl-benzo[b]fluoranthene, 3-methoxybenzo[k]fluoranthene, and 3-hydroxy-benzo[k]fluoranthene in organic nonelectrolyte solvents of varying polarity. Calculated emission intensity ratios failed to vary systematically with solvent polarity, and all nine of the aforementioned solutes were thus classified as nonprobe molecules. 63 refs., 4 figs., 2 tabs.

  8. Effect of community structure on the kinetics of anaerobic degradation of aromatic compounds

    SciTech Connect

    McInerney, M.J.

    1989-11-01

    The kinetics of benzoate degradation by Syntrophus buswellii grown in coculture with Desulfovibrio strain G-11 was determined. At low benzoate concentrations the rate of degradation deviated from that predicted by a first-order decay process and reached a threshold of 2 to 3 {mu}M benzoate. S. buswellii was adapted to grow with crotonate and experiments are in progress to isolate this bacterium. An anaerobic bacterium was isolated that catalyzed the cleavage of an aryl ether bond of phenoxyacetate and its chlorinated derivatives forming the respective phenol. The anaerobic fatty acid-degrading bacterium, Syntrophomonas wolfei, catalyzed a rapid formate-bicarbonate exchange reaction and slowly degraded formate. Enzymatic studies showed that the levels of hydrogenase in cell-free extracts of S. wolfei grown in pure culture or in coculture with Methanospirillum hungatei contained very high specific activities of hydrogenase. Formate dehydrogenase activity was present, but the activity was 700 to 900-fold less than hydrogenase activity. S. wolfei was adapted to grow with mono and di-unsaturated fatty acids 5 to 6 carbons in length. Analysis of the fermentation products showed that part of the substrate was {beta}-oxidized while remainder was reduced to the corresponding saturated fatty acid. Propionate was produced from a hexadienoate suggesting that another pathway in addition to {beta}-oxidation exists for the degradation of this compound. Labeling studies and analysis of the monomeric composition of poly-{beta}-hydroxyalkanoate in S. wolfei showed that early in growth PHA was made by the incorporation of an intermediate without cleavage of a C-C bond. Later, PHA was made by a pathway in equilibrium with the acetate pool.

  9. Mutagenicity of nitro derivatives induced by exposure of aromatic compounds to nitrogen dioxide.

    PubMed

    Tokiwa, H; Nakagawa, R; Morita, K; Ohnishi, Y

    1981-08-01

    Mutagenic nitro derivatives were readily induced when 6 kinds of chemicals were exposed to 10 ppm of nitrogen dioxide (NO2). Single nitro derivatives were formed from pyrene, phenanthrene, fluorene or chrysene. Carbazole and fluoranthene each produced 2 derivatives substituted with nitro groups at different positions. The formation of nitro derivatives was enhanced by exposure of pyrene to NO2 containing nitric acid (HNO3, less than 100-fold enhancement) or sulphur dioxide (SO2, less than 15-fold enhancement). After 24 h of exposure the yields of the nitro derivative were 0.02% with 1 ppm of NO2 in air and 2.85% with NO2 (1 ppm) containing traces of HNO3. The nitro derivatives from all but phenanthrene and carbazole were chemically identified by means of gas chromatography (GC) and mass spectrometry (MS), and the mutagenicity of the 4 kinds of authentic nitro derivatives was tested by using Salmonella strains TA98 and TA1538 with or without the S9 fraction from rat liver treated with Aroclor 1254. The nitro derivative induced from pyrene was determined to be 1-nitropyrene; that of chrysene was 6-nitrochrysene; that of fluorene was 2-nitrofluorene; and those of fluoranthene were 3-nitrofluoranthene, and 8-nitrofluoranthene. Tested with strain TA98 in the absence of the S9 fraction, the first 4 of these derivatives yielded, respectively, 3050, 269, 433 and 13 400 revertants per nmole. Thus, each nitro derivative formed was potentially a direct-acting frameshift-type mutagen. Each compound exposed to NO2 showed a decreased mutagenic activity when tested in the presence of S9 mix. A possible explanation comes from experiments in which 1-nitropyrene was incubated with the S9 mix at 37 degree C for 10 min, and 1-aminopyrene was formed. The mutagenic activity of 1-aminopyrene was appreciable, but only about one-tenth of that of 1-nitropyrene in the Ames test. PMID:7022189

  10. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition.

    PubMed

    Santoro, Maricel V; Bogino, Pablo C; Nocelli, Natalia; Cappellari, Lorena Del Rosario; Giordano, Walter F; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present.

  11. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition.

    PubMed

    Santoro, Maricel V; Bogino, Pablo C; Nocelli, Natalia; Cappellari, Lorena Del Rosario; Giordano, Walter F; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  12. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition

    PubMed Central

    Santoro, Maricel V.; Bogino, Pablo C.; Nocelli, Natalia; Cappellari, Lorena del Rosario; Giordano, Walter F.; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  13. Investigation of two-photon absorption properties in new A-D-A compounds emitting blue and yellow fluorescence

    NASA Astrophysics Data System (ADS)

    Jin, Fan; Cai, Zhi-Bin; Huang, Jiu-Qiang; Li, Sheng-Li; Tian, Yu-Peng

    2015-08-01

    Three new acceptor-donor-acceptor compounds (LBQ, DBQ, BYQ) were synthesized and characterized by infrared, hydrogen nuclear magnetic resonance, mass spectrometry and elemental analysis. Their photophysical properties were investigated including linear absorption, single-photon excited fluorescence, fluorescence quantum yield and two-photon absorption. These compounds in CH2Cl2 exhibit good fluorescence quantum yield which are 0.36, 0.26, and 0.25 and the largest two-photon absorption cross-section which are 48, 36, and 181 GM respectively. Under the excitation of Ti: sapphire laser with a pulse width of 140 fs, LBQ and DBQ emit blue two-photon excited fluorescence (TPEF), while BYQ emits bright yellow TPEF. BYQ has a good solubility in water and the σ can be as large as 130 GM, so it shows promising applications in many pharmaceutical and biological fields.

  14. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite.

    PubMed

    Yuan, Cai-Xia; Fan, Yan-Ru; Tao-Zhang; Guo, Hui-Xia; Zhang, Jing-Xuan; Wang, Yong-Lan; Shan, Duo-Liang; Lu, Xiao-Quan

    2014-08-15

    In this study, an electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles (Pt-Pd NPs) supported by reduced graphene oxide (rGO) nanosheets-multiwalled carbon nanotube (CNTs) nanocomposite (marked as Pt-Pd NPs/CNTs-rGO) was investigated for the first time. This hybrid nanocomposite has been prepared via a facile and versatile hydrothermal synthetic strategy while its structure and property are evaluated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The result shows that 3D porous Pt-Pd NPs/CNTs-rGO nanocomposite has a large specific surface area of 326.6m(2)g(-1) and exhibited ultrahigh rate capability and good cycling properties at high rates. Electrochemical studies have been performed for the nitro aromatic compounds detection by using different pulse voltammetry (DPV) techniques. The proposed nanocomposite exhibited much enhanced elctrocatalytic activity and high sensitivity toward the detection of nitro aromatic compounds which compared with Pt-Pd NPs dispersed on functionalized rGO, Pt-Pd NPs dispersed on functionalized CNTs, rGO-CNTs and bare glass carbon electrode (GCE). On the basis of the above synergetic electrochemical sensing and synthesis procedure, the hybrid material can be recommended as a robust material for sensor-related applications. Moreover, the proposed sensor exhibits high reproducibility, long-time storage stability and satisfactory anti-interference ability.

  15. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)aromatic sulfur compounds transfer into the Lewis part of ionic liquid, namely, [FeCl4](-). Furthermore, it is better to consider the Lewis acidity of Fe-containing ionic liquid by the whole unit (such as [FeCl4](-) and aromatic sulfur compounds (X)) rather than only Fe or S atom.

  16. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    PubMed Central

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  17. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  18. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  19. A comparison of concentrations of polycyclic aromatic compounds detected in dust samples from various regions of the world.

    PubMed

    Naspinski, Christine; Lingenfelter, Rebecca; Cizmas, Leslie; Naufal, Ziad; He, Ling Yu; Islamzadeh, Arif; Li, Zhiwen; Li, Zhu; McDonald, Thomas; Donnelly, K C

    2008-10-01

    Settled house dust can be a source of human exposure to toxic polycyclic aromatic hydrocarbons (PAHs) through non-dietary ingestion and dermal contact. Information regarding the concentrations of various contaminants in house dust would be useful in estimating the risk associated with exposure to these compounds. This study reports on the surface loading, variability and distribution of PAHs in settled house dust collected from homes in three locations: Sumgayit, Azerbaijan; Shanxi Province, China; and southern Texas, United States. The highest PAH floor surface loadings were observed in China, followed by Azerbaijan and Texas. Median concentrations of high molecular weight (four ring and larger) PAHs ranged from a low of 0.11 microg/m(2) in Texas, to 2.9 microg/m(2) in Azerbaijan and 162 microg/m(2) in China. These trends in total surface loading and relative carcinogenicity indicate that the risk of health effects from exposure to PAHs in house dust is highest in the Chinese population and lowest in the Texas population. As anticipated, variability among dust samples from different houses within the same region was high, with coefficients of variation greater than 100%. Alkylated PAHs comprised 30-50% of the total mass of PAHs. Based on a comparison of the composition of specific components, PAHs in China and Azerbaijan were determined to be derived mainly from combustion sources rather than from unburned fossil fuels such as petroleum. These results, coupled with ongoing investigation of appropriate PAH exposure biomarkers in humans, will guide future efforts to identify ways to reduce exposures in the study areas.

  20. Has Alberta Oil Sands Development Altered Delivery of Polycyclic Aromatic Compounds to the Peace-Athabasca Delta?

    PubMed Central

    Hall, Roland I.; Wolfe, Brent B.; Wiklund, Johan A.; Edwards, Thomas W. D.; Farwell, Andrea J.; Dixon, D. George

    2012-01-01

    Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources

  1. Temporal variation in the deposition of polycyclic aromatic compounds in snow in the Athabasca Oil Sands area of Alberta.

    PubMed

    Manzano, Carlos A; Muir, Derek; Kirk, Jane; Teixeira, Camilla; Siu, May; Wang, Xiaowa; Charland, Jean-Pierre; Schindler, David; Kelly, Erin

    2016-09-01

    Atmospheric deposition of polycyclic aromatic compounds (PACs) via and onto snow, and their releasing during spring snowmelt has been a concern in the Athabasca Oil Sands Region of Alberta. This study was designed to evaluate the concentrations, loadings, and distribution of PACs in springtime snowpack and how they have changed since the first study in 2008. Snowpack samples were collected in late winters 2011-2014 at varying distances from the main developments. PAC concentration and deposition declined exponentially with distance, with pyrenes, chrysenes, and dibenzothiophenes dominating the distribution within the first 50 km. The distribution of PACs was different between sites located close to upgraders and others located close to mining facilities. Overall, PAC loadings were correlated with priority pollutant elements and water chemistry parameters, while wind direction and speed were not strong contributors to the variability observed. Total PAC mass deposition during winter months and within the first 50 km was initially estimated by integrating the exponential decay function fitted through the data using a limited number of sites from 2011 to 2014: 1236 kg (2011), 1800 kg (2012), 814 kg (2013), and 1367 (2014). Total loadings were estimated to have a twofold increase between 2008 and 2014, although the increase observed was not constant. Finally, kriging interpolation is presented as an alternative and more robust approach to estimate PAC mass deposition in the area. After a more intensive sampling campaign in 2014, the PAC mass deposition was estimated to be 1968 kg. PMID:27581009

  2. Characterization of trace organic compounds associated with aged and diluted sidestream tobacco smoke in a controlled atmosphere—volatile organic compounds and polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ok; Jenkins, Roger A.

    In this study, a wide range of volatile organic constituents of aged and diluted sidestream tobacco smoke (ADSS) were determined in a controlled atmosphere, where ADSS is the sole source of target compounds. The ADSS was generated in a 30 m 3 environmental test chamber using a variety of cigarettes, including the Kentucky 1R4F reference cigarette and eight commercial brands, and a total of 24 experimental runs were conducted. Target analytes were divided into three groups, i.e. vapor and particulate phase markers for environmental tobacco smoke (ETS), volatile organic compounds (VOC) including carbonyls, and polycyclic aromatic hydrocarbons (PAH). The VOC samples were collected on triple sorbent traps, and then analyzed by thermal desorption coupled with gas chromatography/mass spectrometry (GC/MS), while the carbonyl compounds were sampled on DNPH cartridges, being analyzed by HPLC. ETS particles in the chamber were collected by high volume sampling, and then used for the determination of PAHs by GC/MS. Among more than 30 target VOCs, acetaldehyde appeared to be the most abundant compound, followed by 2-methyl-1,3-butadiene, and formaldehyde. The results from the chamber study were further used to generate characterized ratios of selected VOCs to 3-ethenyl pyridine (3-EP), a vapor phase ETS marker. The ratios appeared to be in generally good agreement with published values in the literature. This suggests that the characteristic ratios may be useful for quantifying the impact of ETS on the VOC concentrations in 'real world' indoor environments, which are affected by a complex mixture of components from multiple sources. The yields of ETS markers from this study are all slightly lower than those estimated by other studies, while VOC yields are in reasonable agreement in many cases with values in the literature. Among 16 target PAHs, chrysene appeared to be most abundant, followed by benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP). The average contents of BaP and

  3. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity.

    PubMed

    Khemili-Talbi, Souad; Kebbouche-Gana, Salima; Akmoussi-Toumi, Siham; Angar, Yassmina; Gana, Mohamed Lamine

    2015-11-01

    Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.

  4. Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds.

    PubMed

    Gieleciak, Rafal; Hager, Darcy; Heshka, Nicole E

    2016-03-11

    Information on the sulfur classes present in petroleum is a key factor in determining the value of refined products and processing behavior in the refinery. A large part of the sulfur present is included in polycyclic aromatic sulfur heterocycles (PASHs), which in turn are difficult to desulfurize. Furthermore, some PASHs are potentially more mutagenic and carcinogenic than polycyclic aromatic hydrocarbons, PAHs. All of this calls for improved methods for the identification and quantification of individual sulfur species. Recent advances in analytical techniques such as comprehensive two-dimensional gas chromatography (GC×GC) have enabled the identification of many individual sulfur species. However, full identification of individual components, particularly in virgin oil fractions, is still out of reach as standards for numerous compounds are unavailable. In this work, a method for accurately predicting retention times in GC×GC using a QSRR (quantitative structure retention relationship) method was very helpful for the identification of individual sulfur compounds. Retention times for 89 saturated, aromatic, and polyaromatic sulfur-containing heterocyclic compounds were determined using two-dimensional gas chromatography. These retention data were correlated with molecular descriptors generated with CODESSA software. Two independent QSRR relationships were derived for the primary as well as the secondary retention characteristics. The predictive ability of the relationships was tested by using both independent sets of compounds and a cross-validation technique. When the corresponding chemical standards are unavailable, the equations developed for predicting retention times can be used to identify unknown chromatographic peaks by matching their retention times with those of sulfur compounds of known molecular structure.

  5. Stir bar sorptive extraction approaches with a home-made portable electric stirrer for the analysis of polycyclic aromatic hydrocarbon compounds in environmental water.

    PubMed

    Mao, Xiangju; Hu, Bin; He, Man; Fan, Wenying

    2012-10-19

    In this study, novel off/on-site stir bar sorptive extraction (SBSE) approaches with a home-made portable electric stirrer have been developed for the analysis of polycyclic aromatic hydrocarbon compounds (PAHs). In these approaches, a miniature battery-operated electric stirrer was employed to provide agitation of sample solutions instead of the commonly used large size magnetic stirrer powered by alternating current in conventional SBSE process, which could extend the SBSE technique from the conventional off-site analysis to the on-site sampling. The applicability of the designed off/on-site SBSE sampling approaches was evaluated by polydimethylsiloxane (PDMS) coating SBSE-high performance liquid chromatography-fluorescence detection (HPLC-FLD) analysis of six target PAHs in environmental water. The home-made portable electric stirrer is simple, easy-to-operate, user friendly, low cost, easy-to-be-commercialized, and can be processed in direct immersion SBSE, headspace sorptive extraction (HSSE) and continuous flow (CF)-SBSE modes. Since the stir bar was fixed onto the portable device by magnetic force, it is very convenient to install, remove and replace the stir bar, and the coating friction loss which occurred frequently in conventional SBSE process could be avoided. The parameters affecting the extraction of six target PAHs by the home-made portable SBSE sampling device with different sampling modes were studied. Under the optimum extraction conditions, good linearity was obtained by all of three SBSE extraction modes with correlation coefficient (R) higher than 0.9971. The limits of detection (LODs, S/N=3) were 0.05-3.41 ng L(-1) for direct immersion SBSE, 0.03-2.23 ng L(-1) for HSSE and 0.09-3.75 ng L(-1) for CF-SBSE, respectively. The proposed portable PDMS-SBSE-HPLC-FLD method was applied for the analysis of six target PAHs in East Lake water, and the analytical results obtained by on-site SBSE sampling were in good agreement with that obtained by off

  6. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis: detector designs, performance and applications: a review.

    PubMed

    de Kort, Bregje J; de Jong, Gerhardus J; Somsen, Govert W

    2013-03-01

    This review treats the coupling of capillary electrophoresis (CE) with fluorescence detection (Flu) for the analysis of natively fluorescent biomolecular and pharmaceutical compounds. CE-Flu combines the excellent separation efficiency of CE with the high selectivity and sensitivity of Flu. In CE-Flu, an appropriate design of the fluorescence detection cell is very important in order to achieve efficient analyte excitation in and emission light collection from the small cylindrically-shaped detection volume. Therefore, due attention is paid to the various optical detection designs used for CE-Flu, including the applied excitation sources and emission light detectors. Special attention is devoted to wavelength-resolved Flu and to sensitivity issues. Furthermore, he specific requirements for fluorescence detection in microfluidic systems (i.e. chip-based electrophoresis) are discussed. Subsequently, an overview of described applications of CE-Flu for the analysis of natively fluorescent biomolecules and drugs is presented in extensive tables, treating amino acids, peptides, proteins, bioactive compounds, flavins, pharmaceuticals and also single cell analysis. The tables provide information on analyte nature, sample matrix, optical detection aspects, CE mode and limits of detection. A selection of descriptive applications is discussed in detail to illustrate the potential of native fluorescence detection in CE. It is concluded that CE-Flu is a powerful tool for biomolecular and pharmaceutical analysis, and provides good opportunities for use in lab-on-chip devices. PMID:23427797

  7. Measurement of aromatic compounds in automobile exhaust gases with membrane inlet mass spectrometry equipped with an on-line-probe and an automatic Tenax-Sampler

    SciTech Connect

    Matz, G.; Walte, A.; Muenchmeyer, W.; Rikeit, H.E.

    1996-09-01

    A novel membrane inlet mass spectrometer is used to monitor organic compounds in combustion emissions. Different gas probes, which can be changed in minutes, have been developed for use in combination with the mobile mass spectrometer. With the On-Line-Probe, volatile organic compounds (BTXE) can be measured down to the ppm range with a cycle rate of one analysis per second. Time resolved measurements of aromatic compounds together with other exhaust gases can be done. By sampling with a polymer adsorbent, analysis with thermal desorption and GC/MS down to the ppb concentration range can be achieved. A six-fold Tenax-Sampler, connected to the mobile GC/MS system, is capable of taking and transferring the samples automatically. Because sampling with this device is independent from the analysis, measurements of narrow time windows in a dynamical process can be done easily. The whole analytical equipment was evaluated on-site through measurements on an engine test stand, a dynamometer and on the road during real traffic. It is shown, that time resolved quantitative measurements give information on the influence of special driving conditions (warm up, congestion) on the amount of aromatic compounds emitted by automobile exhausts.

  8. The effect of halogen hetero-atoms on the vapor pressures and thermodynamics of polycyclic aromatic compounds measured via the Knudsen effusion technique

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2009-01-01

    Knowledge of vapor